JP2008223118A - Solid polymer electrolyte membrane, its production method, and electrolysis element - Google Patents

Solid polymer electrolyte membrane, its production method, and electrolysis element Download PDF

Info

Publication number
JP2008223118A
JP2008223118A JP2007066977A JP2007066977A JP2008223118A JP 2008223118 A JP2008223118 A JP 2008223118A JP 2007066977 A JP2007066977 A JP 2007066977A JP 2007066977 A JP2007066977 A JP 2007066977A JP 2008223118 A JP2008223118 A JP 2008223118A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
catalyst
membrane
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007066977A
Other languages
Japanese (ja)
Other versions
JP5248792B2 (en
Inventor
Masatoshi Sunamoto
昌利 砂本
Yohei Takemoto
洋平 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007066977A priority Critical patent/JP5248792B2/en
Publication of JP2008223118A publication Critical patent/JP2008223118A/en
Application granted granted Critical
Publication of JP5248792B2 publication Critical patent/JP5248792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemically Coating (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the generation of troubles caused by the fact that a catalyst remains in a solid polymer electrolyte and to prolong the service life as electrode of a solid polymer electrolyte membrane. <P>SOLUTION: A membrane-like solid polymer electrolyte membrane is previously immersed in an aqueous reductant solution and then dipped in an aqueous catalytic compound solution. Thereby, the residual amounts of catalyst ions and the catalyst in the solid polymer electrolyte can be reduced. Alternatively, the solid polymer electrolyte is further immersed into the aqueous reductant solution so as to reduce the catalyst ions existing on the surface of the electrolyte. In an electrolysis element, one catalyst layer of the solid polymer electrolyte membrane is used as anode and the other catalyst layer of the membrane is used as cathode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体高分子電解質膜、その製造方法、および電気分解素子に関し、詳しくは両面に触媒層を有する固体高分子電解質膜、その製造方法、および上記固体高分子電解質膜を電極材として使用してなり、水の電気分解素子、燃料電池、湿度調節素子などとして好適な電気分解素子に関するものである。   The present invention relates to a solid polymer electrolyte membrane, a method for producing the same, and an electrolysis element, and more specifically, a solid polymer electrolyte membrane having a catalyst layer on both sides, a method for producing the same, and the use of the solid polymer electrolyte membrane as an electrode material Thus, the present invention relates to an electrolysis element suitable as a water electrolysis element, a fuel cell, a humidity control element and the like.

従来から、固体高分子電解質と触媒粒子とを含んでなる多孔性の固体高分子電解質―触媒複合電極母体を作製した後、該電極母体に無電解めっき処理を施すことによって電子伝導性物質を該電極母体に担持させ、電極母体表面に電子導電性物質層を形成し、または、電極本体内の細孔内表面に電子伝導性物質を担持させ、または、固体高分子電解質層中のイオン伝導領域に電子伝導性物質を担持させる固体高分子電解質電極の製造方法は、後記の特許文献1から公知である。また上記の無電解めっき処理の方法としては、例えば、電極母体中の固体高分子電解質に白金族金属化合物イオンを吸着せしめ、該白金族金属化合物イオンを、水素化硼素塩水溶液または水素ガスで還元処理することも特許文献1から公知である。   Conventionally, after producing a porous solid polymer electrolyte-catalyst composite electrode matrix comprising a solid polymer electrolyte and catalyst particles, the electrode matrix is subjected to electroless plating treatment to thereby convert the electron conductive material into the electroconductive material. An electrode matrix is formed on the surface of the electrode matrix, an electron conductive material layer is formed on the surface of the electrode matrix, or an electron conductive material is supported on the surface of the pores in the electrode body, or the ion conductive region in the solid polymer electrolyte layer. A method for producing a solid polymer electrolyte electrode in which an electron conductive substance is supported on is known from Patent Document 1 described later. In addition, as a method of the above electroless plating treatment, for example, a platinum group metal compound ion is adsorbed on a solid polymer electrolyte in an electrode matrix, and the platinum group metal compound ion is reduced with an aqueous borohydride salt solution or hydrogen gas. Processing is also known from US Pat.

特開平11−217687号公報JP-A-11-217687

上記の従来技術によって製造された白金族金属化合物を担持させた固体高分子電解質膜において、当該電解質膜を電極として、水が存在する状態でその両面から直流電流を流すと、触媒作用により固体高分子電解質膜の内部に蓄えられたプロトンが膜内部を移動し、その結果、電極表面のアノード側では酸素が、カソード側では水素が発生する。またそれと同時に、膜表面や膜内に存在する白金イオンが白金となる。この白金部が、酸化、還元反応の触媒となるため、この部分で、酸素、水、水素等の気体が発生し、その気体によって固体高分子膜が膨張、破断し、電極としての性能が失われるといった問題点があった。本発明は、この触媒が固体高分子電解質内に残留することによって発生する不具合を抑制し、電極としての寿命を延ばすことを課題としたものである。   In the solid polymer electrolyte membrane supporting the platinum group metal compound produced by the above-mentioned conventional technology, when the electrolyte membrane is used as an electrode and a direct current is passed from both sides in the presence of water, the solid polymer electrolyte membrane is catalytically activated. Protons stored inside the molecular electrolyte membrane move inside the membrane, and as a result, oxygen is generated on the anode side of the electrode surface and hydrogen is generated on the cathode side. At the same time, platinum ions existing on the film surface or in the film become platinum. Since this platinum portion serves as a catalyst for oxidation and reduction reactions, gas such as oxygen, water, and hydrogen is generated in this portion, and the solid polymer film expands and breaks due to the gas, and the performance as an electrode is lost. There was a problem that it was. An object of the present invention is to suppress problems caused by the catalyst remaining in the solid polymer electrolyte and to extend the life of the electrode.

本発明に係る固体高分子電解質膜は、膜状の固体高分子電解質の両面に、白金族金属またはその化合物、金またはその化合物、およびニッケルまたはその化合物のうちの少なくとも1種からなる触媒層を有する固体高分子電解質膜であって、上記固体高分子電解質の内部に存在する上記触媒の質量が0.1質量%以下であることを特徴するものである。   The solid polymer electrolyte membrane according to the present invention has a catalyst layer made of at least one of a platinum group metal or a compound thereof, gold or a compound thereof, and nickel or a compound thereof on both sides of the membrane-like solid polymer electrolyte. A solid polymer electrolyte membrane having a mass of 0.1% by mass or less of the catalyst existing inside the solid polymer electrolyte.

本発明に係る他の固体高分子電解質膜は、膜状の固体高分子電解質の両面に、白金族金属またはその化合物、金またはその化合物、およびニッケルまたはその化合物のうちの少なくとも1種からなる触媒層を有する固体高分子電解質膜であって、上記固体高分子電解質の内部に存在する上記触媒の質量を、上記固体高分子電解質の乾燥質量で除した値が0.001以下であることを特徴とするものである。   Another solid polymer electrolyte membrane according to the present invention is a catalyst comprising at least one of a platinum group metal or a compound thereof, gold or a compound thereof, and nickel or a compound thereof on both sides of a membrane-like solid polymer electrolyte. A solid polymer electrolyte membrane having a layer, wherein a value obtained by dividing the mass of the catalyst existing inside the solid polymer electrolyte by the dry mass of the solid polymer electrolyte is 0.001 or less. It is what.

本発明に係る固体高分子電解質膜の製造方法は、膜状の固体高分子電解質を還元剤水溶液に浸漬する第一工程、上記第一工程から得た固体高分子電解質を白金族金属またはその化合物、金またはその化合物、およびニッケルまたはその化合物のうちの少なくとも1種の水溶液に浸漬する第二工程を含むことを特徴とするものである。   The method for producing a solid polymer electrolyte membrane according to the present invention includes a first step of immersing a membrane-like solid polymer electrolyte in a reducing agent aqueous solution, a solid polymer electrolyte obtained from the first step, a platinum group metal or a compound thereof And a second step of immersing in an aqueous solution of at least one of gold or a compound thereof and nickel or a compound thereof.

本発明に係る電気分解素子は、請求項1〜請求項3のいずれか1項に記載の固体高分子電解質膜における一方の触媒層を陽極とし、他方の触媒層を陰極とすることを特徴とするものである。   The electrolysis element according to the present invention is characterized in that one catalyst layer in the solid polymer electrolyte membrane according to any one of claims 1 to 3 is an anode and the other catalyst layer is a cathode. To do.

本発明の固体高分子電解質膜によれば、固体高分子電解質中に存在する触媒残留量が、0.1質量%以下と少ないので、あるいは上記固体高分子電解質中に存在する触媒質量を、上記固体高分子電解質膜の乾燥質量で除した値が0.001以下であるので、当該固体高分子電解質膜を電気分解素子の電極として使用した場合には、その寿命が従来の固体高分子電解質膜を電極として使用した場合より長くなる極めて優れた効果がある。本発明の固体高分子電解質膜の製造方法によれば、固体高分子電解質中に存在する触媒残留量を0.1質量%以下とすることができる。   According to the solid polymer electrolyte membrane of the present invention, the catalyst residual amount present in the solid polymer electrolyte is as small as 0.1% by mass or less, or the catalyst mass present in the solid polymer electrolyte is Since the value obtained by dividing the solid polymer electrolyte membrane by the dry mass is 0.001 or less, when the solid polymer electrolyte membrane is used as an electrode of an electrolysis element, its lifetime is a conventional solid polymer electrolyte membrane. There is an extremely excellent effect of becoming longer than when using as an electrode. According to the method for producing a solid polymer electrolyte membrane of the present invention, the residual amount of catalyst present in the solid polymer electrolyte can be 0.1% by mass or less.

本発明で使用されるプロトン伝導性を有する膜状固体高分子電解質を構成する固体高分子電解質としては、デュポン社の商品名ナフィオン、旭硝子の商品名フレミオン、旭化成(株)アシプレックスやW.L.ゴア&アソシエーツ社の商品名ゴアセレクト等で、斯界で従来から公知あるいは周知のものであってよい。その厚さは、50μm〜500μm、好ましくは50μm〜300μmである。   Examples of the solid polymer electrolyte constituting the membrane-shaped solid polymer electrolyte having proton conductivity used in the present invention include DuPont's trade name Nafion, Asahi Glass's trade name Flemion, Asahi Kasei Corporation Aciplex, and W.C. L. The product name Gore Select of Gore & Associates may be known or well known in the art. The thickness is 50 μm to 500 μm, preferably 50 μm to 300 μm.

触媒として用いられる白金族金属およびその化合物、金またはその化合物、あるいはニッケルまたはその化合物としては、Pt、Co、Rh、Pd、Ir、Au、Niなどの金属類、[Pt(NH34]Cl2、H2PtCl6、Co[(NH36]Cl3、Co[(NO2)(NH35]Cl2、Rh[(NH3)6]Cl3、[Pd(NH3)4]Cl2、[Ir(NH3)6]Cl6、NH4[AuCl4]、AuCl3、NiCl2、Ni(NO32・6H2Oなどの錯体であり、就中、白金およびその化合物類が好ましい。 Platinum group metals used as catalysts and compounds thereof, gold or compounds thereof, or nickel or compounds thereof include metals such as Pt, Co, Rh, Pd, Ir, Au, Ni, [Pt (NH 3 ) 4 ]. Cl 2 , H 2 PtCl 6 , Co [(NH 3 ) 6 ] Cl 3 , Co [(NO 2 ) (NH 3 ) 5 ] Cl 2 , Rh [(NH 3 ) 6 ] Cl 3 , [Pd (NH 3 ) 4 ] Cl 2 , [Ir (NH 3 ) 6 ] Cl 6 , NH 4 [AuCl 4 ], AuCl 3 , NiCl 2 , Ni (NO 3 ) 2 .6H 2 O, etc. And its compounds are preferred.

本発明の製造方法で用いられる上記金属およびその化合物の水溶液としては、Pt、Co、Rh、Pd、Ir、Au、Niなどの金属類、[Pt(NH34]Cl2、H2PtCl6、Co[(NH36]Cl3、Co[(NO2)(NH35]Cl2、Rh[(NH3)6]Cl3、[Pd(NH3)4]Cl2、[Ir(NH3)6]Cl6、NH4[AuCl4]、AuCl3、NiCl2、Ni(NO32・6H2Oなどの水溶液が例示される。 Examples of the aqueous solution of the metal and the compound used in the production method of the present invention include metals such as Pt, Co, Rh, Pd, Ir, Au, Ni, [Pt (NH 3 ) 4 ] Cl 2 , H 2 PtCl. 6 , Co [(NH 3 ) 6 ] Cl 3 , Co [(NO 2 ) (NH 3 ) 5 ] Cl 2 , Rh [(NH 3 ) 6 ] Cl 3 , [Pd (NH 3 ) 4 ] Cl 2 , Examples include aqueous solutions of [Ir (NH 3 ) 6 ] Cl 6 , NH 4 [AuCl 4 ], AuCl 3 , NiCl 2 , Ni (NO 3 ) 2 .6H 2 O, and the like.

本発明の製造方法で用いられる還元剤としては、上記水溶液中で上記金属類のイオンを還元して金属を析出させることができる物質が用いられ、例えばホルムアルデヒド、次亜リン酸、水素化ホウ酸ナトリウム、ヒドラジン、ジメチルアミンボラン等である。これらのうちでは、水素化ホウ酸ナトリウム、ヒドラジン、ジメチルアミンボランが好ましく、それらは特に白金イオンを金属に還元析出するうえで特に効果が高い。   As the reducing agent used in the production method of the present invention, a substance capable of reducing the ions of the metals in the aqueous solution to precipitate the metal is used. For example, formaldehyde, hypophosphorous acid, hydroboric acid Sodium, hydrazine, dimethylamine borane and the like. Of these, sodium borohydride, hydrazine, and dimethylamine borane are preferable, and they are particularly effective in reducing and depositing platinum ions on a metal.

実施の形態1.
図1は、本発明の実施の形態1における固体高分子電解質膜の概略断面図であり、図2は従来の固体高分子電解質膜の概略断面図である。図1、2において、膜状固体高分子電解質2の両面には触媒層1が存在するが、図2に示す従来の膜状固体高分子電解質2の内部には触媒イオン3が数10質量%オーダの多量で存在する。これに対して図1の実施の形態では、触媒イオン3は存在しないか、あるいは存在しても0.1質量%以下の少量に過ぎないので図示していない。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of a solid polymer electrolyte membrane according to Embodiment 1 of the present invention, and FIG. 2 is a schematic cross-sectional view of a conventional solid polymer electrolyte membrane. 1 and 2, the catalyst layer 1 is present on both surfaces of the membrane-shaped solid polymer electrolyte 2, but catalyst ions 3 are contained in the conventional membrane-shaped solid polymer electrolyte 2 shown in FIG. Exists in large quantities. On the other hand, in the embodiment of FIG. 1, the catalyst ions 3 do not exist, or even if they exist, only a small amount of 0.1% by mass or less is not shown.

以下、本発明の実施の形態1と従来技術との相違に就き、詳細に説明する。従来技術においては、触媒を担持させる膜状固体高分子電解質の両面の清浄化処理、触媒化合物水溶液吸収処理、還元処理(触媒担持処理)、清浄化処理の4工程を順次経て製造される。この場合、清浄化処理後、膜状固体高分子電解質を触媒化合物水溶液に浸漬して膜中に触媒化合物を吸着させ、その後、還元剤に浸漬することで触媒イオンを還元して、膜表面に触媒を担持させる。還元剤は、液中から膜状固体高分子電解質の表面へ供給されるため、還元反応の進行と共に膜表面が触媒で覆われると、触媒イオンへの還元剤の供給も停止する。その結果、担持反応は停止し、膜内部に未反応の触媒イオンが残る。   Hereinafter, the difference between the first embodiment of the present invention and the prior art will be described in detail. In the prior art, the membrane-like solid polymer electrolyte supporting the catalyst is manufactured through four steps of cleaning treatment on both sides, catalytic compound aqueous solution absorption treatment, reduction treatment (catalyst carrying treatment), and cleaning treatment in this order. In this case, after the cleaning treatment, the membranous solid polymer electrolyte is immersed in the catalyst compound aqueous solution to adsorb the catalyst compound in the membrane, and then the catalyst ions are reduced by dipping in the reducing agent to form the membrane surface. The catalyst is supported. Since the reducing agent is supplied from the liquid to the surface of the membrane solid polymer electrolyte, when the surface of the membrane is covered with a catalyst as the reduction reaction proceeds, the supply of the reducing agent to the catalyst ions is also stopped. As a result, the supporting reaction stops and unreacted catalyst ions remain in the membrane.

これに対して本発明の実施の形態では、従来技術と同様の清浄化処理の後、還元剤吸収処理、触媒化合物水溶液への浸漬処理(触媒担持処理)、清浄化処理の4工程を順次経て製造される。なお、各工程間にはイオン交換水もしくは純水での洗浄行われる。本発明では、特に膜状固体高分子電解質中に事前に吸着させる物質が、(触媒イオンでなく)還元剤であることに特徴がある。   On the other hand, in the embodiment of the present invention, after the cleaning process similar to the conventional technique, the reducing agent absorption process, the immersion process (catalyst support process) in the catalyst compound aqueous solution, and the cleaning process are sequentially performed. Manufactured. In addition, between each process, it wash | cleans with ion-exchange water or a pure water. The present invention is particularly characterized in that the substance adsorbed in advance in the membrane-shaped solid polymer electrolyte is a reducing agent (not a catalyst ion).

次に、本発明の実施の形態においては、実質的に表面にだけ触媒が選択的に担持される理由を説明する。還元剤は予め、膜状固体高分子電解質に吸収されている。この還元剤を含んだ膜状固体高分子電解質を触媒イオンの水溶液に浸すと、還元剤が固体高分子電解質の内部から表面へ、触媒イオンが水溶液から固体高分子電解質の表面へ移動する。固体高分子電解質の表面から滲み出た還元剤と水溶液中の触媒イオンは、固体高分子電解質の表面で電子を受授し、表面に触媒が担持される。反応が進行し、固体高分子電解質の表面が触媒で覆われると、膜中への触媒イオンの拡散と水溶液中に存在する触媒イオンへの還元剤供給が阻害され、反応は停止する。すなわち、反応停止時点で、固体高分子電解質の表面は触媒で覆われ、触媒イオンの内部拡散が阻害されるため、その結果、固体高分子電解質の内部における触媒残留が防止できる。   Next, in the embodiment of the present invention, the reason why the catalyst is selectively supported only on the surface will be described. The reducing agent is previously absorbed in the membrane-like solid polymer electrolyte. When the membrane solid polymer electrolyte containing the reducing agent is immersed in an aqueous solution of catalyst ions, the reducing agent moves from the inside of the solid polymer electrolyte to the surface, and the catalyst ions move from the aqueous solution to the surface of the solid polymer electrolyte. The reducing agent that oozes from the surface of the solid polymer electrolyte and the catalyst ions in the aqueous solution give and receive electrons on the surface of the solid polymer electrolyte, and the catalyst is supported on the surface. When the reaction proceeds and the surface of the solid polymer electrolyte is covered with the catalyst, the diffusion of the catalyst ions into the membrane and the supply of the reducing agent to the catalyst ions present in the aqueous solution are inhibited, and the reaction is stopped. That is, when the reaction is stopped, the surface of the solid polymer electrolyte is covered with the catalyst, and the internal diffusion of the catalyst ions is inhibited. As a result, the catalyst residue in the solid polymer electrolyte can be prevented.

実施の形態2.
実施の形態2では、本発明の固体高分子電解質膜の具体的な製造方法について説明する。ここでは、触媒としては白金を、膜状固体高分子電解質としてナフィオン117(デュポン社製:厚さ170μm)を用いた。なお上記ナフィオンなど、本発明で使用される固体高分子電解質は、一般的に、その表面から内部にかけてプロトンを保持・透過する微細経路があるため、希硫酸水溶液などと同様に電解質として挙動する。
Embodiment 2. FIG.
In the second embodiment, a specific method for producing the solid polymer electrolyte membrane of the present invention will be described. Here, platinum was used as the catalyst, and Nafion 117 (manufactured by DuPont: thickness: 170 μm) was used as the membrane solid polymer electrolyte. The solid polymer electrolyte used in the present invention such as Nafion generally behaves as an electrolyte in the same manner as dilute sulfuric acid aqueous solution because it has a fine path for retaining and transmitting protons from the surface to the inside.

先ず清浄化処理について述べると、ナフィオンには前述したプロトン伝達用の微細経路がある。そのため、この微細経路に空気中の有機物や無機物が吸着され易い。ナフィオンの実質的に表面にのみに触媒を担持させるには、表面と微細経路内を清浄にしておくことが好ましく、その方法として、例えば70℃に加熱した30質量%濃度の希塩酸中でナフィオンを20分程度煮沸した。なお、その清浄化を一層高めるために塩酸と等量の過酸化水素水を混合させてもよい。続いて、清浄化で用いた塩素イオンをナフィオン内部から十分に除去するために、ナフィオンを25℃の純水あるいはイオン交換水に15分以上浸漬して水洗した。   First, the cleaning process will be described. Nafion has the aforementioned fine pathway for proton transfer. Therefore, organic substances and inorganic substances in the air are easily adsorbed on the fine path. In order to support the catalyst only on the surface of Nafion, it is preferable to clean the surface and the inside of the fine path. As the method, for example, Nafion is used in 30% by weight dilute hydrochloric acid heated to 70 ° C. Boiled for about 20 minutes. In order to further enhance the cleaning, hydrochloric acid and an equal amount of hydrogen peroxide water may be mixed. Subsequently, in order to sufficiently remove chlorine ions used for cleaning from the inside of Nafion, Nafion was immersed in 25 ° C. pure water or ion-exchanged water for 15 minutes or more and washed with water.

次の還元剤吸収処理において、還元剤として、水素化ホウ素ナトリウム2.0g/リットルの濃度の水溶液を水酸化ナトリウムでpHを12に調節して用いた。前述したプロセスを完了させたナフィオンをこの還元剤水溶液に浸漬し、還元剤成分をナフィオンに吸収させた。実施の形態2の場合、還元剤の温度は50℃、浸漬時間は2時間とした。吸収した還元剤の流出を防ぐため、吸収完了後の水洗は1分とし、表面近傍の余剰成分を洗浄する程度にとどめた。洗浄が過剰に行われると、ナフィオンに吸収させる還元剤のpHが下がり、還元力が低下する。その結果、白金イオンが還元できず、触媒が担持できなくなるため注意が必要である。なお、上記浸漬時間と還元剤温度とを調節することによりナフィオンに吸収させる還元剤の量を任意に制御できる。例えば温度を上げるとナフィオンが膨張し、還元剤の吸収量を増加させることができる。   In the next reducing agent absorption treatment, an aqueous solution having a concentration of 2.0 g / liter of sodium borohydride was used as the reducing agent with sodium hydroxide adjusted to a pH of 12. Nafion which completed the process mentioned above was immersed in this reducing agent aqueous solution, and the reducing agent component was absorbed into Nafion. In the case of Embodiment 2, the temperature of the reducing agent was 50 ° C., and the immersion time was 2 hours. In order to prevent the absorbed reducing agent from flowing out, washing with water after completion of absorption was performed for 1 minute, and only excess components near the surface were washed. If washing is performed excessively, the pH of the reducing agent absorbed by Nafion is lowered and the reducing power is lowered. As a result, care must be taken because platinum ions cannot be reduced and the catalyst cannot be supported. The amount of reducing agent absorbed by Nafion can be arbitrarily controlled by adjusting the immersion time and the reducing agent temperature. For example, when the temperature is raised, Nafion expands and the amount of reducing agent absorbed can be increased.

続いて担持処理について説明する。白金水溶液として、40℃に保持したテトラアンミン白金ジクロライド0.25g/リットル水溶液を用い、還元剤吸収処理されたナフィオンをそれに10分浸漬した。この浸漬により、ナフィオンの両面のそれぞれに1.1mg/cm2の白金層が形成担持された。なお浸漬だけでは触媒付着量が不足し、電気抵抗が大きくなる場合には、必要に応じて触媒担持後、無電解めっき、電解めっきなどによって上記触媒上に金属を成長させ、触媒面での電気抵抗を下げても良い。 Next, the carrying process will be described. As a platinum aqueous solution, a tetraammine platinum dichloride 0.25 g / liter aqueous solution kept at 40 ° C. was used, and Nafion treated with a reducing agent was immersed in it for 10 minutes. By this immersion, a platinum layer of 1.1 mg / cm 2 was formed and supported on each of both surfaces of Nafion. In addition, when the amount of catalyst adhesion is insufficient and electrical resistance increases by immersion alone, after supporting the catalyst as necessary, a metal is grown on the catalyst by electroless plating, electrolytic plating, etc. The resistance may be lowered.

最後に、清浄化処理を施す。これは、担持処理完了後、ナフィオンに付着した余分の白金イオンを除去し、触媒の安定化を図るために行うものであって、具体的には、最初の正常化処理と同じく、70℃に熱した30質量%の希塩酸中でナフィオンを10分程度煮沸する。ついで25℃の純水あるいはイオン交換水に15分以上浸漬して塩素を十分に除去する。   Finally, a cleaning process is performed. This is performed to remove excess platinum ions adhering to Nafion after the completion of the supporting process and to stabilize the catalyst. Specifically, as in the first normalization process, the temperature is set to 70 ° C. Nafion is boiled for about 10 minutes in heated 30% by weight dilute hydrochloric acid. Then, it is immersed in pure water or ion exchange water at 25 ° C. for 15 minutes or longer to sufficiently remove chlorine.

以上の方法で試作したナフィオンの表面状態を撮影した図3の写真に示す。図3に示された通り、ナフィオンの表面には、白金触媒が鱗片状に担持されていることが分かる。ナフィオンを断面方向にEPMAで分析したところ、ナフィオン内部の白金濃度は0.1質量%以下であった。さらに、実施の形態2で得られた固体高分子電解質膜を電極(電極面積:16.5cm2)とした湿度調製素子を組み立て、両表面間に直流電流を通じて特性評価を行った。その結果、電流0.5A、電流密度3A/dm2の時に、1時間あたりの除放湿水分量が170mgという結果が得られた。この条件で3000時間の連続通電テストを行ったところ、除湿性能は低下しないことが確認できた。 FIG. 3 shows a photograph of the surface state of Nafion prototyped by the above method. As shown in FIG. 3, it can be seen that the surface of Nafion has a platinum catalyst supported in a scaly manner. When Nafion was analyzed in the cross-sectional direction by EPMA, the platinum concentration inside Nafion was 0.1 mass% or less. Furthermore, a humidity adjusting element using the solid polymer electrolyte membrane obtained in Embodiment 2 as an electrode (electrode area: 16.5 cm 2 ) was assembled, and the characteristics were evaluated through a direct current between both surfaces. As a result, when the current was 0.5 A and the current density was 3 A / dm 2 , the dehumidified moisture content per hour was 170 mg. When a continuous energization test for 3000 hours was performed under these conditions, it was confirmed that the dehumidifying performance did not deteriorate.

なお、ナフィオン内部への白金の拡散を防止するためには、還元剤はできるだけ多くナフィオンに吸着させること、および還元剤の濃度はできるだけ高くすることが重要である。また、触媒浸漬処理液の白金濃度はできるだけ高く、担持処理時間はできるだけ短く、短時間で触媒を担持させることが好ましい。   In order to prevent the diffusion of platinum into Nafion, it is important to adsorb as much reducing agent as possible to Nafion and to increase the concentration of the reducing agent as much as possible. Further, the platinum concentration of the catalyst soaking treatment liquid is as high as possible, the carrying treatment time is as short as possible, and the catalyst is preferably carried in a short time.

また還元剤として、ヒドラジン、ジメチルアミンボランを利用することも可能である。なお、還元剤は触媒イオンを還元すると共に水素ガスを発生して分解する。そのため、ナフィオン内に吸着した還元剤のpHが大きくなり還元力が変動するが、ナフィオン内部にはプロトンが蓄えられており、この部分から還元剤にプロトンが供給されるため、pHは一定に保たれるといった効果もある。触媒担持処理液として、実施の形態2で示した以外の材料、たとえば、四誌塩化白金をアンモニア水溶液に溶解した水溶液でも同様の効果を得ることができる。   Further, hydrazine or dimethylamine borane can be used as the reducing agent. The reducing agent reduces catalyst ions and generates hydrogen gas and decomposes it. For this reason, the pH of the reducing agent adsorbed in Nafion increases and the reducing power fluctuates, but protons are stored inside Nafion, and protons are supplied from this part to the reducing agent, so the pH is kept constant. There is also an effect of sagging. The same effect can be obtained by using a material other than that shown in Embodiment 2, such as an aqueous solution obtained by dissolving quaternary platinum chloride in an aqueous ammonia solution, as the catalyst-supporting treatment solution.

実施の形態3.
実施の形態3は、前記実施の形態2とは、担持処理における白金水溶液として、テトラアンミン白金ジクロライド0.5g/リットル水溶液を用いたことのみが異なり、その他の条件は同じであって、この水溶液への浸漬により、ナフィオン膜の両面のそれぞれに1.7mg/cm2の白金が形成担持された。
Embodiment 3 FIG.
Embodiment 3 differs from Embodiment 2 only in that a 0.5 g / liter aqueous solution of tetraammine platinum dichloride is used as the aqueous platinum solution in the supporting treatment, and the other conditions are the same. In this way, 1.7 mg / cm 2 of platinum was formed and supported on each of both surfaces of the Nafion membrane.

実施の形態4.
実施の形態4は、前記実施の形態2とは、担持処理における白金水溶液として、テトラアンミン白金ジクロライド1.0g/リットル水溶液を用いたことのみが異なり、その他の条件は同じであって、この水溶液への浸漬により、ナフィオン膜の両面のそれぞれに1.8mg/cm2の白金が形成担持された。
Embodiment 4 FIG.
Embodiment 4 differs from Embodiment 2 only in that a 1.0 g / liter aqueous solution of tetraammine platinum dichloride is used as the aqueous platinum solution in the supporting treatment, and the other conditions are the same. In this way, 1.8 mg / cm 2 of platinum was formed and supported on both sides of the Nafion membrane.

実施の形態5.
実施の形態5は.前記実施の形態2とは、還元剤吸収処理において前記還元剤の温度を40℃、浸漬時間は4時間としたこと、担持処理において25℃に保持した前記テトラアンミン白金ジクロライド水溶液に2時間浸漬したのみが異なり、その他の条件は同じであって、この水溶液への浸漬により、ナフィオン膜の両面のそれぞれに0.9mg/cm2の白金が形成担持された。
Embodiment 5. FIG.
In the fifth embodiment,. In the second embodiment, the temperature of the reducing agent is 40 ° C. and the immersion time is 4 hours in the reducing agent absorption treatment, and only the immersion in the tetraammineplatinum dichloride aqueous solution kept at 25 ° C. in the supporting treatment is performed for 2 hours. However, the other conditions were the same, and by immersion in this aqueous solution, 0.9 mg / cm 2 of platinum was formed and supported on both surfaces of the Nafion membrane.

実施の形態6.
本発明の固体高分子電解質膜、例えば前記ナフィオン膜における触媒活性を向上させるには、それに担持された触媒と反応に寄与する液体、ないし気体との接触面積を増加させれば良いことが知られている。そのため、一般に固体高分子電解質膜の触媒活性を向上させるため、次に述べる方策を行う。はじめに、固体高分子電解質の表面に平均表面粗さ0.5〜1.0μm程度の粗面化処理を施す。その後、表面の凹凸上に触媒を担持させて触媒と反応物との接触面積を増やし、かつ、析出した触媒粒子の連続性を確保しつつ、各触媒核を粒状に析出させる。しかしながら、この粒状析出物では、粒と固体高分子電解質の表面との間に微小な空隙が存在するため、前記実施の形態1で示した還元方法によると、図4に示す通り、触媒1における最表面の粒子の一部がイオン状態(白丸で示す。)で残留することがある。かかる残留イオンがあると、通電初期に残留イオンの還元反応のために通電した電流が消費されるため、電極性能が不安定となり、最悪の場合、本発明の電気分解素子の動作が正常になされないことがある。この現象を防止するには、実施の形態1の方法で触媒1を担持した固体高分子電解質2の表面を再度還元すればよい。以下その手法について説明する。
Embodiment 6 FIG.
In order to improve the catalytic activity of the solid polymer electrolyte membrane of the present invention, for example, the Nafion membrane, it is known that the contact area between the catalyst supported on the catalyst and the liquid or gas that contributes to the reaction may be increased. ing. Therefore, the following measures are generally taken in order to improve the catalytic activity of the solid polymer electrolyte membrane. First, the surface of the solid polymer electrolyte is subjected to a roughening treatment with an average surface roughness of about 0.5 to 1.0 μm. Thereafter, the catalyst is supported on the surface irregularities to increase the contact area between the catalyst and the reactant, and the catalyst nuclei are precipitated in a granular form while ensuring the continuity of the precipitated catalyst particles. However, in this granular precipitate, since there are minute voids between the particles and the surface of the solid polymer electrolyte, according to the reduction method shown in the first embodiment, as shown in FIG. Some particles on the outermost surface may remain in an ionic state (indicated by white circles). If such residual ions are present, the current that is energized is consumed for the reduction reaction of the residual ions in the initial stage of energization, so that the electrode performance becomes unstable, and in the worst case, the operation of the electrolysis element of the present invention is normal. It may not be done. In order to prevent this phenomenon, the surface of the solid polymer electrolyte 2 carrying the catalyst 1 may be reduced again by the method of the first embodiment. The method will be described below.

実施の形態1において触媒イオンが、図4に示すように、表面に担持した触媒1の空隙部に存在する場合は、固体高分子電解質膜を再度還元剤水溶液に浸漬して、空隙部の触媒イオンの還元処理を実施する。即ち、前記実施の形態1において説明した、清浄化処理、還元剤吸収処理、触媒化合物水溶液浸漬処理(触媒担持処理)、清浄化処理の4工程の内の触媒化合物水溶液浸漬処理と清浄化処理との間に空隙部触媒イオンの再還元処理を挿入する。   In the first embodiment, as shown in FIG. 4, when the catalyst ions are present in the voids of the catalyst 1 supported on the surface, the solid polymer electrolyte membrane is immersed again in the reducing agent aqueous solution, and the catalyst in the voids is obtained. Ion reduction treatment is performed. That is, the catalyst compound aqueous solution immersion treatment and the cleaning treatment among the four steps of the cleaning treatment, the reducing agent absorption treatment, the catalyst compound aqueous solution immersion treatment (catalyst supporting treatment), and the cleaning treatment described in the first embodiment are described. A re-reduction treatment of void catalyst ions is inserted between the two.

上記再還元処理における再還元剤としては、水素化ホウ素ナトリウムの0.5g/リットル水溶液を水酸化ナトリウムでpHを12に調製したものが用られる。これは前記還元剤吸収処理の場合と同じ水溶液を用いているが、還元すべき触媒イオンの絶対量が触媒担持処理の場合より少ないため、その濃度を吸収処理のものより低くしても良い。一例として、具体的な条件を示すと、実施例3の場合から、担持処理に用いる触媒化合物水溶液のテトラアンミン白金クロライドの濃度を0.25g/リットル、浸漬温度を40℃、浸漬時間を10分とし、続く再還元処理の温度は50℃、浸漬時間は2時間とした。この浸漬により、ナフィオンの両面のそれぞれに2.2mg/cm2の白金層が形成担持された。以上の方法で作製した固体高分子電解質膜の表面触媒再還元処理後の断面の概略図を図5に示す。図5に示した通り、表面の触媒は、再還元処理によって空隙部に存在した触媒イオンは触媒に還元されていることが分かる。 As the re-reducing agent in the above-described re-reduction treatment, a 0.5 g / liter aqueous solution of sodium borohydride adjusted to pH 12 with sodium hydroxide is used. This uses the same aqueous solution as in the case of the reducing agent absorption treatment, but since the absolute amount of catalyst ions to be reduced is smaller than that in the catalyst supporting treatment, the concentration may be lower than that in the absorption treatment. As an example, specific conditions are as follows. From the case of Example 3, the concentration of tetraammineplatinum chloride in the catalyst compound aqueous solution used for the supporting treatment is 0.25 g / liter, the immersion temperature is 40 ° C., and the immersion time is 10 minutes. The subsequent re-reduction treatment temperature was 50 ° C., and the immersion time was 2 hours. By this immersion, a platinum layer of 2.2 mg / cm 2 was formed and supported on each of both surfaces of Nafion. FIG. 5 shows a schematic diagram of a cross section after the surface catalyst re-reduction treatment of the solid polymer electrolyte membrane produced by the above method. As shown in FIG. 5, it can be seen that the catalyst ions on the surface of the catalyst were reduced to the catalyst by the re-reduction treatment.

また、実施の形態1において述べたように、実施の形態6においても、触媒量が不足し電気抵抗が上昇してしまう場合は、必要に応じて再還元処理後に無電解めっきや電解めっきによって触媒上に金属を成長させて触媒面での電気抵抗を下げても良い。   Further, as described in the first embodiment, also in the sixth embodiment, when the amount of catalyst is insufficient and the electrical resistance increases, the catalyst is obtained by electroless plating or electrolytic plating after re-reduction treatment as necessary. A metal may be grown on the catalyst to lower the electric resistance on the catalyst surface.

比較例1.
前記実施の形態例2と同じナフィオンに対して、70℃に加熱した30質量%濃度の希塩酸中で20分煮沸して清浄化処理し、次いで25℃に保持したテトラアンミン白金ジクロライド1.0g/リットル水溶液に2時間浸漬して触媒担持つ処理し、次いで水素化ホウ素ナトリウムの0.5g/リットル水溶液を水酸化ナトリウムでpHを12に調節したものに40℃で2時間浸漬して還元処理し、70℃に加熱した30質量%濃度の希塩酸中で10分煮沸して清浄化処理して、比較例1の固体高分子電解質膜を得た。
Comparative Example 1
The same Nafion as in Example 2 was cleaned by boiling for 20 minutes in 30% strength by weight diluted hydrochloric acid heated to 70 ° C. and then maintained at 25 ° C. 1.0 g / liter of tetraammine platinum dichloride Soaked in an aqueous solution for 2 hours to treat the catalyst, then immersed in a 0.5 g / liter aqueous solution of sodium borohydride adjusted to pH 12 with sodium hydroxide at 40 ° C. for 2 hours for reduction treatment, The solid polymer electrolyte membrane of Comparative Example 1 was obtained by boiling for 10 minutes in a 30% by weight concentrated dilute hydrochloric acid heated to 70 ° C. and cleaning treatment.

比較例2.
前記比較例1とは、水素化ホウ素ナトリウムの0.5g/リットル水溶液を水酸化ナトリウムでpHを12に調製したものに60℃で2時間浸漬した以外は同じ条件の処理を行って、比較例2の固体高分子電解質膜を得た。
Comparative Example 2
Comparative Example 1 is a comparative example in which a 0.5 g / liter aqueous solution of sodium borohydride was treated at the same conditions except that it was immersed in sodium hydroxide adjusted to pH 12 at 60 ° C. for 2 hours. 2 solid polymer electrolyte membrane was obtained.

比較例3.
前記比較例2とは、触媒担持処理液として25℃に保持したテトラアンミン白金ジクロライド0.25g/リットル水溶液を用いたこと、および還元処理に水素化ホウ素ナトリウムの1.0g/リットル水溶液を水酸化ナトリウムでpHを12に調節したものを用いた以外は同じ条件の処理を行って、比較例3の固体高分子電解質膜を得た。
Comparative Example 3
In Comparative Example 2, a 0.25 g / liter aqueous solution of tetraammineplatinum dichloride maintained at 25 ° C. was used as a catalyst-supporting treatment solution, and a 1.0 g / liter aqueous solution of sodium borohydride was used for sodium hydroxide for the reduction treatment. The solid polymer electrolyte membrane of Comparative Example 3 was obtained by performing the same treatment except that the pH was adjusted to 12.

前記実施の形態2〜6および比較例1〜3の各固体高分子電解質膜を電極とし、電極面積が16.5cm2、電流密度が3A/dm2の除湿素子を作成し、下記の測定方法および条件にて初期除湿量(mg/時間)、除湿素子の寿命、および固体高分子電解質膜の内部に存在する白金量(質量%)を測定した。なお、除湿量は、除湿素子を30℃60%の雰囲気に密閉空間に設置し、その後、素子を動作させ、単位時間あたりの湿度変化を記録し、その湿度変化から、測定した。除湿素子の寿命は、除湿素子の初期除湿量の値が50%以下となる時間、あるいは電流が流れなくなった時点とした。固体高分子電解質膜の内部に存在する白金量はX線マイクロアナライザー(検出限界量:0.1質量%)で測定した。 A dehumidifying element having the electrode area of 16.5 cm 2 and the current density of 3 A / dm 2 was prepared using the solid polymer electrolyte membranes of Embodiments 2 to 6 and Comparative Examples 1 to 3 as electrodes. The initial dehumidification amount (mg / hour), the lifetime of the dehumidification element, and the platinum amount (mass%) present inside the solid polymer electrolyte membrane were measured under the conditions and conditions. The dehumidifying amount was measured from the humidity change by placing the dehumidifying element in a sealed space in an atmosphere of 30 ° C. and 60%, then operating the element, recording the change in humidity per unit time. The life of the dehumidifying element is defined as the time when the initial dehumidifying value of the dehumidifying element is 50% or less, or the point when the current stops flowing. The amount of platinum present inside the solid polymer electrolyte membrane was measured with an X-ray microanalyzer (detection limit amount: 0.1% by mass).

上記の測定の結果、初期除湿量については、実施の形態2では170mg/時間、実施の形態3では165mg/時間、実施の形態4では168mg/時間、実施の形態5では159mg/時間、実施の形態6では185mg/時間であり、除湿素子の寿命については、実施の形態2〜6のいずれも3000時間以上であり、内部に存在する白金量については実施の形態2〜6のいずれもが白金検出限界量以下、固体高分子電解質中に存在する触媒質量を固体高分子電解質膜の乾燥質量で除した値は、0.001以下であり、当該固体高分子電解質膜を電気分解素子の電極として使用した場合には、実施の形態2〜6のいずれもが3000時間後も除湿素子としての特性および機能を維持しており、また各除湿素子の固体高分子電解質膜器の断面を観察したところ、白金の凝集は認められなかった。   As a result of the above measurement, the initial dehumidification amount is 170 mg / hour in the second embodiment, 165 mg / hour in the third embodiment, 168 mg / hour in the fourth embodiment, 159 mg / hour in the fifth embodiment, In Embodiment 6, the dehumidifying element has a lifetime of 185 mg / hour, the lifetime of each of Embodiments 2 to 6 is 3000 hours or longer, and the amount of platinum present in the interior of each of Embodiments 2 to 6 is platinum. The value obtained by dividing the mass of the catalyst present in the solid polymer electrolyte below the detection limit amount by the dry mass of the solid polymer electrolyte membrane is 0.001 or less, and the solid polymer electrolyte membrane is used as an electrode of the electrolysis element. When used, any of Embodiments 2 to 6 maintains the characteristics and functions as a dehumidifying element even after 3000 hours, and the solid polymer electrolyte membrane device of each dehumidifying element. Observation of the surface, the aggregation of platinum was not observed.

これに対して、比較例1では初期除湿量が98mg/時間、除湿素子の寿命が47時間、内部に存在する白金量が2.5質量%であり、比較例2では初期除湿量が102mg/時間、除湿素子の寿命が78時間、内部に存在する白金量が1.2質量%であり、比較例3では初期除湿量が121mg/時間、除湿素子の寿命が240時間、内部に存在する白金量が0
.5質量%であった。
On the other hand, in Comparative Example 1, the initial dehumidification amount is 98 mg / hour, the lifetime of the dehumidifying element is 47 hours, the amount of platinum present inside is 2.5 mass%, and in Comparative Example 2, the initial dehumidification amount is 102 mg / hour. Time, the lifetime of the dehumidifying element is 78 hours, the amount of platinum present in the interior is 1.2% by mass, and in Comparative Example 3, the initial dehumidifying amount is 121 mg / hour, the lifetime of the dehumidifying element is 240 hours, and the platinum present in the interior Amount is 0
. It was 5 mass%.

本発明は、前記した実施の形態に限定されるものではなく、触媒として白金以外の白金族金属あるいはその化合物、金またはその化合物、あるいはニッケルまたはその化合物を用いても白金に場合と同様の効果が得られる。   The present invention is not limited to the embodiment described above, and even if platinum group metals other than platinum or a compound thereof, gold or a compound thereof, or nickel or a compound thereof is used as a catalyst, the same effects as in the case of platinum are used. Is obtained.

本発明の固体高分子電解質膜は、水の電気分解素子、燃料電池、湿度調節素子などにおける電極としての利用可能性がある。   The solid polymer electrolyte membrane of the present invention can be used as an electrode in water electrolysis elements, fuel cells, humidity control elements and the like.

本発明の実施の形態1における固体高分子電解質膜の概略断面図である。It is a schematic sectional drawing of the solid polymer electrolyte membrane in Embodiment 1 of this invention. 従来の固体高分子電解質膜の概略断面図である。It is a schematic sectional drawing of the conventional solid polymer electrolyte membrane. 実施の形態1における固体高分子電解質膜の表面の電子顕微鏡写真である。3 is an electron micrograph of the surface of the solid polymer electrolyte membrane in the first embodiment. 本発明の実施の形態6における表面触媒再還元処理前の固体高分子電解質膜の概略断面図である。It is a schematic sectional drawing of the solid polymer electrolyte membrane before the surface catalyst re-reduction process in Embodiment 6 of this invention. 本発明の実施の形態6における表面触媒再還元処理後の固体高分子電解質膜の概略断面図である。It is a schematic sectional drawing of the solid polymer electrolyte membrane after the surface catalyst re-reduction process in Embodiment 6 of this invention.

符号の説明Explanation of symbols

1:触媒、2:膜状固体高分子電解質、3:触媒イオン、
4:再還元処理で還元された触媒。
1: catalyst, 2: membrane-like solid polymer electrolyte, 3: catalyst ion,
4: Catalyst reduced by re-reduction treatment.

Claims (7)

膜状の固体高分子電解質の両面に、白金族金属またはその化合物、金またはその化合物、およびニッケルまたはその化合物のうちの少なくとも1種からなる触媒層を有する固体高分子電解質膜であって、上記固体高分子電解質の内部に存在する上記触媒の質量が0.1質量%以下であることを特徴する固体高分子電解質膜。   A solid polymer electrolyte membrane having a catalyst layer composed of at least one of a platinum group metal or a compound thereof, gold or a compound thereof, and nickel or a compound thereof on both surfaces of the membrane-shaped solid polymer electrolyte, A solid polymer electrolyte membrane, wherein the mass of the catalyst existing inside the solid polymer electrolyte is 0.1% by mass or less. 膜状の固体高分子電解質の両面に、白金族金属またはその化合物、金またはその化合物、およびニッケルまたはその化合物のうちの少なくとも1種からなる触媒層を有する固体高分子電解質膜であって、上記固体高分子電解質の内部に存在する上記触媒の質量を、上記固体高分子電解質の乾燥質量で除した値が0.001以下であることを特徴とする固体高分子電解質膜。   A solid polymer electrolyte membrane having a catalyst layer composed of at least one of a platinum group metal or a compound thereof, gold or a compound thereof, and nickel or a compound thereof on both surfaces of the membrane-shaped solid polymer electrolyte, A solid polymer electrolyte membrane, wherein a value obtained by dividing the mass of the catalyst existing inside the solid polymer electrolyte by the dry mass of the solid polymer electrolyte is 0.001 or less. 上記触媒層は、白金またはその化合物からなることを特徴とする請求項1または請求項2に記載の固体高分子電解質膜。   3. The solid polymer electrolyte membrane according to claim 1, wherein the catalyst layer is made of platinum or a compound thereof. 膜状の固体高分子電解質を還元剤水溶液に浸漬する第一工程、上記第一工程から得た固体高分子電解質を白金族金属またはその化合物、金またはその化合物、およびニッケルまたはその化合物のうちの少なくとも1種の水溶液に浸漬する第二工程を含むことを特徴とする固体高分子電解質膜の製造方法。   The first step of immersing the membrane solid polymer electrolyte in the reducing agent aqueous solution, the solid polymer electrolyte obtained from the first step is a platinum group metal or a compound thereof, gold or a compound thereof, and nickel or a compound thereof A method for producing a solid polymer electrolyte membrane comprising a second step of immersing in at least one aqueous solution. 上記第二工程から得た固体高分子電解質を還元剤水溶液に浸漬する第三工程を含むことを特徴とする請求項4に記載の固体高分子電解質膜の製造方法。   The method for producing a solid polymer electrolyte membrane according to claim 4, further comprising a third step of immersing the solid polymer electrolyte obtained from the second step in a reducing agent aqueous solution. 上記第二工程において、白金またその化合物のうちの少なくとも1種の水溶液に浸漬することを特徴とする請求項4または請求項5に記載の固体高分子電解質膜の製造方法。   6. The method for producing a solid polymer electrolyte membrane according to claim 4 or 5, wherein, in the second step, the substrate is immersed in an aqueous solution of at least one of platinum or a compound thereof. 請求項1〜請求項3のいずれか1項に記載の固体高分子電解質膜の一方の触媒層を陽極とし、他方の触媒層を陰極とすることを特徴とする電気分解素子。   4. An electrolysis element, wherein one catalyst layer of the solid polymer electrolyte membrane according to any one of claims 1 to 3 is an anode and the other catalyst layer is a cathode.
JP2007066977A 2007-03-15 2007-03-15 Dehumidifying element and manufacturing method thereof Expired - Fee Related JP5248792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066977A JP5248792B2 (en) 2007-03-15 2007-03-15 Dehumidifying element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066977A JP5248792B2 (en) 2007-03-15 2007-03-15 Dehumidifying element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008223118A true JP2008223118A (en) 2008-09-25
JP5248792B2 JP5248792B2 (en) 2013-07-31

Family

ID=39842072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066977A Expired - Fee Related JP5248792B2 (en) 2007-03-15 2007-03-15 Dehumidifying element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5248792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023748A (en) * 2018-07-31 2020-02-13 東レ株式会社 Method for producing platinum-carried polymer electrolyte membrane, and platinum-carried polymer electrolyte membrane
WO2022118364A1 (en) * 2020-12-01 2022-06-09 日本電信電話株式会社 Manufacturing method of electrolyte film supported reducing electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS425014B1 (en) * 1962-09-20 1967-03-01
JPS5538934A (en) * 1978-09-07 1980-03-18 Agency Of Ind Science & Technol Production of ion exchange membrane-catalyst electrode bonded material
JPH01208490A (en) * 1988-02-16 1989-08-22 Mitsubishi Heavy Ind Ltd Production of joined body for electroysis
JP2004119223A (en) * 2002-09-26 2004-04-15 Japan Vilene Co Ltd Gas diffusion electrode and fuel cell using the same
JP2004327379A (en) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd Fuel cell and fuel cell system using the same
JP2005085544A (en) * 2003-09-05 2005-03-31 Toyota Central Res & Dev Lab Inc Polyelectrolyte membrane and membrane electrode assembly
JP2007287598A (en) * 2006-04-20 2007-11-01 Gs Yuasa Corporation:Kk Membrane/electrode joint body for direct methanol fuel cell and its method of manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS425014B1 (en) * 1962-09-20 1967-03-01
JPS5538934A (en) * 1978-09-07 1980-03-18 Agency Of Ind Science & Technol Production of ion exchange membrane-catalyst electrode bonded material
JPH01208490A (en) * 1988-02-16 1989-08-22 Mitsubishi Heavy Ind Ltd Production of joined body for electroysis
JP2004119223A (en) * 2002-09-26 2004-04-15 Japan Vilene Co Ltd Gas diffusion electrode and fuel cell using the same
JP2004327379A (en) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd Fuel cell and fuel cell system using the same
JP2005085544A (en) * 2003-09-05 2005-03-31 Toyota Central Res & Dev Lab Inc Polyelectrolyte membrane and membrane electrode assembly
JP2007287598A (en) * 2006-04-20 2007-11-01 Gs Yuasa Corporation:Kk Membrane/electrode joint body for direct methanol fuel cell and its method of manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023748A (en) * 2018-07-31 2020-02-13 東レ株式会社 Method for producing platinum-carried polymer electrolyte membrane, and platinum-carried polymer electrolyte membrane
JP7427880B2 (en) 2018-07-31 2024-02-06 東レ株式会社 Method for manufacturing platinum-supported polymer electrolyte membrane and platinum-supported polymer electrolyte membrane
WO2022118364A1 (en) * 2020-12-01 2022-06-09 日本電信電話株式会社 Manufacturing method of electrolyte film supported reducing electrode

Also Published As

Publication number Publication date
JP5248792B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US20040058224A1 (en) Microfibrous fuel cells, fuel cell assemblies, and methods of making the same
KR20140006892A (en) Method to prepare full monolayer of platinum on palladium based core nanoparticles
JP5169025B2 (en) Polymer electrolyte fuel cell
JP7310759B2 (en) Ionoma-coated catalyst and manufacturing method thereof, protective material-coated electrode catalyst and manufacturing method thereof
JP5072652B2 (en) Water electrolysis equipment
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
JP5248792B2 (en) Dehumidifying element and manufacturing method thereof
CN110330078B (en) High-efficiency long-life three-dimensional structure antimony-doped tin oxide electrode
JP2006147371A (en) Electrode catalyst for polymer electrolyte fuel cell, its manufacturing method and fuel cell
JP5674553B2 (en) Ozone decomposition removal catalyst, method for producing the same, and ozone decomposition removal method using the same
WO2016143618A1 (en) Method for producing catalyst wherein catalyst particles having core/shell structure are supported
JP2013157289A (en) Method of manufacturing structure of electrode catalyst, structure of electrode catalyst, membrane electrode/gas diffusion layer assembly, fuel cell and air battery
JP5665664B2 (en) Solid polymer electrolyte membrane / catalyst metal composite electrode and method for producing the same
JP2008198447A (en) Solid polymer fuel cell
JP2010242203A (en) Solid polymer electrolyte membrane, catalytic metal composite electrode and method of manufacturing the same
JP2011222438A (en) Solid polymer electrolyte membrane/catalyst metal composite electrode, and method of manufacturing the same
JP6878917B2 (en) Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it
JP2692736B2 (en) Method for producing gold-ion exchange membrane assembly
JP2002358971A (en) Fuel cell electrode and its manufacturing method and fuel cell using the same
JP2020017336A (en) Electrolyte membrane
JP3649013B2 (en) Method for producing electrode for fuel cell
JP2660284B2 (en) Catalytic electrode and method for producing the same
JP2013510394A (en) Method for producing electrode layer containing catalyst
JPH06173061A (en) Gas electrode structure and electrolytic method using said gas electrode structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees