JPH08120100A - Fluorine-containing cation-exchange membrane - Google Patents

Fluorine-containing cation-exchange membrane

Info

Publication number
JPH08120100A
JPH08120100A JP6256823A JP25682394A JPH08120100A JP H08120100 A JPH08120100 A JP H08120100A JP 6256823 A JP6256823 A JP 6256823A JP 25682394 A JP25682394 A JP 25682394A JP H08120100 A JPH08120100 A JP H08120100A
Authority
JP
Japan
Prior art keywords
film
fluorine
polymer
formula
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6256823A
Other languages
Japanese (ja)
Inventor
Atsushi Watakabe
淳 渡壁
Takashi Saegi
孝志 三枝木
Kiyoshige Jitsukata
清成 實方
Yoshihiko Saito
義彦 斉藤
Yoshiaki Higuchi
義明 樋口
Haruhisa Miyake
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP6256823A priority Critical patent/JPH08120100A/en
Publication of JPH08120100A publication Critical patent/JPH08120100A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE: To prepare a fluorine-contg. cation-exchange membrane which has high resistance to practical conditions, e.g. can maintain a high current efficiency even when electrolysis conditions, such as concn. of caustic soda and electrolysis temp., are varied by laminating films of particular fluorine-contg. polymers. CONSTITUTION: This fluorine-contg. cation-exchange membrane comprises a laminate of a first film of a fluorine-contg. polymer having a sulfonic group and a second film which comprises a fluorine-contg. polymer, comprising repeating units of formulae I, II, and III (wherein R1 is a 1-5C perfluoroalkyl; M is H or an alkali metal; (formula II + formula III) to (formula I + formula II + formula III) molar ratio is 0.12 to 0.25; and formula II to formula III molar ratio is 0.02 to 0.05) and has a thickness smaller than the first film and in the range of from 5 to 50μm and a large specific electrical resistance. The content of the sulfonic group in the first film is pref. 0.7 to 1.5 milli-equivalents/ g-dry resin in terms of ion exchange capacity, and preferred examples of the polymer constituting the first film include a copolymer of CF2 =CF2 with CF2 = CFOCF2 CF(CF3 )OCF2 CF2 SO3 M.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は含フッ素陽イオン交換
膜、特に水、酸又はアルカリ水溶液、ハロゲン化アルカ
リ、炭酸アルカリ水溶液などの水性溶液の電解に適した
含フッ素陽イオン交換膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorinated cation exchange membrane, and more particularly to a fluorinated cation exchange membrane suitable for electrolysis of an aqueous solution such as water, an acid or alkali aqueous solution, an alkali halide or an alkali carbonate aqueous solution.

【0002】[0002]

【従来の技術】下記の化2に示された(A)、(B)、
(C)の繰返し単位を有する三元共重合体を用いた電解
用陽イオン交換膜は特公昭62-1652 、特開平2-88645 に
記載されている。特公昭62-1652 では低濃度(20〜30重
量%)の苛性ソーダ製造用の電解用イオン交換膜として
用いられている。特開平2-88645 ではスルホン酸基を有
する含フッ素重合体のフィルムと積層して30重量%を超
える苛性ソーダを製造するために用いられている。
2. Description of the Related Art (A), (B) shown in Chemical Formula 2 below,
A cation exchange membrane for electrolysis using a terpolymer having a repeating unit (C) is described in JP-B-62-1652 and JP-A-2-88645. In Japanese Examined Patent Publication No. 62-1652, it is used as an ion exchange membrane for electrolysis for the production of low concentration (20-30% by weight) caustic soda. In Japanese Unexamined Patent Publication (Kokai) No. 2-88645, it is used to laminate with a film of a fluoropolymer having a sulfonic acid group to produce caustic soda in excess of 30% by weight.

【0003】[0003]

【化2】 Embedded image

【0004】(Rf は炭素数1〜5のパーフルオロアル
キル基、Mは水素又はアルカリ金属、B+C/A+B+
C(モル比)は、0.12〜0.25。)
(R f is a perfluoroalkyl group having 1 to 5 carbon atoms, M is hydrogen or an alkali metal, B + C / A + B +
C (molar ratio) is 0.12-0.25. )

【0005】これらの公報には該三元共重合体を用いた
含フッ素陽イオン交換膜の長所として、スルホン酸基を
含有するフィルムとの積層が容易であることや、四フッ
化エチレン/CF2=CFOCF2CF(CF3)O(CF2)1-3COOCH3共重合
体からなる含フッ素陽イオン交換膜に比べて、陰極室に
生成する苛性ソーダ中に含有されるNaCl量を低減で
きることが記載されている。しかしながら、これら公報
の実施例に記載されている含フッ素陽イオン交換膜を使
用した場合、電解槽の運転条件、例えば、陰極室の苛性
ソーダ濃度や電流密度や電解温度の変化などが変動した
ときは、電流効率が低下してしまい、実用耐性上問題を
残していた。
In these publications, the advantages of the fluorinated cation exchange membrane using the terpolymer are that it can be easily laminated with a film containing a sulfonic acid group and that tetrafluoroethylene / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 1-3 COOCH 3 Compared with a fluorinated cation exchange membrane made of a copolymer, the amount of NaCl contained in the caustic soda formed in the cathode chamber can be reduced. Is listed. However, when the fluorine-containing cation exchange membranes described in the examples of these publications are used, when the operating conditions of the electrolytic cell, for example, the caustic soda concentration in the cathode chamber, the current density, the change in electrolysis temperature, and the like change. However, the current efficiency is reduced, and there is a problem in practical durability.

【0006】[0006]

【発明が解決しようとする課題】本発明の上記3元共重
合体からなる含フッ素陽イオン交換膜の優れた特性を損
なうことなく、陰極室の苛性ソーダ濃度変化や電解温度
の変動などの電解条件の変動に対しても高い電流効率を
維持できる実用耐性の高い含フッ素陽イオン交換膜を提
供するものである。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention Electrolysis conditions such as a change in caustic soda concentration in the cathode chamber and a change in electrolysis temperature without impairing the excellent characteristics of the fluorinated cation exchange membrane comprising the above terpolymer of the present invention It is intended to provide a fluorinated cation exchange membrane having high practical resistance, which can maintain high current efficiency even with variations in temperature.

【0007】[0007]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、スルホン交換基を有する
含フッ素重合体の第1のフィルムと、化3の(A)、
(B)、(C)の繰返し単位を有するカルボン酸基を交
換基とする含フッ素重合体からなり、上記第1のフィル
ムより小さい厚み5〜50μmをもち、かつ比電気抵抗
の大きい第2のフィルムとを積層せしめたことを特徴と
する含フッ素陽イオン交換膜からなる。
The present invention has been made to solve the above-mentioned problems, and comprises a first film of a fluorine-containing polymer having a sulfone exchange group, and (A) of Chemical formula 3,
A second polymer composed of a fluoropolymer having a carboxylic acid group having a repeating unit of (B) and (C) as an exchange group, having a thickness of 5 to 50 μm smaller than that of the first film and having a large specific electric resistance. A fluorinated cation exchange membrane characterized by being laminated with a film.

【0008】[0008]

【化3】 Embedded image

【0009】ここで、Rf は炭素数1〜5のパーフルオ
ロアルキル基、Mは水素又はアルカリ金属であり、かつ
B+C/A+B+C(モル比)は、0.12〜0.2
5、B/B+C(モル比)は0.02〜0.25であ
る。
Here, R f is a perfluoroalkyl group having 1 to 5 carbon atoms, M is hydrogen or an alkali metal, and B + C / A + B + C (molar ratio) is 0.12 to 0.2.
5, B / B + C (molar ratio) is 0.02-0.25.

【0010】かかる本発明のイオン交換膜は、電解にお
いて優れた性能、即ち高い電流効率と低い電解電圧とい
う性能を有すると同時に、スルホン酸基をもつ共重合体
の第1のフィルムと、カルボン酸基をもつ第2のフィル
ムとが、ロールプレス積層のごとくの簡便な方法により
積層され得るという優れた性質を兼ねそなえている。こ
れは、本発明による陽イオン交換膜を構成する第2のフ
ィルムが、上記のごとき(A)、(B)、(C)を繰返
し単位に有するカルボン酸基を有する含フッ素重合体か
ら形成されることに起因する。すなわちまず第1に、従
来、この種の含フッ素重合体では困難であった、例えば
イオン交換容量が、1.1meq/g以下の5〜50μ
m厚のごとく極めて薄いフィルムが、押出し成形等によ
り容易に製造できることにより高電流効率及び低い電解
電圧が達成される。
The ion exchange membrane of the present invention has excellent performance in electrolysis, that is, high current efficiency and low electrolysis voltage, and at the same time, the first film of the copolymer having a sulfonic acid group and the carboxylic acid. It also has the excellent property that the second film having a base can be laminated by a simple method such as roll press lamination. This is because the second film constituting the cation exchange membrane according to the present invention is formed from a fluorine-containing polymer having a carboxylic acid group having repeating units (A), (B) and (C) as described above. Due to that. That is, first of all, first, it has been difficult with a fluorine-containing polymer of this type in the related art, for example, an ion exchange capacity of 1.1 to 50 meg / g or less.
An extremely thin film having a thickness of m can be easily manufactured by extrusion molding or the like, so that a high current efficiency and a low electrolysis voltage can be achieved.

【0011】また、第2点として、第2のフィルムに用
いる共重合体を構成するカルボン酸基を有するモノマー
として、ペンダント側鎖の短いCF2=CFO(CF2)1-5COOCH3
を用いているため、側鎖の長いモノマーたとえばCF2=CF
OCF2CF(CF3)OCF2CF2COOCH3を構成要素とする共重合体に
比べイオン交換容量を0.85〜1.30ミリ当量/gと高く設
定しても、高い電流効率を得ることができる。
As a second point, CF 2 = CFO (CF 2 ) 1-5 COOCH 3 having a short pendant side chain is used as a monomer having a carboxylic acid group which constitutes the copolymer used for the second film.
Is used, a long side chain monomer such as CF 2 = CF
OCF 2 CF (CF 3 ) OCF 2 CF 2 COOCH 3 Even if the ion exchange capacity is set as high as 0.85 to 1.30 meq / g as compared with the copolymer having the constituent element, high current efficiency can be obtained.

【0012】第3点として、第2のフィルムに用いる共
重合体の構成要素に特定量の(B)ユニットが含まれる
ため、結晶性を(A)及び(C)ユニットのみからなる
2元共重合体に比べて小さくすることができる。かかる
2元共重合体は高い電流効率が発現する低いイオン交換
容量では、結晶性が高いため、薄膜の成形性が著しく悪
く、かつ、第1のフィルムとの密着性が悪く、加水分解
中にふくれ、あるいははくりを生じる。
A third point is that since the constituent elements of the copolymer used for the second film contain a specific amount of (B) units, the binary copolymer composed of only (A) and (C) units has crystallinity. It can be smaller than a polymer. Such a binary copolymer has a high crystallinity at a low ion exchange capacity where a high current efficiency is exhibited, so that the formability of the thin film is remarkably poor, and the adhesiveness with the first film is poor, so that it is difficult to dissolve during hydrolysis. It causes blistering or peeling.

【0013】本発明による第2のフィルムを用いれば、
第1のフィルムとたとえばロールプレスによる積層で、
簡単に2層膜にすることができる。また、ロールプレス
による積層が可能なため、さらに、3層以上の複層化や
布による補強が容易に行え、さらに高性能なイオン交換
膜を製造することができる。
With the second film according to the invention,
Lamination with the first film, for example by roll pressing,
A two-layer film can be easily formed. Further, since the layers can be laminated by roll pressing, it is possible to easily form a multi-layered structure having three or more layers or to reinforce with a cloth, and to manufacture an ion exchange membrane having higher performance.

【0014】本発明において第1のフィルムを構成する
スルホン酸基を有する含フッ素重合体のフィルムは、機
械的強度が充分である限りではイオン交換容量を大きく
し、比電気抵抗を小さくするのが好ましい。このスルホ
ン酸基の含有量は、イオン交換容量が好ましくは0.7
〜1.5ミリ当量/g乾燥樹脂、特に好ましくは、0.
8〜1.2ミリ当量/g乾燥樹脂である。
In the present invention, the film of the fluoropolymer having a sulfonic acid group which constitutes the first film has a large ion exchange capacity and a small specific electric resistance as long as the mechanical strength is sufficient. preferable. The content of the sulfonic acid group is preferably such that the ion exchange capacity is 0.7.
~ 1.5 meq / g dry resin, particularly preferably 0.
8 to 1.2 meq / g dry resin.

【0015】上記含フッ素重合体は、好ましくは、パー
フルオロカーボン重合体が適切であり、その好ましい例
は、CF2=CF2 とCF2=CFOCF2CF(CF3)OCF2CF2SO2Fとの共重
合体、CF2=CF2 とCF2=CFO(CF2)2-5SO2F との共重合体な
どである。この重合体を形成するモノマーの組成比は、
含フッ素重合体が上記のイオン交換容量を有するように
選ばれる。
The above-mentioned fluorine-containing polymer is preferably a perfluorocarbon polymer, and preferred examples thereof include CF 2 = CF 2 and CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F. And a copolymer of CF 2 = CF 2 and CF 2 = CFO (CF 2 ) 2-5 SO 2 F. The composition ratio of the monomers forming this polymer is
The fluoropolymer is selected to have the above ion exchange capacity.

【0016】本発明において、第2のフィルムを形成す
るカルボン酸基を交換基とする含フッ素重合体は、化4
の(A)、(B)、(C)の繰返し単位を有する。その
例としては、CF2=CF2 とCF2=CFORf (Rf は、炭素数1
〜5のパーフルオロアルキル基)と、CF2=CFO(CF2)3COO
CH3 との3元共重合体があげられる。
In the present invention, the fluoropolymer having a carboxylic acid group as an exchange group which forms the second film is
(A), (B), and (C) of the repeating unit. As an example, CF 2 = CF 2 and CF 2 = CFOR f (R f is 1 carbon atom
~ 5 perfluoroalkyl group) and CF 2 = CFO (CF 2 ) 3 COO
An example is a terpolymer with CH 3 .

【0017】含フッ素重合体中の繰返し単位(A)、
(B)、(C)の組成比は、フィルムの性質を決定する
ため、重要である。即ち、B+C/A+B+C(モル
比)は、フィルムの製膜の容易性及び第1のフィルムと
の密着性と関連するが、該比率が0.12〜0.25に
なるようにせしめられる。該比率が小さいときには、結
晶性が大きすぎて薄膜成形性が悪くなり、また溶融ポリ
マー粘度の温度依存性が大きくなりすぎるために製膜性
の改善が小さくなる。逆に該比率が大きいときには膜の
機械的強度の低下をもたらす。さらに、第1のフィルム
との接着性の観点から、適当な結晶性をもつような比率
が選択される。
The repeating unit (A) in the fluoropolymer,
The composition ratio of (B) and (C) is important because it determines the properties of the film. That is, B + C / A + B + C (molar ratio) is related to the ease of film formation of the film and the adhesion to the first film, but the ratio is set to 0.12 to 0.25. When the ratio is small, the crystallinity is too large and the thin film formability is poor, and the temperature dependence of the viscosity of the molten polymer is too large, so that the improvement of the film forming property is small. On the contrary, when the ratio is large, the mechanical strength of the film is lowered. Further, from the viewpoint of adhesiveness to the first film, a ratio having suitable crystallinity is selected.

【0018】一方、C/A+B+C(モル比)は、該フ
ィルムの交換容量と関係するが、該比率は、電解にて製
造しようとする苛性アルカリの濃度との関係で適したイ
オン交換容量が選ばれるが、好ましくは0.80〜1.
30ミリ当量/g乾燥樹脂、さらに好ましくは0.85
〜1.20ミリ当量/g乾燥樹脂を与えるように選ばれ
る。
On the other hand, C / A + B + C (molar ratio) is related to the exchange capacity of the film. The ratio is selected as an appropriate ion exchange capacity in relation to the concentration of caustic alkali to be produced by electrolysis. However, it is preferably 0.80 to 1.
30 meq / g dry resin, more preferably 0.85
It is chosen to give ˜1.20 meq / g dry resin.

【0019】また、繰返し単位(B)は、成形性を高め
るために必要な成分ではあるが、陰極室苛性ソーダ濃度
の変動や陽極室の塩水濃度の変動、電解温度の変動など
の運転条件の変動に対しても高い電流効率を維持するた
めには、繰返し単位(B)を必要以上に多くしないこと
が好ましい。易成形性と高い電解性能という2つの要求
特性を満足させるために、B/B+C(モル比)は0.
02〜0.25、好ましくは0.03〜0.23の範囲
で選択される。B/B+Cがこの範囲よりも小さいと成
形性向上の効果が顕著ではない。B/B+Cがこの範囲
よりも大きくなると、電解温度の変動や苛性ソーダ濃度
の変動によって、電流効率の低下が大きくなる。
Further, the repeating unit (B) is a component necessary for improving the moldability, but the operating conditions such as the fluctuation of the caustic soda concentration in the cathode chamber, the salt water concentration in the anode chamber, the variation of the electrolysis temperature and the like. However, in order to maintain high current efficiency, it is preferable that the repeating unit (B) is not excessively increased. In order to satisfy the two required characteristics of easy moldability and high electrolytic performance, B / B + C (molar ratio) is 0.
It is selected in the range of 02 to 0.25, preferably 0.03 to 0.23. When B / B + C is smaller than this range, the effect of improving moldability is not remarkable. If B / B + C is larger than this range, the decrease in current efficiency becomes large due to the change in electrolysis temperature and the change in caustic soda concentration.

【0020】上記第1及び第2のフィルムの含フッ素重
合体は、種々の方法で製造される。また、これらのフィ
ルムは必要により、好ましくはポリテトラフルオロエチ
レンなどの含フッ素重合体からなる布、不織布、フィブ
リル、多孔体又は金属製のメッシュ、多孔体などで補強
することができる。
The fluoropolymers for the first and second films are produced by various methods. If necessary, these films can be reinforced with a cloth, a nonwoven fabric, a fibril, a porous body or a metal mesh, a porous body, or the like, which is preferably made of a fluoropolymer such as polytetrafluoroethylene.

【0021】第1及び第2の含フッ素重合体のフィルム
は、本発明では、イオン交換膜性能を最大限に発揮させ
るために、第1のフィルムの厚みは、好ましくは 130〜
300μm、第2のフィルムの厚みは好ましくは5〜
50μm、そして第1のフィルム/第2のフィルムの厚
み比率は、好ましくは2.0〜30、特には5〜20に
せしめられる。第1のフィルムと第2のフィルムの積層
は必ずしも上記の厚さの範囲で行う必要はないが、電解
膜としての製膜を終了した段階でスルホン酸ポリマーか
らなる第1の層とカルボン酸ポリマーからなる第2の層
は上述の範囲になるように製膜される。例えば、補強材
導入の工程の都合上、2層膜のスルホン酸ポリマー側に
補強布を埋め込んだ後、さらにスルホン酸ポリマーをそ
の上に積層してもよい。
In the present invention, the first and second fluoropolymer films have a thickness of preferably 130 to 130 in order to maximize the performance of the ion exchange membrane.
300 μm, the thickness of the second film is preferably 5
The thickness ratio of 50 μm, and the thickness of the first film / the second film is preferably 2.0 to 30, particularly 5 to 20. The lamination of the first film and the second film does not necessarily have to be performed within the above-mentioned thickness range, but the first layer made of a sulfonic acid polymer and the carboxylic acid polymer at the stage of completing the film formation as the electrolytic membrane. The second layer consisting of is formed into the above range. For example, for the convenience of the step of introducing a reinforcing material, a reinforcing cloth may be embedded in the sulfonic acid polymer side of the two-layer film, and then the sulfonic acid polymer may be further laminated thereon.

【0022】第1のフィルムと第2のフィルムの間には
基本的に接着層は不要であるが、カルボン酸ポリマーと
スルホン酸ポリマーのブレンド層を介在させても構わな
い。この場合、ブレンド層の厚みは上述の第1又は第2
のフィルムの厚さには算入されない。ブレンド層を用い
る場合の厚みは通常1〜50μm、好ましくは5〜30
μmである。ブレンド層に使用するスルホン酸ポリマー
及びカルボン酸ポリマーのイオン交換容量はおよそ0.
7〜1.3ミリ当量/g乾燥樹脂である。スルホン酸ポ
リマーとカルボン酸ポリマーの割合は重量比で通常8/
2〜1/9で、好ましくは、7/3〜2/8である。第
2のフィルムが極めて薄い場合、上記した補強材は、第
1のフィルムに導入するのが好ましい。
An adhesive layer is basically unnecessary between the first film and the second film, but a blend layer of a carboxylic acid polymer and a sulfonic acid polymer may be interposed. In this case, the thickness of the blend layer is the above-mentioned first or second
It is not included in the film thickness. When using a blend layer, the thickness is usually 1 to 50 μm, preferably 5 to 30 μm.
μm. The ion exchange capacities of the sulfonic acid polymer and the carboxylic acid polymer used in the blend layer are about 0.
7 to 1.3 meq / g dry resin. The weight ratio of sulfonic acid polymer to carboxylic acid polymer is usually 8 /
It is 2 to 1/9, preferably 7/3 to 2/8. If the second film is very thin, it is preferred that the reinforcing material described above be incorporated into the first film.

【0023】第1のフィルム及び第2のフィルムの積層
は、適宜の手段が採用されるが、いずれにせよかかる積
層により両者の膜状物を一体化することが必要である。
かくして、例えば、好ましくは温度100〜350℃に
て、圧力0.5〜100kg/cm2 にてプレスするこ
とにより、かかる積層が実施される。なお、積層に当た
っては、本発明では、場合により、第1のフィルム及び
第2のフィルムの一方又は両方を2種以上使うことがで
きる。
Appropriate means may be adopted for laminating the first film and the second film, but in any case, it is necessary to integrate the two film-like materials by such laminating.
Thus, such lamination is carried out, for example, preferably by pressing at a temperature of 100-350 ° C. and a pressure of 0.5-100 kg / cm 2 . In the present invention, two or more kinds of one or both of the first film and the second film can be used in the present invention for lamination.

【0024】また、両フィルムの積層は、その有する陽
イオン交換基の分解を招かないような適宜のイオン交換
基の形態、例えばカルボン酸基のときは、酸又はエステ
ル型で行うのが好ましく、また、スルホン酸基のときに
は、−SO2 F型で行うのが好ましい。また、積層は、
予め第1のフィルムと第2のフィルムを作成しなくと
も、押出しと同時に積層を行う共押し出しで行ってもよ
い。電解膜として積層された陽イオン交換膜の厚みは、
好ましくは、80〜500μm、特に100〜300μ
mにするのが好ましい。
Further, the lamination of both films is preferably carried out in the form of an appropriate ion exchange group which does not cause the decomposition of the cation exchange group contained therein, for example, in the case of a carboxylic acid group, in an acid or ester type. Further, in the case of a sulfonic acid group, it is preferable to carry out by —SO 2 F type. Also, the lamination is
The first film and the second film may not be prepared in advance, and may be coextrusion in which lamination is performed simultaneously with extrusion. The thickness of the cation exchange membrane laminated as the electrolytic membrane is
Preferably 80-500 μm, especially 100-300 μm
It is preferably m.

【0025】本発明の上記第1のフィルム及び第2のフ
ィルムを積層してなる陽イオン交換膜は、そのままでも
もちろん優れた性能を発揮するが、必要に応じて、その
一方又は両方の膜面にガス及び液透過性の電極活性を有
する粒子を含む多孔質層(米国特許明細書第4224121 号
など参照)又は、ガス及び液透過性の電極活性を有しな
い粒子を含む多孔質層(英国公開特許明細書第2064586
号など参照)を設けて、その性質を一層改良することが
できる。
The cation exchange membrane obtained by laminating the first film and the second film of the present invention exhibits excellent performance as it is, but if necessary, one or both of the membrane surfaces can be used. A porous layer containing gas and liquid permeable particles having electrode activity (see US Pat. No. 4224121, etc.) or a porous layer containing gas and liquid permeable particles having no electrode activity (UK publication) Patent specification No. 2064586
No.) can be provided to further improve the property.

【0026】本発明の含フッ素陽イオン交換膜は、上記
のように塩化アルカリ水溶液を始めとする種々の水性溶
液の電解に使用できる。例えば、塩化アルカリ水溶液の
電解に使用する場合、本発明の陽イオン交換膜の第1の
フィルム面を、陽極側に、第2のフィルム面を陰極側に
向けて配置せしめられる。かくした場合、本発明の陽イ
オン交換膜はその最大限の性能が発揮される。
The fluorinated cation exchange membrane of the present invention can be used for electrolysis of various aqueous solutions such as an aqueous solution of alkali chloride as described above. For example, when used for electrolysis of an aqueous solution of alkali chloride, the cation exchange membrane of the present invention can be arranged so that the first film surface faces the anode side and the second film surface faces the cathode side. In this case, the cation exchange membrane of the present invention exerts its maximum performance.

【0027】本発明のイオン交換膜を使用して塩化アル
カリ水溶液の電解を行うプロセス条件としては、上記し
た特開昭54-112398 号公報におけるような既知の条件が
採用できる。例えば、陽極室には好ましくは2.5〜
5.0規定(N)の塩化アルカリ水溶液を供給し、陰極
室には水又は希釈水酸化アルカリを供給し、好ましくは
80℃〜120℃、電流密度10〜100A/dm2
電解される。かかる場合、塩化アルカリ水溶液中のカル
シウム及びマグネシウムなどの重金属イオンは、イオン
交換膜の劣化を招くので、可及的に小さくせしめるのが
好ましい。また、陽極における酸素の発生を極力防止す
るために塩酸などの酸を塩化アルカリ水溶液に添加する
ことができる。
As the process conditions for electrolyzing the aqueous alkali chloride solution using the ion exchange membrane of the present invention, known conditions as described in JP-A-54-112398 can be adopted. For example, in the anode chamber preferably 2.5-
A 5.0N (N) aqueous solution of alkali chloride is supplied, and water or diluted alkali hydroxide is supplied to the cathode chamber, and electrolysis is preferably performed at 80 ° C to 120 ° C and a current density of 10 to 100 A / dm 2 . In such a case, heavy metal ions such as calcium and magnesium in the aqueous alkali chloride solution cause deterioration of the ion exchange membrane, and therefore it is preferable to make them as small as possible. Further, an acid such as hydrochloric acid can be added to the aqueous alkali chloride solution in order to minimize generation of oxygen at the anode.

【0028】本発明において電解槽は、上記構成を有す
る限りにおいて単極型でも複極型でもよい。また電解槽
を構成する材料は、例えば塩化アルカリ水溶液の電解の
場合には陽極室の場合には、塩化アルカリ水溶液及び塩
素に耐性があるもの、例えば弁金属、チタンが使用さ
れ、陰極室の場合には水酸化アルカリ及び水素に耐性が
ある鉄、ステンレス又はニッケルなどが使用される。
In the present invention, the electrolytic cell may be a monopolar type or a bipolar type as long as it has the above constitution. Further, the material constituting the electrolytic cell is, for example, in the case of electrolysis of an aqueous solution of alkali chloride, in the case of the anode chamber, a material resistant to the aqueous solution of alkali chloride and chlorine, such as valve metal or titanium, and in the case of the cathode chamber. For example, iron, stainless steel, nickel, or the like that is resistant to alkali hydroxide and hydrogen is used.

【0029】本発明において電極を配置する場合、電極
はイオン交換膜に接触して配置しても、また、適宜の間
隔を配置してもよい。以上は、主に塩化アルカリ水溶液
の電解の例について本発明の膜の使用を説明したが、
水、ハロゲン酸(塩酸、臭化水素酸)、炭酸アルカリの
電解に対しても同様に適用できることはもちろんであ
る。
When the electrodes are arranged in the present invention, the electrodes may be arranged in contact with the ion exchange membrane, or may be arranged at an appropriate interval. The above has mainly described the use of the membrane of the present invention for an example of the electrolysis of an alkali chloride aqueous solution,
Needless to say, the same can be applied to electrolysis of water, halogen acid (hydrochloric acid, hydrobromic acid), and alkali carbonate.

【0030】次に、本発明を、実施例により説明する
が、これにより本発明は何ら、制限をうけるものではな
いことは、もちろんである。
Next, the present invention will be described with reference to examples, but it goes without saying that the present invention is not limited to these examples.

【0031】[0031]

【実施例】【Example】

実施例1 内容量20000 cm3 のステンレス製耐圧容器に、イオン
交換水を13700 g、C8F17 COONH4を48g、Na2HPO4・12H2
O を68g、NaH2PO4・2H2Oを40g、(NH4)2S2O8を8.2 g、
n−ヘキサンを1.23g仕込み、ついで、1760gのCF2=CF
O(CF2)3COOCH3と292 gのCF2=CFO(CF2)3Fを仕込んだ。
充分脱気を行った後、重合温度57℃まで昇温し、四フッ
化エチレンにて所定圧13.7kg/cm2 まで昇圧し、反
応を行わせしめた。四フッ化エチレンを導入しつつ重合
を行い、圧力を所定圧に保った。7時間後に反応を停止
し、得られたラテックスを濃硫酸を用いて凝集を行い、
次いでポリマーを充分に水洗した後、メタノール中で65
℃、16時間処理し、更に乾燥を行って、イオン交換容量
0.95meq/gの三元共重合体3.0 kgを得た。19F−
NMRで分析したところ、CF2=CFO(CF2)3FとCF2=CFO(CF
2)3COOCH3 のポリマー中の割合はモル比で16:84で
あった。該三元共重合体を250 ℃で押出し製膜し、厚さ
35μmの薄いフィルムを得た。
Stainless steel pressure vessel of Example 1 Contents 20000 cm 3, the ion-exchanged water 13700 g, the C 8 F 17 COONH 4 48g, Na 2 HPO 4 · 12H 2
68 g of O, 40 g of NaH 2 PO 4 .2H 2 O, 8.2 g of (NH 4 ) 2 S 2 O 8 ;
Charge 1.23 g of n-hexane, then 1760 g of CF 2 = CF
O (CF 2 ) 3 COOCH 3 and 292 g of CF 2 = CFO (CF 2 ) 3 F were charged.
After sufficiently degassing, the polymerization temperature was raised to 57 ° C., and the pressure was raised to a predetermined pressure of 13.7 kg / cm 2 with ethylene tetrafluoride to carry out the reaction. Polymerization was carried out while introducing tetrafluoroethylene, and the pressure was kept at a predetermined pressure. After 7 hours, the reaction was stopped, and the obtained latex was coagulated with concentrated sulfuric acid.
Then, wash the polymer thoroughly with water and
Ion exchange capacity after treatment at ℃ for 16 hours and further drying
3.0 kg of a terpolymer of 0.95 meq / g was obtained. 19 F-
When analyzed by NMR, CF 2 = CFO (CF 2 ) 3 F and CF 2 = CFO (CF
The molar ratio of 2 ) 3 COOCH 3 in the polymer was 16:84. The terpolymer was extruded at 250 ° C to form a film,
A 35 μm thin film was obtained.

【0032】次に、同じ反応容器に、1,1,2−トリ
クロロ−1,2,2−トリフルオロエタンを5.92kg、
α、 α’−アゾビスイソブチロニトリル12gを仕込み、
次いで、CF2=CFOCF2CF(CF3)OCF2CF2SO2Fを11.27 kgを
仕込んだ。充分脱気を行った後、重合温度70℃まで昇温
し、四フッ化エチレンにて所定圧12.3kg/cm2 まで
昇圧し、反応を行わせしめた。四フッ化エチレンを導入
しつつ重合を行い、圧力を所定圧に保った。9時間後に
反応を停止し、得られたポリマーを充分に洗浄、乾燥を
行い、イオン交換容量1.00meq/gの共重合体を2.6
kg得た。該共重合体を220 ℃で押出し製膜し、厚さ11
0 μmの膜を得た。
Next, in the same reaction vessel, 5.92 kg of 1,1,2-trichloro-1,2,2-trifluoroethane,
Charged with α, α'-azobisisobutyronitrile 12g,
Next, 11.27 kg of CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F was charged. After sufficiently degassing, the polymerization temperature was raised to 70 ° C., and the pressure was raised to a predetermined pressure of 12.3 kg / cm 2 with tetrafluoroethylene to cause the reaction. Polymerization was carried out while introducing tetrafluoroethylene, and the pressure was kept at a predetermined pressure. The reaction was stopped after 9 hours, and the obtained polymer was thoroughly washed and dried to obtain a copolymer having an ion exchange capacity of 1.00 meq / g and 2.6
I got kg. The copolymer was extruded at 220 ° C to form a film having a thickness of 11
A 0 μm film was obtained.

【0033】次いで、この2種類のフィルムを、225 ℃
でロールを用いて貼合せ積層を行い2層膜とした後、ジ
メチルスルホキシド30重量%、苛性カリ15重量%の水溶
液中で加水分解を行い、その後、 2%NaOH水溶液中に、
該膜を浸漬した。次に、この膜を用いて以下の如く電解
を行った。
Next, these two kinds of films are subjected to 225 ° C.
After laminating with a roll to form a two-layer film, hydrolysis is carried out in an aqueous solution of 30% by weight of dimethyl sulfoxide and 15% by weight of caustic potash, and then in a 2% aqueous solution of NaOH,
The membrane was immersed. Next, using this membrane, electrolysis was performed as follows.

【0034】有効膜面積0.25dm2 、陽極RuO2/Ti エク
スパンドメタル、陰極活性ニッケル/Feエクスパンド
メタル、極間3mmからなる小型槽を用い、200 g/lNa
Cl及び水を陽極室及び陰極室に供給しながら85℃、電流
密度40A/dm2 にて電解試験を行った。その結果、生
成苛性濃度32%NaOHにおける電流効率は97.4%であっ
た。苛性濃度35%にシフトしたときの電流効率は97.3%
であった。
Using a small tank having an effective film area of 0.25 dm 2 , an anode RuO 2 / Ti expanded metal, a cathode active nickel / Fe expanded metal, and a gap of 3 mm, 200 g / lNa
An electrolytic test was conducted at 85 ° C. and a current density of 40 A / dm 2 while supplying Cl and water to the anode chamber and the cathode chamber. As a result, the current efficiency at the generated caustic concentration of 32% NaOH was 97.4%. Current efficiency when shifting to a caustic concentration of 35% is 97.3%
Met.

【0035】比較例1 内容量 20000cm3 のステンレス製耐圧容器に、イオン
交換水を 13700g、C8F17 COONH4を48g、Na2HPO4・12H2
O を68g、NaH2PO4・2H2Oを40g、(NH4)2S2O8を6.9 g、
n−ヘキサンを1.1 g仕込み、ついで、2074gのCF2=CF
O(CF2)3COOCH3と 666gのCF2=CFO(CF2)3Fを仕込んだ。
充分脱気を行った後、重合温度57℃まで昇温し、四フッ
化エチレンにて所定圧12.7kg/cm2 まで昇圧し、反
応を行わせしめた。四フッ化エチレンを導入しつつ重合
を行い、圧力を所定圧に保った。6時間後に反応を停止
し、得られたラテックスを濃硫酸を用いて凝集を行い、
次いでポリマーを充分に水洗した後、メタノール中で65
℃、16時間処理し、更に乾燥を行って、イオン交換容量
0.95meq/gの三元共重合体 2.8kgを得た。19F−
NMRで分析したところ、CF2=CFO(CF2)3FとCF2=CFO(CF
2)3COOCH3 のポリマー中の割合はモル比で27:73で
あった。該三元共重合体を220 ℃で押出し製膜し、厚さ
35μmの薄いフィルムを得た。
Comparative Example 1 13700 g of ion-exchanged water, 48 g of C 8 F 17 COONH 4 and Na 2 HPO 4 · 12H 2 were placed in a stainless steel pressure vessel having an internal capacity of 20000 cm 3.
68 g of O 2 , 40 g of NaH 2 PO 4 .2H 2 O, 6.9 g of (NH 4 ) 2 S 2 O 8
1.1 g of n-hexane was charged, and then 2074 g of CF 2 = CF
O (CF 2 ) 3 COOCH 3 and 666 g of CF 2 = CFO (CF 2 ) 3 F were charged.
After sufficiently degassing, the polymerization temperature was raised to 57 ° C. and the pressure was raised to a predetermined pressure of 12.7 kg / cm 2 with ethylene tetrafluoride to cause the reaction. Polymerization was carried out while introducing tetrafluoroethylene, and the pressure was kept at a predetermined pressure. The reaction was stopped after 6 hours, and the obtained latex was coagulated with concentrated sulfuric acid,
Then, wash the polymer thoroughly with water and
Ion exchange capacity after treatment at ℃ for 16 hours and further drying
2.8 kg of a terpolymer of 0.95 meq / g was obtained. 19 F-
When analyzed by NMR, CF 2 = CFO (CF 2 ) 3 F and CF 2 = CFO (CF
The molar ratio of 2 ) 3 COOCH 3 in the polymer was 27:73. The terpolymer was extruded at 220 ° C to form a film,
A 35 μm thin film was obtained.

【0036】以下実施例1と同様にしてスルホン酸ポリ
マーと積層し、膜処理後、電解試験を行った。生成苛性
濃度32%NaOHにおける電流効率は97.3%であったが、苛
性濃度35%にシフトしたときの電流効率は96.0%まで低
下した。
Thereafter, a sulfonic acid polymer was laminated in the same manner as in Example 1, and after membrane treatment, an electrolytic test was conducted. The current efficiency at the generated caustic concentration of 32% NaOH was 97.3%, but the current efficiency decreased to 96.0% when the caustic concentration was shifted to 35%.

【0037】実施例2 実施例1において得られた2種類のフィルムを、 225℃
でロールプレスを用いて貼合積層を行った。次に、平均
粒径1μmの酸化ジルコニウムを29.0重量%、メチルセ
ルロース 1.3重量%、シクロヘキサノール 4.6重量%、
シクロヘキサノン 1.5重量%、水63.6重量%からなるペ
ーストを積層膜の第1層の側(スルホン酸基をもつ共重
合体層)にロールプレスにより転写を行った。
Example 2 The two kinds of films obtained in Example 1 were treated at 225 ° C.
Laminating lamination was performed using a roll press. Next, 29.0% by weight of zirconium oxide having an average particle size of 1 μm, 1.3% by weight of methylcellulose, 4.6% by weight of cyclohexanol,
A paste composed of 1.5% by weight of cyclohexanone and 63.6% by weight of water was transferred to the first layer side (copolymer layer having a sulfonic acid group) of the laminated film by roll pressing.

【0038】このときの酸化ジルコニウムの付着量は、
20g/m2 であった。次いで、この膜を実施例1と同様
な方法で加水分解を行った後、積層膜の第2層の側にス
プレー法を用いて、酸化ジルコニウム粒子を10g/m2
付着せしめた。
The amount of zirconium oxide deposited at this time is
It was 20 g / m 2 . Next, this film was hydrolyzed in the same manner as in Example 1, and then 10 g / m 2 of zirconium oxide particles was applied to the second layer side of the laminated film by a spray method.
I attached it.

【0039】この膜に、Tiのパンチドメタルに酸化ルテ
ニウムと酸化イリジウムと酸化チタンの固溶体を被覆し
た電極、ステンレス製のパンチドメタルにルテニウム入
りラネーニッケルを電着した陰極を各々接触させ、陽極
室に200 g/lの塩化ナトリウム水溶液を、陰極室に水
を供給しつつ電流密度40A/dm2 、温度85℃にて電解
試験を行った。その結果、生成苛性ソーダ濃度32%及び
35%における電流効率は、ともに97.3%であった。
To this film, an electrode in which a punched metal of Ti was coated with a solid solution of ruthenium oxide, iridium oxide and titanium oxide, and a cathode in which Raney nickel containing ruthenium was electrodeposited on a stainless steel punched metal were brought into contact with each other to form an anode chamber. Then, an electrolytic test was conducted at a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a 200 g / l sodium chloride aqueous solution to the cathode chamber while supplying water to the cathode chamber. As a result, the concentration of caustic soda produced is 32% and
The current efficiency at 35% was 97.3%.

【0040】実施例3 四フッ化エチレンとCF2=CFO(CF2)3F、CF2=CFO(CF2)3COO
CH3 を共重合して得られたイオン交換容量1.25ミリ当量
/g乾燥樹脂、CF2=CFO(CF2)3FとCF2=CFO(CF2)3COOCH3
の割合が27:73のカルボン酸ポリマーと実施例1と
同様にして得られたイオン交換容量1.0 ミリ当量/g乾
燥樹脂のスルホン酸ポリマーを重量比7:3でブレンド
し、220℃で押出し製膜することにより厚さ20μm
のフィルムを得た。このフィルムと実施例1で用いた厚
さ35μmのカルボン酸ポリマーフィルムを225 ℃でロー
ルプレスで積層した。さらに該積層フィルムのブレンド
ポリマー層側に実施例1のスルホン酸ポリマーフィルム
を220 ℃でロールプレスで積層した。以下、実施例2と
同様にして膜処理を行い電解評価した。生成苛性濃度32
%NaOHにおける電流効率は97.4%であった。苛性濃度35
%にシフトしたときの電流効率は97.2%であった。
Example 3 Ethylene tetrafluoride and CF 2 = CFO (CF 2 ) 3 F, CF 2 = CFO (CF 2 ) 3 COO
Ion exchange capacity 1.25 meq / g dry resin obtained by copolymerizing CH 3 , CF 2 = CFO (CF 2 ) 3 F and CF 2 = CFO (CF 2 ) 3 COOCH 3
Was mixed with a carboxylic acid polymer having a ratio of 27:73 and a sulfonic acid polymer having an ion exchange capacity of 1.0 meq / g dry resin obtained in the same manner as in Example 1 at a weight ratio of 7: 3 and extruded at 220 ° C. 20 μm thick by filming
Was obtained. This film and the 35 μm-thick carboxylic acid polymer film used in Example 1 were laminated at 225 ° C. by a roll press. Further, the sulfonic acid polymer film of Example 1 was laminated on the blend polymer layer side of the laminated film at 220 ° C. by roll pressing. Hereinafter, the film treatment was performed in the same manner as in Example 2 and electrolytic evaluation was performed. Generated caustic concentration 32
The current efficiency in% NaOH was 97.4%. Caustic concentration 35
The current efficiency when shifting to% was 97.2%.

【0041】実施例4 内容量 20000cm3 のステンレス製耐圧容器に、イオン
交換水を 13700g、C8F17 COONH4を48g、Na2HPO4・12H2
O を68g、NaH2PO4・2H2Oを40g、(NH4)2S2O8を8.2 g、
n−ヘキサンを1.23g仕込み、ついで、1760gのCF2=CF
O(CF2)3COOCH3と81gのCF2=CFO(CF2)3Fを仕込んだ。充
分脱気を行った後、重合温度57℃まで昇温し、四フッ化
エチレンにて所定圧 13.7 kg/cm2 まで昇圧し、反
応を行わせしめた。四フッ化エチレンを導入しつつ重合
を行い、圧力を所定圧に保った。7時間後に反応を停止
し、得られたラテックスを濃硫酸を用いて凝集を行い、
次いでポリマーを充分に水洗した後、メタノール中で65
℃、16時間処理し、更に乾燥を行って、イオン交換容量
0.99meq/gの三元共重合体 3.1kgを得た。19F−
NMRで分析したところ、CF2=CFO(CF2)3FとCF2=CFO(CF
2)3COOCH3 のポリマー中の割合はモル比で4:96であ
った。該三元共重合体を250 ℃で押出し製膜し、厚さ35
μmの薄いフィルムを得た。
Example 4 13700 g of ion-exchanged water, 48 g of C 8 F 17 COONH 4 and Na 2 HPO 4 · 12H 2 were placed in a stainless steel pressure vessel having an internal capacity of 20000 cm 3.
68 g of O, 40 g of NaH 2 PO 4 .2H 2 O, 8.2 g of (NH 4 ) 2 S 2 O 8 ;
Charge 1.23 g of n-hexane, then 1760 g of CF 2 = CF
O (CF 2 ) 3 COOCH 3 and 81 g of CF 2 = CFO (CF 2 ) 3 F were charged. After sufficiently degassing, the polymerization temperature was raised to 57 ° C., and the pressure was raised to a predetermined pressure of 13.7 kg / cm 2 with ethylene tetrafluoride to carry out the reaction. Polymerization was carried out while introducing tetrafluoroethylene, and the pressure was kept at a predetermined pressure. After 7 hours, the reaction was stopped, and the obtained latex was coagulated with concentrated sulfuric acid.
Then, wash the polymer thoroughly with water and
Ion exchange capacity after treatment at ℃ for 16 hours and further drying
3.1 kg of a terpolymer of 0.99 meq / g was obtained. 19 F-
When analyzed by NMR, CF 2 = CFO (CF 2 ) 3 F and CF 2 = CFO (CF
The molar ratio of 2 ) 3 COOCH 3 in the polymer was 4:96. The terpolymer was extruded at 250 ° C to form a film with a thickness of 35
A thin film of μm was obtained.

【0042】以下実施例2と同様にしてスルホン酸ポリ
マーと積層し、膜処理及びコーティング処理を行って電
解試験を行った。生成苛性濃度32%NaOHにおける電流効
率は97.5%で、苛性濃度35%にシフトしたときの電流効
率は97.4%であった。
Thereafter, a sulfonic acid polymer was laminated in the same manner as in Example 2, and a membrane treatment and a coating treatment were conducted to carry out an electrolytic test. The current efficiency in the produced caustic concentration of 32% NaOH was 97.5%, and the current efficiency when shifting to the caustic concentration of 35% was 97.4%.

【0043】実施例5 CF2=CF2 /CF2=CFO(CF2)3F/CF2=CFO(CF2)3COOCH3 三元
共重合体(イオン交換容量1.14ミリ当量/g乾燥樹脂、
CF2=CFO(CF2)3F/CF2=CFO(CF2)3COOCH3 =20/80 (モル
比))からなる厚さ20μmのフィルムとCF2=CF2 /CF2=
CFOCF2CF(CF3)O(CF2)2SO2F二元共重合体(イオン交換容
量1.1 ミリ当量/g乾燥樹脂)からなる厚さ140 μmの
フィルムを220℃でロールプレスを用いて積層した。
Example 5 CF 2 = CF 2 / CF 2 = CFO (CF 2 ) 3 F / CF 2 = CFO (CF 2 ) 3 COOCH 3 Terpolymer (Ion exchange capacity 1.14 meq / g dry resin ,
CF 2 = CFO (CF 2 ) 3 F / CF 2 = CFO (CF 2 ) 3 COOCH 3 = 20/80 (molar ratio)) 20 μm thick film and CF 2 = CF 2 / CF 2 =
CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F Binary copolymer (Ion exchange capacity 1.1 meq / g dry resin) 140 μm thick film was used at 220 ° C. using a roll press. Laminated.

【0044】次に、平均粒径1μmの酸化ジルコニウム
を29.0重量%、メチルセルロース 1.3重量%、シクロヘ
キサノール 4.6重量%、シクロヘキサノン 1.5重量%、
水63.6重量%からなるペーストを積層膜の第1層の側
(スルホン酸基をもつ共重合体層)にロールプレスによ
り転写を行った。このときの酸化ジルコニウムの付着量
は、20g/m2 であった。次いで、ジメチルスルホキシ
ド30重量%、苛性カリ11重量%の水溶液中で加水分解を
行い、積層膜の第2層の側にスプレー法を用いて、酸化
ジルコニウム粒子を10g/m2 付着せしめた。
Next, 29.0% by weight of zirconium oxide having an average particle size of 1 μm, 1.3% by weight of methylcellulose, 4.6% by weight of cyclohexanol, 1.5% by weight of cyclohexanone,
A paste composed of 63.6% by weight of water was transferred to the first layer side (the copolymer layer having a sulfonic acid group) of the laminated film by a roll press. The amount of zirconium oxide attached at this time was 20 g / m 2 . Then, hydrolysis was carried out in an aqueous solution of 30% by weight of dimethyl sulfoxide and 11% by weight of caustic potash, and 10 g / m 2 of zirconium oxide particles was deposited on the second layer side of the laminated film by a spray method.

【0045】この膜に、Tiのパンチドメタルに酸化ルテ
ニウムと酸化イリジウムと酸化チタンの固溶体を被覆し
た電極、ステンレス製のパンチドメタルにルテニウム入
りラネーニッケルを電着した陰極を各々接触させ、陽極
室に 200g/lの塩化ナトリウム水溶液を、陰極室に水
を供給しつつ電流密度30A/dm2 、温度85℃にて電解
試験を行った。その結果、35%NaOHにおける電流効率
は、97.0%であった。次に温度を75℃に下げて35%NaOH
で引続き電解を行ったところ、電流効率は97.2%であっ
た。
To this film, an electrode in which Ti punched metal was coated with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide, and a cathode in which stainless steel punched metal was electrodeposited with Raney nickel containing ruthenium were brought into contact with each other, and an anode chamber was prepared. A 200 g / l sodium chloride aqueous solution was subjected to an electrolytic test at a current density of 30 A / dm 2 and a temperature of 85 ° C. while supplying water to the cathode chamber. As a result, the current efficiency at 35% NaOH was 97.0%. Then reduce the temperature to 75 ° C and use 35% NaOH.
Then, electrolysis was performed, and the current efficiency was 97.2%.

【0046】比較例2 カルボン酸ポリマーにCF2=CF2 /CF2=CFO(CF2)3F/CF2=
CFO(CF2)3COOCH3 三元共重合体(イオン交換容量1.01ミ
リ当量/g乾燥樹脂、CF2=CFO(CF2)3F/CF2=CFO(CF2)3C
OOCH3 =27/73 (モル比))を用いた以外は実施例5と
同様に製膜、膜処理して電解を行った。35%NaOH、85℃
における電流効率は96.8%であったが、35%NaOH、75℃
における電流効率は94%まで低下した。
Comparative Example 2 CF 2 = CF 2 / CF 2 = CFO (CF 2 ) 3 F / CF 2 = on a carboxylic acid polymer
CFO (CF 2 ) 3 COOCH 3 terpolymer (ion exchange capacity 1.01 meq / g dry resin, CF 2 = CFO (CF 2 ) 3 F / CF 2 = CFO (CF 2 ) 3 C
OOCH 3 = 27/73 (molar ratio)) was used, and film formation, film treatment and electrolysis were carried out in the same manner as in Example 5. 35% NaOH, 85 ° C
Current efficiency was 96.8%, but 35% NaOH, 75 ℃
The current efficiency at was reduced to 94%.

【0047】比較例3 カルボン酸ポリマーにCF2=CF2 /CF2=CFO(CF2)3F/CF2=
CFO(CF2)3COOCH3 三元共重合体(イオン交換容量0.99ミ
リ当量/g乾燥樹脂、CF2=CFO(CF2)3F/CF2=CFO(CF2)3C
OOCH3 =38/62 (モル比))を用いた以外は実施例5と
同様に製膜、膜処理して電解を行った。35%NaOH、90℃
における電流効率は96.7%であったが、35%NaOH、80℃
における電流効率は93%まで低下した。
Comparative Example 3 CF 2 = CF 2 / CF 2 = CFO (CF 2 ) 3 F / CF 2 = on a carboxylic acid polymer
CFO (CF 2 ) 3 COOCH 3 terpolymer (ion exchange capacity 0.99 meq / g dry resin, CF 2 = CFO (CF 2 ) 3 F / CF 2 = CFO (CF 2 ) 3 C
OOCH 3 = 38/62 (molar ratio)) was used, and film formation, film treatment and electrolysis were carried out in the same manner as in Example 5. 35% NaOH, 90 ° C
Current efficiency was 96.7%, but 35% NaOH, 80 ℃
The current efficiency in the device decreased to 93%.

【0048】[0048]

【発明の効果】製造が容易で、かつ苛性ソーダの濃度変
化や電解温度の変動等の電解条件の変動に対しても高い
電流効率を維持できる実用耐性の高い含フッ素陽イオン
交換膜が提供される。
EFFECTS OF THE INVENTION A fluorinated cation exchange membrane which is easy to manufacture and has high practical resistance that can maintain a high current efficiency even when the electrolytic conditions change such as the concentration change of caustic soda and the change of electrolysis temperature is provided. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25B 13/08 302 // C08L 27:12 (72)発明者 斉藤 義彦 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 樋口 義明 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 三宅 晴久 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C25B 13/08 302 302 // C08L 27:12 (72) Inventor Yoshihiko Saito Hazawa, Kanagawa-ku, Yokohama-shi, Kanagawa 1150, Machi Asahi Glass Co., Ltd. Central Research Institute (72) Inventor Yoshiaki Higuchi 1150, Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Pref. Central Research Institute Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】スルホン酸基を有する含フッ素重合体の第
1のフィルムと、下記の(A)、(B)、(C)の繰返
し単位を有するカルボン酸基を交換基とする含フッ素重
合体からなり、上記第1のフィルムより小さい厚み5〜
50μmをもち、かつ比電気抵抗の大きい第2のフィル
ムとを積層せしめたことを特徴とする含フッ素陽イオン
交換膜。 【化1】 ここで、Rf は炭素数1〜5のパーフルオロアルキル
基、Mは水素又はアルカリ金属であり、かつB+C/A
+B+C(モル比)は、0.12〜0.25、B/B+
C(モル比)は0.02〜0.25である。
1. A first film of a fluorine-containing polymer having a sulfonic acid group and a fluorine-containing polymer having a carboxylic acid group having the following repeating units (A), (B) and (C) as an exchange group. Composed of a united body and having a thickness smaller than that of the first film
A fluorine-containing cation exchange membrane characterized by being laminated with a second film having a large specific electric resistance of 50 μm. Embedded image Here, R f is a perfluoroalkyl group having 1 to 5 carbon atoms, M is hydrogen or an alkali metal, and B + C / A
+ B + C (molar ratio) is 0.12-0.25, B / B +
C (molar ratio) is 0.02-0.25.
【請求項2】第1のフィルムに用いられる共重合体が、
CF2 =CF2 とCF2 =CFOCF2 CF(CF3
OCF2 CF2 SO3 M(Mは、上記と同じ)との共重
合体からなり、イオン交換容量が0.8〜1.25ミリ
当量/g乾燥樹脂である請求項1の膜。
2. The copolymer used in the first film is
CF 2 = CF 2 and CF 2 = CFOCF 2 CF (CF 3 )
The membrane according to claim 1, which is made of a copolymer with OCF 2 CF 2 SO 3 M (M is the same as above) and has an ion exchange capacity of 0.8 to 1.25 meq / g dry resin.
JP6256823A 1994-10-21 1994-10-21 Fluorine-containing cation-exchange membrane Pending JPH08120100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6256823A JPH08120100A (en) 1994-10-21 1994-10-21 Fluorine-containing cation-exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6256823A JPH08120100A (en) 1994-10-21 1994-10-21 Fluorine-containing cation-exchange membrane

Publications (1)

Publication Number Publication Date
JPH08120100A true JPH08120100A (en) 1996-05-14

Family

ID=17297934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6256823A Pending JPH08120100A (en) 1994-10-21 1994-10-21 Fluorine-containing cation-exchange membrane

Country Status (1)

Country Link
JP (1) JPH08120100A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756457B1 (en) * 2005-11-01 2007-09-07 주식회사 엘지화학 Block copolymers containing perfluorocyclobutane rings and electrolyte membranes using the same
JP2009142814A (en) * 2009-01-22 2009-07-02 Asahi Glass Co Ltd Fluorine-containing cation exchange membrane
WO2016072506A1 (en) * 2014-11-07 2016-05-12 旭硝子株式会社 Ion exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis device
WO2016186084A1 (en) * 2015-05-18 2016-11-24 旭化成株式会社 Ion exchange membrane

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756457B1 (en) * 2005-11-01 2007-09-07 주식회사 엘지화학 Block copolymers containing perfluorocyclobutane rings and electrolyte membranes using the same
JP2009142814A (en) * 2009-01-22 2009-07-02 Asahi Glass Co Ltd Fluorine-containing cation exchange membrane
WO2016072506A1 (en) * 2014-11-07 2016-05-12 旭硝子株式会社 Ion exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis device
JPWO2016072506A1 (en) * 2014-11-07 2017-08-17 旭硝子株式会社 Ion exchange membrane for alkali chloride electrolysis and alkali chloride electrolyzer
CN107075703A (en) * 2014-11-07 2017-08-18 旭硝子株式会社 Ion-exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis device
US11447881B2 (en) 2014-11-07 2022-09-20 AGC Inc. Ion exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis apparatus
WO2016186084A1 (en) * 2015-05-18 2016-11-24 旭化成株式会社 Ion exchange membrane
KR20170127538A (en) * 2015-05-18 2017-11-21 아사히 가세이 가부시키가이샤 Ion exchange membrane
JPWO2016186084A1 (en) * 2015-05-18 2018-03-01 旭化成株式会社 Ion exchange membrane
US20180141036A1 (en) * 2015-05-18 2018-05-24 Asahi Kasei Kabushiki Kaisha Ion exchange membrane
US10413896B2 (en) 2015-05-18 2019-09-17 Asahi Kasei Kabushiki Kaisha Ion exchange membrane

Similar Documents

Publication Publication Date Title
US4683040A (en) Process for electrolysis of sodium chloride
EP0507235B1 (en) Fluorine-containing cation exchange membrane for electrolysis
JPH0212495B2 (en)
US4983264A (en) Four layer cation exchange fluoropolymer membrane
EP0753534B1 (en) Cation exchange membrane for electrolysis and process for producing potassium hydroxide of high purity
JPS60251290A (en) Manufacture of potassium hydroxide
EP0192261B1 (en) Multilayer cation exchange membrane
JPS621652B2 (en)
JP2504135B2 (en) Cation exchange membrane for electrolysis
US4686120A (en) Multilayer cation exchange membrane
JPH08120100A (en) Fluorine-containing cation-exchange membrane
JPH0660250B2 (en) Enhanced cation exchange membrane and method
JP3511117B2 (en) Cation exchange membrane for electrolysis and method for producing high-purity potassium hydroxide
JPS638425A (en) Improved cation exchange membrane for electrolysis
JPS62199629A (en) Novel multi-layer permeable membrane for electrolysis
US4610764A (en) Electrolytic cation exchange membrane
JPS6053756B2 (en) Ion exchange membrane electrolyzer
JPH0660251B2 (en) Cation exchange membrane reinforced with cation exchange fabric
JPS6253341A (en) Improved fluorine-containing cation exchange membrane
JPS6014110B2 (en) Method for producing alkali hydroxide
JPS63310984A (en) Production of alkali hydroxide
JPS5865727A (en) Improved fluoring-containing cation exchange resin membrane
JPS636029A (en) Cation exchange membrane for use in electrolysis
JPS63310985A (en) Production of alkali hydroxide
JPS5952233B2 (en) Method for producing alkali hydroxide