JPH0143026B2 - - Google Patents

Info

Publication number
JPH0143026B2
JPH0143026B2 JP57060993A JP6099382A JPH0143026B2 JP H0143026 B2 JPH0143026 B2 JP H0143026B2 JP 57060993 A JP57060993 A JP 57060993A JP 6099382 A JP6099382 A JP 6099382A JP H0143026 B2 JPH0143026 B2 JP H0143026B2
Authority
JP
Japan
Prior art keywords
membrane
cation exchange
metal
group
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57060993A
Other languages
Japanese (ja)
Other versions
JPS58181882A (en
Inventor
Tooru Kyota
Katsunori Orisaka
Osamu Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP57060993A priority Critical patent/JPS58181882A/en
Publication of JPS58181882A publication Critical patent/JPS58181882A/en
Publication of JPH0143026B2 publication Critical patent/JPH0143026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Chemically Coating (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 本発明は、金属が表面上に固着した陽イオン交
換膜を提供するものであり、その製造方法及び水
溶液、特にハロゲン化物の電気分解におけるその
使用法に関している。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a cation exchange membrane with metals fixed on its surface, and relates to its preparation and use in aqueous solution, particularly halide electrolysis.

陽イオン交換膜により陽極室と陰極室に分割さ
れた電解槽で塩化アルカリを電解して、水酸化ア
ルカリを製造する方法(イオン交換膜法)におい
て、近年、省エネルギー開発が進行しつつあり、
この観点からこの種技術においては、電解電圧を
極力低くするよう努力されている。その手段とし
ては、従来、陽極や陰極の材質、組成及び形状を
考慮したり、あるいは用いるイオン交換膜の組成
や、イオン交換基の種類を特定化する等種々の手
段が提案されているが、いずれもそれなりの効果
はあるものの必ずしも工業的に充分満足し得るも
のではなかつた。
In recent years, energy-saving development has been progressing in the method of producing alkali hydroxide by electrolyzing alkali chloride in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane (ion exchange membrane method).
From this point of view, in this type of technology, efforts are being made to lower the electrolysis voltage as much as possible. Various methods have been proposed in the past, such as considering the material, composition, and shape of the anode and cathode, or specifying the composition of the ion exchange membrane used and the type of ion exchange group. Although all of them have certain effects, they are not necessarily fully satisfactory industrially.

一方近年、SPE電解法と称する技術が注目を集
めてきている。これは電極層と陽イオン交換膜と
を一体化し電解電圧の低減をねらつたものであ
り、相当の効果を得ている。又、陽イオン交換膜
と電極活性をもたない、例えば金属酸化物等から
なる多孔層とを一体化させ、これを食塩電解にお
ける隔膜として使用する方法等が提案されてい
る。(特開昭56−75583、特開昭56−112487、特開
昭56−108888等)。
On the other hand, in recent years, a technology called SPE electrolysis has been attracting attention. This is aimed at reducing the electrolysis voltage by integrating the electrode layer and the cation exchange membrane, and has achieved considerable effects. Furthermore, a method has been proposed in which a cation exchange membrane and a porous layer having no electrode activity, such as a metal oxide, are integrated, and this is used as a diaphragm in salt electrolysis. (JP-A-56-75583, JP-A-56-112487, JP-A-56-108888, etc.).

このように、電解電圧を低減せしむる方法とし
て、陽イオン交換膜表面上を、ある種の金属及び
金属酸化物等からなる層でおおうという方法が、
一つの流れとなつてきている。
As described above, one method for reducing the electrolysis voltage is to cover the surface of the cation exchange membrane with a layer made of certain metals, metal oxides, etc.
It is becoming a trend.

陽イオン交換膜と金属及び/又は金属酸化物を
含む層でおおう方法としては、PTFE等の結合剤
を用いて触媒、粒子を焼結成形し、膜面にホツト
プレスする乾式法(特開昭53−52297)等、還元
剤を用い溶液中で膜面に金属を析出させる湿式
法、いわゆる化学メツキ法(特公昭56−36873、
特開昭56−136985)等が知られている。
As a method for covering a cation exchange membrane with a layer containing metal and/or metal oxide, there is a dry method (Japanese Unexamined Patent Application Publication No. 1983-1983) in which catalysts and particles are sintered and formed using a binder such as PTFE, and then hot-pressed onto the membrane surface. -52297), etc., a wet method in which metal is deposited on the membrane surface in a solution using a reducing agent, the so-called chemical plating method (Japanese Patent Publication No. 56-36873,
JP-A-56-136985) is known.

本発明者らは、以上のような観点から乾式法、
湿式法による隔膜の電解性能について鋭意研究を
重ねた結果、以下のような結論を導くに至つた。
From the above points of view, the present inventors developed a dry method,
As a result of intensive research on the electrolytic performance of diaphragms using the wet method, we came to the following conclusions.

1 乾式法では膜面上への金属層の固着を均一に
行うことがむずかしく、ひいては膜の電解性能
に再現性をもたせることがむずかしい。更に電
解中、金属層の膜面上からの離脱をまぬがれな
い。
1. In the dry method, it is difficult to uniformly adhere the metal layer onto the membrane surface, and in turn, it is difficult to achieve reproducibility in the electrolytic performance of the membrane. Furthermore, during electrolysis, the metal layer cannot be avoided from detaching from the film surface.

2 湿式法では、乾式法に比べ再現性を得るのは
容易である。しかしながら、金属が膜表面上に
のみ不均一に析出するため、金属の離脱の度合
は、乾式法以上である。更にこの点を改良する
目的で固着条件を厳しくすると電流効率の低下
を引き起こしてしまう。
2. It is easier to obtain reproducibility with wet methods than with dry methods. However, since the metal is non-uniformly deposited only on the film surface, the degree of metal separation is higher than that of the dry method. Furthermore, if the fixing conditions are made stricter for the purpose of improving this point, the current efficiency will be lowered.

本発明者らは、このような結論をふまえ、更に
研究を重ねた結果、膜面上にポリアミン、あるい
はポリアミンの塩酸塩を含浸させ、次に溶液中で
負の金属錯体イオンを、形成する金属塩を含浸さ
せて化学メツキを施すことによつて、陽イオン交
換膜上に非常に強固にしかも均一に結合した金属
層を有する陽イオン交換膜を得ることができるこ
とを見い出し本発明を完成させた。
Based on these conclusions, the present inventors conducted further research and found that the membrane surface was impregnated with polyamine or polyamine hydrochloride, and then negative metal complex ions were added to the membrane to form metal complexes. The present inventors have discovered that by impregnating the membrane with salt and applying chemical plating, it is possible to obtain a cation exchange membrane having a metal layer bonded very firmly and uniformly to the cation exchange membrane, thereby completing the present invention. .

該膜を食塩の電解用隔膜として用いても、金属
層の離脱はほとんどなく、長期にわたつて低電圧
及び高電流効率を示した。
Even when this membrane was used as a diaphragm for salt electrolysis, there was almost no separation of the metal layer, and it exhibited low voltage and high current efficiency over a long period of time.

本発明の効果が生じる原因は、おおよそ次のよ
うに考えることができる。
The reason why the effects of the present invention are produced can be roughly considered as follows.

正の金属錯体イオンを使用する場合膜中に該イ
オンが侵入する際に、移動し易い部位に優先的に
侵入し、膜面あるいは膜中に該イオンを均一に導
入することが不可能である。一方、負の金属錯体
イオンを用いた場合は、電気的な反発により膜中
に吸着できず、化学メツキが進行できない欠点が
あつた。
When positive metal complex ions are used, when the ions enter the membrane, they preferentially enter sites where they are easy to move, making it impossible to introduce the ions uniformly into the membrane surface or into the membrane. . On the other hand, when negative metal complex ions were used, they had the disadvantage that they could not be adsorbed into the film due to electrical repulsion, and chemical plating could not proceed.

しかし、本発明のようにポリアミンあるいは、
ポリアミンの塩酸塩を使用すると、ポリアミンの
分子が大きいため、膜中に侵入せず、かつ膜面に
吸着されているため負の金属錯体イオンが膜面に
均一に濃度が高く吸着される結果、化学メツキに
より金属が膜面に均一にかつ密着性よく形成され
ると考えられる。
However, as in the present invention, polyamine or
When polyamine hydrochloride is used, because the polyamine molecules are large, they do not penetrate into the membrane and are adsorbed on the membrane surface, so negative metal complex ions are uniformly adsorbed on the membrane surface at a high concentration. It is thought that chemical plating allows the metal to be formed uniformly and with good adhesion on the film surface.

尚、本説明は、本発明をなんら制限するもので
はないことはいうまでもない。
It goes without saying that this description does not limit the present invention in any way.

本発明で用い得る陽イオン交換膜は以下の如き
重合体より得ることができるパーフルオロカーボ
ン重合体膜で陽イオン交換基及び/又は陽イオン
交換基になり得る基を有するものである。これら
基としては、スルホン酸基(−SO3M但しMは水
素原子あるいは金属原子)、スルホン酸基の前駆
体であるところの−SO2F、−SO2Cl、カルボン酸
基(−COOM但しMは水素原子あるいは金属原
子)、カルボン酸基の前駆体であるところの−
COF、−COOR(Rは炭素数1〜5のアルキル基)
及び−CNを挙げることができる。該重合体とし
ては、例えば、下記一般式で示す重合体が挙げら
れる。
The cation exchange membrane that can be used in the present invention is a perfluorocarbon polymer membrane that can be obtained from the following polymers and has a cation exchange group and/or a group that can become a cation exchange group. These groups include sulfonic acid groups (-SO 3 M, where M is a hydrogen atom or metal atom), -SO 2 F, -SO 2 Cl, which are precursors of sulfonic acid groups, and carboxylic acid groups (-COOM, where M is a hydrogen atom or a metal atom). M is a hydrogen atom or a metal atom), which is a precursor of a carboxylic acid group.
COF, -COOR (R is an alkyl group having 1 to 5 carbon atoms)
and -CN. Examples of the polymer include polymers represented by the following general formula.

〔ただし、 R′=−CF3、−CF2−O−CF3 n=0又は1〜5 m=0又は1 o=0又は1、p=1〜6 X=−SO3M(Mは水素原子あるいは金属原子)、 −SO2F、−SO2Cl −COOM(Mは水素原子あるいは金属原子)、 −COOR1(R1=1〜5のアルキル基)、 −CN、−COF〕 又、上記二成分系に第三成分あるいは第四成分
を加えて重合した重合体も使用できる。更に具体
的には、例えば以下のものを示すことができる。
[However, R' = -CF 3 , -CF 2 -O-CF 3 n = 0 or 1 to 5 m = 0 or 1 o = 0 or 1, p = 1 to 6 X = -SO 3 M (M is hydrogen atom or metal atom), -SO 2 F, -SO 2 Cl -COOM (M is a hydrogen atom or metal atom), -COOR 1 (R 1 = alkyl group of 1 to 5), -CN, -COF] or A polymer obtained by adding a third component or a fourth component to the above two-component system can also be used. More specifically, the following can be shown, for example.

(A群) (B群) これら重合体において交換基容量が0.5meq/
g乾燥樹脂〜1.5meq/g乾燥樹脂になるように
調節するのが好ましい。
(Group A) (Group B) In these polymers, the exchange group capacity is 0.5meq/
It is preferable to adjust the amount to 1.5 meq/g dry resin to 1.5 meq/g dry resin.

本発明では、膜状に成形したこれら重合体を単
独で用いることができるのはもちろんであるが、
スルホン酸基もしくは該基に変換できる基とカル
ボン酸基もしくは該基に変換できる基とが混在す
る形、好ましくはスルホン酸基もしくは該基に変
換できる基を有する重合体と、カルボン酸基もし
くは該基に変換できる基を有する重合体が片側ず
つに層状となつた形のものも用いることができ
る。
In the present invention, these polymers molded into a membrane can of course be used alone, but
A polymer having a mixture of a sulfonic acid group or a group that can be converted into this group and a carboxylic acid group or a group that can be converted into this group, preferably a polymer having a sulfonic acid group or a group that can be converted into this group, and a carboxylic acid group or a group that can be converted into this group. A polymer having a group that can be converted into a group formed in a layer on each side can also be used.

このような膜状物は、スルホン酸基もしくは該
基に変換できる基を有する重合体(例えば(A)群の
重合体)と、カルボン酸基もしくは該基に変換で
きる基をもつ重合体(例えば(B)群の重合体)のを
各々膜状に成形したのち、両者をはり合せること
によつて得ることができるし、又、スルホン酸基
もしくは該基に変換できる基のみをもつ重合体の
膜状物の片側のみを化学処理し、これら基をカル
ボン酸基に変えることによつても得ることができ
る。
Such a film-like material is composed of a polymer having a sulfonic acid group or a group that can be converted into this group (for example, a group (A) polymer), and a polymer having a carboxylic acid group or a group that can be converted to this group (for example, (B) polymers) can be obtained by forming each into a film shape and then gluing the two together.Also, it is possible to obtain polymers having only sulfonic acid groups or groups that can be converted into such groups. It can also be obtained by chemically treating only one side of the membrane to convert these groups into carboxylic acid groups.

更に又、カルボン酸基もしくは該基に変換でき
る基のみをもつ重合体の膜状物の片側のみを化学
処理し、これら基をスルホン酸基に変えることに
よつても得ることができる。用いる膜の厚さは、
50μ〜500μが一般的に用いられ、膜の比電導度、
電流効率を考慮して適当な厚みを選択する。本発
明の第1段階では、この様な重合体膜から得られ
るイオン交換膜面上へのポリアミンあるいはポリ
アミンの塩酸塩を含浸させる。用いられるポリア
ミンとしては、エチレンジアミン、1,2−ジア
ミノプロパン、1,3−ジアミノプロパン、トリ
エチレンテトラミン、テトラエチレンペンタミン
あるいは、ポリエチレンイミン等を挙げることが
できる。膜面上にポリアミンあるいはポリアミン
の塩酸塩を含浸させる温度は、室温〜100℃の範
囲で充分である。
Furthermore, it can also be obtained by chemically treating only one side of a polymer film having only carboxylic acid groups or groups that can be converted into carboxylic acid groups to convert these groups into sulfonic acid groups. The thickness of the membrane used is
50μ to 500μ is generally used, and the specific conductivity of the membrane,
Select an appropriate thickness considering current efficiency. In the first step of the present invention, the surface of the ion exchange membrane obtained from such a polymer membrane is impregnated with a polyamine or a hydrochloride of a polyamine. Examples of the polyamines used include ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, triethylenetetramine, tetraethylenepentamine, and polyethyleneimine. A temperature range of room temperature to 100°C is sufficient for impregnating the polyamine or polyamine hydrochloride onto the membrane surface.

第2段階では、膜面上に溶液中で負の金属錯体
イオン形成する金属塩を含浸させる。
In the second step, the membrane surface is impregnated with a metal salt that forms negative metal complex ions in solution.

溶液中で負の金属錯体イオンを形成する金属塩
としては例えば、塩酸に溶解させたPdCl2
H2ptCl6の水溶液、K2〔Ni(CN)4〕の水溶液、K4
〔Ru(CN)6〕の水溶液これらの混合液などを挙げ
ることができる。
Examples of metal salts that form negative metal complex ions in solution include PdCl 2 dissolved in hydrochloric acid;
Aqueous solution of H 2 ptCl 6 , K 2 [Ni(CN) 4 ] aqueous solution, K 4
Examples include an aqueous solution of [Ru(CN) 6 ] and a mixture thereof.

第3の段階では、化学メツキする。化学メツキ
する方法自体としては、通常の方法で特に制限は
なく還元剤中に浸漬して膜表面に金属を析出させ
る方法で達成できる。還元剤としては、例えばヒ
ドラジン、NaBH4またはNaH2PO2の水溶液を用
いることができ、化学メツキはこれらの還元剤中
に数秒あるいは、数時間浸漬し、目的の沈着物が
得られるまで、繰り返し行う。
The third stage is chemical plating. The method of chemical plating itself is not particularly limited and can be achieved by a method of depositing metal on the surface of the film by immersing it in a reducing agent. As the reducing agent, for example, an aqueous solution of hydrazine, NaBH 4 or NaH 2 PO 2 can be used, and chemical plating is immersed in these reducing agents for several seconds or several hours, and then repeated until the desired deposit is obtained. conduct.

実施例 1 との共重合体(交換容量0.92ミリ当量/g乾燥)
のフイルム(5ミル)とCF2=CF2との共重合体(変換容量0.96ミり当量/g乾燥)
のフイルム(2ミル)とをはりあわせたのち、加
水分解し、カルボン酸基とスルホン酸基の2層構
造膜を得た。次に該膜を、沸水処理を5時間行つ
たのち、カルボン酸基層のみを処理できるよう
に、セルにセツトした。次にNH2−CH2−CH2
−NH−CH2−CH2−NH−CH2−CH2−NH2
塩酸で処理し、塩酸塩に転化したのち、該膜の膜
表面に該液を5時間接触させた。水洗したのち、
H2PtCl6の0.5%溶液を2時間接触させ、次いで10
容量%ヒドラジン水溶液で還元処理した。この操
作を3回くり返した。次に10重量%NaOHで60
〜80℃で5時間処理した。
Example 1 copolymer with (exchange capacity 0.92 meq/g dry)
film (5 mil) and CF 2 = CF 2 and Copolymer with (conversion capacity 0.96 meq/g dry)
film (2 mil) and then hydrolyzed to obtain a membrane with a two-layer structure of carboxylic acid groups and sulfonic acid groups. The membrane was then treated with boiling water for 5 hours and then set in a cell so that only the carboxylic acid base layer could be treated. Then NH 2 −CH 2 −CH 2
-NH- CH2 - CH2 -NH- CH2 - CH2 - NH2 was treated with hydrochloric acid to convert it into a hydrochloride salt, and then the solution was brought into contact with the membrane surface of the membrane for 5 hours. After washing with water,
0.5% solution of H2PtCl6 in contact for 2 hours, then 10
Reduction treatment was performed with a vol% hydrazine aqueous solution. This operation was repeated three times. Then 60% with 10 wt% NaOH
Treated at ~80°C for 5 hours.

上記で得たカルボン酸層上に白金が固着したイ
オン交換膜のカルボン酸層が陰極に向くように食
塩電解層を組み立てた。陽極としてルテニウム酸
化物を被覆したチタンエキスパンデツドメタル、
陰極として鉄製のエキスパンデツドメタルを用い
た。陽極と膜、陰極と膜はそれぞれ加圧接触させ
た。陽極室に飽和食塩水、陰極室に水を供給して
陰極室の苛性ソーダの濃度を35重量%に保ちつ
つ、温度90℃、電流密度30A/dm2で電解したと
ころ、電圧は3.25ボルト、電流効率は95%であつ
た。又、6ケ月の運転においても電圧は、20mv
上昇したにすぎなかつた。
A salt electrolyte layer was assembled so that the carboxylic acid layer of the ion exchange membrane, on which platinum was fixed on the carboxylic acid layer obtained above, faced the cathode. Titanium expanded metal coated with ruthenium oxide as anode,
An expanded iron metal was used as the cathode. The anode and the membrane were brought into contact with each other under pressure, and the cathode and the membrane were brought into contact with each other under pressure. When saturated saline was supplied to the anode chamber and water was supplied to the cathode chamber to maintain the concentration of caustic soda in the cathode chamber at 35% by weight, electrolysis was carried out at a temperature of 90°C and a current density of 30A/ dm2.The voltage was 3.25 volts and the current was 3.25 volts. The efficiency was 95%. Also, even after 6 months of operation, the voltage is 20 mv.
It just rose.

尚、上記の処理を施していない膜を用いた場合
は、電圧は3.45ボルトで電流効率は96%であつ
た。
Note that when a membrane not subjected to the above treatment was used, the voltage was 3.45 volts and the current efficiency was 96%.

実施例 2 との共重合体(交換容量1.4ミリ当量/g乾燥)
を7ミルの厚さでフイルムにしたのち、加水分解
することによつて、陽イオン交換膜を得た。本陽
イオン交換膜を用いて、実施例1で示されたのと
同一の条件で白金を固着せしめたのち、実施例1
と同様の条件で運転した。
Example 2 Copolymer with (exchange capacity 1.4 meq/g dry)
A cation exchange membrane was obtained by forming a film with a thickness of 7 mil and then hydrolyzing it. After fixing platinum using the present cation exchange membrane under the same conditions as shown in Example 1,
It was operated under similar conditions.

電圧は3.33ボルトで電流効率は95%であり、6
ケ月の運転においても、30mvの上昇にすぎなか
つた。
The voltage is 3.33 volts and the current efficiency is 95%, 6
Even when driving for a month, the increase was only 30mv.

本発明の処理を施していない膜を用いた場合、
電圧は3.52ボルト、電流効率は95%であつた。
When using a membrane that has not been subjected to the treatment of the present invention,
The voltage was 3.52 volts and the current efficiency was 95%.

実施例 3 とを1,1,2−トリクロロ−1,2,2−トリ
フルオロエタン中パーフルオロプロピオニルペル
オキシドを開始剤として、共重合体を得たのち、
厚さ7ミルのフイルムを成型した。
Example 3 After obtaining a copolymer using perfluoropropionyl peroxide in 1,1,2-trichloro-1,2,2-trifluoroethane as an initiator,
A 7 mil thick film was cast.

次に、20重量%KOH−メタノール溶液(重量
比1/1)中、90℃で加水分解することによつ
て、交換容量0.91ミリ当量/g乾燥の陽イオン交
換膜を得た。このようにして得られた陽イオン交
換膜を塩酸処理したのち、五塩化リン−オキシ塩
化リン(重量比1/1)中で片面のみ反応させ、
SO3H層5ミル、SO2Cl層2ミルのフイルムを得
た。次に、ヨウ化水素酸(58容量%)中90℃で、
5日間反応処理した。次に、20重量%KOH−メ
タノール溶液(重量比1/1)で加水分解した。
得られた膜は、SO3K層が5ミル、COOK層が2
ミルの二層構造膜を得た。
Next, a cation exchange membrane with an exchange capacity of 0.91 meq/g dry was obtained by hydrolysis at 90° C. in a 20% by weight KOH-methanol solution (weight ratio 1/1). After the cation exchange membrane thus obtained was treated with hydrochloric acid, only one side was reacted in phosphorus pentachloride-phosphorus oxychloride (weight ratio 1/1).
A film was obtained with a SO 3 H layer of 5 mil and an SO 2 Cl layer of 2 mil. Then, at 90 °C in hydroiodic acid (58% by volume),
The reaction treatment was carried out for 5 days. Next, it was hydrolyzed with a 20% by weight KOH-methanol solution (weight ratio 1/1).
The resulting membrane had a SO 3 K layer of 5 mils and a COOK layer of 2 mils.
A two-layer membrane of the mill was obtained.

次に、該膜を、沸水処理を5時間行つたのち、
カルボン酸層のみを処理できるようにセルにセツ
トした。次にテトラエチレンペンタミンを塩酸で
処理し、塩酸塩に転化したのち、該膜の膜表面に
該溶液を5時間接触させた。
Next, after subjecting the membrane to boiling water treatment for 5 hours,
The cell was set so that only the carboxylic acid layer could be treated. Next, tetraethylenepentamine was treated with hydrochloric acid to convert it into a hydrochloride salt, and then the solution was brought into contact with the membrane surface of the membrane for 5 hours.

水洗したのち、H2PtCl6の0.5重量%水溶液を2
時間接触させ、次いで、NaBH40.01重量%水溶
液で還元処理した。この操作を4回くり返した。
次に10重量%NaOHで60〜80℃で5時間処理し
た。
After washing with water, add 0.5 wt% aqueous solution of H 2 PtCl 6 to
The mixture was brought into contact for a period of time, and then reduced with a 0.01% by weight aqueous solution of NaBH 4 . This operation was repeated four times.
Next, it was treated with 10% by weight NaOH at 60-80°C for 5 hours.

上記で得たカルボン酸層上に白金が固着したイ
オン交換膜のカルボン酸層が陰極に向くように食
塩電解槽を組み立てた。陽極としてルテニウム酸
化物を被覆したチタンエキスパンデツドメタル、
陰極として、鉄製のエキスパンデツドメタルを用
いた。陽極と膜、陰極と膜は、それぞれ加圧接触
させた。陽極室に飽和食塩水、陰極室に水を供給
して陰極室の苛性ソーダの濃度を33重量%に保ち
つつ、温度90℃、電流密度30A/dm2で電解した
ところ、電圧は3.25ボルト、電流効率は95%であ
つた。又、6ケ月の運転においても電圧は30mv
上昇したにすぎなかつた。
A salt electrolytic cell was assembled so that the carboxylic acid layer of the ion exchange membrane, on which platinum was fixed on the carboxylic acid layer obtained above, faced the cathode. Titanium expanded metal coated with ruthenium oxide as anode,
An expanded iron metal was used as the cathode. The anode and the membrane were brought into contact with each other under pressure, and the cathode and the membrane were brought into contact with each other under pressure. When saturated saline was supplied to the anode chamber and water was supplied to the cathode chamber to maintain the concentration of caustic soda in the cathode chamber at 33% by weight, electrolysis was carried out at a temperature of 90°C and a current density of 30A/ dm2.The voltage was 3.25 volts and the current was 3.25 volts. The efficiency was 95%. Also, the voltage is 30 mv even after 6 months of operation.
It just rose.

尚、上記の処理を施していない膜を用いた場合
は電圧は3.40ボルト、電流効率は95%であつた。
Note that when a membrane not subjected to the above treatment was used, the voltage was 3.40 volts and the current efficiency was 95%.

Claims (1)

【特許請求の範囲】 1 陽イオン交換膜の表面に金属を固着せしめる
方法において、あらかじめ、該膜の表面にポリア
ミン、あるいはポリアミンの塩酸塩を含浸させ、
次に溶液中で負の金属錯体イオンを形成する金属
塩を含浸させて化学メツキを施すことを特徴とす
る陽イオン交換膜の表面に金属を固着せしめる方
法。 2 陽イオン交換基として、スルホン酸基から成
る陽イオン交換膜を使用する特許請求の範囲第1
項記載の方法。 3 陽イオン交換基として、カルボン酸基から成
る陽イオン交換膜を使用する特許請求の範囲第1
項記載の方法。 4 陽イオン交換基としてスルホン酸基とカルボ
ン酸基との多層構造から成る陽イオン交換膜を使
用する特許請求の範囲第1項記載の方法。 5 固着される金属が白金、パラジウム、ルテニ
ウム、ニツケルあるいは、これらの混合物から選
ばれる特許請求の範囲第1、2、3または第4項
記載の方法。
[Claims] 1. A method for fixing a metal on the surface of a cation exchange membrane, in which the surface of the membrane is impregnated with a polyamine or a hydrochloride of a polyamine in advance,
A method for fixing a metal to the surface of a cation exchange membrane, which is then impregnated with a metal salt that forms a negative metal complex ion in a solution and subjected to chemical plating. 2 Claim 1 in which a cation exchange membrane consisting of sulfonic acid groups is used as the cation exchange group
The method described in section. 3 Claim 1 in which a cation exchange membrane consisting of a carboxylic acid group is used as the cation exchange group
The method described in section. 4. The method according to claim 1, which uses a cation exchange membrane having a multilayer structure of sulfonic acid groups and carboxylic acid groups as cation exchange groups. 5. The method according to claim 1, 2, 3 or 4, wherein the metal to be fixed is selected from platinum, palladium, ruthenium, nickel, or a mixture thereof.
JP57060993A 1982-04-14 1982-04-14 Method for fixedly depositing metal on surface of cation exchange membrane Granted JPS58181882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060993A JPS58181882A (en) 1982-04-14 1982-04-14 Method for fixedly depositing metal on surface of cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060993A JPS58181882A (en) 1982-04-14 1982-04-14 Method for fixedly depositing metal on surface of cation exchange membrane

Publications (2)

Publication Number Publication Date
JPS58181882A JPS58181882A (en) 1983-10-24
JPH0143026B2 true JPH0143026B2 (en) 1989-09-18

Family

ID=13158462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060993A Granted JPS58181882A (en) 1982-04-14 1982-04-14 Method for fixedly depositing metal on surface of cation exchange membrane

Country Status (1)

Country Link
JP (1) JPS58181882A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050142A1 (en) * 1996-06-26 1997-12-31 Siemens Aktiengesellschaft Method of producing membrane electrode units for pem fuel cells
JP4919961B2 (en) * 2005-09-02 2012-04-18 荏原ユージライト株式会社 Catalyst application enhancer

Also Published As

Publication number Publication date
JPS58181882A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
GB2071152A (en) Catalytic electrodes
US4927800A (en) Electrode catalyst and method for production thereof
JP5632780B2 (en) Electrolytic cell manufacturing method
JP4190026B2 (en) Gas diffusion electrode
TW201333269A (en) Oxygen-consuming electrode and process for production thereof
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
JP4290454B2 (en) Method for producing gas diffusion electrode, electrolytic cell and electrolysis method
JPH0143026B2 (en)
JPH0248632B2 (en)
US4425203A (en) Hydrogen evolution cathode
JPS6258622B2 (en)
JP2005325445A (en) One-step electrosynthesis method for borohydride
JPS6154116B2 (en)
US4374712A (en) Cathode for chlor-alkali cells
JP2692736B2 (en) Method for producing gold-ion exchange membrane assembly
JP2005116466A (en) Membrane-electrode junction and manufacturing method of the same
JP2660284B2 (en) Catalytic electrode and method for producing the same
JP2863831B2 (en) Method for producing gold-ion exchange membrane assembly
JP3625520B2 (en) Gas diffusion electrode
KR20020072192A (en) Solid polymer electrolyte film and preparing method thereof
JPS63216988A (en) Fluorine-containing anion exchange membrane-electrode joined body
JPS6136074B2 (en)
JPS6125791B2 (en)
JPH0832962B2 (en) Method for manufacturing electrolysis bonded body
JP2023020050A (en) Electrode catalyst, oxygen generating electrode, and water electrolysis method