WO2022118364A1 - Manufacturing method of electrolyte film supported reducing electrode - Google Patents

Manufacturing method of electrolyte film supported reducing electrode Download PDF

Info

Publication number
WO2022118364A1
WO2022118364A1 PCT/JP2020/044615 JP2020044615W WO2022118364A1 WO 2022118364 A1 WO2022118364 A1 WO 2022118364A1 JP 2020044615 W JP2020044615 W JP 2020044615W WO 2022118364 A1 WO2022118364 A1 WO 2022118364A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
electrode
carbon dioxide
reduction
reducing
Prior art date
Application number
PCT/JP2020/044615
Other languages
French (fr)
Japanese (ja)
Inventor
紗弓 里
裕也 渦巻
晃洋 鴻野
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022566519A priority Critical patent/JPWO2022118364A1/ja
Priority to PCT/JP2020/044615 priority patent/WO2022118364A1/en
Publication of WO2022118364A1 publication Critical patent/WO2022118364A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

This method for manufacturing of an electrolyte film-supported reducing electrode arranged between an oxidation tank, which contains an oxidation electrode, and a reduction tank, which has an interior void into which carbon dioxide is supplied, involves a first step (S4) for immersing the opposite surface of one surface of the electrolyte film in a reduction agent solution, and a second step for immersing the one surface of the electrolyte film in a metal ion-containing metal salt solution.

Description

電解質膜支持型還元電極の製造方法Method for manufacturing electrolyte membrane-supported reducing electrode
 本発明は、電解質膜支持型還元電極の製造方法に関する。 The present invention relates to a method for manufacturing an electrolyte membrane-supported reducing electrode.
 従来、地球温暖化の防止やエネルギーの安定供給という観点から、二酸化炭素を還元する技術が注目されている。二酸化炭素を還元する還元装置としては、太陽光等の光エネルギーを印加して二酸化炭素を還元する人工光合成技術を利用した還元装置、外部から電気エネルギーを印加して二酸化炭素を還元する電解分解装置がある(非特許文献1~3参照)。 Conventionally, technologies that reduce carbon dioxide have been attracting attention from the viewpoint of preventing global warming and providing a stable supply of energy. As a reduction device that reduces carbon dioxide, a reduction device that uses artificial photosynthesis technology that applies light energy such as sunlight to reduce carbon dioxide, and an electrolytic decomposition device that reduces carbon dioxide by applying electrical energy from the outside. (See Non-Patent Documents 1 to 3).
 非特許文献1の図2には、光照射による二酸化炭素の還元装置が図示されている。左側の酸化槽と右側の還元槽との間に電解質膜を配置し、酸化槽と還元槽とをそれぞれ水溶液で満たす。酸化槽内に窒化ガリウム(GaN)の酸化電極を入れ、還元槽内に銅(Cu)の還元電極を入れて、酸化電極と還元電極とを導線で接続する。そして、酸化槽内の水溶液にヘリウム(He)を流入し、還元槽内の水溶液に二酸化炭素(CO)を流入する。 FIG. 2 of Non-Patent Document 1 illustrates a carbon dioxide reducing device by light irradiation. An electrolyte membrane is placed between the oxidation tank on the left side and the reduction tank on the right side, and the oxidation tank and the reduction tank are each filled with an aqueous solution. An oxide electrode of gallium nitride (GaN) is placed in the oxide tank, a reduction electrode of copper (Cu) is placed in the reduction tank, and the oxide electrode and the reduction electrode are connected by a lead wire. Then, helium (He) flows into the aqueous solution in the oxidation tank, and carbon dioxide (CO 2 ) flows into the aqueous solution in the reduction tank.
 このとき、酸化電極に光を照射すると、酸化電極では電子・正孔対の生成および分離が生じ、水(HO)の酸化反応により酸素(O)およびプロトン(H)が生成する。そして、プロトンは電解質膜を介して還元槽へ移動し、酸化電極で発生した電子(e)は導線を介して還元電極へ移動する。その後、還元電極ではプロトンと電子との結合により水素(H)が生成し、プロトンと電子と二酸化炭素とにより二酸化炭素の還元反応が引き起こされる。この二酸化炭素の還元反応により、エネルギー資源として活用される一酸化炭素、ギ酸、メタンなどが生成する。 At this time, when the oxide electrode is irradiated with light, electron / hole pairs are generated and separated at the oxide electrode, and oxygen (O 2 ) and protons (H + ) are generated by the oxidation reaction of water (H 2 O). .. Then, the protons move to the reduction tank via the electrolyte membrane, and the electrons (e ) generated in the oxidation electrode move to the reduction electrode via the conducting wire. After that, hydrogen (H 2 ) is generated at the reducing electrode by the combination of protons and electrons, and the reduction reaction of carbon dioxide is caused by the protons, electrons and carbon dioxide. This reduction reaction of carbon dioxide produces carbon monoxide, formic acid, methane, etc., which are used as energy resources.
 還元電極への二酸化炭素の供給量を増大させるため、還元槽を気相の二酸化炭素で満たす二酸化炭素の気相還元装置がある。この気相還元装置では、プロトンが気相の二酸化炭素中を移動できないことを踏まえ、電解質膜に対して還元電極が直接形成される。 There is a carbon dioxide phase reduction device that fills the reduction tank with carbon dioxide in the gas phase in order to increase the supply of carbon dioxide to the reduction electrode. In this gas phase reducing device, a reducing electrode is directly formed on the electrolyte membrane based on the fact that protons cannot move in carbon dioxide in the gas phase.
 その形成方法には、金属イオンを含む金属塩溶液と金属イオンを還元する還元剤溶液とを用いた無電解めっき法がある。従来の無電解めっき法では、電解質膜の片面とその反対面とに金属塩溶液と還元剤溶液とをそれぞれ同時に注入する。還元剤溶液の還元剤が電解質膜を透過して金属塩溶液と接触することで、金属塩溶液内の金属イオンが還元され、電解質膜の片面に金属が析出される。 As the forming method, there is a electroless plating method using a metal salt solution containing metal ions and a reducing agent solution for reducing metal ions. In the conventional electroless plating method, a metal salt solution and a reducing agent solution are simultaneously injected into one side of the electrolyte membrane and the other side thereof. When the reducing agent of the reducing agent solution permeates the electrolyte membrane and comes into contact with the metal salt solution, the metal ions in the metal salt solution are reduced and the metal is deposited on one side of the electrolyte membrane.
 しかし、金属塩溶液と還元剤溶液とを同時に注入するため、還元剤溶液の還元剤が電解質膜を透過して金属塩溶液に接触する前のタイミングで、金属塩溶液が少量ではあるが電解質膜の内部に浸透してしまう。これにより、還元剤溶液と金属塩溶液とが電解質膜の内部で接触し、還元電極が電解質膜内にめり込むように形成されてしまう。また、電解質膜の内部に形成された還元電極には二酸化炭素を供給できず、電解質膜は膜内に水分を含んでいるため、電解質膜内の水分が電解質膜内の溶存酸素と反応して還元電極が酸化してしまう。その結果、還元電極では、式(1)および式(2)に示すように、酸化した還元電極自身の還元反応が優先して進行する。これにより、二酸化炭素の還元反応が抑制され、二酸化炭素の還元反応の効率が低下してしまう。 However, since the metal salt solution and the reducing agent solution are injected at the same time, the metal salt solution is a small amount but the electrolyte membrane is before the reducing agent of the reducing agent solution permeates the electrolyte membrane and comes into contact with the metal salt solution. It penetrates into the inside of. As a result, the reducing agent solution and the metal salt solution come into contact with each other inside the electrolyte membrane, and the reducing electrode is formed so as to sink into the electrolyte membrane. In addition, carbon dioxide cannot be supplied to the reducing electrode formed inside the electrolyte membrane, and since the electrolyte membrane contains water in the membrane, the water in the electrolyte membrane reacts with the dissolved oxygen in the electrolyte membrane. The reducing electrode is oxidized. As a result, in the reducing electrode, as shown in the formulas (1) and (2), the reduction reaction of the oxidized reducing electrode itself proceeds preferentially. As a result, the reduction reaction of carbon dioxide is suppressed, and the efficiency of the reduction reaction of carbon dioxide is lowered.
  CuO+2H+2e→2Cu+HO ・・・(1)
  CuO+2H+2e→Cu+HO ・・・(2)
 また、二酸化炭素の気相還元装置では、一般に、太陽光の昇降サイクルやメンテナンスサイクルによって、光エネルギーまたは電気エネルギーのON,OFFを繰り返す運転が実施される。このような運転を行う場合、電解質膜の内部に形成された還元電極がエネルギーOFFの状態で酸化し、再びONにすると酸化した還元電極の還元反応が優先して進行するので、二酸化炭素の還元反応の効率が低下してしまう。
Cu 2 O + 2H + + 2e- → 2Cu + H 2 O ... (1)
CuO + 2H + + 2e- → Cu + H 2O・ ・ ・ (2)
Further, in a carbon dioxide gas phase reduction device, generally, an operation of repeatedly turning on and off light energy or electric energy is carried out by a solar ascending / descending cycle or a maintenance cycle. When such an operation is performed, the reducing electrode formed inside the electrolyte membrane oxidizes in a state where the energy is OFF, and when the energy is turned ON again, the reduction reaction of the oxidized reducing electrode proceeds preferentially, so that the reduction of carbon dioxide The efficiency of the reaction is reduced.
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、二酸化炭素の気相還元装置を構成する電解質膜支持型還元電極において、電解質膜の内部に還元電極が形成されることを抑制可能であり、二酸化炭素の還元反応の効率を改善可能な技術を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to form a reducing electrode inside an electrolyte membrane in an electrolyte membrane-supported reducing electrode constituting a gas phase reducing device for carbon dioxide. It is to provide a technique capable of suppressing this and improving the efficiency of the reduction reaction of carbon dioxide.
 本発明の一態様の電解質膜支持型還元電極の製造方法は、酸化電極を含む酸化槽と空の内部に二酸化炭素が供給される還元槽との間に配置される電解質膜支持型還元電極の製造方法において、電解質膜の片面の反対面を還元剤溶液に浸漬する第1の工程と、前記電解質膜の片面を金属イオンを含む金属塩溶液に浸漬する第2の工程と、を行う。 The method for producing an electrolyte membrane-supported reducing electrode according to one aspect of the present invention is to obtain an electrolyte membrane-supported reducing electrode arranged between an oxide tank including an oxide electrode and a reduction tank in which carbon dioxide is supplied to the inside of the empty space. In the production method, a first step of immersing one side of the electrolyte membrane in a reducing agent solution and a second step of immersing one side of the electrolyte membrane in a metal salt solution containing metal ions are performed.
 本発明によれば、二酸化炭素の気相還元装置を構成する電解質膜支持型還元電極において、電解質膜の内部に還元電極が形成されることを抑制可能であり、二酸化炭素の還元反応の効率を向上可能な技術を提供できる。 According to the present invention, in the electrolyte membrane-supported reducing electrode constituting the gas phase reducing device for carbon dioxide, it is possible to suppress the formation of the reducing electrode inside the electrolyte membrane, and the efficiency of the carbon dioxide reduction reaction can be improved. Can provide improveable technology.
図1は、電解質膜支持型還元電極の製造工程を示す図である。FIG. 1 is a diagram showing a manufacturing process of an electrolyte membrane-supported reducing electrode. 図2は、無電解めっき法の反応系を示す図である。FIG. 2 is a diagram showing a reaction system of an electroless plating method. 図3は、電解質膜に対する還元電極の形成イメージを示す図である。FIG. 3 is a diagram showing an image of formation of a reducing electrode with respect to the electrolyte membrane. 図4は、実施例1に係る二酸化炭素の気相還元装置の構成例を示す図である。FIG. 4 is a diagram showing a configuration example of the carbon dioxide gas phase reducing device according to the first embodiment. 図5は、二酸化炭素の気相還元装置の運転例を示す図である。FIG. 5 is a diagram showing an operation example of a carbon dioxide gas phase reducing device. 図6は、実施例6に係る二酸化炭素の気相還元装置の構成例を示す図である。FIG. 6 is a diagram showing a configuration example of a carbon dioxide gas phase reducing device according to Example 6.
 以下、図面を参照して本発明の実施例を説明する。本発明は、後述の実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更を加えることが可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the examples described later, and changes can be made without departing from the spirit of the present invention.
 [発明の概要]
 本発明は、金属塩溶液と還元剤溶液とを用いた無電解めっき法により、電解質膜に対して還元電極が直接形成された電解質膜支持型還元電極を製造する製造方法に関する発明である。本発明では、電解質膜に対して無電解めっき処理を施す前に、電解質膜の片面の反対面を還元剤溶液に浸漬することを特徴とする。
[Outline of the invention]
The present invention relates to a manufacturing method for manufacturing an electrolyte membrane-supported reducing electrode in which a reducing electrode is directly formed on an electrolyte membrane by a electroless plating method using a metal salt solution and a reducing agent solution. The present invention is characterized in that one side of the electrolyte membrane is immersed in a reducing agent solution before the electroless plating treatment is performed on the electrolyte membrane.
 これにより、無電解めっき処理前に電解質膜の片面(還元電極の形成面)まで還元剤溶液が拡散・浸透するので、電解質膜の片面に金属塩溶液を注入した際に当該片面の直上から還元電極を形成可能となる。つまり、還元電極作製時および還元反応停止時における電解質膜内部の還元電極の形成を抑制できるので、還元電極の酸化を抑制でき、二酸化炭素の還元反応の効率を向上できる。 As a result, the reducing agent solution diffuses and permeates to one side of the electrolyte film (the surface on which the reducing electrode is formed) before the electrolytic plating process. Electrodes can be formed. That is, since the formation of the reducing electrode inside the electrolyte membrane can be suppressed at the time of producing the reducing electrode and at the time of stopping the reduction reaction, the oxidation of the reducing electrode can be suppressed and the efficiency of the reduction reaction of carbon dioxide can be improved.
 [実施例1]
  [電解質膜支持型還元電極の製造方法]
 図1は、電解質膜支持型還元電極の製造工程を示す図である。電解質膜には、デュポン社製のナフィオン(商標登録)を用いる。金属塩溶液および還元剤溶液には、表1に示すように調整される各溶液を用いる。例えば、還元剤溶液には、極性化合物である水素化ホウ素ナトリウム(NaBH)を還元剤の主成分とする溶液を用いる。
[Example 1]
[Manufacturing method of electrolyte membrane-supported reducing electrode]
FIG. 1 is a diagram showing a manufacturing process of an electrolyte membrane-supported reducing electrode. Nafion (registered trademark) manufactured by DuPont is used for the electrolyte membrane. As the metal salt solution and the reducing agent solution, each solution prepared as shown in Table 1 is used. For example, as the reducing agent solution, a solution containing sodium borohydride (NaBH 4 ), which is a polar compound, as the main component of the reducing agent is used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 まず、電解質膜と還元電極との密着性を向上させるため、工程1では、電解質膜の片面に研磨紙を擦り付けて当該片面を粗化する(S1)。次に、電解質膜のプロトン移動度を向上させるため、工程2では、電解質膜を沸騰硝酸に60分間浸漬し(S2)、工程3では、電解質膜を沸騰純水に60分間浸漬する(S3)。その後、図2に示すように、電解質膜1を、第1の槽11と第2の槽12との間に配置する。このとき、電解質膜1の粗化面を第1の槽11側に向けて配置する。 First, in order to improve the adhesion between the electrolyte membrane and the reducing electrode, in step 1, polishing paper is rubbed against one side of the electrolyte membrane to roughen the one side (S1). Next, in order to improve the proton mobility of the electrolyte membrane, in step 2, the electrolyte membrane is immersed in boiling nitric acid for 60 minutes (S2), and in step 3, the electrolyte membrane is immersed in boiling pure water for 60 minutes (S3). .. After that, as shown in FIG. 2, the electrolyte membrane 1 is arranged between the first tank 11 and the second tank 12. At this time, the roughened surface of the electrolyte membrane 1 is arranged toward the first tank 11.
 次に、工程4(第1の工程)では、第2の槽12を還元剤溶液22で満たして1分間放置し、電解質膜1の反対面(粗化面の反対面)を還元剤溶液22に浸漬する(S4)。次に、工程5(第2の工程)では、第1の槽11を金属イオンを含む金属塩溶液21で満たして30分間放置し、電解質膜1の粗化面を金属塩溶液21に浸漬する(S5)。 Next, in step 4 (first step), the second tank 12 is filled with the reducing agent solution 22 and left for 1 minute, and the opposite surface (opposite surface of the roughened surface) of the electrolyte membrane 1 is covered with the reducing agent solution 22. Immerse in (S4). Next, in step 5 (second step), the first tank 11 is filled with the metal salt solution 21 containing metal ions and left for 30 minutes, and the roughened surface of the electrolyte film 1 is immersed in the metal salt solution 21. (S5).
 工程5は、電解質膜1を隔てて金属塩溶液21と還元剤溶液22とを接触するように配置して無電解めっき処理する工程である。つまり、工程5は、電解質膜1の反対面を還元剤溶液22に浸漬し、電解質膜の粗化面を金属塩溶液21に浸漬する無電解めっき処理により、電解質膜1の粗化面に還元電極用の金属を析出させる工程である。 Step 5 is a step of arranging the metal salt solution 21 and the reducing agent solution 22 so as to be in contact with each other across the electrolyte membrane 1 and performing electrolytic plating treatment. That is, in step 5, the opposite surface of the electrolyte membrane 1 is immersed in the reducing agent solution 22, and the roughened surface of the electrolyte membrane is immersed in the metal salt solution 21. This is a step of precipitating metal for an electrode.
 工程4において、還元剤溶液22の主成分である水素化ホウ素ナトリウムは、極性化合物であるから、電解質膜1の内部を拡散・透過する。その後、工程5において、金属塩溶液21と電解質膜1との界面において、酸化還元反応(BH +4OH→BO +2HO+2H+4e、Cu2++2e→Cu)が起きて銅が析出する。これにより、図3の拡大図(a)に示すように、電解質膜1の当初表面上に還元電極2が直上形成された電解質膜支持型還元電極30が得られる。発明者は、還元電極2が電解質膜1の内部にめり込むことなく、電解質膜1の直上から還元電極2が形成されていることを確認した。 In step 4, since sodium borohydride, which is the main component of the reducing agent solution 22, is a polar compound, it diffuses and permeates the inside of the electrolyte membrane 1. Then, in step 5, a redox reaction (BH 4 + 4OH → BO 2 + 2H 2 O + 2H 2 + 4e , Cu 2 + + 2e → Cu) occurs at the interface between the metal salt solution 21 and the electrolyte membrane 1 to generate copper. Precipitates. As a result, as shown in the enlarged view (a) of FIG. 3, the electrolyte membrane-supported reducing electrode 30 in which the reducing electrode 2 is directly formed on the initial surface of the electrolyte membrane 1 is obtained. The inventor confirmed that the reducing electrode 2 was formed from directly above the electrolyte membrane 1 without the reducing electrode 2 sinking into the inside of the electrolyte membrane 1.
 電解質膜1は、例えば、カチオンまたはアニオンを伝導する固体高分子膜、炭素-フッ素からなる骨格を持つ電解質膜であるナフィオンやフォアブルー、アクイヴィオン(商標登録)を用いてもよい。また、金属塩溶液21および還元剤溶液22を他の薬品に変更することで、Ni、Pt、Au、Ag、Pd、Sn、Pdなど任意の種類の金属を形成してもよいし、当該金属に対して酸化反応や置換反応の処理を行うことにより金属錯体を形成してもよい。 As the electrolyte membrane 1, for example, a solid polymer membrane that conducts a cation or an anion, or an electrolyte membrane having a skeleton made of carbon-fluorine, such as Nafion, Foreblue, or Aquivion (registered trademark) may be used. Further, by changing the metal salt solution 21 and the reducing agent solution 22 to other chemicals, any kind of metal such as Ni, Pt, Au, Ag, Pd, Sn, Pd may be formed, and the metal may be formed. A metal complex may be formed by subjecting the metal to an oxidation reaction or a substitution reaction.
  [二酸化炭素の気相還元装置の構成]
 図4は、実施例1に係る二酸化炭素の気相還元装置100の構成例を示す図である。当該気相還元装置100は、酸化電極への光照射により還元電極で二酸化炭素の還元反応を起こす還元装置(人工光合成装置)である。以下、単に気相還元装置100という。
[Construction of carbon dioxide gas phase reduction device]
FIG. 4 is a diagram showing a configuration example of the carbon dioxide gas phase reducing device 100 according to the first embodiment. The gas phase reduction device 100 is a reduction device (artificial photosynthesis device) that causes a reduction reaction of carbon dioxide at the reduction electrode by irradiating the oxidation electrode with light. Hereinafter, it is simply referred to as a gas phase reducing device 100.
 気相還元装置100は、図4に示すように、一筐体の内部空間を二分することで形成された酸化槽41と還元槽44とを備える。酸化槽41は水溶液43で満たされ、水溶液43には半導体または金属錯体からなる酸化電極42が挿入される。酸化槽41に隣接する還元槽44には、その空の内部に二酸化炭素の気体または二酸化炭素を含む気体が満たされる。 As shown in FIG. 4, the gas phase reduction device 100 includes an oxidation tank 41 and a reduction tank 44 formed by dividing the internal space of one housing into two. The oxide tank 41 is filled with the aqueous solution 43, and the oxide electrode 42 made of a semiconductor or a metal complex is inserted into the aqueous solution 43. The reduction tank 44 adjacent to the oxidation tank 41 is filled with carbon dioxide gas or a gas containing carbon dioxide in the empty space.
 酸化電極42は、例えば、窒化物半導体、酸化チタン、アモルファスシリコン、ルテニウム錯体、レニウム錯体のような光活性やレドックス活性を示す化合物である。水溶液43は、例えば、炭酸水素カリウム水溶液、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化ルビジウム水溶液、水酸化セシウム水溶液である。 The oxide electrode 42 is a compound that exhibits photoactivity and redox activity, such as a nitride semiconductor, titanium oxide, amorphous silicon, a ruthenium complex, and a rhenium complex. The aqueous solution 43 is, for example, a potassium hydrogen carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a potassium chloride aqueous solution, a sodium chloride aqueous solution, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a rubidium hydroxide aqueous solution, or a cesium hydroxide aqueous solution.
 上記製造方法で製造した電解質膜支持型還元電極30は、酸化槽41と還元槽44との間に配置される。酸化槽41側には電解質膜1が配置され、還元槽44側には還元電極2が配置される。酸化電極42と還元電極2とは、導線45で接続される。 The electrolyte membrane-supported reducing electrode 30 manufactured by the above manufacturing method is arranged between the oxidation tank 41 and the reduction tank 44. The electrolyte membrane 1 is arranged on the oxidation tank 41 side, and the reduction electrode 2 is arranged on the reduction tank 44 side. The oxidation electrode 42 and the reduction electrode 2 are connected by a conducting wire 45.
 酸化槽41には、酸化槽41内の水溶液43にヘリウムを流入するため、チューブ46が挿入される。還元槽44には、還元槽44内に二酸化炭素を流入するため、還元槽44の底部に気体入力口47が形成される。さらに、気相還元装置100を運転するため、光源48が酸化電極42に対して対向配置される。光源48は、例えば、キセノンランプ、擬似太陽光源、ハロゲンランプ、水銀ランプ、太陽光、または、これらの組み合わせである。 A tube 46 is inserted into the oxidation tank 41 in order to allow helium to flow into the aqueous solution 43 in the oxidation tank 41. Since carbon dioxide flows into the reduction tank 44, a gas input port 47 is formed at the bottom of the reduction tank 44. Further, in order to operate the gas phase reduction device 100, the light source 48 is arranged to face the oxide electrode 42. The light source 48 is, for example, a xenon lamp, a pseudo-solar light source, a halogen lamp, a mercury lamp, sunlight, or a combination thereof.
  [電気化学測定およびガス・液体生成量測定]
 電気化学測定およびガス・液体生成量測定を説明する。
[Electrochemical measurement and gas / liquid production amount measurement]
Electrochemical measurement and gas / liquid production amount measurement will be described.
 酸化槽41を水溶液43で満たす。酸化電極42には、サファイア基板上にn型半導体である窒化ガリウム(GaN)の薄膜と、窒化アルミニウムガリウム(AlGaN)の薄膜とを、その順にエピタキシャル成長させ、その上にニッケル(Ni)を真空蒸着して熱処理を行うことで、酸化ニッケル(NiO)の助触媒薄膜を形成した基板を用いた。そして、その酸化電極42を、水溶液43に浸水するように酸化槽41内に設置した。水溶液43は、1.0mol/Lの水酸化カリウム水溶液とした。光源48には、300Wの高圧キセノンランプ(波長450nm以上をカット、照度6.6mW/cm)を用い、酸化電極42の半導体光電極の酸化助触媒が形成されている面(NiOの形成面)が照射面となるように固定した。酸化電極42の光照射面積を2.5cmとした。 The oxidation tank 41 is filled with the aqueous solution 43. On the oxide electrode 42, a thin film of gallium nitride (GaN), which is an n-type semiconductor, and a thin film of aluminum gallium nitride (AlGaN) are epitaxially grown on a sapphire substrate in this order, and nickel (Ni) is vacuum-deposited on the thin film. A substrate on which a nickel oxide (NiO) co-catalyst thin film was formed was used by performing the heat treatment. Then, the oxidation electrode 42 was installed in the oxidation tank 41 so as to be immersed in the aqueous solution 43. The aqueous solution 43 was a 1.0 mol / L potassium hydroxide aqueous solution. As the light source 48, a 300 W high-pressure xenon lamp (wavelength 450 nm or more cut, illuminance 6.6 mW / cm 2 ) is used, and the surface on which the oxidation assist catalyst of the semiconductor optical electrode of the oxide electrode 42 is formed (the surface on which NiO is formed). ) Was fixed so as to be the irradiation surface. The light irradiation area of the oxidation electrode 42 was set to 2.5 cm 2 .
 酸化槽41に対してチューブ46からヘリウムを、還元槽44に対して気体入力口47から二酸化炭素を、それぞれ流量5ml/minかつ圧力0.18MPaで流し入れた。この系では、電解質膜支持型還元電極30内の[電解質膜-銅(還元電極)-気相の二酸化炭素]からなる三相界面において、二酸化炭素の還元反応を進行させることができる。 Helium was poured into the oxidation tank 41 from the tube 46, and carbon dioxide was poured into the reduction tank 44 from the gas input port 47 at a flow rate of 5 ml / min and a pressure of 0.18 MPa, respectively. In this system, the carbon dioxide reduction reaction can proceed at the three-phase interface composed of [electrolyte film-copper (reducing electrode) -gas phase carbon dioxide] in the electrolyte membrane-supported reducing electrode 30.
 酸化槽41と還元槽44とをヘリウムと二酸化炭素とでそれぞれ十分に置換した後、光源48を用いて酸化電極42に均一に光を300分間照射した。酸化電極42への光照射により、酸化電極42と還元電極2との間に電子が流れる。光照射時の酸化電極42と還元電極2との間の電流値を、電気化学測定装置(Solartron社製、1287型ポテンショガルバノスタット)で測定した。また、光照射中の任意の時間に、酸化槽41内および還元槽44内のガスおよび液体を採取し、ガスクロマトグラフおよび液体クロマトグラフ、ガスクロマトグラフ質量分析計で反応生成物を分析した。その結果、酸化槽41内では、酸素が生成され、還元槽44内では、水素、一酸化炭素、ギ酸、メタン、メタノール、エタノール、エチレンが生成されていることを確認した。 After sufficiently replacing the oxidation tank 41 and the reduction tank 44 with helium and carbon dioxide, respectively, the oxidation electrode 42 was uniformly irradiated with light for 300 minutes using the light source 48. By irradiating the oxide electrode 42 with light, electrons flow between the oxide electrode 42 and the reduction electrode 2. The current value between the oxide electrode 42 and the reduction electrode 2 at the time of light irradiation was measured with an electrochemical measuring device (1287 type potentiogalvanostat manufactured by Solartron). In addition, the gas and liquid in the oxidation tank 41 and the reduction tank 44 were collected at an arbitrary time during light irradiation, and the reaction products were analyzed by a gas chromatograph, a liquid chromatograph, and a gas chromatograph mass spectrometer. As a result, it was confirmed that oxygen was generated in the oxide tank 41 and hydrogen, carbon monoxide, formic acid, methane, methanol, ethanol and ethylene were generated in the reduction tank 44.
 [実施例2]
 実施例2では、電解質膜支持型還元電極30の製造方法の工程4において、電解質膜1の還元剤溶液22への浸漬時間を10分間にした。それ以外の条件は実施例1と同様である。
[Example 2]
In Example 2, in step 4 of the method for manufacturing the electrolyte membrane-supported reducing electrode 30, the immersion time of the electrolyte membrane 1 in the reducing agent solution 22 was set to 10 minutes. Other conditions are the same as in Example 1.
 [実施例3]
 実施例3では、電解質膜支持型還元電極30の製造方法の工程4において、電解質膜1の還元剤溶液22への浸漬時間を30分間にした。それ以外の条件は実施例1と同様である。
[Example 3]
In Example 3, in step 4 of the method for manufacturing the electrolyte membrane-supported reducing electrode 30, the immersion time of the electrolyte membrane 1 in the reducing agent solution 22 was set to 30 minutes. Other conditions are the same as in Example 1.
 [実施例4]
 実施例4では、電解質膜支持型還元電極30の製造方法の工程4において、電解質膜1の還元剤溶液22への浸漬時間を60分間にした。それ以外の条件は実施例1と同様である。
[Example 4]
In Example 4, in step 4 of the method for manufacturing the electrolyte membrane-supported reducing electrode 30, the immersion time of the electrolyte membrane 1 in the reducing agent solution 22 was set to 60 minutes. Other conditions are the same as in Example 1.
 [実施例5]
 実施例5では、図5に示すように、酸化電極42への光照射を60分間行い(ON)、30分間停止する(OFF)、という運転を繰り返し行い、酸化電極42への総光照射時間が300分間になったときに測定を停止した。それ以外の条件は実施例3と同様である。
[Example 5]
In Example 5, as shown in FIG. 5, the operation of irradiating the oxide electrode 42 with light for 60 minutes (ON) and stopping for 30 minutes (OFF) is repeated, and the total light irradiation time to the oxide electrode 42 is performed. The measurement was stopped when the time reached 300 minutes. Other conditions are the same as in Example 3.
 [実施例6]
  [電解質膜支持型還元電極の製造方法]
 電解質膜支持型還元電極30は、実施例1と同様の手順で製造する。
[Example 6]
[Manufacturing method of electrolyte membrane-supported reducing electrode]
The electrolyte membrane-supported reducing electrode 30 is manufactured by the same procedure as in Example 1.
  [二酸化炭素の気相還元装置の構成]
 図6は、実施例6に係る二酸化炭素の気相還元装置100の構成を示す図である。当該二酸化炭素の気相還元装置100は、気相の二酸化炭素の電解還元反応の装置(電解還元反応装置)である。以下、単に気相還元装置100という。
[Construction of carbon dioxide gas phase reduction device]
FIG. 6 is a diagram showing the configuration of the carbon dioxide gas phase reducing device 100 according to the sixth embodiment. The carbon dioxide gas phase reduction device 100 is an apparatus (electrolytic reduction reaction apparatus) for an electrolytic reduction reaction of carbon dioxide in the gas phase. Hereinafter, it is simply referred to as a gas phase reducing device 100.
 気相還元装置100は、図6に示すように、一筐体の内部空間を二分することで形成された酸化槽41と還元槽44とを備える。酸化槽41は水溶液43で満たされ、水溶液43には半導体または金属錯体からなる酸化電極42が挿入される。酸化槽41に隣接する還元槽44には、その空の内部に二酸化炭素の気体または二酸化炭素を含む気体が満たされる。酸化電極42は、例えば、白金、金、銀、銅、インジウム、ニッケルである。水溶液43の具体例は、実施例1と同様である。 As shown in FIG. 6, the gas phase reduction device 100 includes an oxidation tank 41 and a reduction tank 44 formed by dividing the internal space of one housing into two. The oxide tank 41 is filled with the aqueous solution 43, and the oxide electrode 42 made of a semiconductor or a metal complex is inserted into the aqueous solution 43. The reduction tank 44 adjacent to the oxidation tank 41 is filled with carbon dioxide gas or a gas containing carbon dioxide in the empty space. The oxide electrode 42 is, for example, platinum, gold, silver, copper, indium, or nickel. Specific examples of the aqueous solution 43 are the same as in Example 1.
 上記製造方法で製造した電解質膜支持型還元電極30は、酸化槽41と還元槽44との間に配置される。酸化槽41側には電解質膜1が配置され、還元槽44側には還元電極2が配置される。酸化電極42と還元電極2とは、導線45で接続される。 The electrolyte membrane-supported reducing electrode 30 manufactured by the above manufacturing method is arranged between the oxidation tank 41 and the reduction tank 44. The electrolyte membrane 1 is arranged on the oxidation tank 41 side, and the reduction electrode 2 is arranged on the reduction tank 44 side. The oxidation electrode 42 and the reduction electrode 2 are connected by a conducting wire 45.
 酸化槽41には、酸化槽41内の水溶液43にヘリウムを流入するため、チューブ46が挿入される。還元槽44には、還元槽44内に二酸化炭素を流入するため、還元槽44の底部に気体入力口47が形成される。さらに、気相還元装置100を運転するため、電源49が導線45に接続される。 A tube 46 is inserted into the oxidation tank 41 in order to allow helium to flow into the aqueous solution 43 in the oxidation tank 41. Since carbon dioxide flows into the reduction tank 44, a gas input port 47 is formed at the bottom of the reduction tank 44. Further, in order to operate the gas phase reducing device 100, the power supply 49 is connected to the conducting wire 45.
  [電気化学測定およびガス・液体生成量測定]
 電気化学測定およびガス・液体生成量測定を説明する。
[Electrochemical measurement and gas / liquid production amount measurement]
Electrochemical measurement and gas / liquid production amount measurement will be described.
 酸化槽41を水溶液43で満たす。酸化電極42には、白金(ニラコ社製)を用いた。酸化電極42の表面積の約0.55cmが水溶液43に浸水するように酸化槽41内に設置した。水溶液43は、1.0mol/Lの水酸化カリウム水溶液とした。 The oxidation tank 41 is filled with the aqueous solution 43. Platinum (manufactured by Niraco) was used for the oxide electrode 42. About 0.55 cm 2 of the surface area of the oxidation electrode 42 was installed in the oxide tank 41 so as to be submerged in the aqueous solution 43. The aqueous solution 43 was a 1.0 mol / L potassium hydroxide aqueous solution.
 酸化槽41に対してチューブ46からヘリウムを、還元槽44に対して気体入力口47から二酸化炭素を、それぞれ流量5ml/minかつ圧力0.18MPaで流し入れた。この系では、電解質膜支持型還元電極30内の[電解質膜-銅(還元電極)-気相の二酸化炭素]からなる三相界面において、二酸化炭素の還元反応を進行させることができる。二酸化炭素が直接供給される還元電極2の面積は、約6.25cmである。 Helium was poured into the oxidation tank 41 from the tube 46, and carbon dioxide was poured into the reduction tank 44 from the gas input port 47 at a flow rate of 5 ml / min and a pressure of 0.18 MPa. In this system, the carbon dioxide reduction reaction can proceed at the three-phase interface composed of [electrolyte film-copper (reducing electrode) -gas phase carbon dioxide] in the electrolyte membrane-supported reducing electrode 30. The area of the reducing electrode 2 to which carbon dioxide is directly supplied is about 6.25 cm 2 .
 酸化槽41と還元槽44とをヘリウムと二酸化炭素とでそれぞれ十分に置換した後、酸化電極42と還元電極2との間を電源49を介して導線45でつなぎ、電圧2.0Vを印加して300分間電子を流した。電圧2.0Vを印加した時の酸化電極42と還元電極2との間の電流値を、電気化学測定装置で測定した。また、電圧印加中の任意の時間に、酸化槽41内および還元槽44内のガスおよび液体を採取し、ガスクロマトグラフおよび液体クロマトグラフ、ガスクロマトグラフ質量分析計にて反応生成物を分析した。その結果、酸化槽41内では、酸素が生成され、還元槽44内では、水素、一酸化炭素、ギ酸、メタン、メタノール、エタノール、エチレンが生成されていることを確認した。 After sufficiently replacing the oxidation tank 41 and the reduction tank 44 with helium and carbon dioxide, respectively, the oxidation electrode 42 and the reduction electrode 2 are connected by a lead wire 45 via a power supply 49, and a voltage of 2.0 V is applied. The electron was allowed to flow for 300 minutes. The current value between the oxide electrode 42 and the reduction electrode 2 when a voltage of 2.0 V was applied was measured by an electrochemical measuring device. In addition, the gas and liquid in the oxidation tank 41 and the reduction tank 44 were sampled at an arbitrary time while the voltage was applied, and the reaction products were analyzed by a gas chromatograph, a liquid chromatograph, and a gas chromatograph mass spectrometer. As a result, it was confirmed that oxygen was generated in the oxide tank 41 and hydrogen, carbon monoxide, formic acid, methane, methanol, ethanol and ethylene were generated in the reduction tank 44.
 [実施例7]
 実施例7では、電解質膜支持型還元電極30の製造方法の工程4において、電解質膜1の還元剤溶液22への浸漬時間を10分間にした。それ以外の条件は実施例6と同様である。
[Example 7]
In Example 7, in step 4 of the method for manufacturing the electrolyte membrane-supported reducing electrode 30, the immersion time of the electrolyte membrane 1 in the reducing agent solution 22 was set to 10 minutes. Other conditions are the same as in Example 6.
 [実施例8]
 実施例8では、電解質膜支持型還元電極30の製造方法の工程4において、電解質膜1の還元剤溶液22への浸漬時間を30分間にした。それ以外の条件は実施例6と同様である。
[Example 8]
In Example 8, in step 4 of the method for manufacturing the electrolyte membrane-supported reducing electrode 30, the immersion time of the electrolyte membrane 1 in the reducing agent solution 22 was set to 30 minutes. Other conditions are the same as in Example 6.
 [実施例9]
 実施例9では、電解質膜支持型還元電極30の製造方法の工程4において、電解質膜1の還元剤溶液22への浸漬時間を60分間にした。それ以外の条件は実施例6と同様である。
[Example 9]
In Example 9, in step 4 of the method for manufacturing the electrolyte membrane-supported reducing electrode 30, the immersion time of the electrolyte membrane 1 in the reducing agent solution 22 was set to 60 minutes. Other conditions are the same as in Example 6.
 [実施例10]
 実施例10では、図5に示したように、電源49による電圧印加を60分間行い(ON)、30分間停止する(OFF)、という運転を繰り返し行い、総電圧印加時間が300分間になったときに測定を停止した。それ以外の条件は実施例8と同様である。
[Example 10]
In Example 10, as shown in FIG. 5, the operation of applying the voltage by the power supply 49 for 60 minutes (ON) and stopping for 30 minutes (OFF) was repeated, and the total voltage application time became 300 minutes. When I stopped the measurement. Other conditions are the same as in Example 8.
 [比較対象例1]
  [電解質膜支持型還元電極の製造方法]
 実施例1に記載の工程1~工程5のうち、工程4(電解質膜1の還元剤溶液22への浸漬)を行うことなく、金属塩溶液21と還元剤溶液22とを第1の槽11と第2の槽12とにそれぞれ同時に注入した。それ以外の製造方法は実施例1と同様である。製造後の電解質膜支持型還元電極30の断面を観察すると、図3の拡大図(b)に示すように、電解質膜1の粗化面から300nmの深さまで還元電極2が電解質膜1の内部にめり込むように形成されていた。
[Comparison target example 1]
[Manufacturing method of electrolyte membrane-supported reducing electrode]
Of the steps 1 to 5 described in Example 1, the metal salt solution 21 and the reducing agent solution 22 are placed in the first tank 11 without performing step 4 (immersion of the electrolyte membrane 1 in the reducing agent solution 22). And the second tank 12 were injected at the same time. Other manufacturing methods are the same as in Example 1. When observing the cross section of the electrolyte membrane-supported reducing electrode 30 after production, as shown in the enlarged view (b) of FIG. 3, the reducing electrode 2 is inside the electrolyte membrane 1 from the roughened surface of the electrolyte membrane 1 to a depth of 300 nm. It was formed to immerse itself in.
  [二酸化炭素の気相還元装置の構成]
 光照射による二酸化炭素の気相還元装置であり、実施例1と同様である。
[Construction of carbon dioxide gas phase reduction device]
It is a carbon dioxide phase reduction device by light irradiation, and is the same as in Example 1.
  [電気化学測定およびガス・液体生成量測定]
 実施例1と同様である。
[Electrochemical measurement and gas / liquid production amount measurement]
It is the same as Example 1.
 [比較対象例2]
  [電解質膜支持型還元電極の製造方法]
 比較対象例1と同様である。
[Comparison target example 2]
[Manufacturing method of electrolyte membrane-supported reducing electrode]
It is the same as the comparative example 1.
  [二酸化炭素の気相還元装置の構成]
 光照射による二酸化炭素の気相還元装置であり、実施例1と同様である。
[Construction of carbon dioxide gas phase reduction device]
It is a carbon dioxide phase reduction device by light irradiation, and is the same as in Example 1.
  [電気化学測定およびガス・液体生成量測定]
 図5に示したように、酸化電極42への光照射を60分間行い(ON)、30分間停止する(OFF)、という運転を繰り返し行い、酸化電極42への総光照射時間が300分間になったときに測定を停止した。それ以外の条件は実施例1と同様である。
[Electrochemical measurement and gas / liquid production amount measurement]
As shown in FIG. 5, the operation of irradiating the oxide electrode 42 with light for 60 minutes (ON) and stopping for 30 minutes (OFF) is repeated, and the total light irradiation time to the oxide electrode 42 is 300 minutes. When it became, the measurement was stopped. Other conditions are the same as in Example 1.
 [比較対象例3]
  [電解質膜支持型還元電極の製造方法]
 比較対象例1と同様である。
[Comparison target example 3]
[Manufacturing method of electrolyte membrane-supported reducing electrode]
It is the same as the comparative example 1.
  [二酸化炭素の気相還元装置の構成]
 電圧印加による二酸化炭素の気相還元装置であり、実施例6と同様である。
[Construction of carbon dioxide gas phase reduction device]
It is a gas phase reduction device of carbon dioxide by applying a voltage, and is the same as in Example 6.
  [電気化学測定およびガス・液体生成量測定]
 実施例6と同様である。
[Electrochemical measurement and gas / liquid production amount measurement]
It is the same as Example 6.
 [比較対象例4]
  [電解質膜支持型還元電極の製造方法]
 比較対象例1と同様である。
[Comparison target example 4]
[Manufacturing method of electrolyte membrane-supported reducing electrode]
It is the same as the comparative example 1.
  [二酸化炭素の気相還元装置の構成]
 電圧印加による二酸化炭素の気相還元装置であり、実施例6と同様である。
[Construction of carbon dioxide gas phase reduction device]
It is a gas phase reduction device of carbon dioxide by applying a voltage, and is the same as in Example 6.
  [電気化学測定およびガス・液体生成量測定]
 図5に示したように、電源49による電圧印加を60分間行い(ON)、30分間停止する(OFF)、という運転を繰り返し行い、総電圧印加時間が300分間になったときに測定を停止した。それ以外の条件は実施例6と同様である。
[Electrochemical measurement and gas / liquid production amount measurement]
As shown in FIG. 5, the operation of applying the voltage by the power supply 49 for 60 minutes (ON) and stopping for 30 minutes (OFF) is repeated, and the measurement is stopped when the total voltage application time reaches 300 minutes. did. Other conditions are the same as in Example 6.
 [二酸化炭素の還元反応の実験結果]
 実施例1~4、6~9および比較対象例1、3による二酸化炭素還元のファラデー効率を表2に示す。表2は、300分間連続で光照射または電圧印加した場合の二酸化炭素還元のファラデー効率(積算値)である。
[Experimental results of carbon dioxide reduction reaction]
Table 2 shows the Faraday efficiency of carbon dioxide reduction according to Examples 1 to 4, 6 to 9 and Comparative Examples 1 and 3. Table 2 shows the Faraday efficiency (integrated value) of carbon dioxide reduction when light irradiation or voltage is continuously applied for 300 minutes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、実施例5、10および比較対象例2、4による二酸化炭素還元のファラデー効率を表3に示す。表3は、光照射または電圧印加を60分間ON、30分間OFFする運転を繰り返した場合における、300分後の二酸化炭素還元のファラデー効率(積算値)である。 Table 3 shows the Faraday efficiency of carbon dioxide reduction according to Examples 5 and 10 and Comparative Examples 2 and 4. Table 3 shows the Faraday efficiency (integrated value) of carbon dioxide reduction after 300 minutes when the operation of turning on the light irradiation or applying the voltage for 60 minutes and turning off the voltage for 30 minutes is repeated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 二酸化炭素還元のファラデー効率とは、式(3)に示すように、光照射または電圧印加により電極間に流れた電子数に対して、二酸化炭素の還元反応に使われた電子数の割合を示す値である。 As shown in the formula (3), the Faraday efficiency of carbon dioxide reduction indicates the ratio of the number of electrons used in the carbon dioxide reduction reaction to the number of electrons flowing between the electrodes by light irradiation or voltage application. The value.
  二酸化炭素還元のファラデー効率=(二酸化炭素の還元反応の電子数)/(酸化電極-還元電極間の電子数) ・・・(3)
 式(3)の「二酸化炭素の還元反応の電子数」は、二酸化炭素の還元生成物の積算生成量の測定値を、その生成反応に必要な電子数に換算することで求めることができる。還元反応生成物の濃度をA[ppm]、キャリアガスの流量をB[L/sec]、還元反応に必要な電子数をZ[mol]、ファラデー定数をF[C/mol]、気体のモル体をVm[L/mol]、光照射時間または電圧印加時間をT[sec]としたとき、式(4)を用いて算出した。
Faraday efficiency of carbon dioxide reduction = (number of electrons in carbon dioxide reduction reaction) / (number of electrons between oxidation electrode and reduction electrode) ... (3)
The "number of electrons in the reduction reaction of carbon dioxide" in the formula (3) can be obtained by converting the measured value of the integrated production amount of the reduction product of carbon dioxide into the number of electrons required for the production reaction. The concentration of the reduction reaction product is A [ppm], the flow rate of the carrier gas is B [L / sec], the number of electrons required for the reduction reaction is Z [mol], the Faraday constant is F [C / mol], and the molar of the gas. It was calculated using the formula (4) when the body was Vm [L / mol] and the light irradiation time or the voltage application time was T [sec].
  二酸化炭素の還元反応の電子値[C]=(A×B×Z×F×T×10-6)/Vm ・・・(4)
 表2より、実施例1~4および実施例6~9では、比較対象例1および比較対象例3とそれぞれ比較して、二酸化炭素還元のファラデー効率が向上したことを確認した。これは、各実施例1~4、6~9において、電解質膜の内部に還元電極がめり込まず、電解質膜の直上から還元電極が形成できていたことが要因と考えられる。
Electron value of carbon dioxide reduction reaction [C] = (A × B × Z × F × T × 10-6 ) / Vm ・ ・ ・ (4)
From Table 2, it was confirmed that in Examples 1 to 4 and Examples 6 to 9, the Faraday efficiency of carbon dioxide reduction was improved as compared with Comparative Example 1 and Comparative Example 3, respectively. It is considered that this is because in each of Examples 1 to 4 and 6 to 9, the reducing electrode did not sink into the inside of the electrolyte membrane, and the reducing electrode could be formed from directly above the electrolyte membrane.
 各実施例1~10では、比較対象例1~4と異なり、無電解めっき処理前に、工程4として電解質膜を還元剤溶液に浸漬させた。これにより、無電解めっき処理前に電解質膜の粗化面まで還元剤溶液が拡散・浸透したため、第1の槽に金属塩溶液を注入した際に電解質膜の粗化面の直上から還元電極が形成される。 In Examples 1 to 10, unlike the comparative examples 1 to 4, the electrolyte membrane was immersed in the reducing agent solution as step 4 before the electroless plating treatment. As a result, the reducing agent solution diffused and permeated to the roughened surface of the electrolyte film before the electrolytic plating treatment, so that when the metal salt solution was injected into the first tank, the reducing electrode was released from directly above the roughened surface of the electrolyte film. It is formed.
 一方、比較対象例1~4では、工程4を行うことなく、第1の槽と第2の槽とに金属塩溶液と還元剤溶液とをそれぞれ同時に注入した。この場合、金属塩溶液も少量だけ電解質膜の内部に浸透する。それゆえ、還元剤溶液が電解質膜の粗化面まで浸透する前に、金属塩溶液が電解質膜の内部で接触し、還元電極が電解質膜内にめり込むように形成される。また、比較対象例1~4の場合、電解質膜の内部に形成された還元電極の部分には二酸化炭素が供給できないことに加えて、電解質膜は膜内に水を含んでいることから、電解質膜内の水分が電解質膜内の溶存酸素と反応して還元電極が酸化される。その結果、酸化した電極自身の還元反応が優先して進行し、二酸化炭素還元反応が抑制されてしまう。 On the other hand, in Comparative Examples 1 to 4, the metal salt solution and the reducing agent solution were simultaneously injected into the first tank and the second tank without performing step 4. In this case, only a small amount of the metal salt solution permeates the inside of the electrolyte membrane. Therefore, before the reducing agent solution penetrates to the roughened surface of the electrolyte membrane, the metal salt solution comes into contact with the inside of the electrolyte membrane, and the reducing electrode is formed so as to sink into the electrolyte membrane. Further, in the cases of Comparative Target Examples 1 to 4, carbon dioxide cannot be supplied to the portion of the reducing electrode formed inside the electrolyte membrane, and the electrolyte membrane contains water in the membrane, so that the electrolyte is used. The water in the membrane reacts with the dissolved oxygen in the electrolyte membrane to oxidize the reducing electrode. As a result, the reduction reaction of the oxidized electrode itself proceeds preferentially, and the carbon dioxide reduction reaction is suppressed.
 以上より、実施例1~10で工程4を実施することにより、電解質膜への還元電極のめり込みが抑制され、二酸化炭素の還元反応の効率が向上した。 From the above, by carrying out step 4 in Examples 1 to 10, the reduction electrode was suppressed from being embedded in the electrolyte membrane, and the efficiency of the carbon dioxide reduction reaction was improved.
 また、実施例1~4および実施例6~9の各二酸化炭素還元のファラデー効率を比較すると、工程4での電解質膜の還元剤溶液への浸漬時間が30分以上である実施例3、4および実施例8、9の方が、30分未満である実施例1、2および実施例6、7よりも高い。浸漬時間に対する電解質膜にめり込む還元電極の深さを分析すると、実施例1と実施例6、実施例2と実施例7、実施例3と実施例8、実施例4と実施例9のそれぞれについて、250nm、150nm、20nm、20nmであった。この結果から、浸漬時間が30分未満の範囲では、めり込む還元電極の深さが深くなる傾向が得られ、浸漬時間が30分以上では、深さ20nmで飽和値となり、二酸化炭素還元のファラデー効率がより向上することが想定される。したがって、電解質膜は、予め還元剤溶液に30分以上浸漬させることが望ましい。 Comparing the Faraday efficiencies of carbon dioxide reduction in Examples 1 to 4 and Examples 6 to 9, the immersion time of the electrolyte membrane in the reducing agent solution in step 4 is 30 minutes or more in Examples 3 and 4. And Examples 8 and 9 are higher than Examples 1 and 2 and Examples 6 and 7 which are less than 30 minutes. Analyzing the depth of the reducing electrode sunk into the electrolyte membrane with respect to the immersion time, it was found that each of Example 1 and Example 6, Example 2 and Example 7, Example 3 and Example 8, and Example 4 and Example 9 was obtained. , 250 nm, 150 nm, 20 nm, 20 nm. From this result, it is obtained that the depth of the reducing electrode to be sunk becomes deep in the range of the immersion time of less than 30 minutes, and the saturation value is obtained at the depth of 20 nm in the immersion time of 30 minutes or more, and the Faraday efficiency of carbon dioxide reduction is obtained. Is expected to improve further. Therefore, it is desirable to immerse the electrolyte membrane in the reducing agent solution for 30 minutes or more in advance.
 また、表3より、実施例5、10では、比較対象例2、4とそれぞれ比較して、二酸化炭素還元のファラデー効率が向上した。実施例5、10については、表2に示す300分間連続運転させた実施例3、8とそれぞれほぼ同程度のファラデー効率が得られた。比較対象例2、4のファラデー効率が低いのは、二酸化炭素の気相還元装置のON、OFFを繰り返す際に、OFFと共に還元電極が酸化され、再びONにすると酸化された電極の還元反応が優先して進行することから、二酸化炭素の還元反応の効率が低下してしまうことが要因と考えられる。 Further, from Table 3, in Examples 5 and 10, the Faraday efficiency of carbon dioxide reduction was improved as compared with Comparative Examples 2 and 4, respectively. For Examples 5 and 10, Faraday efficiencies almost the same as those of Examples 3 and 8 which were continuously operated for 300 minutes shown in Table 2 were obtained. The reason why the Faraday efficiency of Comparative Examples 2 and 4 is low is that when the carbon dioxide gas phase reducing device is repeatedly turned on and off, the reducing electrode is oxidized together with the turning off, and when it is turned on again, the reduction reaction of the oxidized electrode is carried out. Since it proceeds with priority, it is considered that the efficiency of the reduction reaction of carbon dioxide is lowered.
 以上より、実施例5、10では、工程4を行うことにより、電解質膜への還元電極のめり込みを抑制でき、OFFの状態で還元電極が酸化されるのを抑制できることから、二酸化炭素の還元反応の効率が向上した。 From the above, in Examples 5 and 10, by performing step 4, the reduction electrode can be suppressed from being embedded in the electrolyte membrane, and the reduction electrode can be suppressed from being oxidized in the OFF state. Therefore, the reduction reaction of carbon dioxide can be suppressed. Efficiency has improved.
 [発明の効果]
 本発明によれば、無電解めっき法による二酸化炭素の気相還元用の電解質膜支持型還元電極の製造において、無電解めっき処理を行う前に電解質膜を還元剤溶液に浸漬するので、還元電極作製時および還元反応停止時における電解質膜内部の還元電極の形成を抑制できる。その結果、還元電極の酸化を抑制でき、二酸化炭素の還元反応の効率を向上できる。
[Effect of the invention]
According to the present invention, in the production of the electrolyte membrane-supported reducing electrode for gas phase reduction of carbon dioxide by the electroless plating method, the electrolyte membrane is immersed in the reducing agent solution before the electroless plating treatment, so that the reducing electrode is used. It is possible to suppress the formation of a reducing electrode inside the electrolyte membrane during production and when the reduction reaction is stopped. As a result, the oxidation of the reducing electrode can be suppressed, and the efficiency of the carbon dioxide reduction reaction can be improved.
 1:電解質膜
 2:還元電極
 11:第1の槽
 12:第2の槽
 21:金属塩溶液
 22:還元剤溶液
 30:電解質膜支持型還元電極
 41:酸化槽
 42:酸化電極
 43:水溶液
 44:還元槽
 45:導線
 46:チューブ
 47:気体入力口
 48:光源
 49:電源
1: Electrolyte film 2: Reduction electrode 11: First tank 12: Second tank 21: Metal salt solution 22: Reducing agent solution 30: Electrolyte film-supported reducing electrode 41: Oxidation tank 42: Oxidation electrode 43: Aqueous solution 44 : Reduction tank 45: Lead wire 46: Tube 47: Gas input port 48: Light source 49: Power supply

Claims (5)

  1.  酸化電極を含む酸化槽と空の内部に二酸化炭素が供給される還元槽との間に配置される電解質膜支持型還元電極の製造方法において、
     電解質膜の片面の反対面を還元剤溶液に浸漬する第1の工程と、
     前記電解質膜の片面を金属イオンを含む金属塩溶液に浸漬する第2の工程と、
     を行う電解質膜支持型還元電極の製造方法。
    In the method for manufacturing an electrolyte membrane-supported reducing electrode, which is arranged between an oxidation tank including an oxidation electrode and a reduction tank in which carbon dioxide is supplied to the inside of the empty space.
    The first step of immersing one side of the electrolyte membrane in the reducing agent solution, and
    The second step of immersing one side of the electrolyte membrane in a metal salt solution containing metal ions, and
    A method for manufacturing an electrolyte membrane-supported reducing electrode.
  2.  前記第1の工程および前記第2の工程を行う前に、
     前記電解質膜の片面を粗化する工程と、
     前記電解質膜を沸騰硝酸に浸漬する工程と、
     前記電解質膜を沸騰純水に浸漬する工程と、
     を行う請求項1に記載の電解質膜支持型還元電極の製造方法。
    Before performing the first step and the second step,
    The step of roughening one side of the electrolyte membrane and
    The step of immersing the electrolyte membrane in boiling nitric acid and
    The step of immersing the electrolyte membrane in boiling pure water and
    The method for manufacturing an electrolyte membrane-supported reducing electrode according to claim 1.
  3.  前記第2の工程は、
     前記電解質膜の反対面を前記還元剤溶液に浸漬し、前記電解質膜の片面を前記金属塩溶液に浸漬する無電解めっき処理により、前記電解質膜の片面に還元電極用の金属を析出させる工程である請求項1または2に記載の電解質膜支持型還元電極の製造方法。
    The second step is
    In the step of precipitating the metal for the reducing electrode on one side of the electrolyte membrane by the electroless plating treatment in which the opposite side of the electrolyte membrane is immersed in the reducing agent solution and one side of the electrolyte membrane is immersed in the metal salt solution. The method for producing an electrolyte membrane-supported reducing electrode according to claim 1 or 2.
  4.  前記還元剤溶液に含まれる還元剤は、
     極性化合物である請求項1ないし3のいずれかに記載の電解質膜支持型還元電極の製造方法。
    The reducing agent contained in the reducing agent solution is
    The method for producing an electrolyte membrane-supported reducing electrode according to any one of claims 1 to 3, which is a polar compound.
  5.  前記電解質膜は、
     カチオンまたはアニオンを伝導する固体高分子膜である請求項1ないし4のいずれかに記載の電解質膜支持型還元電極の製造方法。
    The electrolyte membrane is
    The method for producing an electrolyte membrane-supported reducing electrode according to any one of claims 1 to 4, which is a solid polymer membrane that conducts a cation or an anion.
PCT/JP2020/044615 2020-12-01 2020-12-01 Manufacturing method of electrolyte film supported reducing electrode WO2022118364A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022566519A JPWO2022118364A1 (en) 2020-12-01 2020-12-01
PCT/JP2020/044615 WO2022118364A1 (en) 2020-12-01 2020-12-01 Manufacturing method of electrolyte film supported reducing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044615 WO2022118364A1 (en) 2020-12-01 2020-12-01 Manufacturing method of electrolyte film supported reducing electrode

Publications (1)

Publication Number Publication Date
WO2022118364A1 true WO2022118364A1 (en) 2022-06-09

Family

ID=81852982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044615 WO2022118364A1 (en) 2020-12-01 2020-12-01 Manufacturing method of electrolyte film supported reducing electrode

Country Status (2)

Country Link
JP (1) JPWO2022118364A1 (en)
WO (1) WO2022118364A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS425014B1 (en) * 1962-09-20 1967-03-01
JPS5636873B2 (en) * 1978-09-07 1981-08-27
JPS58185790A (en) * 1982-04-20 1983-10-29 Hitachi Zosen Corp Formation of electrode on ion exchange membrane
JP2004197215A (en) * 2002-08-23 2004-07-15 Eamex Co Method of forming electrode by plating, stacked body, and device using the stacked body
JP2008223118A (en) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp Solid polymer electrolyte membrane, its production method, and electrolysis element
KR20170138813A (en) * 2016-06-08 2017-12-18 (주)엘켐텍 Photo-water splitting cell with photoanode coated Pt MEA and its manufacture
WO2020121556A1 (en) * 2018-12-10 2020-06-18 日本電信電話株式会社 Carbon dioxide gas-phase reduction device and carbon dioxide gas-phase reduction method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS425014B1 (en) * 1962-09-20 1967-03-01
JPS5636873B2 (en) * 1978-09-07 1981-08-27
JPS58185790A (en) * 1982-04-20 1983-10-29 Hitachi Zosen Corp Formation of electrode on ion exchange membrane
JP2004197215A (en) * 2002-08-23 2004-07-15 Eamex Co Method of forming electrode by plating, stacked body, and device using the stacked body
JP2008223118A (en) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp Solid polymer electrolyte membrane, its production method, and electrolysis element
KR20170138813A (en) * 2016-06-08 2017-12-18 (주)엘켐텍 Photo-water splitting cell with photoanode coated Pt MEA and its manufacture
WO2020121556A1 (en) * 2018-12-10 2020-06-18 日本電信電話株式会社 Carbon dioxide gas-phase reduction device and carbon dioxide gas-phase reduction method

Also Published As

Publication number Publication date
JPWO2022118364A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2020121556A1 (en) Carbon dioxide gas-phase reduction device and carbon dioxide gas-phase reduction method
JP6024900B2 (en) How to reduce carbon dioxide
JP5753641B2 (en) Carbon dioxide reduction apparatus and method for reducing carbon dioxide
JP5236124B1 (en) How to reduce carbon dioxide
JP5641489B2 (en) How to produce alcohol
JP6997376B2 (en) Carbon dioxide reduction device
JPWO2014034004A1 (en) Photochemical electrode for carbon dioxide reduction, and method for reducing carbon dioxide using the photochemical electrode
JP7273346B2 (en) Gas phase reduction method of carbon dioxide
JP5173080B2 (en) How to reduce carbon dioxide
JP6221067B2 (en) Formic acid production apparatus and method
WO2022118364A1 (en) Manufacturing method of electrolyte film supported reducing electrode
JP2016145408A (en) Water splitting method, water splitting device and anodal electrode for oxygen generation
WO2021234908A1 (en) Vapor-phase reduction device for carbon dioxide and method for producing porous electrode-supported electrolyte membrane
WO2023084683A1 (en) Electrolyte membrane
JP2017020094A (en) Reaction treatment method and device
JP7356067B2 (en) Carbon dioxide gas phase reduction device and carbon dioxide gas phase reduction method
WO2022113277A1 (en) Gas-phase reduction apparatus for carbon dioxide, and method for producing porous reduction electrode-supported electrolyte membrane
WO2022244234A1 (en) Porous-electrode-supporting electrolyte membrane and method for producing porous-electrode-supporting electrolyte membrane
WO2023095201A1 (en) Porous electrode-supporting electrolyte membrane and production method for porous electrode-supporting electrolyte membrane
JP2020090693A (en) Semiconductor photoelectrode
WO2023095203A1 (en) Method for producing porous electrode–supporting electrolyte membrane
WO2023233590A1 (en) Reduction electrode, and method for producing reduction electrode
WO2023095193A1 (en) Porous electrode–supporting electrolyte membrane and method for producing porous electrode–supporting electrolyte membrane
WO2022249276A1 (en) Gas-phase reduction device for carbon dioxide and gas-phase reduction method for carbon dioxide
WO2023238394A1 (en) Nitride semiconductor photoelectrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964218

Country of ref document: EP

Kind code of ref document: A1