JPH0832962B2 - Method for manufacturing electrolysis bonded body - Google Patents

Method for manufacturing electrolysis bonded body

Info

Publication number
JPH0832962B2
JPH0832962B2 JP63031945A JP3194588A JPH0832962B2 JP H0832962 B2 JPH0832962 B2 JP H0832962B2 JP 63031945 A JP63031945 A JP 63031945A JP 3194588 A JP3194588 A JP 3194588A JP H0832962 B2 JPH0832962 B2 JP H0832962B2
Authority
JP
Japan
Prior art keywords
metal layer
reducing agent
exchange membrane
solution
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63031945A
Other languages
Japanese (ja)
Other versions
JPH01208490A (en
Inventor
彰博 坂西
健二 植田
英彦 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63031945A priority Critical patent/JPH0832962B2/en
Publication of JPH01208490A publication Critical patent/JPH01208490A/en
Publication of JPH0832962B2 publication Critical patent/JPH0832962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体高分子電解質電解法(以下SPE電解法と
いう)用接合体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a method for producing a joined body for solid polymer electrolyte electrolysis (hereinafter referred to as SPE electrolysis).

〔従来の技術〕[Conventional technology]

電解用接合体は薄膜と電極となるべき金属とが接合さ
れたものであり、水電解、塩酸又は食塩電解等の分野で
実施されているSPE電解法においてその重要性を高めつ
つある。現在繁用されている電解用接合体は陽イオン交
換膜の両面にある種の金属層を接合させたものである。
The electrolysis joined body is a joined thin film and a metal to be an electrode, and its importance is increasing in the SPE electrolysis method practiced in the fields of water electrolysis, hydrochloric acid or salt electrolysis. The most commonly used electrolyzing junction is a cation exchange membrane with some kind of metal layer joined to both sides.

かかる電解用接合体としては、電気抵抗が小であるこ
と、陽イオン交換膜に接合される金属層が柔軟性を有し
ていること、陽イオン交換膜と金属層との接着性が良好
であること、電解時において金属層の剥離等がなく耐久
性に優れていること等の性質が要求されている。
As such an electrolysis joined body, the electrical resistance is small, the metal layer joined to the cation exchange membrane has flexibility, and the adhesiveness between the cation exchange membrane and the metal layer is good. There is a demand for properties such as exfoliation of the metal layer during electrolysis and excellent durability.

従来、電解用接合体の製造方法としては、特公昭56−
36873号公報記載のように、イオン交換膜を介して金属
塩溶液と還元剤溶液とを配し、還元剤イオンをイオン交
換膜に浸透させて金属塩溶液側の膜上に金属層を形成さ
せる方法がある。
Conventionally, as a method for producing a joined body for electrolysis, Japanese Patent Publication No. 56-
As described in Japanese Patent No. 36873, a metal salt solution and a reducing agent solution are arranged through an ion exchange membrane, and the reducing agent ions are allowed to permeate the ion exchange membrane to form a metal layer on the metal salt solution side membrane. There is a way.

この方法は浸透法と呼ばれており、第2図に示したよ
うに内室01,02を有するセル03の中央部にイオン交換膜0
4を配置し、内室01に目的とする金属塩溶液を、内室02
に還元剤溶液を入れる。内室02へ還元剤溶液を注入する
と還元剤が膜中を浸透して内室01の金属塩溶液側に至
り、金属塩溶液側膜面上で還元反応が起り、金属が膜上
に析出する。
This method is called the permeation method, and as shown in FIG. 2, an ion exchange membrane 0 is formed at the center of the cell 03 having the inner chambers 01 and 02.
4 is placed, and the target metal salt solution is placed in the inner chamber 02.
Pour the reducing agent solution into. When the reducing agent solution is injected into the inner chamber 02, the reducing agent penetrates through the film and reaches the metal salt solution side of the inner chamber 01, a reduction reaction occurs on the metal salt solution side film surface, and metal is deposited on the film. .

所定の金属層がイオン交換膜04の片面に得られた後
に、セル03を水洗し目的とする金属塩溶液及び還元剤溶
液をそれぞれ逆の内室02,01に注入し、同様な操作で他
面に所定の金属層を析出せしめるものである。
After the predetermined metal layer is obtained on one side of the ion exchange membrane 04, the cell 03 is washed with water and the target metal salt solution and the reducing agent solution are injected into the opposite inner chambers 02 and 01, respectively, and the same operation is performed. A predetermined metal layer is deposited on the surface.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

特公昭56−36873号公報記載の方法で、イオン交換膜
「ナフイオン117:商品名」に白金を接合した場合の実験
結果を第1表に示す。
Table 1 shows the experimental results when platinum was bonded to the ion exchange membrane "NAF ION 117: trade name" by the method described in JP-B-56-36873.

第1表中、No.項のAは初めにメツキを施した面、B
はそのA面の裏側を現わし、還元剤NaBH4(水素化ホウ
素ナトリウム)、金属塩H2PtCl6・6H2O(塩化白金酸6
水塩)濃度はいずれも重量%である。
In Table 1, No. A is the surface that was first plated, B
Shows the back side of its A side, and is a reducing agent NaBH 4 (sodium borohydride), metal salt H 2 PtCl 6 · 6H 2 O (chloroplatinic acid 6
The concentration of water salt) is in% by weight.

メツキの膜への密着性は、接合体を180゜折り曲げひ
び割れ、はく離が発生したものを不良、発生しないもの
を良と判断した。
Regarding the adhesion of the matte to the film, it was judged that when the joined body was bent 180 ° and cracked and peeling occurred, it was poor, and when it did not occur, it was good.

なお、内径16mm、外径50mmのフランジをもつL型アク
リル管(内径16mm)2本を用い、フランジ部を合わせ、
シリコンゴムをパツキングにして径30mmのナフイオン11
7膜(デユポン社製)を挟んでメツキセルを組立てた。
ナフイオン膜は、接合に先立ち、アセトン洗浄水洗後、
2N−HClで30分煮沸し、ついで水洗後、水で30分煮沸し
たものを水中に保存し、使用時には濡れた状態でセツト
するようにした。
In addition, using two L-type acrylic pipes (inner diameter 16 mm) having a flange with an inner diameter of 16 mm and an outer diameter of 50 mm, align the flange parts,
Nafion 11 with a diameter of 30 mm by packing silicon rubber
A methexel was assembled with 7 membranes (manufactured by Dyupon Co., Ltd.) between them.
Nafion membrane is washed with acetone and water before joining.
It was boiled in 2N-HCl for 30 minutes, washed with water, and then boiled in water for 30 minutes, stored in water, and set in a wet state before use.

第1表に示した結果から、 (1) A,B両面ともメツキ時間が等しい場合には、B
面の方が多く付着する。
From the results shown in Table 1, (1) If both sides A and B have the same plating time, B
The surface adheres more.

(2) A面の周辺部へのPtの付き具合が特に悪い。こ
れに対してB面は比較的ムラが少ない。
(2) The attachment of Pt to the periphery of the A side is particularly bad. On the other hand, the B side has relatively little unevenness.

(3) A,B両面とも密着性が悪い。(3) Adhesion is poor on both A and B sides.

という傾向があることが判つた。It turned out that there is a tendency.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題点は、還元剤が膜中へ浸透していく際にPtが
存在する場合と存在しない場合とでその透過性に差が生
じるためではないか、という考えから、Pt−ナフイオン
接合体とナフイオン膜のみをNaBH41%水溶液中に浸漬し
様子を観察したところ、Ptの接合されていないナフイオ
ン膜ではNaBH4の自己分解により発生したと思われる気
泡が表面全体に多数付着していたのに対し、Pt−ナフイ
オン接合体ではPt部分から気泡が激しく発生するものの
表面への気泡の付着は見られなかつた。これらの結果と
前述の(1),(2),(3)の特公昭56−36873号公
報の傾向とを考え合わせると、A面メツキ時には気泡の
表面への付着により還元剤NaBH4の浸透が妨げられるた
めメツキの成長速度が遅く且つムラが生じる。これに対
して、B面メツキ時にはA面Ptの存在により還元剤NaBH
4自己分解が促進され、ガスの発生量は増えるものの気
泡は付着せずNaBH4の浸透がスムーズに膜全体的に均一
に進むためメツキの成長速度の速い比較的ムラの少ない
メツキとなると考えられる。
The above problem may be due to a difference in permeability between the presence and absence of Pt when the reducing agent permeates into the membrane. When only the naphtho ion film was immersed in a 1% NaBH 4 aqueous solution and observed, it was found that in the naphtho film without Pt bonding, a large number of bubbles, which are thought to be generated by the self-decomposition of NaBH 4 , were attached to the entire surface. On the other hand, in the Pt-naphtho ion-bonded body, although the bubbles were intensely generated from the Pt portion, the adhesion of the bubbles to the surface was not observed. Considering these results and the tendency of Japanese Patent Publication No. 56-36873 in (1), (2), and (3) above, the reducing agent NaBH 4 permeates due to adhesion of bubbles to the surface during A-side plating. As a result, the growth rate of the wood spatter is slow and uneven. On the other hand, when the B side is plated, the reducing agent NaBH
4 Although self-decomposition is promoted and the amount of gas generated increases, bubbles do not adhere and NaBH 4 permeation proceeds smoothly and uniformly over the entire membrane, so it is considered that the rate of growth of the rate of growth is high and the rate of variation is relatively low. .

この考えに基づき、欠点を改良する方法として (i) 気泡除去のため還元剤溶液を撹拌する。 Based on this idea, as a method for improving the defects, (i) the reducing agent solution is stirred to remove bubbles.

(ii) あらかじめ薄くPtをメツキしておく。(Ii) Pt thinly beforehand.

の2法を行なつてみた。(i)の場合、気泡の除去はで
きるものの還元剤の浸透速度が増し、塩化白金酸塩水溶
液中で反応が起こり膜自体にPtがメツキされなかつた。
I tried two methods. In the case of (i), although the bubbles could be removed, the permeation rate of the reducing agent increased, the reaction occurred in the aqueous chloroplatinate solution, and Pt was not smeared on the film itself.

(ii)の方法においては、イ ナフイオン膜をメツキ
セルに配置する前に、還元剤NaBH4水溶液中に20分浸漬
して膜に充分にNaBH4を含ませた後、メツキセルに配置
し、A面に薄くPtが析出する程度のメツキを行ない、水
洗後、金属塩溶液及び還元剤溶液をそれぞれ逆の内室に
注入し、B面に通常のPtの析出を施した。B面に所定の
金属層が得られた後、セルを水洗し、ついで金属塩及び
還元剤溶液をそれぞれ逆の内室に注入し、同様な操作で
A面に所定の金属層を析出させる方法と、ロ ナフイオ
ン膜のA面に金属イオをイオン交換吸着させ、次いで還
元剤溶液で処理して膜の内表面に金属薄層を析出させた
後、該膜をメツキセルに配置し、A面側に還元剤溶液を
B面に金属塩溶液を注入し、B面に所定の金属層を析出
させ、ついでセルを水洗し金属塩及び還元剤溶液をそれ
ぞれ逆の内室に注入し同様な操作でA面に所定の金属層
を析出させる方法の二通りの方法について検討した。
In the method of (ii), before placing the naphthaion membrane on the metexel, soak it in the reducing agent NaBH 4 aqueous solution for 20 minutes to allow the membrane to sufficiently contain NaBH 4 , then place it on the metexel, and place it on the A surface. The plating was carried out to such an extent that thin Pt was deposited, and after washing with water, the metal salt solution and the reducing agent solution were poured into the opposite inner chambers, respectively, and ordinary Pt was deposited on the B surface. After a predetermined metal layer is obtained on the B side, the cell is washed with water, and then a metal salt and a reducing agent solution are injected into the opposite inner chambers, respectively, and a predetermined metal layer is deposited on the A side by the same operation. Then, the metal ion was adsorbed and adsorbed on the A surface of the Ronafion membrane, and then a thin metal layer was deposited on the inner surface of the membrane by treating with a reducing agent solution. The reducing agent solution is injected into the B side with a metal salt solution, a predetermined metal layer is deposited on the B side, and then the cell is washed with water, and the metal salt and the reducing agent solution are injected into the opposite inner chambers by the same operation. Two methods, namely a method of depositing a predetermined metal layer on the A surface, were examined.

その結果、両方法ともムラが少なく密着性が良好な接
合体が得られることを確認した。
As a result, it was confirmed that a bonded body with less unevenness and good adhesion was obtained by both methods.

本発明はこの知見にもとづいて完成されたものであ
る。すなわち、本発明はイオン交換膜の一面に金属薄層
を形成させた後、該イオン交換膜をはさんで、該金属薄
層の反対面に金属塩溶液を配し、該金属薄層面から還元
剤溶液を浸透させて金属層を該イオン交換膜表面に析出
させ、ついで金属塩溶液及び還元剤溶液を逆に配置し、
同様な操作で最初に形成させた金属薄層面に金属層を析
出させることを特徴とする電解用接合の製造法である。
The present invention has been completed based on this finding. That is, in the present invention, after forming a thin metal layer on one surface of an ion exchange membrane, a metal salt solution is placed on the opposite surface of the thin metal layer across the ion exchange membrane, and reduction is performed from the thin metal surface. The agent solution is permeated to deposit a metal layer on the surface of the ion exchange membrane, and then the metal salt solution and the reducing agent solution are arranged in reverse,
This is a method for producing a junction for electrolysis, which comprises depositing a metal layer on the surface of a thin metal layer formed first by a similar operation.

本発明において、最初にイオン交換膜に形成する薄層
の金属と、その後に積層させる金属とは、同一金属でも
異種金属でもよい。
In the present invention, the metal of the thin layer initially formed on the ion exchange membrane and the metal to be laminated thereafter may be the same metal or different metals.

イオン交換膜の両面に接合される金属としては、Pt,I
r,Rh,Ru,Pdなどの貴金属及びこれらの合金や、Ni,Co,Cu
などの卑金属があげられるが、耐食性及び酸素、水素、
塩素発生能に優れる貴金属が多用される。合金について
は混合溶液を還元処理することによつて接合することが
可能である。
As the metal bonded to both sides of the ion exchange membrane, Pt, I
Noble metals such as r, Rh, Ru, Pd and their alloys, Ni, Co, Cu
Base metals such as, but corrosion resistance and oxygen, hydrogen,
Precious metals that excel in chlorine generation are often used. The alloys can be joined by subjecting the mixed solution to a reduction treatment.

還元剤溶液としては、水素化ホウ素ナトリウムのよう
な水素化ホウ素アルカリ、ジメチルアミンボランのよう
な有機ホウ化水素化合物及びヒドラジン水和物、硫酸塩
または塩酸塩などがあげられる。一般には還元力の大き
い水素化ホウ素ナトリウムがよく用いられる。
Examples of the reducing agent solution include alkali borohydride such as sodium borohydride, organic borohydride compounds such as dimethylamine borane, and hydrazine hydrate, sulfate or hydrochloride. Generally, sodium borohydride, which has a large reducing power, is often used.

〔実施例〕〔Example〕

本発明の一実施例を第1図によつて説明し、その結果
を第2表に示す。
One embodiment of the present invention will be described with reference to FIG. 1, and the results are shown in Table 2.

第2表において、No.10及びNo.20は最初に形成する金
属薄層析出法として、第1図のナフイオン117膜1を水
素化ホウ素ナトリウム1%溶液中に20分浸漬後、内径16
mmのL型メツキセル2,3のフランジ2a,3bに挟んで、A面
側に塩化白金酸塩H2PtCl6・6H2O 3%水溶液を、B面
側に水素化ホウ素ナトリウム1%水溶液を注入し、3分
間メツキ処理を施した片面に金属薄層を形成させたイオ
ン交換膜を使用した例である。一方No.30及びNo.40は金
属薄層析出法として、ナフイオン117膜1のA面にテト
ラアンミン白金(II)塩溶液(Ptとして50mg/100ml)を
接触させ2時間放置して白金を吸着させ、その後、水素
化ホウ素ナトリウム0.05%水溶液と接触させ2時間還元
処理して片面に白金薄層を析出させたイオン交換膜を使
用した例である。
In Table 2, No. 10 and No. 20 are the thin metal layer deposition methods to be formed first, and the Nafion 117 membrane 1 of FIG. 1 was immersed in a 1% sodium borohydride solution for 20 minutes and then the inner diameter 16
It is sandwiched between the flanges 2a and 3b of the L-shaped Metxell 2,3 of 3 mm, and the chloroplatinate H 2 PtCl 6 .6H 2 O 3% aqueous solution is placed on the A side and the sodium borohydride 1% aqueous solution is placed on the B side. This is an example of using an ion-exchange membrane in which a thin metal layer is formed on one surface after injection and plating treatment for 3 minutes. On the other hand, No. 30 and No. 40 are metal thin layer deposition methods, in which tetraammine platinum (II) salt solution (50 mg / 100 ml as Pt) is brought into contact with the A surface of Nafion 117 membrane 1 and left for 2 hours to adsorb platinum. Then, this is an example of using an ion exchange membrane in which a thin layer of platinum was deposited on one side by contacting with a 0.05% aqueous solution of sodium borohydride and reducing for 2 hours.

これらの処理後、第1図の内径16mmのL型メツキセル
2,3にはさんでA面側に水素化ホウ素ナトリウム1%水
溶液を、B面に3%塩化白金酸水溶液を注入し、B面に
所定の金属層を析出させ、ついでL型メツキセル2,3を
水洗し3%塩化白金酸水溶液をA面に、水素化ホウ素ナ
トリウム1%水溶液をB面に注入し、A面に所定の金属
層を析出させた。
After these treatments, the L-shaped meshel with an inner diameter of 16 mm shown in Fig. 1
Inject a 1% aqueous solution of sodium borohydride on the A side and a 3% aqueous solution of chloroplatinic acid on the B side by sandwiching it between 2 and 3 to deposit a predetermined metal layer on the B side, and then to form L-type Metexel 2, 3 was washed with water, and a 3% aqueous solution of chloroplatinic acid was injected into the A surface and a 1% aqueous solution of sodium borohydride was injected into the B surface to deposit a predetermined metal layer on the A surface.

第2表に示したように、いずれもメツキのムラがな
く、且つ白金層のひび割れ、剥離等がなく密着性に優れ
る接合体が得られた。
As shown in Table 2, in all cases, a bonded body having no unevenness of plating and no cracking or peeling of the platinum layer and having excellent adhesion was obtained.

なお、この例ではイオン交換膜に最初に形成し、還元
剤の自己分解を促進する金属薄層として白金を使用した
が、他の金属を使用した場合も同様の効果が得られた。
In this example, platinum was used as the thin metal layer that was first formed on the ion exchange membrane and promotes the self-decomposition of the reducing agent, but the same effect was obtained when other metals were used.

〔発明の効果〕 本発明により、ひび割れ、剥離等がなく密着性に優れ
た接合体が得られ、その工業的価値は顕著なものがあ
る。
[Advantages of the Invention] According to the present invention, there can be obtained a bonded body which is free from cracks, peeling and the like and has excellent adhesiveness, and its industrial value is remarkable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施態様を説明するための概略図、
第2図は従来法の電解用接合体の製法の一態様を説明す
るための概略図である。
FIG. 1 is a schematic view for explaining an embodiment of the present invention,
FIG. 2 is a schematic diagram for explaining one aspect of a method for producing a conventional electrolysis bonded body.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イオン交換膜の一面に金属薄層を形成させ
た後、該イオン交換膜をはさんで、該金属薄層の反対面
に金属塩溶液を配し、該金属薄層面から還元剤溶液を浸
透させて金属層を当該イオン交換膜表面に析出させ、つ
いで金属塩溶液及び還元剤溶液を逆に配置し、同様な操
作で最初に形成させた金属薄層面に金属層を析出させる
ことを特徴とする電解用接合体の製造法。
1. A thin metal layer is formed on one surface of an ion exchange membrane, and a metal salt solution is placed on the opposite surface of the thin metal layer across the ion exchange membrane to reduce the metal thin layer surface. The agent solution is permeated to deposit the metal layer on the surface of the ion exchange membrane, and then the metal salt solution and the reducing agent solution are arranged in reverse, and the metal layer is deposited on the thin metal layer surface initially formed by the same operation. A method for producing a joined body for electrolysis, comprising:
JP63031945A 1988-02-16 1988-02-16 Method for manufacturing electrolysis bonded body Expired - Lifetime JPH0832962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031945A JPH0832962B2 (en) 1988-02-16 1988-02-16 Method for manufacturing electrolysis bonded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031945A JPH0832962B2 (en) 1988-02-16 1988-02-16 Method for manufacturing electrolysis bonded body

Publications (2)

Publication Number Publication Date
JPH01208490A JPH01208490A (en) 1989-08-22
JPH0832962B2 true JPH0832962B2 (en) 1996-03-29

Family

ID=12345102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031945A Expired - Lifetime JPH0832962B2 (en) 1988-02-16 1988-02-16 Method for manufacturing electrolysis bonded body

Country Status (1)

Country Link
JP (1) JPH0832962B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853798A (en) * 1997-09-12 1998-12-29 United Technologies Corporation Process for formation of an electrode on an anion exchange membrane
JP5248792B2 (en) * 2007-03-15 2013-07-31 三菱電機株式会社 Dehumidifying element and manufacturing method thereof

Also Published As

Publication number Publication date
JPH01208490A (en) 1989-08-22

Similar Documents

Publication Publication Date Title
JP3077113B2 (en) Microporous fluororesin material plated with platinum group or platinum group alloy and method for producing the same
JP5995906B2 (en) Manufacturing method of diaphragm and manufacturing method of metal coating
JPS6356316B2 (en)
EP3684966B1 (en) Method of producing an electrocatalyst
EP1983076A2 (en) Palladium-containing plating solution and its uses
FR2480795A1 (en) CATHODE FOR ELECTROCHEMICAL REACTIONS AND METHOD OF MANUFACTURE
JPH036232B2 (en)
CN104364421B (en) Make the method for nonconductive plastic material surface metalation
US20110139007A1 (en) Hydrogen separator and process for production thereof
JPH0832962B2 (en) Method for manufacturing electrolysis bonded body
JP2692736B2 (en) Method for producing gold-ion exchange membrane assembly
KR100950411B1 (en) Palladium-containing plating solution and its uses
JP2863831B2 (en) Method for producing gold-ion exchange membrane assembly
JPH01208489A (en) Catalytic electrode and production thereof
JP2686597B2 (en) Iridium electroless plating bath and method for producing joined body for electrolysis
JP2713360B2 (en) Method for producing gold-ion exchange membrane assembly
JPH0832963B2 (en) Ion-exchange membrane-electrode assembly manufacturing method
JPS63216988A (en) Fluorine-containing anion exchange membrane-electrode joined body
JPS58204188A (en) Method for producing joined body of ion exchange membrane and catalytic electrode
FR2471426A1 (en) PALLADIUM ELECTRODEPOSITION PROCESS AND ELECTROLYTIC BATH FOR CARRYING OUT SAID METHOD
Straschil et al. New palladium strike improves adhesion and porosity
JPS6261117B2 (en)
JP3022336B2 (en) Platinum plating method for ion exchange membrane
JPH0244906B2 (en)
JP2008223118A (en) Solid polymer electrolyte membrane, its production method, and electrolysis element