JP7273346B2 - Gas phase reduction method of carbon dioxide - Google Patents

Gas phase reduction method of carbon dioxide Download PDF

Info

Publication number
JP7273346B2
JP7273346B2 JP2021563515A JP2021563515A JP7273346B2 JP 7273346 B2 JP7273346 B2 JP 7273346B2 JP 2021563515 A JP2021563515 A JP 2021563515A JP 2021563515 A JP2021563515 A JP 2021563515A JP 7273346 B2 JP7273346 B2 JP 7273346B2
Authority
JP
Japan
Prior art keywords
reduction
tank
carbon dioxide
electrode
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021563515A
Other languages
Japanese (ja)
Other versions
JPWO2021117164A1 (en
Inventor
紗弓 里
裕也 渦巻
陽子 小野
武志 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2021117164A1 publication Critical patent/JPWO2021117164A1/ja
Application granted granted Critical
Publication of JP7273346B2 publication Critical patent/JP7273346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/21Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/049Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法に関する。 TECHNICAL FIELD The present invention relates to a gas phase reduction apparatus for carbon dioxide and a gas phase reduction method for carbon dioxide.

従来、二酸化炭素の気相還元装置が研究開発されている。非特許文献1に開示された二酸化炭素の気相還元装置は、左側の酸化槽と右側の還元槽との間に、イオン交換膜(ナフィオン(商標登録))と還元電極(Cu)とを合わせたガス還元シートを配置して構成される。イオン交換膜は酸化槽側に向けて配置され、還元電極は還元槽側に向けて配置される。酸化槽には電解液として水酸化カリウム(KOH)水溶液を満たし、その水溶液に酸化ニッケル(NiO)の触媒を積層した窒化アルミニウムガリウム(AlGaN)の酸化電極を浸水させる。酸化電極は、ガス還元シートの還元電極に導線で接続されている。 Conventionally, gas-phase reduction apparatuses for carbon dioxide have been researched and developed. In the gas phase reduction apparatus for carbon dioxide disclosed in Non-Patent Document 1, an ion exchange membrane (Nafion (registered trademark)) and a reduction electrode (Cu) are combined between the oxidation tank on the left side and the reduction tank on the right side. It is configured by arranging a gas reduction sheet. The ion exchange membrane is placed facing the oxidation tank, and the reduction electrode is placed facing the reduction tank. The oxidation tank is filled with a potassium hydroxide (KOH) aqueous solution as an electrolytic solution, and an oxidation electrode of aluminum gallium nitride (AlGaN) laminated with a nickel oxide (NiO) catalyst is immersed in the aqueous solution. The oxidation electrode is connected by a wire to the reduction electrode of the gas reduction sheet.

このような二酸化炭素の気相還元装置において、酸化槽内の水酸化カリウム水溶液にヘリウム(He)を入れるとともに還元槽内に二酸化炭素(CO)を入れ、酸化電極に対して光(hv)を照射すると、ガス還元シートのイオン交換膜(ナフィオン)と還元電極(Cu)と還元槽内の二酸化炭素(CO)とからなる三相界面で二酸化炭素の還元反応が進行する。具体的には、酸化槽では、水の酸化反応による酸素が生成する。還元槽では、イオン交換膜内のプロトンの還元反応による水素が発生し、二酸化炭素の還元反応による一酸化炭素、ギ酸が生成する。In such a gas-phase reduction apparatus for carbon dioxide, helium (He) is put into an aqueous solution of potassium hydroxide in the oxidation tank, carbon dioxide (CO 2 ) is put into the reduction tank, and light (hv) is applied to the oxidation electrode. , the reduction reaction of carbon dioxide progresses at the three-phase interface consisting of the ion exchange membrane (Nafion) of the gas reduction sheet, the reduction electrode (Cu), and carbon dioxide (CO 2 ) in the reduction tank. Specifically, in the oxidation tank, oxygen is produced by the oxidation reaction of water. In the reduction tank, hydrogen is generated by the reduction reaction of protons in the ion exchange membrane, and carbon monoxide and formic acid are generated by the reduction reaction of carbon dioxide.

里、外3名、“Cu電極を形成したプロトン交換膜を用いたCO2還元反応の光電気化学特性”、電気化学秋季大会、口頭発表、2019年、1B05Sato, et al., “Photoelectrochemical properties of CO2 reduction reaction using proton exchange membrane with Cu electrode”, Electrochemistry Autumn Meeting, Oral Presentation, 2019, 1B05

しかしながら、電解液である水酸化カリウム水溶液がイオン交換膜を介して還元電極に常に接触しているため、還元電極が劣化し、二酸化炭素の還元反応の反応場が失われ、二酸化炭素の還元反応の寿命が低下してしまう。この点、水酸化カリウム水溶液を気相還元装置の運転開始に合わせて酸化槽へ注水し、運転停止に合わせて酸化槽から放水することで、水酸化カリウム水溶液と還元電極との接触を気相還元装置の運転時にのみ限定する方法も考えられる。しかし、この方法の場合、酸化槽で生成した酸素がバルブの開閉時に酸化槽から放出されてしまい回収が困難となる。 However, since the potassium hydroxide aqueous solution, which is the electrolytic solution, is always in contact with the reduction electrode via the ion exchange membrane, the reduction electrode deteriorates, the reaction site for the carbon dioxide reduction reaction is lost, and the carbon dioxide reduction reaction lifespan is reduced. In this respect, the aqueous potassium hydroxide solution is injected into the oxidation tank when the operation of the gas-phase reduction apparatus is started, and is discharged from the oxidation tank when the operation is stopped, so that the contact between the aqueous potassium hydroxide solution and the reduction electrode is maintained in the gas phase. It is also conceivable to limit it only when the reducing apparatus is in operation. However, in this method, the oxygen generated in the oxidation tank is released from the oxidation tank when the valve is opened and closed, making recovery difficult.

本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、還元電極の劣化を抑制し、還元電極上での二酸化炭素の還元反応の寿命を向上可能な技術を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique capable of suppressing deterioration of the reduction electrode and improving the life of the carbon dioxide reduction reaction on the reduction electrode. is.

本発明の一態様の二酸化炭素の気相還元方法は、二酸化炭素の気相還元装置で行う二酸化炭素の気相還元方法において、前記二酸化炭素の気相還元装置は、酸化電極を含む酸化槽と、二酸化炭素が供給される還元槽と、前記酸化槽と前記還元槽との間に配置され、電解液の注水及び放水が可能な中間槽と、前記酸化槽と前記中間槽との間に配置されたイオン交換膜と、イオン交換膜と還元電極とを積層したガス還元シートであり、当該イオン交換膜を前記中間槽に向け、前記還元電極を前記還元槽に向けて、前記還元槽と前記中間槽との間に配置されたガス還元シートと、前記酸化電極と前記還元電極とを接続する導線と、を備え、前記酸化槽に電解液を注水するとともに、前記還元槽に二酸化炭素を供給する第1の工程と、前記酸化電極に光を照射している時にのみ前記中間槽に電解液を注水する第2の工程と、を行う。 A method for gas phase reduction of carbon dioxide according to one aspect of the present invention is a method for gas phase reduction of carbon dioxide performed in a gas phase reduction apparatus for carbon dioxide, wherein the gas phase reduction apparatus for carbon dioxide includes an oxidation tank including an oxidation electrode. , a reduction tank to which carbon dioxide is supplied, an intermediate tank arranged between the oxidation tank and the reduction tank and capable of pouring and discharging the electrolytic solution, and arranged between the oxidation tank and the intermediate tank. a gas reduction sheet in which an ion exchange membrane, an ion exchange membrane, and a reduction electrode are laminated, and the ion exchange membrane is oriented toward the intermediate tank, the reduction electrode is oriented toward the reduction tank, and the reduction tank and the reduction electrode are laminated. A gas reduction sheet disposed between an intermediate tank and a lead wire connecting the oxidation electrode and the reduction electrode, and supplying an electrolytic solution to the oxidation tank and supplying carbon dioxide to the reduction tank. and a second step of pouring the electrolytic solution into the intermediate tank only when the oxidation electrode is irradiated with light.

本発明の一態様の二酸化炭素の気相還元方法は、二酸化炭素の気相還元装置で行う二酸化炭素の気相還元方法において、前記二酸化炭素の気相還元装置は、酸化電極を含む酸化槽と、二酸化炭素が供給される還元槽と、前記酸化槽と前記還元槽との間に配置され、電解液の注水及び放水が可能な中間槽と、前記酸化槽と前記中間槽との間に配置されたイオン交換膜と、イオン交換膜と還元電極とを積層したガス還元シートであり、当該イオン交換膜を前記中間槽に向け、前記還元電極を前記還元槽に向けて、前記還元槽と前記中間槽との間に配置されたガス還元シートと、前記酸化電極と前記還元電極とを接続する導線と、を備え、前記酸化槽に電解液を注水するとともに、前記還元槽に二酸化炭素を供給する第1の工程と、前記酸化電極と前記還元電極との間に電圧を印加している時にのみ前記中間槽に電解液を注水する第2の工程と、を行う。 A method for gas phase reduction of carbon dioxide according to one aspect of the present invention is a method for gas phase reduction of carbon dioxide performed in a gas phase reduction apparatus for carbon dioxide, wherein the gas phase reduction apparatus for carbon dioxide includes an oxidation tank including an oxidation electrode. , a reduction tank to which carbon dioxide is supplied, an intermediate tank arranged between the oxidation tank and the reduction tank and capable of pouring and discharging the electrolytic solution, and arranged between the oxidation tank and the intermediate tank. a gas reduction sheet in which an ion exchange membrane, an ion exchange membrane, and a reduction electrode are laminated, and the ion exchange membrane is oriented toward the intermediate tank, the reduction electrode is oriented toward the reduction tank, and the reduction tank and the reduction electrode are laminated. A gas reduction sheet disposed between an intermediate tank and a lead wire connecting the oxidation electrode and the reduction electrode, and supplying an electrolytic solution to the oxidation tank and supplying carbon dioxide to the reduction tank. and a second step of pouring the electrolytic solution into the intermediate tank only when a voltage is applied between the oxidation electrode and the reduction electrode.

本発明によれば、還元電極の劣化を抑制し、還元電極上での二酸化炭素の還元反応の寿命を向上可能な技術を提供できる。 According to the present invention, it is possible to provide a technique capable of suppressing deterioration of the reduction electrode and improving the life of the carbon dioxide reduction reaction on the reduction electrode.

図1は、実施例1~4に係る二酸化炭素の気相還元装置の構成を示す構成図である。FIG. 1 is a configuration diagram showing the configuration of a gas phase reduction apparatus for carbon dioxide according to Examples 1 to 4. As shown in FIG. 図2は、無電解めっき法を用いたガス還元シートの作製手法を示す図である。FIG. 2 is a diagram showing a technique for producing a gas reduction sheet using an electroless plating method. 図3は、実施例1及び実施例5で用いる光照射時間及び電圧印加時間を示す図である。FIG. 3 is a diagram showing light irradiation time and voltage application time used in Examples 1 and 5. FIG. 図4は、実施例2及び実施例6で用いる光照射時間及び電圧印加時間を示す図である。FIG. 4 is a diagram showing light irradiation time and voltage application time used in Examples 2 and 6. FIG. 図5は、実施例3及び実施例7で用いる光照射時間及び電圧印加時間を示す図である。FIG. 5 is a diagram showing light irradiation time and voltage application time used in Examples 3 and 7. FIG. 図6は、実施例4及び実施例8で用いる光照射時間及び電圧印加時間を示す図である。FIG. 6 is a diagram showing light irradiation time and voltage application time used in Examples 4 and 8. FIG. 図7は、実施例5~8に係る二酸化炭素の気相還元装置の構成を示す構成図である。FIG. 7 is a configuration diagram showing the configuration of the vapor-phase reduction apparatus for carbon dioxide according to Examples 5-8. 図8は、従来の二酸化炭素の気相還元装置の構成を示す構成図である。FIG. 8 is a configuration diagram showing the configuration of a conventional gas-phase reduction apparatus for carbon dioxide.

以下、図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals, and the description thereof is omitted.

[発明の概要]
本発明は、光照射による二酸化炭素の還元反応を引き起こし、又は、二酸化炭素の電解還元反応を引き起こし、当該還元反応の寿命を向上させる二酸化炭素の気相還元装置に関する発明であり、燃料生成技術や太陽エネルギー変換技術の技術分野に属する。
[Summary of Invention]
The present invention relates to a gas-phase reduction apparatus for carbon dioxide that causes a reduction reaction of carbon dioxide by light irradiation or causes an electrolytic reduction reaction of carbon dioxide to improve the life of the reduction reaction. Belongs to the technical field of solar energy conversion technology.

本発明は、イオン交換膜上に還元電極を直接形成したガス還元シートを用い、還元電極の表面に気相の二酸化炭素を直接的に供給することで、二酸化炭素を還元する二酸化炭素の気相還元装置において、酸化槽と還元槽との間に電解液の注水及び放水が可能な中間槽を配置する。また、酸化槽内の酸化電極に光を照射している時にのみ、又は、酸化電極と還元電極との間に電圧を印加している時にのみ、電解液を中間槽に注水して還元電極に接触させ、ガス還元シートの還元電極において二酸化炭素の還元反応を生じさせる。 The present invention uses a gas reduction sheet in which a reduction electrode is directly formed on an ion exchange membrane, and supplies gaseous carbon dioxide directly to the surface of the reduction electrode to reduce carbon dioxide. In the reduction apparatus, an intermediate tank is arranged between the oxidation tank and the reduction tank, into which the electrolytic solution can be injected and discharged. Only when the oxidation electrode in the oxidation tank is irradiated with light or when a voltage is applied between the oxidation electrode and the reduction electrode, the electrolytic solution is poured into the intermediate tank and applied to the reduction electrode. are brought into contact with each other to cause a reduction reaction of carbon dioxide at the reduction electrode of the gas reduction sheet.

これにより、還元電極の劣化を抑制でき、還元電極上での二酸化炭素の還元反応の寿命を向上可能となる。酸化槽内の電解液を放出しないので、酸化槽内の酸化電極で生成した酸素の回収を妨害することはない。 As a result, deterioration of the reduction electrode can be suppressed, and the life of the carbon dioxide reduction reaction on the reduction electrode can be improved. Since the electrolytic solution in the oxidation tank is not released, it does not interfere with the recovery of oxygen produced at the oxidation electrode in the oxidation tank.

[実施例1]
[二酸化炭素の気相還元装置]
図1は、実施例1に係る二酸化炭素の気相還元装置の構成を示す構成図である。
[Example 1]
[Gas-phase reduction apparatus for carbon dioxide]
FIG. 1 is a configuration diagram showing the configuration of a gas-phase reduction apparatus for carbon dioxide according to Example 1. As shown in FIG.

二酸化炭素の気相還元装置は、酸化電極1を含む酸化槽2と、二酸化炭素(CO)が供給される還元槽3と、酸化槽2と還元槽3との間に配置され、電解液の注水及び放水が可能な中間槽4と、酸化槽2と中間槽4との間に配置されたイオン交換膜5と、イオン交換膜6と還元電極7とを積層したガス還元シートであり、当該イオン交換膜6を中間槽4に向け、還元電極7を還元槽3に向けて、還元槽3と中間槽4との間に配置されたガス還元シート100と、酸化電極1と還元電極7とを接続する導線8と、酸化電極1に光を照射する光源9と、を備える。以下、詳述する。The gas phase reduction apparatus for carbon dioxide is arranged between an oxidation tank 2 including an oxidation electrode 1, a reduction tank 3 supplied with carbon dioxide (CO 2 ), and between the oxidation tank 2 and the reduction tank 3, and an electrolytic solution A gas reduction sheet in which an intermediate tank 4 capable of injecting and discharging water, an ion-exchange membrane 5 disposed between the oxidation tank 2 and the intermediate tank 4, and an ion-exchange membrane 6 and a reduction electrode 7 are laminated, A gas reduction sheet 100 disposed between the reduction tank 3 and the intermediate tank 4 with the ion exchange membrane 6 facing the intermediate tank 4 and the reduction electrode 7 facing the reduction tank 3, the oxidation electrode 1 and the reduction electrode 7 and a light source 9 for irradiating the oxidation electrode 1 with light. Details will be described below.

酸化電極1は、サファイア基板の上にn型の半導体であるn型窒化ガリウム(n-GaN)の薄膜と窒化アルミニウムガリウム(AlGaN)とをn-GaNとAlGaNとの順にエピタキシャル成長させ、その上にニッケル(Ni)を真空蒸着して熱処理を行うことで酸化ニッケル(NiO)の助触媒薄膜を形成することで構成する。これにより、NiO/AlGaN/n-GaN/サファイアの酸化電極1となる。NiOは、触媒層である。AlGaNは、光吸収層である。この酸化電極1を、酸化槽2に注水された電解液である水溶液10に浸水するように設置する。酸化槽2内の水溶液10は、1mol/Lの水酸化カリウム(KOH)水溶液とする。 The oxidation electrode 1 is formed by epitaxially growing a thin film of n-type gallium nitride (n-GaN), which is an n-type semiconductor, and aluminum gallium nitride (AlGaN) in this order on a sapphire substrate. Nickel (Ni) is vacuum deposited and heat-treated to form a promoter thin film of nickel oxide (NiO). As a result, an oxidized electrode 1 of NiO/AlGaN/n-GaN/sapphire is obtained. NiO is the catalyst layer. AlGaN is the light absorbing layer. This oxidation electrode 1 is installed so as to be submerged in an aqueous solution 10 which is an electrolytic solution poured into the oxidation bath 2 . The aqueous solution 10 in the oxidation tank 2 is a 1 mol/L potassium hydroxide (KOH) aqueous solution.

酸化槽2と中間槽4とは、イオン交換膜5で隔てる。中間槽4に注水される電解液としての水溶液11も、1mol/Lの水酸化カリウム水溶液とする。中間槽4と還元槽3とは、イオン交換膜6上に還元電極7を直接形成したガス還元シート100で隔てる。イオン交換膜6が中間槽4側になり、還元電極7が還元槽3側になるように配置する。酸化槽2と中間槽4との間に配置されたイオン交換膜5と、中間槽4と還元槽3との間に配置されたガス還元シート100のイオン交換膜6とは、いずれも、ナフィオン(登録商標)を用いる。還元電極7は、銅(Cu)を用いる。 The oxidation tank 2 and the intermediate tank 4 are separated by an ion exchange membrane 5 . The aqueous solution 11 as the electrolytic solution injected into the intermediate tank 4 is also a 1 mol/L potassium hydroxide aqueous solution. The intermediate tank 4 and the reduction tank 3 are separated by a gas reduction sheet 100 having a reduction electrode 7 directly formed on an ion exchange membrane 6 . The ion exchange membrane 6 is placed on the intermediate tank 4 side, and the reduction electrode 7 is placed on the reduction tank 3 side. Both the ion exchange membrane 5 arranged between the oxidation tank 2 and the intermediate tank 4 and the ion exchange membrane 6 of the gas reduction sheet 100 arranged between the intermediate tank 4 and the reduction tank 3 are Nafion (registered trademark) is used. Copper (Cu) is used for the reduction electrode 7 .

酸化槽2内で水溶液10に浸水している酸化電極1と、還元槽3に向けて配置されたガス還元シート100の還元電極7とを、導線8で接続する。 The oxidation electrode 1 submerged in the aqueous solution 10 in the oxidation tank 2 and the reduction electrode 7 of the gas reduction sheet 100 arranged facing the reduction tank 3 are connected by a lead wire 8 .

光源9には、300Wの高圧キセノンランプを用いる。光源9から出力される光は、450nm以上の波長をカットした。 A 300 W high pressure xenon lamp is used as the light source 9 . The light emitted from the light source 9 has a wavelength of 450 nm or more cut.

図2は、ガス還元シート100を作製する手法として用いた無電解めっき法の反応系を示す図である。イオン交換膜6の片面を研磨する。また、イオン交換膜6のプロトン移動度を向上させるため、イオン交換膜6を騰硝酸と沸騰純水とにそれぞれ漬け込む。左右2つの槽21,22に、表1に示すめっき液31と還元剤32をそれぞれ満たす。 FIG. 2 is a diagram showing the reaction system of the electroless plating method used as a method of producing the gas reduction sheet 100. As shown in FIG. One side of the ion exchange membrane 6 is polished. In order to improve the proton mobility of the ion exchange membrane 6, the ion exchange membrane 6 is immersed in boiling nitric acid and boiling pure water. The two tanks 21 and 22 on the left and right sides are filled with the plating solution 31 and the reducing agent 32 shown in Table 1, respectively.

Figure 0007273346000001
Figure 0007273346000001

槽21と槽22とは、イオン交換膜6によって隔てられている。イオン交換膜6は、研磨面をめっき液31側にして配置する。還元剤32の主成分であるNaBHは極性化合物であるため、イオン交換膜6を透過する。めっき液31とイオン交換膜6の研磨面との界面において、下記の酸化還元反応が起きて銅(Cu)が析出することで、イオン交換膜6上に還元電極が形成されたガス還元シート100が得られる。The tanks 21 and 22 are separated by an ion exchange membrane 6 . The ion exchange membrane 6 is arranged with the polished surface facing the plating solution 31 side. Since NaBH 4 , which is the main component of the reducing agent 32 , is a polar compound, it permeates the ion exchange membrane 6 . At the interface between the plating solution 31 and the polished surface of the ion-exchange membrane 6, the oxidation-reduction reaction described below occurs and copper (Cu) is deposited, thereby forming a gas reduction sheet 100 in which a reduction electrode is formed on the ion-exchange membrane 6. is obtained.

BH +4OH→BO +2HO+2H+4e
Cu2++2e→Cu
BH 4 +4OH →BO 2 +2H 2 O+2H 2 +4e
Cu 2+ +2e →Cu

[二酸化炭素の気相還元方法]
次に、上記二酸化炭素の気相還元装置で行う二酸化炭素の気相還元方法について説明する。
[Gas phase reduction method of carbon dioxide]
Next, a gas phase reduction method of carbon dioxide carried out in the gas phase reduction apparatus for carbon dioxide will be described.

まず、酸化電極1のNiO形成面が光の受光面となるように、酸化電極1のNiO形成面を光源9に向けて固定する(第1の工程)。酸化電極1の光受光面積は、3.8cmとした。First, the NiO formation surface of the oxidation electrode 1 is fixed facing the light source 9 so that the NiO formation surface of the oxidation electrode 1 serves as a light receiving surface (first step). The light receiving area of the oxidation electrode 1 was set to 3.8 cm 2 .

次に、酸化槽2に、1mol/Lの水酸化カリウムの水溶液10を注水する(第2の工程)。 Next, a 1 mol/L potassium hydroxide aqueous solution 10 is poured into the oxidation tank 2 (second step).

次に、酸化槽2内の水溶液10にチューブ12を入れてヘリウム(He)を流量5ml/minで水溶液10に流し入れるとともに、還元槽3に対して気体入力口13から二酸化炭素(CO)を同じ流量で流し入れる(第3の工程)。Next, a tube 12 is inserted into the aqueous solution 10 in the oxidation tank 2, and helium (He) is introduced into the aqueous solution 10 at a flow rate of 5 ml/min. Pour in at the same flow rate (third step).

次に、酸化槽2と還元槽3とをそれぞれヘリウムと二酸化炭素とで十分に置換した後、中間槽4に、水溶液入力口14から1mol/Lの水酸化カリウムの水溶液11を注水し、光源9を用いて酸化電極1に均一に光を照射する(第4の工程)。 Next, after sufficiently replacing the oxidation tank 2 and the reduction tank 3 with helium and carbon dioxide, respectively, a 1 mol/L potassium hydroxide aqueous solution 11 is poured into the intermediate tank 4 from the aqueous solution input port 14, and the light source is 9 is used to uniformly irradiate the oxidation electrode 1 with light (fourth step).

このとき、ガス還元シート100内のイオン交換膜(ナフィオン)6と還元電極(Cu)7と気相の二酸化炭素(CO)とからなる三相界面において、二酸化炭素の還元反応が進行する。二酸化炭素が直接供給される還元電極7の表面積は、約6.8cmである。At this time, the reduction reaction of carbon dioxide proceeds at the three-phase interface of the ion-exchange membrane (Nafion) 6, the reduction electrode (Cu) 7, and gaseous carbon dioxide (CO 2 ) in the gas reduction sheet 100 . The surface area of the reduction electrode 7 directly supplied with carbon dioxide is about 6.8 cm 2 .

最後に、酸化電極1への光照射を終了後、中間槽4の水溶液出力口15から水溶液11を放水する(第5の工程)。 Finally, after the light irradiation to the oxidation electrode 1 is completed, the aqueous solution 11 is discharged from the aqueous solution output port 15 of the intermediate tank 4 (fifth step).

尚、「請求の範囲」に記載した「第1の工程」は、上記第2の工程及び上記第3の工程に対応する。上記第2の工程と上記第3の工程は、同じタイミングで実施してもよい。還元槽3に二酸化炭素を流し入れる工程は、酸化槽2に水溶液10を注水する工程よりも前のタイミングで実施してもよい。また、「請求の範囲」に記載した「第2の工程」は、上記第4の工程及び上記第5の工程に対応する。 The "first step" described in "Claims" corresponds to the second step and the third step. The second step and the third step may be performed at the same timing. The step of pouring carbon dioxide into the reduction tank 3 may be performed before the step of pouring the aqueous solution 10 into the oxidation tank 2 . Also, the "second step" described in "Claims" corresponds to the fourth step and the fifth step.

実施例1では、図3に示すようにプロファイル設定された照度の光を酸化電極1に照射した。「波長領域365nm以上の照度が2.2mW/cmの光を1時間だけ酸化電極1に照射した後、1時間だけ光を照射せずに待機すること」を繰り返し、正味の光照射時間が3時間に達するまで反応を進行させる。また、光照射を停止した時点で水溶液11を中間槽4内から放水し、再び光照射を開始する時点で水溶液11を中間槽4に注水する。In Example 1, the oxidation electrode 1 was irradiated with light having an illuminance whose profile was set as shown in FIG. "After irradiating the oxidation electrode 1 with light having an illuminance of 2.2 mW/cm 2 in the wavelength region of 365 nm or more for one hour, and then waiting for one hour without irradiating light", the net light irradiation time is The reaction is allowed to proceed until 3 hours is reached. Further, the aqueous solution 11 is discharged from the intermediate tank 4 when the light irradiation is stopped, and the aqueous solution 11 is poured into the intermediate tank 4 when the light irradiation is started again.

光照射中における任意の時間に各反応槽内の気体生成物についてガスクロマトグラフを用いて濃度分析した。特に還元槽3内の液体生成物については、液体クロマトグラフで濃度分析した。その結果、酸化槽2では、ホールを用いた水の酸化反応による酸素が生成していることを確認した。還元槽3では、電子を用いたプロトンの還元反応による水素や、二酸化炭素の還元反応による一酸化炭素、ギ酸、ホルムアルデヒド、メタン、エチレン、メタノール、エタノールが生成していることを確認した。 Gas products in each reaction vessel were analyzed for concentration using a gas chromatograph at an arbitrary time during light irradiation. In particular, liquid products in the reduction tank 3 were subjected to concentration analysis using a liquid chromatograph. As a result, it was confirmed that in the oxidation tank 2, oxygen was generated by the oxidation reaction of water using the holes. In the reduction tank 3, it was confirmed that hydrogen was produced by the reduction reaction of protons using electrons, and carbon monoxide, formic acid, formaldehyde, methane, ethylene, methanol, and ethanol were produced by the reduction reaction of carbon dioxide.

[実施例2]
実施例2も、図1に示した実施例1と同じ二酸化炭素の気相還元装置を用いる。実施例2では、図4に示すようにプロファイル設定された照度の光を酸化電極1に照射した。「波長領域365nm以上の照度が2.2mW/cmの光を1時間だけ酸化電極1に照射した後、3時間だけ光を照射せずに待機すること」を繰り返し、正味の光照射時間が3時間に達するまで反応を進行させる。また、光照射を停止した時点で水溶液11を中間槽4内から放水し、再び光照射を開始する時点で水溶液11を中間槽4に注水する。その他の点においては実施例1と同様である。
[Example 2]
In Example 2, the same vapor-phase reduction apparatus for carbon dioxide as in Example 1 shown in FIG. 1 is used. In Example 2, the oxidation electrode 1 was irradiated with light having an illuminance whose profile was set as shown in FIG. ``After irradiating the oxidation electrode 1 with light having an illuminance of 2.2 mW/ cm2 in the wavelength region of 365 nm or more for one hour, and then waiting for three hours without irradiating light'', the net light irradiation time was The reaction is allowed to proceed until 3 hours is reached. Further, the aqueous solution 11 is discharged from the intermediate tank 4 when the light irradiation is stopped, and the aqueous solution 11 is poured into the intermediate tank 4 when the light irradiation is started again. Other points are the same as the first embodiment.

[実施例3]
実施例3も、図1に示した実施例1と同じ二酸化炭素の気相還元装置を用いる。実施例3では、図5に示すようにプロファイル設定された照度の光を酸化電極1に照射した。「波長領域365nm以上の照度が2.2mW/cmの光を1時間だけ酸化電極1に照射した後、5時間だけ光を照射せずに待機すること」を繰り返し、正味の光照射時間が3時間に達するまで反応を進行させる。また、光照射を停止した時点で水溶液11を中間槽4内から放水し、再び光照射を開始する時点で水溶液11を中間槽4に注水する。その他の点においては実施例1と同様である。
[Example 3]
In Example 3, the same vapor-phase reduction apparatus for carbon dioxide as in Example 1 shown in FIG. 1 is used. In Example 3, the oxidation electrode 1 was irradiated with light having an illuminance whose profile was set as shown in FIG. ``After irradiating the oxidation electrode 1 with light having an illuminance of 2.2 mW/ cm2 in the wavelength region of 365 nm or more for one hour, and then waiting for five hours without irradiating light'', the net light irradiation time was The reaction is allowed to proceed until 3 hours is reached. Further, the aqueous solution 11 is discharged from the intermediate tank 4 when the light irradiation is stopped, and the aqueous solution 11 is poured into the intermediate tank 4 when the light irradiation is started again. Other points are the same as the first embodiment.

[実施例4]
実施例4も、図1に示した実施例1と同じ二酸化炭素の気相還元装置を用いる。実施例4では、図6に示すようにプロファイル設定された照度の光を酸化電極1に照射した。「波長領域365nm以上の照度が2.2mW/cmの光を1時間だけ酸化電極1に照射した後、10時間だけ光を照射せずに待機すること」を繰り返し、正味の光照射時間が3時間に達するまで反応を進行させる。また、光照射を停止した時点で水溶液11を中間槽4内から放水し、再び光照射を開始する時点で水溶液11を中間槽4に注水する。その他の点においては実施例1と同様である。
[Example 4]
In Example 4, the same vapor phase reduction apparatus for carbon dioxide as in Example 1 shown in FIG. 1 is used. In Example 4, the oxidation electrode 1 was irradiated with light having an illuminance whose profile was set as shown in FIG. "After irradiating the oxidation electrode 1 with light having an illuminance of 2.2 mW/ cm2 in the wavelength region of 365 nm or more for 1 hour, and then waiting for 10 hours without irradiating light", the net light irradiation time is The reaction is allowed to proceed until 3 hours is reached. Further, the aqueous solution 11 is discharged from the intermediate tank 4 when the light irradiation is stopped, and the aqueous solution 11 is poured into the intermediate tank 4 when the light irradiation is started again. Other points are the same as the first embodiment.

[実施例5]
図7は、実施例5に係る二酸化炭素の気相還元装置の構成を示す構成図である。
[Example 5]
FIG. 7 is a configuration diagram showing the configuration of a gas-phase reduction apparatus for carbon dioxide according to the fifth embodiment.

実施例5では、光源9の代わりに、電源16を用いる。電源16は、導線8の経路上に挿入される。また、酸化電極1は光を受光する必要がないので、実施例5の酸化電極1は、白金(ニラコ製)を用いて構成した。酸化電極1の表面積は、約0.55cmとした。その他の構成は、実施例1と同様である。In Example 5, instead of the light source 9, a power source 16 is used. A power supply 16 is inserted onto the path of the conductor 8 . Further, since the oxidation electrode 1 does not need to receive light, the oxidation electrode 1 of Example 5 was constructed using platinum (manufactured by The Nilaco Corporation). The surface area of the oxidation electrode 1 was about 0.55 cm 2 . Other configurations are the same as those of the first embodiment.

酸化槽2と還元槽3とをそれぞれヘリウムと二酸化炭素とで十分に置換した後、酸化電極1と還元電極7の間に電源16を導線8でつなぎ、電圧1.5Vを印加して電流を流した。その他の手順は、実施例1と同様である。 After sufficiently replacing the oxidation tank 2 and the reduction tank 3 with helium and carbon dioxide, respectively, a power supply 16 is connected between the oxidation electrode 1 and the reduction electrode 7 with a lead wire 8, and a voltage of 1.5 V is applied to generate a current. flushed. Other procedures are the same as in Example 1.

即ち、実施例5では、図3に示すようにプロファイル設定された電圧を導線8に印加した。「1.5Vの電圧を1時間だけ酸化電極1と還元電極7との間に印加した後、1時間だけ電圧を印加せずに待機すること」を繰り返し、正味の電圧印加時間が3時間に達するまで反応を進行させる。また、電圧の印加を停止した時点で水溶液11を中間槽4内から放水し、再び電圧を印加する時点で水溶液11を中間槽4に注水する。 That is, in Example 5, a voltage having a profile set as shown in FIG. "After applying a voltage of 1.5 V between the oxidation electrode 1 and the reduction electrode 7 for one hour, wait without applying voltage for one hour" was repeated, and the net voltage application time was reduced to 3 hours. Allow the reaction to proceed until Further, the aqueous solution 11 is discharged from the intermediate tank 4 when the voltage application is stopped, and the aqueous solution 11 is poured into the intermediate tank 4 when the voltage is applied again.

電圧印加中における任意の時間に各反応槽内の気体生成物についてガスクロマトグラフを用いて濃度分析した。特に還元槽3内の液体生成物については、液体クロマトグラフで濃度分析した。その結果、酸化槽2では酸素が生成していることを確認した。還元槽3では、水素、一酸化炭素、ギ酸、ホルムアルデヒド、メタン、エチレン、メタノール、エタノールが生成していることを確認した。 Gas products in each reaction vessel were analyzed for concentration using a gas chromatograph at an arbitrary time during voltage application. In particular, liquid products in the reduction tank 3 were subjected to concentration analysis using a liquid chromatograph. As a result, it was confirmed that oxygen was generated in the oxidation tank 2 . It was confirmed that hydrogen, carbon monoxide, formic acid, formaldehyde, methane, ethylene, methanol, and ethanol were produced in the reduction tank 3 .

[実施例6]
実施例6も、図7に示した実施例5と同じ二酸化炭素の気相還元装置を用いる。実施例6では、図4に示すようにプロファイル設定された電圧を導線8に印加した。「1.5Vの電圧を1時間だけ酸化電極1と還元電極7との間に印加した後、3時間だけ電圧を印加せずに待機すること」を繰り返し、正味の電圧印加時間が3時間に達するまで反応を進行させる。また、電圧の印加を停止した時点で水溶液11を中間槽4内から放水し、再び電圧を印加する時点で水溶液11を中間槽4に注水する。その他の点においては実施例5と同様である。
[Example 6]
In Example 6, the same vapor phase reduction apparatus for carbon dioxide as in Example 5 shown in FIG. 7 is used. In Example 6, a voltage profiled as shown in FIG. "After applying a voltage of 1.5 V between the oxidation electrode 1 and the reduction electrode 7 for 1 hour, wait for 3 hours without applying voltage" was repeated, and the net voltage application time was reduced to 3 hours. Allow the reaction to proceed until Further, the aqueous solution 11 is discharged from the intermediate tank 4 when the voltage application is stopped, and the aqueous solution 11 is poured into the intermediate tank 4 when the voltage is applied again. Other points are the same as the fifth embodiment.

[実施例7]
実施例1も、図7に示した実施例5と同じ二酸化炭素の気相還元装置を用いる。実施例7では、図5に示すようにプロファイル設定された電圧を導線8に印加した。「1.5Vの電圧を1時間だけ酸化電極1と還元電極7との間に印加した後、5時間だけ電圧を印加せずに待機すること」を繰り返し、正味の電圧印加時間が3時間に達するまで反応を進行させる。また、電圧の印加を停止した時点で水溶液11を中間槽4内から放水し、再び電圧を印加する時点で水溶液11を中間槽4に注水する。その他の点においては実施例5と同様である。
[Example 7]
Example 1 also uses the same vapor phase reduction apparatus for carbon dioxide as Example 5 shown in FIG. In Example 7, a voltage profiled as shown in FIG. "After applying a voltage of 1.5 V between the oxidation electrode 1 and the reduction electrode 7 for 1 hour, wait without applying voltage for 5 hours" was repeated, and the net voltage application time was reduced to 3 hours. Allow the reaction to proceed until Further, the aqueous solution 11 is discharged from the intermediate tank 4 when the voltage application is stopped, and the aqueous solution 11 is poured into the intermediate tank 4 when the voltage is applied again. Other points are the same as the fifth embodiment.

[実施例8]
実施例8も、図7に示した実施例5と同じ二酸化炭素の気相還元装置を用いる。実施例8では、図6に示すようにプロファイル設定された電圧を導線8に印加した。「1.5Vの電圧を1時間だけ酸化電極1と還元電極7との間に印加した後、10時間だけ電圧を印加せずに待機すること」を繰り返し、正味の電圧印加時間が3時間に達するまで反応を進行させる。また、電圧の印加を停止した時点で水溶液11を中間槽4内から放水し、再び電圧を印加する時点で水溶液11を中間槽4に注水する。その他の点においては実施例5と同様である。
[Example 8]
Example 8 also uses the same vapor-phase reduction apparatus for carbon dioxide as Example 5 shown in FIG. In Example 8, a voltage profiled as shown in FIG. "After applying a voltage of 1.5 V between the oxidation electrode 1 and the reduction electrode 7 for 1 hour, wait without applying voltage for 10 hours" was repeated, and the net voltage application time was reduced to 3 hours. Allow the reaction to proceed until Further, the aqueous solution 11 is discharged from the intermediate tank 4 when the voltage application is stopped, and the aqueous solution 11 is poured into the intermediate tank 4 when the voltage is applied again. Other points are the same as the fifth embodiment.

[比較対象例1]
比較対象例1では、実施例1と同様に、図1に示した二酸化炭素の気相還元装置を用いる。実施例1と比較して、光照射時間及び光停止時間にかかわらず、中間槽4には常に水溶液11が満たされている。この構成は、図8に示す従来の二酸化炭素の気相還元装置と同じである。その他の点においては実施例1と同様である。
[Example 1 for comparison]
In Comparative Example 1, as in Example 1, the gas phase reduction apparatus for carbon dioxide shown in FIG. 1 is used. Compared with Example 1, the intermediate tank 4 is always filled with the aqueous solution 11 regardless of the light irradiation time and the light stop time. This configuration is the same as that of the conventional gas phase reduction apparatus for carbon dioxide shown in FIG. Other points are the same as the first embodiment.

[比較対象例2]
比較対象例2でも、図1に示した二酸化炭素の気相還元装置を用いる。実施例2と比較して、光照射時間及び光停止時間にかかわらず、中間槽4には常に水溶液11が満たされている。その他の点においては実施例2と同様である。
[Comparison example 2]
Comparative Example 2 also uses the gas-phase reduction apparatus for carbon dioxide shown in FIG. Compared with Example 2, the intermediate tank 4 is always filled with the aqueous solution 11 regardless of the light irradiation time and the light stop time. Other points are the same as the second embodiment.

[比較対象例3]
比較対象例3でも、図1に示した二酸化炭素の気相還元装置を用いる。実施例3と比較して、光照射時間及び光停止時間にかかわらず、中間槽4には常に水溶液11が満たされている。その他の点においては実施例3と同様である。
[Example 3 for comparison]
Comparative Example 3 also uses the vapor-phase reduction apparatus for carbon dioxide shown in FIG. Compared with Example 3, the intermediate tank 4 is always filled with the aqueous solution 11 regardless of the light irradiation time and the light stop time. Other points are the same as those of the third embodiment.

[比較対象例4]
比較対象例4でも、図1に示した二酸化炭素の気相還元装置を用いる。実施例4と比較して、光照射時間及び光停止時間にかかわらず、中間槽4には常に水溶液11が満たされている。その他の点においては実施例4と同様である。
[Example 4 for comparison]
Comparative Example 4 also uses the gas-phase reduction apparatus for carbon dioxide shown in FIG. Compared with Example 4, the intermediate tank 4 is always filled with the aqueous solution 11 regardless of the light irradiation time and the light stop time. Other points are the same as the fourth embodiment.

[比較対象例5]
比較対象例5では、実施例5と同様に、図7に示した二酸化炭素の気相還元装置を用いる。実施例5と比較して、光照射時間及び光停止時間にかかわらず、中間槽4には常に水溶液11が満たされている。その他の点においては実施例5と同様である。
[Comparative example 5]
In Comparative Example 5, as in Example 5, the vapor-phase reduction apparatus for carbon dioxide shown in FIG. 7 is used. Compared with Example 5, the intermediate tank 4 was always filled with the aqueous solution 11 regardless of the light irradiation time and the light stop time. Other points are the same as the fifth embodiment.

[比較対象例6]
比較対象例6でも、図7に示した二酸化炭素の気相還元装置を用いる。実施例6と比較して、光照射時間及び光停止時間にかかわらず、中間槽4には常に水溶液11が満たされている。その他の点においては実施例6と同様である。
[Example 6 for comparison]
Comparative Example 6 also uses the gas-phase reduction apparatus for carbon dioxide shown in FIG. Compared with Example 6, the intermediate tank 4 was always filled with the aqueous solution 11 regardless of the light irradiation time and the light stop time. Other points are the same as the sixth embodiment.

[比較対象例7]
比較対象例7でも、図7に示した二酸化炭素の気相還元装置を用いる。実施例7と比較して、光照射時間及び光停止時間にかかわらず、中間槽4には常に水溶液11が満たされている。その他の点においては実施例7と同様である。
[Example 7 for comparison]
Comparative Example 7 also uses the gas-phase reduction apparatus for carbon dioxide shown in FIG. Compared with Example 7, the intermediate tank 4 was always filled with the aqueous solution 11 regardless of the light irradiation time and the light stop time. Other points are the same as the seventh embodiment.

[比較対象例8]
比較対象例8でも、図7に示した二酸化炭素の気相還元装置を用いる。実施例8と比較して、光照射時間及び光停止時間にかかわらず、中間槽4には常に水溶液11が満たされている。その他の点においては実施例8と同様である。
[Comparative example 8]
Comparative Example 8 also uses the gas-phase reduction apparatus for carbon dioxide shown in FIG. Compared with Example 8, the intermediate tank 4 was always filled with the aqueous solution 11 regardless of the light irradiation time and the light stop time. Other points are the same as the eighth embodiment.

[効果]
実施例1~8及び比較対象事例1~8に関して、正味の光照射時間が3時間に達した時点での二酸化炭素還元の電流維持率を表2に示す。
[effect]
Table 2 shows the current maintenance rate of carbon dioxide reduction when the net light irradiation time reaches 3 hours for Examples 1 to 8 and Comparative Examples 1 to 8.

Figure 0007273346000002
Figure 0007273346000002

二酸化炭素還元の電流維持率は、式(1)を用いて算出する。二酸化炭素還元の電流維持率(%)の値が大きいほど、二酸化炭素還元反応の寿命が向上したと考えられる。 The current maintenance rate of carbon dioxide reduction is calculated using Equation (1). It is considered that the larger the value of the current maintenance rate (%) of carbon dioxide reduction, the longer the life of the carbon dioxide reduction reaction.

二酸化炭素還元の電流維持率(%)=(光照射又は電圧印加から正味3時間後における二酸化炭素還元の電流値)/(光照射又は電圧印加から10分後における二酸化炭素還元の電流値)・・・(1) Current maintenance rate of carbon dioxide reduction (%) = (current value of carbon dioxide reduction net 3 hours after light irradiation or voltage application) / (current value of carbon dioxide reduction 10 minutes after light irradiation or voltage application) (1)

尚、式(1)の右辺変数である「二酸化炭素還元の電流値」は、還元反応生成物の濃度をA[ppm]、キャリアガスの流量をB[L/sec]、還元反応に必要な電子数をZ[mol]、ファラデー定数をF[C/mol]、気体のモル体をV[L/mol]としたとき、式(2)を用いて算出した。In addition, the "current value for carbon dioxide reduction", which is the variable on the right side of the equation (1), is the concentration of the reduction reaction product A [ppm], the flow rate of the carrier gas B [L / sec], and the amount required for the reduction reaction. When Z [mol] is the number of electrons, F [C/mol] is the Faraday constant, and V m [L/mol] is the molar body of the gas, it was calculated using Equation (2).

二酸化炭素還元の電流値[A]=(A×B×Z×F×10-6)/V・・・(2)Current value for carbon dioxide reduction [A]=(A×B×Z×F×10 −6 )/V m (2)

光照射時において、待機時間が1時間、3時間、5時間、10時間のそれぞれの場合について、実施例1~4と比較対象例1~4とを比較すると、各実施例では各比較対象例よりも二酸化炭素還元の電流維持率が向上したことを把握できる。また、電圧印加時において、待機時間が1時間、3時間、5時間、10時間のそれぞれの場合について、実施例5~8と比較対象例5~8とを比較すると、光照射時と同様に、各実施例では各比較対象例よりも二酸化炭素還元の電流維持率が向上したことを把握できる。 When comparing Examples 1 to 4 with Comparative Examples 1 to 4 for each of the standby times of 1 hour, 3 hours, 5 hours, and 10 hours at the time of light irradiation, each comparative example in each example It can be understood that the current maintenance rate of carbon dioxide reduction was improved more. Further, when comparing Examples 5 to 8 with Comparative Examples 5 to 8 for each of the standby times of 1 hour, 3 hours, 5 hours, and 10 hours at the time of voltage application, the results are similar to those at the time of light irradiation. , it can be understood that the current maintenance rate for carbon dioxide reduction is improved in each example as compared to each comparative example.

この結果より、光照射時間又は電圧印加時間である反応進行時間に限定して、中間槽4に水溶液11を満たすことにより、二酸化炭素還元反応の寿命が向上したことが分かる。これは、実施例1~8において、非光照射時間又は非電圧印加時間である反応停止時間に、イオン交換膜6を介した還元電極7への水溶液11の接触を防止したことにより、還元電極7の劣化が抑制できたためと考える。 From this result, it can be seen that the lifetime of the carbon dioxide reduction reaction was improved by filling the intermediate tank 4 with the aqueous solution 11 by limiting the reaction progress time, which is the light irradiation time or the voltage application time. This is because, in Examples 1 to 8, the aqueous solution 11 was prevented from contacting the reduction electrode 7 through the ion exchange membrane 6 during the reaction stop time, which is the non-irradiation time or the non-voltage application time. It is thought that this is because the deterioration of 7 was suppressed.

以上、実施例1~8によれば、イオン交換膜6上に還元電極7を直接形成したガス還元シート100上で気相の二酸化炭素を直接的に還元する二酸化炭素の気相還元装置において、酸化槽2と還元槽3の間に電解液である水溶液11の注水及び放水が可能な中間槽4を配置し、酸化電極に光を照射している時にのみ、又は、酸化電極と還元電極との間に電圧を印加している時にのみ、還元電極7と水溶液11とを接触させるので、酸化電極1で生成する酸素の回収を妨害せず、還元電極7の劣化を抑制でき、還元電極7上での二酸化炭素の還元反応の寿命を向上することができる。 As described above, according to Examples 1 to 8, in the gas phase reduction apparatus for carbon dioxide in which gas phase carbon dioxide is directly reduced on the gas reduction sheet 100 in which the reduction electrode 7 is directly formed on the ion exchange membrane 6, Between the oxidation tank 2 and the reduction tank 3, an intermediate tank 4 capable of pouring and discharging an aqueous solution 11, which is an electrolytic solution, is arranged, and only when the oxidation electrode is irradiated with light, or when the oxidation electrode and the reduction electrode are in contact with each other. Since the reduction electrode 7 and the aqueous solution 11 are brought into contact only when a voltage is applied between The lifetime of the carbon dioxide reduction reaction can be improved.

[その他]
本発明は上記実施例1~8に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。実施例1~4の酸化電極1として示す窒化物半導体は、異なる積層構造でもよく、インジウムやアルミニウムを含むような異なる組成でも構わない。また、実施例1~4の酸化電極1には、窒化物半導体の代わりに、酸化チタン、アモルファスシリコンのような光活性を示す化合物を用いても構わない。実施例5~8の酸化電極1は、白金の代わりに、金、銀、銅、インジウム、ニッケル等の金属でも構わない。還元電極7は、銅の代わりに、金、白金、銀、パラジウム、ガリウム、インジウム、ニッケル、スズ、カドニウムや、それらの合金でもよく、それらの金属及び金属酸化物とカーボンの混合物質でも構わない。水溶液10,11は、水酸化カリウム水溶液の代わりに、水酸化ナトリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液を用いても構わない。イオン交換膜6は、例えば、ナフィオンと呼ばれるカチオン交換膜であり、炭素-フッ素からなる疎水性テフロン骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料である。ガス還元シートの作製手法は、無電解めっき法以外に、電気めっき法、物理蒸着法、化学蒸着法でも構わない。
[others]
The present invention is not limited to the above Examples 1 to 8, and various modifications are possible within the scope of the gist of the present invention. The nitride semiconductor shown as the oxidation electrode 1 of Examples 1 to 4 may have a different layered structure or a different composition such as containing indium or aluminum. Further, for the oxidation electrode 1 of Examples 1 to 4, a compound exhibiting photoactivity such as titanium oxide or amorphous silicon may be used instead of the nitride semiconductor. The oxidation electrode 1 of Examples 5 to 8 may be made of metal such as gold, silver, copper, indium, nickel, etc. instead of platinum. Instead of copper, the reduction electrode 7 may be gold, platinum, silver, palladium, gallium, indium, nickel, tin, cadmium, alloys thereof, or a mixture of these metals or metal oxides and carbon. . The aqueous solutions 10 and 11 may be sodium hydroxide aqueous solution, potassium chloride aqueous solution, or sodium chloride aqueous solution instead of potassium hydroxide aqueous solution. The ion exchange membrane 6 is, for example, a cation exchange membrane called Nafion, which is a perfluorocarbon material composed of a hydrophobic Teflon skeleton made of carbon-fluorine and a perfluoro side chain having a sulfonic acid group. The method for producing the gas reduction sheet may be electroplating, physical vapor deposition, or chemical vapor deposition, in addition to the electroless plating method.

1:酸化電極
2:酸化槽
3:還元槽
4:中間槽
5:イオン交換膜
6:イオン交換膜
7:還元電極
8:導線
9:光源
10:水溶液
11:水溶液
12:チューブ
13:気体入力口
14:水溶液入力口
15:水溶液出力口
16:電源
100:ガス還元シート
1: oxidation electrode 2: oxidation tank 3: reduction tank 4: intermediate tank 5: ion exchange membrane 6: ion exchange membrane 7: reduction electrode 8: conducting wire 9: light source 10: aqueous solution 11: aqueous solution 12: tube 13: gas inlet 14: Aqueous solution input port 15: Aqueous solution output port 16: Power supply 100: Gas reduction sheet

Claims (2)

二酸化炭素の気相還元装置で行う二酸化炭素の気相還元方法において、In the gas phase reduction method of carbon dioxide performed in the gas phase reduction apparatus for carbon dioxide,
前記二酸化炭素の気相還元装置は、The gas-phase reduction device for carbon dioxide includes:
酸化電極を含む酸化槽と、an oxidation bath comprising an oxidation electrode;
二酸化炭素が供給される還元槽と、a reduction tank to which carbon dioxide is supplied;
前記酸化槽と前記還元槽との間に配置され、電解液の注水及び放水が可能な中間槽と、an intermediate tank disposed between the oxidation tank and the reduction tank and capable of injecting and discharging an electrolytic solution;
前記酸化槽と前記中間槽との間に配置されたイオン交換膜と、an ion exchange membrane disposed between the oxidation tank and the intermediate tank;
イオン交換膜と還元電極とを積層したガス還元シートであり、当該イオン交換膜を前記中間槽に向け、前記還元電極を前記還元槽に向けて、前記還元槽と前記中間槽との間に配置されたガス還元シートと、A gas reduction sheet in which an ion exchange membrane and a reduction electrode are laminated, and is arranged between the reduction tank and the intermediate tank with the ion exchange membrane facing the intermediate tank and the reduction electrode facing the reduction tank. a gas reduction sheet that has been
前記酸化電極と前記還元電極とを接続する導線と、を備え、a conducting wire connecting the oxidation electrode and the reduction electrode,
前記酸化槽に電解液を注水するとともに、前記還元槽に二酸化炭素を供給する第1の工程と、a first step of injecting an electrolytic solution into the oxidation tank and supplying carbon dioxide to the reduction tank;
前記酸化電極に光を照射している時にのみ前記中間槽に電解液を注水する第2の工程と、a second step of pouring the electrolytic solution into the intermediate tank only when the oxidation electrode is irradiated with light;
を行う二酸化炭素の気相還元方法。gas phase reduction method of carbon dioxide.
二酸化炭素の気相還元装置で行う二酸化炭素の気相還元方法において、In the gas phase reduction method of carbon dioxide performed in the gas phase reduction apparatus for carbon dioxide,
前記二酸化炭素の気相還元装置は、The gas-phase reduction device for carbon dioxide includes:
酸化電極を含む酸化槽と、an oxidation bath comprising an oxidation electrode;
二酸化炭素が供給される還元槽と、a reduction tank to which carbon dioxide is supplied;
前記酸化槽と前記還元槽との間に配置され、電解液の注水及び放水が可能な中間槽と、an intermediate tank disposed between the oxidation tank and the reduction tank and capable of injecting and discharging an electrolytic solution;
前記酸化槽と前記中間槽との間に配置されたイオン交換膜と、an ion exchange membrane disposed between the oxidation tank and the intermediate tank;
イオン交換膜と還元電極とを積層したガス還元シートであり、当該イオン交換膜を前記中間槽に向け、前記還元電極を前記還元槽に向けて、前記還元槽と前記中間槽との間に配置されたガス還元シートと、A gas reduction sheet in which an ion exchange membrane and a reduction electrode are laminated, and is arranged between the reduction tank and the intermediate tank with the ion exchange membrane facing the intermediate tank and the reduction electrode facing the reduction tank. a gas reduction sheet that has been
前記酸化電極と前記還元電極とを接続する導線と、を備え、a conducting wire connecting the oxidation electrode and the reduction electrode,
前記酸化槽に電解液を注水するとともに、前記還元槽に二酸化炭素を供給する第1の工程と、a first step of injecting an electrolytic solution into the oxidation tank and supplying carbon dioxide to the reduction tank;
前記酸化電極と前記還元電極との間に電圧を印加している時にのみ前記中間槽に電解液を注水する第2の工程と、a second step of pouring an electrolytic solution into the intermediate tank only when a voltage is applied between the oxidation electrode and the reduction electrode;
を行う二酸化炭素の気相還元方法。gas phase reduction method of carbon dioxide.
JP2021563515A 2019-12-11 2019-12-11 Gas phase reduction method of carbon dioxide Active JP7273346B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048510 WO2021117164A1 (en) 2019-12-11 2019-12-11 Gas-phase carbon dioxide reduction apparatus, and gas-phase carbon dioxide reduction method

Publications (2)

Publication Number Publication Date
JPWO2021117164A1 JPWO2021117164A1 (en) 2021-06-17
JP7273346B2 true JP7273346B2 (en) 2023-05-15

Family

ID=76330168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021563515A Active JP7273346B2 (en) 2019-12-11 2019-12-11 Gas phase reduction method of carbon dioxide

Country Status (3)

Country Link
US (1) US20230002919A1 (en)
JP (1) JP7273346B2 (en)
WO (1) WO2021117164A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023084682A1 (en) * 2021-11-11 2023-05-19
JPWO2023084683A1 (en) * 2021-11-11 2023-05-19

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544957A (en) 2010-09-24 2013-12-19 デット ノルスケ ベリタス エーエス Method and apparatus for electrochemical reduction of carbon dioxide
US20160017503A1 (en) 2012-07-26 2016-01-21 Liquid Light, Inc. Method and System for Electrochemical Reduction of Carbon Dioxide Employing a Gas Diffusion Electrode
JP2018510262A (en) 2015-02-09 2018-04-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Reduction method and electrolysis system for electrochemical use of carbon dioxide
US20180195184A1 (en) 2015-07-03 2018-07-12 Siemens Aktiengesellschaft Electrolytic System And Reduction Method For Electrochemical Carbon Dioxide Utilization, Alkali Carbonate Preparation And Alkali Hydrogen Carbonate Preparation
US20190233958A1 (en) 2016-06-30 2019-08-01 Siemens Aktiengesellschaft System and Method for the Electrolysis of Carbon Dioxide
US20190256988A1 (en) 2016-06-30 2019-08-22 Siemens Aktiengesellschaft System and Method for the Electrolysis of Carbon Dioxide
WO2019172750A1 (en) 2018-03-05 2019-09-12 Nederlandse Organisatie Voor Toegepastnatuurwetenschappelijk Onderzoek Tno Method for electrochemically reducing carbon dioxide
JP2019167557A (en) 2018-03-22 2019-10-03 株式会社東芝 Carbon dioxide electrolysis device and carbon dioxide electrolysis method
JP2019183286A (en) 2019-08-05 2019-10-24 千代田化工建設株式会社 Organic matter production method and organic matter production system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544957A (en) 2010-09-24 2013-12-19 デット ノルスケ ベリタス エーエス Method and apparatus for electrochemical reduction of carbon dioxide
US20160017503A1 (en) 2012-07-26 2016-01-21 Liquid Light, Inc. Method and System for Electrochemical Reduction of Carbon Dioxide Employing a Gas Diffusion Electrode
JP2018510262A (en) 2015-02-09 2018-04-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Reduction method and electrolysis system for electrochemical use of carbon dioxide
US20180195184A1 (en) 2015-07-03 2018-07-12 Siemens Aktiengesellschaft Electrolytic System And Reduction Method For Electrochemical Carbon Dioxide Utilization, Alkali Carbonate Preparation And Alkali Hydrogen Carbonate Preparation
US20190233958A1 (en) 2016-06-30 2019-08-01 Siemens Aktiengesellschaft System and Method for the Electrolysis of Carbon Dioxide
US20190256988A1 (en) 2016-06-30 2019-08-22 Siemens Aktiengesellschaft System and Method for the Electrolysis of Carbon Dioxide
WO2019172750A1 (en) 2018-03-05 2019-09-12 Nederlandse Organisatie Voor Toegepastnatuurwetenschappelijk Onderzoek Tno Method for electrochemically reducing carbon dioxide
JP2019167557A (en) 2018-03-22 2019-10-03 株式会社東芝 Carbon dioxide electrolysis device and carbon dioxide electrolysis method
JP2019183286A (en) 2019-08-05 2019-10-24 千代田化工建設株式会社 Organic matter production method and organic matter production system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AGARWAL S. Arun et al.,The electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and Economic Fea,ChemSusChem,2011年,Vol. 4,pp. 1301-1310,特にp. 1301 Abstract, p. 1309 Experimental Section, Figure 18(C)
MERINO-GARCIA, Ivan et al.,Productivity and Selectivity of Gas-Phase CO2 Electroreduction to Methane at Copper Nanoparticle-Bas,Energy Technology,Wiley-VCH Verlag GmbH & Co.,2017年,No.5,p.922-928,DOI:10.1002/ente.201600616
YANO. H et al.,Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu n,Journal of Electroanalytical Chemistry,2002年,Vol. 519,pp. 93-100,特にAbstract, Fig. 1, p. 94 Experimental

Also Published As

Publication number Publication date
US20230002919A1 (en) 2023-01-05
WO2021117164A1 (en) 2021-06-17
JPWO2021117164A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP7121318B2 (en) Apparatus for gas phase reduction of carbon dioxide and method for gas phase reduction of carbon dioxide
JP6024900B2 (en) How to reduce carbon dioxide
JP5753641B2 (en) Carbon dioxide reduction apparatus and method for reducing carbon dioxide
JP7273346B2 (en) Gas phase reduction method of carbon dioxide
JP5236124B1 (en) How to reduce carbon dioxide
JPWO2013031063A1 (en) How to reduce carbon dioxide
JP5641489B2 (en) How to produce alcohol
JP5636139B2 (en) Photochemical electrode for carbon dioxide reduction, and method for reducing carbon dioxide using the photochemical electrode
US12036526B2 (en) Carbon dioxide reduction device
WO2022113277A1 (en) Gas-phase reduction apparatus for carbon dioxide, and method for producing porous reduction electrode-supported electrolyte membrane
JP2016050359A (en) Method for reducing carbon dioxide, and carbon dioxide reduction device
WO2022118364A1 (en) Manufacturing method of electrolyte film supported reducing electrode
WO2021229644A1 (en) Carbon dioxide gas-phase reduction device and carbon dioxide gas-phase reduction method
WO2021234908A1 (en) Vapor-phase reduction device for carbon dioxide and method for producing porous electrode-supported electrolyte membrane
JP2017020094A (en) Reaction treatment method and device
WO2022244234A1 (en) Porous-electrode-supporting electrolyte membrane and method for producing porous-electrode-supporting electrolyte membrane
WO2024116355A1 (en) Carbon dioxide reduction apparatus
WO2023095203A1 (en) Method for producing porous electrode–supporting electrolyte membrane
WO2023084683A1 (en) Electrolyte membrane
WO2023238394A1 (en) Nitride semiconductor photoelectrode
WO2024116358A1 (en) Semiconductor photoelectrode
WO2023095193A1 (en) Porous electrode–supporting electrolyte membrane and method for producing porous electrode–supporting electrolyte membrane
WO2024116235A1 (en) Gas phase reduction apparatus for carbon dioxide
WO2023095201A1 (en) Porous electrode-supporting electrolyte membrane and production method for porous electrode-supporting electrolyte membrane
US20240124996A1 (en) Carbon Dioxide Gas-Phase Reduction Device And Carbon Dioxide Gas-Phase Reduction Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R150 Certificate of patent or registration of utility model

Ref document number: 7273346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150