WO2023233590A1 - Reduction electrode, and method for producing reduction electrode - Google Patents

Reduction electrode, and method for producing reduction electrode Download PDF

Info

Publication number
WO2023233590A1
WO2023233590A1 PCT/JP2022/022337 JP2022022337W WO2023233590A1 WO 2023233590 A1 WO2023233590 A1 WO 2023233590A1 JP 2022022337 W JP2022022337 W JP 2022022337W WO 2023233590 A1 WO2023233590 A1 WO 2023233590A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction
reduction electrode
electrode
carbon dioxide
tank
Prior art date
Application number
PCT/JP2022/022337
Other languages
French (fr)
Japanese (ja)
Inventor
晃洋 鴻野
裕也 渦巻
紗弓 里
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/022337 priority Critical patent/WO2023233590A1/en
Publication of WO2023233590A1 publication Critical patent/WO2023233590A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/21Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide

Definitions

  • the present invention relates to a reduction electrode and a method for manufacturing a reduction electrode.
  • Non-Patent Document 1 discloses an apparatus for reducing carbon dioxide by light irradiation.
  • the oxidation electrode When the oxidation electrode is irradiated with light, electron-hole pairs are generated and separated at the oxidation electrode, and oxygen and protons (H + ) are generated by the oxidation reaction of water in the electrolyte. Protons pass through the electrolyte membrane and reach the reduction tank, and electrons flow to the reduction electrode via the conductor.
  • a reduction reaction of carbon dioxide by protons, electrons, and carbon dioxide dissolved in the solution is caused at a reduction electrode in the solution. This reduction reaction produces carbon monoxide, formic acid, methane, etc. that can be used as energy resources.
  • carbon dioxide was supplied to the reduction electrode by immersing the reduction electrode in a solution and dissolving carbon dioxide in the solution.
  • the reduction electrode is immersed in the solution, so there are limits to the dissolved concentration of carbon dioxide in the solution and the diffusion coefficient of carbon dioxide in the solution. supply is limited.
  • Non-Patent Document 2 by using a reduction tank configured to directly supply gaseous carbon dioxide to the reduction electrode, the amount of carbon dioxide supplied to the reduction electrode is increased and the reduction reaction of carbon dioxide is promoted. ing.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technology that can improve the efficiency of the reduction reaction of carbon dioxide.
  • a reduction electrode according to one embodiment of the present invention is arranged in contact with the reduction tank side of an electrolyte membrane installed between an oxidation tank and a reduction tank, and performs a reduction reaction of carbon dioxide by direct contact with the reduction electrode.
  • a reduction electrode used in a carbon reduction device is provided with an uneven structure and void holes on the reduction tank side, and the uneven structure is provided with a water repellent agent capable of causing liquid adhering to the surface to slide off.
  • a method for manufacturing a reduction electrode includes a step of forming an uneven structure and voids in a reduction electrode, and adding a solvent to a solvent containing a water repellent to the reduction electrode. a step of drying the reduction electrode to remove the solvent; and a step of removing a water-repellent layer around the pores of the reduction electrode.
  • a method for manufacturing a reduction electrode according to one aspect of the present invention includes the steps of forming an uneven structure and voids in the reduction electrode, and placing the reduction electrode and a water repellent in a container. and a step of removing the water-repellent layer around the pores of the reduction electrode.
  • a method for manufacturing a reduction electrode according to one aspect of the present invention includes a step of forming an uneven structure and voids in a reduction electrode, and adding a solvent to a solvent containing a water repellent to the reduction electrode. and a step of drying the reduction electrode and removing the solvent.
  • the carbon dioxide reduction reaction efficiency can be improved.
  • FIG. 1 is a diagram showing a configuration example of a carbon dioxide reduction device according to a first embodiment.
  • FIG. 2 is a diagram (bottom view of FIG. 1) showing a configuration example of a reduction electrode, a water-repellent membrane, and a void hole.
  • FIG. 3 is a diagram (right side of FIG. 1) showing a configuration example of a reduction electrode, a water-repellent membrane, and a void hole.
  • FIG. 4 is a diagram showing a first method of manufacturing a reduction electrode and a water-repellent film.
  • FIG. 5 is a diagram showing a second method for manufacturing a reduction electrode and a water-repellent film.
  • FIG. 6 is a diagram showing a third method of manufacturing a reduction electrode and a water-repellent film.
  • FIG. 7 is a diagram showing the measurement results of the faradaic efficiency of formic acid according to the first embodiment.
  • FIG. 8 is a diagram showing an example of the configuration of a carbon dioxide reduction device according to the second embodiment.
  • FIG. 9 is a diagram showing the measurement results of the faradaic efficiency of formic acid according to the second embodiment.
  • FIG. 1 is a diagram showing a configuration example of a carbon dioxide reduction device 100 according to the first embodiment.
  • the carbon dioxide reduction device 100 includes an oxidizing electrode 1, an oxidizing tank 2, an electrolytic solution 3, a reducing electrode 4, a reducing tank 5, an electrolyte membrane 6, a conductive wire 7, and a light source 8. and a water-repellent film 9.
  • the oxidation electrode 1 is immersed in an electrolyte 3 in an oxidation tank 2.
  • the oxidized electrode 1 is formed by forming a semiconductor on a substrate having a predetermined area.
  • the oxidized electrode 1 is formed, for example, by forming a film of a compound exhibiting photoactivity or redox activity, such as a nitride semiconductor, titanium oxide, amorphous silicon, ruthenium complex, or rhenium complex, on the surface of a sapphire substrate.
  • the oxidation tank 2 holds an electrolytic solution 3 in which the oxidation electrode 1 is immersed.
  • the electrolytic solution 3 is placed in the oxidation tank 2.
  • the electrolytic solution 3 is, for example, a potassium hydrogen carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a potassium chloride aqueous solution, a sodium chloride aqueous solution, a potassium hydroxide aqueous solution, a rubidium hydroxide aqueous solution, or a cesium hydroxide aqueous solution.
  • the reduction electrode 4 is arranged within the reduction tank 5. Like the oxidation electrode 1, the reduction electrode 4 is formed on a substrate having a predetermined area.
  • the reduction electrode 4 is, for example, a porous body of copper, platinum, gold, silver, indium, palladium, gallium, nickel, tin, cadmium, or an alloy thereof.
  • the reduction electrode 4 is made of compounds such as silver oxide, copper oxide, copper (II) oxide, nickel oxide, indium oxide, tin oxide, tungsten oxide, tungsten (VI) oxide, copper oxide, etc., and metal ions and anionic coordination. It may also be a porous metal complex having children.
  • the reduction tank 5 has the reduction electrode 4 disposed therein, and holds gaseous carbon dioxide supplied from the outside via piping.
  • the electrolyte membrane 6 is placed between the oxidation tank 2 and the reduction tank 5. To be precise, the electrolyte membrane 6 is arranged between the electrolytic solution 3 and the reduction electrode 4 so as to be in contact with each other.
  • the electrolyte membrane 6 is, for example, Nafion (registered trademark), ForeBlue, or Aquivion, which are electrolyte membranes with a carbon-fluorine skeleton, Selemion, or Neocepta, which are electrolyte membranes with a carbon-hydrogen skeleton.
  • the conducting wire 7 physically and electrically connects the oxidation electrode 1 and the reduction electrode 4.
  • the light source 8 is placed close to the oxidation tank 2.
  • the light source 8 is, for example, sunlight, a xenon lamp, a pseudo sunlight source, a halogen lamp, a mercury lamp, or a combination of these.
  • the reduction electrode 4 and the electrolyte membrane 6 are each drawn to have a large width in the lateral direction of the paper, but the width in the lateral direction of the paper is made thinner and the electrolyte membrane 6 is drawn to have a flat width in the depth direction of the paper. It may be formed into a thin plate shape.
  • the oxidation tank 2 uses the electrolyte 3 and the semiconductor oxidation electrode 1 immersed in the electrolyte 3 to oxidize the electrolyte 3 using the irradiated light (light energy) from the light source 8.
  • a water oxidation reaction takes place.
  • a reduction reaction of carbon dioxide is performed using the reduction electrode 4 connected to the oxidation electrode 1 via a conductor 7 and carbon dioxide brought into direct contact with the reduction electrode 4.
  • a reduction reaction of carbon dioxide is caused at the reduction electrode 4 by protons, electrons, and gaseous carbon dioxide brought into direct contact with the reduction electrode 4 .
  • This redox reaction produces carbon monoxide, formic acid, methane, etc. that can be used as energy resources.
  • a strong alkaline aqueous solution for example, a 1.0 mol/L sodium hydroxide aqueous solution
  • the electrolyte membrane 6 will swell, and the electrolyte 3 will pore in the pores of the electrolyte membrane 6. and oozes out onto the surface of the reduction electrode 4 in the reduction tank 5.
  • the surface of the electrolyte membrane 6 on the side of the oxidation tank 2 that comes into contact with the electrolyte solution 3 may be treated with water repellency.
  • a reduction electrode 4 with void holes 10 is arranged on the surface of the electrolyte membrane 6 on the reduction tank 5 side, and the protrusions of the reduction electrode 4 are water-repellent.
  • a membrane 9 is placed.
  • the reduction electrode 4 is provided with an uneven structure (for example, a structure with a plurality of cones on the main surface of a flat plate) on the reduction tank 5 side.
  • a water-repellent film 9 is provided at the bottom of the recess, and a void hole 10 is provided at the bottom of the recess so as not to cover the entire surface of the electrolyte membrane 6 on the reduction tank 5 side.
  • the pores 10 are provided, and the protons on the surface of the electrolyte membrane 6 are formed in a portion having an uneven structure and having a function of letting water slide down, and in a portion where the pores 10 and the electrolyte membrane 6 are in contact.
  • a structure was fabricated to separate the part where carbon dioxide in the reduction tank 5 and electrons in the reduction electrode 4 react.
  • a structure was provided in which a water-repellent film 9 was formed on the convex portion to encourage the movement of water from the electrolyte membrane 6 to the reduction tank 5.
  • the water-repellent film 9 covers the entire surface of the reduction electrode 4, the carbon dioxide in the reduction tank 5 cannot directly react with the electrons in the reduction electrode 4 at the interface of the electrolyte membrane 6. It is necessary that the water-repellent film 9 is not provided in the area where the film 6 contacts.
  • Examples of methods for producing the reduction electrode 4 having the void holes 10 include commercially available casting methods, powder metallurgy, modeling using a metal 3D printer, and processing using a high-power laser.
  • Examples of the water repellent treatment for manufacturing the water repellent film 9 include a liquid phase method and a gas phase method.
  • the object is immersed in a fluorine-based solvent in which a fluorine-based polymer, which is a water repellent, is dissolved, using a method such as dip coating, and then the solvent is removed by heating the object.
  • a fluorine-based polymer which is a water repellent
  • the solvent is removed by heating the object.
  • This is a method to precipitate fluorine-based polymers.
  • the target object and a fluorine-based low molecule (silane coupling agent) that is a water repellent are placed in the same closed space, the fluorine-based low molecule is heated to steam, and then vaporized onto the surface of the target object. This is a method to do so.
  • the entire surface of the reduction electrode 4 is covered with a water repellent, and the carbon dioxide in the reduction tank 5 and the electrons in the reduction electrode 4 cannot directly react at the interface of the electrolyte membrane 6. Therefore, it is necessary to remove the water-repellent film 9 on the contact surface between the pores 10 and the electrolyte membrane 6 using a high-power laser or the like.
  • a fluorine-based polymer or a fluorine-based low molecule is dissolved in a fluorine-based solvent, and the uneven surface of the reduction electrode 4 is brought into contact with the solvent.
  • the water-repellent film 9 is deposited on the uneven surface by drying the surface and removing the solvent. Since a fluorine-based solvent has a lower surface tension than water, even if the uneven surface of the reduction electrode 4 is brought into contact with the fluorine-based solvent, the fluorine-based solvent does not penetrate into the void pores 10 due to capillary action. Therefore, the water-repellent film 9 can be more easily formed only on the uneven surface due to the low surface tension characteristic of the fluorine-based solvent.
  • FIG. 4 is a diagram showing the first manufacturing method of the reduction electrode 4 and the water-repellent film 9.
  • the first manufacturing method is a method for manufacturing the reduction electrode 4 and the water-repellent film 9 using the first liquid phase method.
  • the concavo-convex structure had a cylindrical shape with a diameter of 10 ⁇ m and a height of 20 ⁇ m, and the voids had a diameter of 10 ⁇ m.
  • the intervals between the concavo-convex structure and the void holes were equal, and the pitch was 15 ⁇ m.
  • a close-packed point structure was formed, and the ratio of the concavo-convex structure to the voids was 1:3 (first step S101).
  • Optool DSX was used as the water repellent.
  • step S102 After the reduction electrode was immersed in the Optool DSX solution for 1 minute (second step S102), dip coating was performed by pulling it up and drying it (third step S103). Through this step, a water-repellent film can be formed over the entire surface of the reduction electrode. Thereafter, the outer periphery of the void hole was traced using a high-power laser, and the water-repellent film 9 was removed by thermal decomposition (fourth step S104).
  • FIG. 5 is a diagram showing a second manufacturing method of the reduction electrode 4 and the water-repellent film 9.
  • the second manufacturing method is a method of manufacturing the reduction electrode 4 and the water-repellent film 9 by the first method of vapor phase method.
  • the concavo-convex structure had a cylindrical shape with a diameter of 10 ⁇ m and a height of 20 ⁇ m, and the voids had a diameter of 10 ⁇ m.
  • the intervals between the concavo-convex structure and the void holes were equal, and the pitch was 15 ⁇ m.
  • a close-packed point structure was formed, and the ratio of the concavo-convex structure to the voids was 1:3 (first step S201).
  • a fluorine-based silane coupling agent for example, heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane
  • a reduction electrode and a water repellent were placed in a Teflon container, the container was sealed, and the container was placed in an oven and heated at 150° C. (second step S202).
  • the water repellent agent evaporates and a water repellent film can be formed over the entire surface of the reduction electrode.
  • the outer periphery of the void hole was traced using a high-power laser, and the water-repellent film 9 was removed by thermal decomposition (third step S203).
  • FIG. 6 is a diagram showing a third manufacturing method of the reduction electrode 4 and the water-repellent film 9.
  • the third manufacturing method is a method for manufacturing the reduction electrode 4 and the water-repellent film 9 using the second liquid phase method.
  • the concavo-convex structure had a cylindrical shape with a diameter of 10 ⁇ m and a height of 20 ⁇ m, and the voids had a diameter of 10 ⁇ m.
  • the intervals between the concavo-convex structure and the void holes were equal, and the pitch was 15 ⁇ m.
  • a close-packed point structure was formed, and the ratio of the concavo-convex structure to the voids was 1:3 (first step S301).
  • Optool DSX was used as the water repellent.
  • GaN gallium nitride
  • AlGaN aluminum gallium nitride
  • Ni nickel oxide
  • a promoter thin film of nickel oxide (NiO) was formed. Then, the promoter thin film was used as an oxidation electrode 1, and the oxidation electrode 1 was immersed in an electrolytic solution 3 of a 1.0 mol/L potassium hydroxide aqueous solution in an oxidation tank 2.
  • the reduction electrode 4 manufactured by the above manufacturing method was brought into close contact with the electrolyte membrane 6 by thermocompression bonding. Although a thermocompression bonding method was used in this embodiment, other methods may be used as long as the reduction electrode 4 and the electrolyte membrane 6 are in close physical contact.
  • the reduction electrode 4 was connected to the oxidation electrode 1 with a conducting wire 7, and the reduction electrode 4 was placed in a reduction tank 5.
  • Nafion was used for the electrolyte membrane 6 that physically separates the oxidation tank 2 and the reduction tank 5.
  • the electrolyte membrane 6 that physically separates the oxidation tank 2 and the reduction tank 5.
  • one side on which the water-repellent membrane 9 was formed was placed facing into the reduction tank 5, and the other side having the voids was placed in contact with the electrolyte membrane 6.
  • a 300W xenon lamp was used as the light source 8. Wavelengths of 450 nm or more were cut with a filter, and the illuminance was set to 6.6 mW/cm 2 .
  • the irradiation surface of the oxidation electrode 1 was 2.5 cm 2 .
  • nitrogen and carbon dioxide were supplied to the oxidation tank 2 and the reduction tank 5 at a flow rate of 5 ml/min and a pressure of 0.5 MPa, respectively. Nitrogen bubbling into the oxidation tank 2 was performed for the purpose of analyzing reaction products. The insides of the oxidation tank 2 and the reduction tank 5 were sufficiently replaced with nitrogen and carbon dioxide, respectively, and light was irradiated from the light source 8. Thereafter, a reduction reaction of carbon dioxide proceeded on the surface of the copper porous body serving as the reduction electrode 4.
  • the current flowing between the oxidation electrode 1 and the reduction electrode 4 due to the irradiation light was measured using an electrochemical measuring device (Model 1287 potentiogalvanostat manufactured by Solartron). Further, gas and liquid generated in the oxidation tank 2 and the reduction tank 5 were collected, and reaction products were analyzed using a gas chromatograph, a liquid chromatograph, and a gas chromatograph mass spectrometer.
  • the effect of the water-repellent film 9 formed on the surface of the reduction electrode 4 was investigated by determining the Faraday efficiency of the carbon dioxide reduction reaction. Note that a method for calculating the Faraday efficiency of the carbon dioxide reduction reaction will be described later.
  • Example 1 the reduction electrode 4 and water-repellent film 9 manufactured by the first manufacturing method were used.
  • Example 2 the reduction electrode 4 and water-repellent film 9 manufactured by the second manufacturing method were used.
  • Example 3 the reduction electrode 4 and water-repellent film 9 manufactured by the third manufacturing method were used.
  • FIG. 7 is a diagram showing the measurement results of the faradaic efficiency of formic acid according to the first embodiment.
  • Comparative Example 1 which does not have an uneven structure, the Faraday efficiency decreased after 50 hours.
  • Comparative Example 2 in which the water-repellent film 9 was not formed, the Faraday efficiency decreased after 50 hours.
  • Examples 1 to 3 in which the uneven structure and the water-repellent film 9 were formed, the Faraday efficiency did not decrease even after 50 hours.
  • the Faraday efficiency of carbon dioxide indicates the ratio of the number of electrons used in the carbon dioxide reduction reaction to the number of electrons transferred between the oxidation electrode 1 and the reduction electrode 4 due to light irradiation or the application of current and voltage. , can be calculated using equation (1).
  • Faraday efficiency ⁇ number of electrons in reduction reaction ⁇ / ⁇ number of electrons transferred between electrodes ⁇ ...(1)
  • the "number of electrons for the reduction reaction" in equation (1) is determined by converting the measured value of the cumulative production amount of the reduction product of carbon dioxide into the number of electrons required for the production reaction. For example, when the reduction product is a gas, "the number of electrons in the reduction reaction" can be calculated using equation (2).
  • A is the concentration (ppm) of the reduction reaction product.
  • B is the flow rate (L/sec) of carrier gas.
  • Z is the number of electrons required for the reduction reaction.
  • F Faraday constant (C/mol).
  • T is the light irradiation time or the current/voltage application time (sec).
  • V g is the molar volume of the gas (L/mol).
  • the "number of electrons in the reduction reaction" when the reduction product is a liquid can be calculated using equation (3).
  • C C x V l x Z x F... (3)
  • C concentration (mol/L) of the reduction reaction product.
  • V l is the volume of the liquid sample (L).
  • Z is the number of electrons required for the reduction reaction.
  • F is Faraday constant (C/mol).
  • the first embodiment has been described above. According to the carbon dioxide reduction device 100 according to the first embodiment, it is possible to provide a carbon dioxide reduction device 100 that allows the carbon dioxide reduction reaction to proceed without reducing Faraday efficiency.
  • the oxidation tank 2 performs an oxidation reaction of water using the irradiation light from the light source 8 using the electrolytic solution 3 and the semiconductor oxidizing electrode 1 immersed in the electrolytic solution 3, and the conducting wire is connected to the oxidizing electrode 1.
  • the carbon dioxide reduction device 100 which includes an electrolyte membrane 6 disposed between and in contact with the reduction electrode 4, an electrolyte membrane 6 disposed in contact with the electrolyte membrane 6 on the reduction tank 5 side, and an electrolyte membrane 6 disposed on the reduction tank 5 side. It has an uneven structure and voids 10, and the uneven structure has a water-repellent film 9 that can slide off liquid adhering to the surface.
  • the water-repellent film 9 provided on the uneven structure surface of the reduction electrode 4 the liquid on the surface of the reduction electrode 4, which is the result of the electrolytic solution 3 in the oxidation tank 2 seeping out to the outside of the electrolyte membrane 6, moves to the uneven structure surface. Water droplets on the surface of the uneven structure slide down due to the lotus effect, so that the reaction sites of the reduction electrode 4 are not filled with the electrolyte 3. As a result, the reduction reaction of carbon dioxide can proceed, and a decrease in the efficiency of the reduction reaction can be suppressed.
  • FIG. 8 is a diagram showing a configuration example of the carbon dioxide reduction device 100 according to the second embodiment.
  • Oxidation electrode 1 is platinum.
  • the oxidation electrode 1 may be made of gold or silver, for example.
  • the external power source 11 is an electrochemical measuring device, and is connected in series to the conductive wire 7 connecting the oxidation electrode 1 and the reduction electrode 4.
  • the power supply 11 may be any other power supply device.
  • Other components are the same as in the first embodiment.
  • the oxidation tank 2 uses the electrolyte 3 and the platinum (metal) oxidation electrode 1 immersed in the electrolyte 3 to generate current and voltage (electrical energy) from the power source 11. This causes an oxidation reaction of water in the electrolytic solution 3.
  • a reduction reaction of carbon dioxide is performed using the reduction electrode 4 connected to a power source 11 (a source of electrical energy) and carbon dioxide brought into direct contact with the reduction electrode 4.
  • the reduction electrode 4 is placed in contact with the electrolyte membrane 6 on the reduction tank 5 side, and is provided with an uneven structure and void holes 10 on the reduction tank 5 side.
  • the uneven structure includes a water-repellent film 9 that can slide off liquid adhering to the surface.
  • the first to third manufacturing methods are used as in the first embodiment.
  • FIG. 9 is a diagram showing the measurement results of the faradaic efficiency of formic acid according to the second embodiment.
  • Examples using the same reduction electrode 4 as Examples 1 to 3 described in the first embodiment are referred to as Examples 4 to 6.
  • a reduction electrode 4 having a columnar uneven structure having a height of 0 ⁇ m, that is, a reduction electrode 4 having no uneven structure was used in the manufacturing method described in the first manufacturing method.
  • the reduction electrode 4 on which the water-repellent film 9 was not formed was used in the manufacturing method described in the first manufacturing method.
  • the second embodiment has been described above. According to the carbon dioxide reduction device 100 according to the second embodiment, it is possible to provide a carbon dioxide reduction device 100 that allows the carbon dioxide reduction reaction to proceed without reducing Faraday efficiency.
  • an oxidation tank 2 performs an oxidation reaction of water using a current voltage from a power source 11 using an electrolytic solution 3 and a platinum (metal) oxidizing electrode 1 immersed in the electrolytic solution 3;
  • a reduction tank 5 that performs a reduction reaction of carbon dioxide using a reduction electrode 4 connected to the oxidation tank 4 and carbon dioxide brought into direct contact with the reduction electrode 4, an electrolytic solution 3 in the oxidation tank 2, and a reduction electrode 4 in the reduction tank 5.
  • an electrolyte membrane 6 disposed in contact with the electrolyte membrane 6 on the reduction tank 5 side, and an uneven structure on the reduction tank 5 side.
  • the uneven structure includes a water-repellent film 9 that can slide off liquid adhering to the surface.
  • the water-repellent film 9 provided on the uneven structure surface of the reduction electrode 4 the liquid on the surface of the reduction electrode 4, which is the result of the electrolytic solution 3 in the oxidation tank 2 seeping out to the outside of the electrolyte membrane 6, moves to the uneven structure surface. Water droplets on the surface of the uneven structure slide down due to the lotus effect, so that the reaction sites of the reduction electrode 4 are not filled with the electrolyte 3. As a result, the reduction reaction of carbon dioxide can proceed, and a decrease in the efficiency of the reduction reaction can be suppressed.
  • the present invention can be widely used in fields related to carbon dioxide recycling. Although optical energy was used in the first embodiment and electrical energy was used in the second embodiment, other renewable energy may be used. It is also possible to combine the first embodiment and the second embodiment.
  • the electrolytic solution 3 in the oxidation tank 2 and the reduction electrode 4 in the reduction tank 5 are placed in contact with each other, and the reduction reaction of carbon dioxide is carried out by directly contacting the reduction electrode 4 with carbon dioxide.
  • Any electrolyte membrane can be used as long as it is the electrolyte membrane 6 used in the carbon dioxide reduction apparatus 100.
  • Oxidation electrode 2 Oxidation tank 3: Electrolyte solution 4: Reduction electrode 5: Reduction tank 6: Electrolyte membrane 7: Conductive wire 8: Light source 9: Water-repellent membrane 10: Pore 11: Power source 100: Carbon dioxide reduction device

Abstract

This reduction electrode 4 used in a carbon dioxide reduction device 100 which is disposed in contact with a reduction tank 5 side of an electrolyte membrane 6 disposed between an oxidation tank 2 and a reduction tank 5 and which performs a reduction reaction of carbon dioxide by bringing carbon dioxide into direct contact therewith, wherein a recessed and projected structure and voids 10 are provided on the reduction tank side and the recessed and projected structure is provided with a water repellent agent 9 capable of causing liquid adhering to the surface to slide down.

Description

還元電極、及び、還元電極の製造方法Reduction electrode and method for manufacturing the reduction electrode
 本発明は、還元電極、及び、還元電極の製造方法に関する。 The present invention relates to a reduction electrode and a method for manufacturing a reduction electrode.
 地球温暖化の主因として大気中の二酸化炭素濃度の増加が挙げられている。二酸化炭素の排出量の削減は、世界的規模で長期的な課題になっている。一方、エネルギー問題として中長期的に、化石燃料に頼ったエネルギー供給の見直しが迫られ、次世代のエネルギー供給源の創出が求められている。 An increase in the concentration of carbon dioxide in the atmosphere is cited as the main cause of global warming. Reducing carbon dioxide emissions has become a long-term challenge on a global scale. On the other hand, in the medium to long term, energy issues require a review of the energy supply that relies on fossil fuels, and the creation of next-generation energy supply sources is required.
 二酸化炭素の排出を抑制してエネルギーを得る手段としては、排熱、雪氷熱、振動、電磁波等の未使用エネルギーや太陽光等の再生可能エネルギーを活用する技術開発が進められている。これらの発電技術は、電気エネルギーを創出するに留まり、エネルギーを貯蓄できない。また、化石燃料を原料とした化学製品を創ることもできない。 As a means to obtain energy while suppressing carbon dioxide emissions, technological development is underway to utilize unused energy such as waste heat, snow and ice heat, vibration, and electromagnetic waves, as well as renewable energy such as sunlight. These power generation technologies only create electrical energy and cannot store energy. Furthermore, it is not possible to create chemical products using fossil fuels as raw materials.
 これらの課題を同時に解決する方法として、光エネルギーを用いて二酸化炭素を還元する技術が注目されている。例えば、非特許文献1は、光照射による二酸化炭素の還元装置を開示している。酸化槽では、酸化電極に光が照射されると、その酸化電極で電子・正孔対の生成及び分離が生じ、電解液内の水の酸化反応により酸素及びプロトン(H)が生成する。プロトンは電解質膜を通過して還元槽に到達し、電子は導線を介して還元電極に流れる。還元槽では、溶液内の還元電極で、プロトンと電子と溶液に溶解した二酸化炭素とによる二酸化炭素の還元反応が引き起こされる。この還元反応により、エネルギー資源として利用できる一酸化炭素、ギ酸、及びメタン等が生成される。 As a way to simultaneously solve these problems, technology that reduces carbon dioxide using light energy is attracting attention. For example, Non-Patent Document 1 discloses an apparatus for reducing carbon dioxide by light irradiation. In the oxidation tank, when the oxidation electrode is irradiated with light, electron-hole pairs are generated and separated at the oxidation electrode, and oxygen and protons (H + ) are generated by the oxidation reaction of water in the electrolyte. Protons pass through the electrolyte membrane and reach the reduction tank, and electrons flow to the reduction electrode via the conductor. In the reduction tank, a reduction reaction of carbon dioxide by protons, electrons, and carbon dioxide dissolved in the solution is caused at a reduction electrode in the solution. This reduction reaction produces carbon monoxide, formic acid, methane, etc. that can be used as energy resources.
 非特許文献1の二酸化炭素還元装置では、還元電極を溶液に浸漬させ、二酸化炭素を当該溶液中に溶解することで、二酸化炭素を還元電極へ供給していた。しかしながら、この二酸化炭素の還元方法では、還元電極が溶液に浸漬しているため、溶液での二酸化炭素の溶解濃度や溶液中での二酸化炭素の拡散係数に限界があり、二酸化炭素の還元電極への供給量が制限される。 In the carbon dioxide reduction device of Non-Patent Document 1, carbon dioxide was supplied to the reduction electrode by immersing the reduction electrode in a solution and dissolving carbon dioxide in the solution. However, in this carbon dioxide reduction method, the reduction electrode is immersed in the solution, so there are limits to the dissolved concentration of carbon dioxide in the solution and the diffusion coefficient of carbon dioxide in the solution. supply is limited.
 そこで、二酸化炭素の還元電極への供給量を増加させるため、還元槽内の溶液を排除し、二酸化炭素を還元電極へ直接供給する研究が進められている。非特許文献2では、還元電極に対して気相の二酸化炭素を直接供給する構造の還元槽を用いることで、二酸化炭素の還元電極への供給量を増大させ、二酸化炭素の還元反応を促進させている。 Therefore, in order to increase the amount of carbon dioxide supplied to the reduction electrode, research is underway to eliminate the solution in the reduction tank and directly supply carbon dioxide to the reduction electrode. In Non-Patent Document 2, by using a reduction tank configured to directly supply gaseous carbon dioxide to the reduction electrode, the amount of carbon dioxide supplied to the reduction electrode is increased and the reduction reaction of carbon dioxide is promoted. ing.
 しかしながら、還元反応が進行すると、還元電極の反応表面において、二酸化炭素の還元生成物が生成し、気体である水素、一酸化炭素、メタンだけでなく、液体であるギ酸、メタノール、エタノール等も生成する。また、時間経過に伴い、酸化槽内の電解液が電解質膜を通過して還元槽に徐々に滲出する。そのため、これらの液体で還元電極の反応表面(反応サイト)が被覆されてしまい、二酸化炭素の還元反応が進行しなくなる。それゆえ、従来の二酸化炭素還元装置は、数十時間で二酸化炭素の還元反応効率が低下するという課題があった。 However, as the reduction reaction progresses, reduction products of carbon dioxide are generated on the reaction surface of the reduction electrode, and not only gases such as hydrogen, carbon monoxide, and methane, but also liquids such as formic acid, methanol, and ethanol are generated. do. Moreover, as time passes, the electrolytic solution in the oxidation tank passes through the electrolyte membrane and gradually leaks into the reduction tank. Therefore, the reaction surface (reaction site) of the reduction electrode is coated with these liquids, and the reduction reaction of carbon dioxide does not proceed. Therefore, the conventional carbon dioxide reduction apparatus has a problem in that the efficiency of the carbon dioxide reduction reaction decreases after several tens of hours.
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、二酸化炭素の還元反応効率を改善可能な技術を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technology that can improve the efficiency of the reduction reaction of carbon dioxide.
 本発明の一態様の還元電極は、酸化槽と還元槽との間に設置された電解質膜の還元槽側に接触して配置され、二酸化炭素を直接接触させて二酸化炭素の還元反応を行う二酸化炭素還元装置に用いられる還元電極において、前記還元槽側に凹凸構造および空隙孔を備え、前記凹凸構造は表面に付着する液体を滑落させることのできる撥水剤を備える。 A reduction electrode according to one embodiment of the present invention is arranged in contact with the reduction tank side of an electrolyte membrane installed between an oxidation tank and a reduction tank, and performs a reduction reaction of carbon dioxide by direct contact with the reduction electrode. A reduction electrode used in a carbon reduction device is provided with an uneven structure and void holes on the reduction tank side, and the uneven structure is provided with a water repellent agent capable of causing liquid adhering to the surface to slide off.
 本発明の一態様の還元電極の製造方法は、上記還元電極を製造する還元電極の製造方法において、還元電極に凹凸構造および空隙孔を形成する工程と、撥水剤を含む溶媒に前記還元電極を浸漬する工程と、前記還元電極を乾燥し前記溶媒を除去する工程と、前記還元電極の空隙孔周囲の撥水層を除去する工程と、を行う。 A method for manufacturing a reduction electrode according to one aspect of the present invention includes a step of forming an uneven structure and voids in a reduction electrode, and adding a solvent to a solvent containing a water repellent to the reduction electrode. a step of drying the reduction electrode to remove the solvent; and a step of removing a water-repellent layer around the pores of the reduction electrode.
 本発明の一態様の還元電極の製造方法は、上記還元電極を製造する還元電極の製造方法において、還元電極に凹凸構造および空隙孔を形成する工程と、前記還元電極と撥水剤を容器に入れて加熱する工程と、前記還元電極の空隙孔周囲の撥水層を除去する工程と、を行う。 A method for manufacturing a reduction electrode according to one aspect of the present invention includes the steps of forming an uneven structure and voids in the reduction electrode, and placing the reduction electrode and a water repellent in a container. and a step of removing the water-repellent layer around the pores of the reduction electrode.
 本発明の一態様の還元電極の製造方法は、上記還元電極を製造する還元電極の製造方法において、還元電極に凹凸構造および空隙孔を形成する工程と、撥水剤を含む溶媒に前記還元電極の凹凸構造を触れさせる工程と、前記還元電極を乾燥し前記溶媒を除去する工程と、を行う。 A method for manufacturing a reduction electrode according to one aspect of the present invention includes a step of forming an uneven structure and voids in a reduction electrode, and adding a solvent to a solvent containing a water repellent to the reduction electrode. and a step of drying the reduction electrode and removing the solvent.
 本発明によれば、二酸化炭素の還元反応効率を改善できる。 According to the present invention, the carbon dioxide reduction reaction efficiency can be improved.
図1は、第1実施形態に係る二酸化炭素還元装置の構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a carbon dioxide reduction device according to a first embodiment. 図2は、還元電極、撥水膜、空隙孔の構成例を示す図(図1の底面図)である。FIG. 2 is a diagram (bottom view of FIG. 1) showing a configuration example of a reduction electrode, a water-repellent membrane, and a void hole. 図3は、還元電極、撥水膜、空隙孔の構成例を示す図(図1の右側面)である。FIG. 3 is a diagram (right side of FIG. 1) showing a configuration example of a reduction electrode, a water-repellent membrane, and a void hole. 図4は、還元電極及び撥水膜の第1製造方法を示す図である。FIG. 4 is a diagram showing a first method of manufacturing a reduction electrode and a water-repellent film. 図5は、還元電極及び撥水膜の第2製造方法を示す図である。FIG. 5 is a diagram showing a second method for manufacturing a reduction electrode and a water-repellent film. 図6は、還元電極及び撥水膜の第3製造方法を示す図である。FIG. 6 is a diagram showing a third method of manufacturing a reduction electrode and a water-repellent film. 図7は、第1実施形態に係るギ酸のファラデー効率の測定結果を示す図である。FIG. 7 is a diagram showing the measurement results of the faradaic efficiency of formic acid according to the first embodiment. 図8は、第2実施形態に係る二酸化炭素還元装置の構成例を示す図である。FIG. 8 is a diagram showing an example of the configuration of a carbon dioxide reduction device according to the second embodiment. 図9は、第2実施形態に係るギ酸のファラデー効率の測定結果を示す図である。FIG. 9 is a diagram showing the measurement results of the faradaic efficiency of formic acid according to the second embodiment.
 以下、図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals and explanations will be omitted.
 [第1実施形態]
 図1は、第1実施形態に係る二酸化炭素還元装置100の構成例を示す図である。二酸化炭素還元装置100は、図1に示すように、酸化電極1と、酸化槽2と、電解液3と、還元電極4と、還元槽5と、電解質膜6と、導線7と、光源8と、撥水膜9と、を備える。
[First embodiment]
FIG. 1 is a diagram showing a configuration example of a carbon dioxide reduction device 100 according to the first embodiment. As shown in FIG. 1, the carbon dioxide reduction device 100 includes an oxidizing electrode 1, an oxidizing tank 2, an electrolytic solution 3, a reducing electrode 4, a reducing tank 5, an electrolyte membrane 6, a conductive wire 7, and a light source 8. and a water-repellent film 9.
 酸化電極1は、酸化槽2内の電解液3に浸漬されている。酸化電極1は、所定の面積を持つ基板上に半導体を形成することで形成される。酸化電極1は、例えば、サファイア基板の表面上に、窒化物半導体、酸化チタン、アモルファスシリコン、ルテニウム錯体やレニウム錯体等の光活性やレドックス活性を示す化合物を成膜することにより、形成される。 The oxidation electrode 1 is immersed in an electrolyte 3 in an oxidation tank 2. The oxidized electrode 1 is formed by forming a semiconductor on a substrate having a predetermined area. The oxidized electrode 1 is formed, for example, by forming a film of a compound exhibiting photoactivity or redox activity, such as a nitride semiconductor, titanium oxide, amorphous silicon, ruthenium complex, or rhenium complex, on the surface of a sapphire substrate.
 酸化槽2は、酸化電極1が浸漬される電解液3を保持する。 The oxidation tank 2 holds an electrolytic solution 3 in which the oxidation electrode 1 is immersed.
 電解液3は、酸化槽2内に入れられている。電解液3は、例えば、炭酸水素カリウム水溶液、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液、水酸化カリウム水溶液、水酸化ルビジウム水溶液、水酸化セシウム水溶液である。 The electrolytic solution 3 is placed in the oxidation tank 2. The electrolytic solution 3 is, for example, a potassium hydrogen carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a potassium chloride aqueous solution, a sodium chloride aqueous solution, a potassium hydroxide aqueous solution, a rubidium hydroxide aqueous solution, or a cesium hydroxide aqueous solution.
 還元電極4は、還元槽5内に配置されている。還元電極4は、酸化電極1と同様に所定の面積を持つ基板上に形成される。還元電極4は、例えば、銅、白金、金、銀、インジウム、パラジウム、ガリウム、ニッケル、錫、カドミウム、それらの合金の多孔質体である。その他、還元電極4は、酸化銀、酸化銅、酸化銅(II)、酸化ニッケル、酸化インジム、酸化錫、酸化タングステン、酸化タングステン(VI)、酸化銅等の化合物、金属イオンとアニオン性配位子を有する多孔質金属錯体でもよい。 The reduction electrode 4 is arranged within the reduction tank 5. Like the oxidation electrode 1, the reduction electrode 4 is formed on a substrate having a predetermined area. The reduction electrode 4 is, for example, a porous body of copper, platinum, gold, silver, indium, palladium, gallium, nickel, tin, cadmium, or an alloy thereof. In addition, the reduction electrode 4 is made of compounds such as silver oxide, copper oxide, copper (II) oxide, nickel oxide, indium oxide, tin oxide, tungsten oxide, tungsten (VI) oxide, copper oxide, etc., and metal ions and anionic coordination. It may also be a porous metal complex having children.
 還元槽5は、還元電極4を内部に配置し、配管を介して外部から供給される気相の二酸化炭素を保持する。 The reduction tank 5 has the reduction electrode 4 disposed therein, and holds gaseous carbon dioxide supplied from the outside via piping.
 電解質膜6は、酸化槽2と還元槽5との間に配置されている。正確には、電解質膜6は、電解液3と還元電極4との間にそれぞれに接触して配置されている。電解質膜6は、例えば、炭素-フッ素から成る骨格を持つ電解質膜であるナフィオン(登録商標)、フォアブルー、アクイビオン、炭素水素系骨格を持つ電解質膜であるセレミオン、ネオセプタである。 The electrolyte membrane 6 is placed between the oxidation tank 2 and the reduction tank 5. To be precise, the electrolyte membrane 6 is arranged between the electrolytic solution 3 and the reduction electrode 4 so as to be in contact with each other. The electrolyte membrane 6 is, for example, Nafion (registered trademark), ForeBlue, or Aquivion, which are electrolyte membranes with a carbon-fluorine skeleton, Selemion, or Neocepta, which are electrolyte membranes with a carbon-hydrogen skeleton.
 導線7は、酸化電極1と還元電極4とを物理的電気的に接続する。 The conducting wire 7 physically and electrically connects the oxidation electrode 1 and the reduction electrode 4.
 光源8は、酸化槽2に近接配置されている。光源8は、例えば、太陽光、キセノンランプ、疑似太陽光源、ハロゲンランプ、水銀ランプ、これらを組み合わせた光源である。 The light source 8 is placed close to the oxidation tank 2. The light source 8 is, for example, sunlight, a xenon lamp, a pseudo sunlight source, a halogen lamp, a mercury lamp, or a combination of these.
 図1では、還元電極4及び電解質膜6を、それぞれ、紙面の横方向で大きく幅を持つように描画したが、紙面の横方向の幅を薄くし、紙面の奥行方向に平面を持たせた薄い板状の形状にしてもよい。還元電極4と電解質膜6とを互いの平面で貼り合わせることで、その接触面の反応場を最大化できる。 In FIG. 1, the reduction electrode 4 and the electrolyte membrane 6 are each drawn to have a large width in the lateral direction of the paper, but the width in the lateral direction of the paper is made thinner and the electrolyte membrane 6 is drawn to have a flat width in the depth direction of the paper. It may be formed into a thin plate shape. By bonding the reduction electrode 4 and the electrolyte membrane 6 together in their planes, the reaction field at the contact surface can be maximized.
 上記の二酸化炭素還元装置100において、酸化槽2では、電解液3と電解液3に浸漬させた半導体の酸化電極1とを用いて光源8からの照射光(光エネルギー)により電解液3内の水の酸化反応が行われる。還元槽5では、酸化電極1に導線7を介して接続された還元電極4と還元電極4に直接接触させた二酸化炭素とを用いて二酸化炭素の還元反応が行われる。 In the above carbon dioxide reduction apparatus 100, the oxidation tank 2 uses the electrolyte 3 and the semiconductor oxidation electrode 1 immersed in the electrolyte 3 to oxidize the electrolyte 3 using the irradiated light (light energy) from the light source 8. A water oxidation reaction takes place. In the reduction tank 5, a reduction reaction of carbon dioxide is performed using the reduction electrode 4 connected to the oxidation electrode 1 via a conductor 7 and carbon dioxide brought into direct contact with the reduction electrode 4.
 具体的には、光源8が酸化槽2の底から光を照射すると、その照射光を受光した酸化槽2内の酸化電極1で電子・正孔対の生成及び分離が生じ、電解液3内の水の酸化反応により酸素及びプロトンが生成する。プロトンは、電解質膜6を通過して酸化槽2内の電解液3から還元槽5内の還元電極4に到達する。電子は、導線7を介して酸化槽2内の酸化電極1から還元槽5内の還元電極4に流れる。還元槽5では、還元電極4において、プロトンと電子と還元電極4に直接接触された気相の二酸化炭素とによる二酸化炭素の還元反応が引き起こされる。この酸化還元反応により、エネルギー資源として利用できる一酸化炭素、ギ酸、及びメタン等が生成される。 Specifically, when the light source 8 irradiates light from the bottom of the oxidation tank 2, electron-hole pairs are generated and separated at the oxidation electrode 1 in the oxidation tank 2 that receives the irradiation light, and the electrolyte solution 3 is heated. The oxidation reaction of water produces oxygen and protons. Protons pass through the electrolyte membrane 6 and reach the reduction electrode 4 in the reduction tank 5 from the electrolyte 3 in the oxidation tank 2 . Electrons flow from the oxidizing electrode 1 in the oxidizing tank 2 to the reducing electrode 4 in the reducing tank 5 via the conducting wire 7. In the reduction tank 5 , a reduction reaction of carbon dioxide is caused at the reduction electrode 4 by protons, electrons, and gaseous carbon dioxide brought into direct contact with the reduction electrode 4 . This redox reaction produces carbon monoxide, formic acid, methane, etc. that can be used as energy resources.
 このとき、酸化槽2内の電解液3として強アルカリ水溶液、例えば1.0mol/Lの水酸化ナトリウム水溶液を用いた場合、電解質膜6が膨潤し、電解液3が当該電解質膜6の細孔を通過して還元槽5内の還元電極4の表面に滲出する。このような電解液3の電解質膜6からの滲出を防ぐためには、電解液3に接触する酸化槽2側の電解質膜6の表面を撥水処理すればよいが、還元反応の原料であるプロトンを電解質膜6内の水を媒体として移動させる必要があるため、電解質膜6の酸化槽2側の表面を完全に撥水処理で覆ってしまうと、還元槽5側で還元反応が進行しない恐れがある。 At this time, if a strong alkaline aqueous solution, for example, a 1.0 mol/L sodium hydroxide aqueous solution, is used as the electrolyte 3 in the oxidation tank 2, the electrolyte membrane 6 will swell, and the electrolyte 3 will pore in the pores of the electrolyte membrane 6. and oozes out onto the surface of the reduction electrode 4 in the reduction tank 5. In order to prevent such oozing of the electrolyte solution 3 from the electrolyte membrane 6, the surface of the electrolyte membrane 6 on the side of the oxidation tank 2 that comes into contact with the electrolyte solution 3 may be treated with water repellency. It is necessary to move the water in the electrolyte membrane 6 as a medium, so if the surface of the electrolyte membrane 6 on the oxidation tank 2 side is completely covered with water-repellent treatment, there is a risk that the reduction reaction will not proceed on the reduction tank 5 side. There is.
 そこで、本実施形態では、図1~図3に示すように、電解質膜6の還元槽5側の表面に空隙孔10付きの還元電極4を配置し、その還元電極4の突起部に撥水膜9を配置する。具体的には、図2や図3に拡大したように、還元電極4は、還元槽5側に凹凸構造(例えば、平板の主面に複数の円錐体を備えた構造)を備えて、凸部に撥水膜9を備え、電解質膜6の還元槽5側の表面全部を覆わないように凹の底に空隙孔10を備えている。 Therefore, in this embodiment, as shown in FIGS. 1 to 3, a reduction electrode 4 with void holes 10 is arranged on the surface of the electrolyte membrane 6 on the reduction tank 5 side, and the protrusions of the reduction electrode 4 are water-repellent. A membrane 9 is placed. Specifically, as enlarged in FIGS. 2 and 3, the reduction electrode 4 is provided with an uneven structure (for example, a structure with a plurality of cones on the main surface of a flat plate) on the reduction tank 5 side. A water-repellent film 9 is provided at the bottom of the recess, and a void hole 10 is provided at the bottom of the recess so as not to cover the entire surface of the electrolyte membrane 6 on the reduction tank 5 side.
 数マイクロメートルの凹凸構造を表面に形成すると、その表面に付着した水滴は濡れることなく水滴となり、滑落する。この現象は一般的に、ロータス効果と呼ばれる。このロータス効果を発現するように還元電極4に凹凸構造を作製するだけでは、電解質膜6表面のプロトンと還元槽5内の二酸化炭素と還元電極4内の電子が反応しない。 When an uneven structure of several micrometers is formed on a surface, water droplets adhering to the surface become water droplets without getting wet and slide off. This phenomenon is commonly called the lotus effect. If only a concavo-convex structure is formed on the reduction electrode 4 so as to exhibit this lotus effect, protons on the surface of the electrolyte membrane 6, carbon dioxide in the reduction tank 5, and electrons in the reduction electrode 4 will not react.
 そのために、本実施例では空隙孔10を設け、凹凸構造を有し、水を滑落させる機能を持つ部分と、空隙孔10と電解質膜6が接触している部分で、電解質膜6表面のプロトンと還元槽5内の二酸化炭素と還元電極4内の電子が反応する部分を分離する構造を作製した。 To this end, in this embodiment, the pores 10 are provided, and the protons on the surface of the electrolyte membrane 6 are formed in a portion having an uneven structure and having a function of letting water slide down, and in a portion where the pores 10 and the electrolyte membrane 6 are in contact. A structure was fabricated to separate the part where carbon dioxide in the reduction tank 5 and electrons in the reduction electrode 4 react.
 さらに、空隙孔10の細孔径によっては、毛細管現象が発現し水は還元電極4の凹凸構造内にとどまろうとするため、撥水効果が弱まる恐れがある。そこで、凸部に撥水膜9を形成することで、電解質膜6から還元槽5へ水の移動を促すような構造を設けた。 Furthermore, depending on the pore diameter of the void pores 10, capillary phenomenon occurs and water tends to stay within the uneven structure of the reduction electrode 4, which may weaken the water repellent effect. Therefore, a structure was provided in which a water-repellent film 9 was formed on the convex portion to encourage the movement of water from the electrolyte membrane 6 to the reduction tank 5.
 なお、撥水膜9を還元電極4の表面すべてを覆ってしまうと、電解質膜6界面において、還元槽5内の二酸化炭素と還元電極4内の電子が直接反応できないため、還元電極4と電解質膜6が接する部分は撥水膜9を設けないことが必要である。 Note that if the water-repellent film 9 covers the entire surface of the reduction electrode 4, the carbon dioxide in the reduction tank 5 cannot directly react with the electrons in the reduction electrode 4 at the interface of the electrolyte membrane 6. It is necessary that the water-repellent film 9 is not provided in the area where the film 6 contacts.
 次に、還元電極4及び撥水膜9の製造方法を説明する。 Next, a method for manufacturing the reduction electrode 4 and the water-repellent film 9 will be explained.
 空隙孔10を有する還元電極4の作製法は、市中技術である鋳造法、粉末冶金法、金属3Dプリンターによる造形、高出力レーザーを用いた加工法などが挙げられる。撥水膜9を製造するための撥水処理には、例えば、液相法や気相法が挙げられる。 Examples of methods for producing the reduction electrode 4 having the void holes 10 include commercially available casting methods, powder metallurgy, modeling using a metal 3D printer, and processing using a high-power laser. Examples of the water repellent treatment for manufacturing the water repellent film 9 include a liquid phase method and a gas phase method.
 液相法は、対象物を撥水剤であるフッ素系の高分子を溶解させたフッ素系の溶媒中にディップコート法などを用いて浸漬した後、対象物を加熱するなどして溶媒を除去することでフッ素系高分子を析出する手法である。気相法は、対象物と撥水剤であるフッ素系の低分子(シランカップリング剤)を同一密閉空間に入れ、フッ素系の低分子を加熱して蒸気にしたあと、対象物表面に蒸着させる手法である。この2つの手法においては、還元電極4表面をすべて撥水剤で覆ってしまい、電解質膜6界面において、還元槽5内の二酸化炭素と還元電極4内の電子が直接反応できない。そのため、高出力レーザーなどで空隙孔10と電解質膜6の接触面の撥水膜9を取り除かなければいけない。 In the liquid phase method, the object is immersed in a fluorine-based solvent in which a fluorine-based polymer, which is a water repellent, is dissolved, using a method such as dip coating, and then the solvent is removed by heating the object. This is a method to precipitate fluorine-based polymers. In the vapor phase method, the target object and a fluorine-based low molecule (silane coupling agent) that is a water repellent are placed in the same closed space, the fluorine-based low molecule is heated to steam, and then vaporized onto the surface of the target object. This is a method to do so. In these two methods, the entire surface of the reduction electrode 4 is covered with a water repellent, and the carbon dioxide in the reduction tank 5 and the electrons in the reduction electrode 4 cannot directly react at the interface of the electrolyte membrane 6. Therefore, it is necessary to remove the water-repellent film 9 on the contact surface between the pores 10 and the electrolyte membrane 6 using a high-power laser or the like.
 また、上記高出力レーザーを用いないより簡便な他の方法としては、フッ素系の溶媒中にフッ素系の高分子もしくはフッ素系の低分子を溶解させ、溶媒に還元電極4の凹凸面を接触させた後、表面を乾燥させ、溶媒を除去することで撥水膜9を凹凸面に析出させる方法がある。フッ素系の溶媒は水と比較して表面張力が低いため、還元電極4の凹凸面をフッ素系の溶媒に接触させても、毛細管現象によって空隙孔10に浸透していかない。そのため、フッ素系の溶媒の低表面張力の特性によってより簡便に凹凸面のみに撥水膜9を形成することができる。 In addition, as another simpler method that does not use the above-mentioned high-power laser, a fluorine-based polymer or a fluorine-based low molecule is dissolved in a fluorine-based solvent, and the uneven surface of the reduction electrode 4 is brought into contact with the solvent. There is a method in which the water-repellent film 9 is deposited on the uneven surface by drying the surface and removing the solvent. Since a fluorine-based solvent has a lower surface tension than water, even if the uneven surface of the reduction electrode 4 is brought into contact with the fluorine-based solvent, the fluorine-based solvent does not penetrate into the void pores 10 due to capillary action. Therefore, the water-repellent film 9 can be more easily formed only on the uneven surface due to the low surface tension characteristic of the fluorine-based solvent.
 図4は、還元電極4及び撥水膜9の第1製造方法を示す図である。第1製造方法は、液相法の第1手法による還元電極4及び撥水膜9の製造方法である。 FIG. 4 is a diagram showing the first manufacturing method of the reduction electrode 4 and the water-repellent film 9. The first manufacturing method is a method for manufacturing the reduction electrode 4 and the water-repellent film 9 using the first liquid phase method.
 還元電極4には、凹凸構造と空隙孔を有する構造を金属3Dプリンターにて形成した。凹凸構造は円柱状の直径10μm、高さ20μmであり、空隙孔は直径10μmのものを作製して用いた。凹凸構造と空隙孔の間隔は等間隔で、ピッチは15μmとした。最密重点構造とし、凹凸構造と空隙孔の比は1:3とした(第1工程S101)。撥水剤にはオプツールDSXを用いた。還元電極をオプツールDSX溶液に1分間浸漬した後(第2工程S102)、引き上げて乾燥するディップコートを行った(第3工程S103)。この工程により、還元電極の表面全面に撥水膜を形成できる。その後、空隙孔の外周を高出力レーザーを用いてなぞり、撥水膜9を熱分解することで除去した(第4工程S104)。 For the reduction electrode 4, a structure having an uneven structure and voids was formed using a metal 3D printer. The concavo-convex structure had a cylindrical shape with a diameter of 10 μm and a height of 20 μm, and the voids had a diameter of 10 μm. The intervals between the concavo-convex structure and the void holes were equal, and the pitch was 15 μm. A close-packed point structure was formed, and the ratio of the concavo-convex structure to the voids was 1:3 (first step S101). Optool DSX was used as the water repellent. After the reduction electrode was immersed in the Optool DSX solution for 1 minute (second step S102), dip coating was performed by pulling it up and drying it (third step S103). Through this step, a water-repellent film can be formed over the entire surface of the reduction electrode. Thereafter, the outer periphery of the void hole was traced using a high-power laser, and the water-repellent film 9 was removed by thermal decomposition (fourth step S104).
 これらの工程により、還元電極4と電解質膜6の接触面だけは撥水膜9がないため、この接触面にて還元槽5の二酸化炭素と還元電極4の電子と電解質膜6のプロトンの反応を進行することができる。 Through these steps, since there is no water-repellent film 9 on the contact surface between the reduction electrode 4 and the electrolyte membrane 6, a reaction between carbon dioxide in the reduction tank 5, electrons in the reduction electrode 4, and protons in the electrolyte membrane 6 occurs at this contact surface. can proceed.
 図5は、還元電極4及び撥水膜9の第2製造方法を示す図である。第2製造方法は、気相法の第1手法による還元電極4及び撥水膜9の製造方法である。 FIG. 5 is a diagram showing a second manufacturing method of the reduction electrode 4 and the water-repellent film 9. The second manufacturing method is a method of manufacturing the reduction electrode 4 and the water-repellent film 9 by the first method of vapor phase method.
 還元電極4には、凹凸構造と空隙孔を有する構造を金属3Dプリンターにて形成した。凹凸構造は円柱状の直径10μm、高さ20μmであり、空隙孔は直径10μmのものを作製して用いた。凹凸構造と空隙孔の間隔は等間隔で、ピッチは15μmとした。最密重点構造とし、凹凸構造と空隙孔の比は1:3とした(第1工程S201)。撥水剤にはフッ素系シランカップリング剤(例えば、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリメトキシシラン)を用いた。テフロン容器に還元電極と撥水剤を入れて密封し、オーブンに入れて150℃で加熱した(第2工程S202)。この工程により、撥水剤が蒸発し、還元電極の全面に撥水膜を形成できる。その後、空隙孔の外周を高出力レーザーを用いてなぞり、撥水膜9を熱分解することで除去した(第3工程S203)。 For the reduction electrode 4, a structure having an uneven structure and voids was formed using a metal 3D printer. The concavo-convex structure had a cylindrical shape with a diameter of 10 μm and a height of 20 μm, and the voids had a diameter of 10 μm. The intervals between the concavo-convex structure and the void holes were equal, and the pitch was 15 μm. A close-packed point structure was formed, and the ratio of the concavo-convex structure to the voids was 1:3 (first step S201). A fluorine-based silane coupling agent (for example, heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane) was used as the water repellent. A reduction electrode and a water repellent were placed in a Teflon container, the container was sealed, and the container was placed in an oven and heated at 150° C. (second step S202). Through this step, the water repellent agent evaporates and a water repellent film can be formed over the entire surface of the reduction electrode. Thereafter, the outer periphery of the void hole was traced using a high-power laser, and the water-repellent film 9 was removed by thermal decomposition (third step S203).
 これらの工程により、還元電極4と電解質膜6の接触面だけは撥水膜9がないため、この接触面にて還元槽5の二酸化炭素と還元電極4の電子と電解質膜6のプロトンの反応を進行することができる。この気相法では、ナフィオン表面に単分子膜を形成するため、ナノメートルオーダの極薄の撥水膜9を形成することができる。 Through these steps, since there is no water-repellent film 9 on the contact surface between the reduction electrode 4 and the electrolyte membrane 6, a reaction between carbon dioxide in the reduction tank 5, electrons in the reduction electrode 4, and protons in the electrolyte membrane 6 occurs at this contact surface. can proceed. In this vapor phase method, a monomolecular film is formed on the surface of Nafion, so an extremely thin water-repellent film 9 on the order of nanometers can be formed.
 図6は、還元電極4及び撥水膜9の第3製造方法を示す図である。第3製造方法は、液相法の第2手法による還元電極4及び撥水膜9の製造方法である。 FIG. 6 is a diagram showing a third manufacturing method of the reduction electrode 4 and the water-repellent film 9. The third manufacturing method is a method for manufacturing the reduction electrode 4 and the water-repellent film 9 using the second liquid phase method.
 還元電極4には、凹凸構造と空隙孔を有する構造を金属3Dプリンターにて形成した。凹凸構造は円柱状の直径10μm、高さ20μmであり、空隙孔は直径10μmのものを作製して用いた。凹凸構造と空隙孔の間隔は等間隔で、ピッチは15μmとした。最密重点構造とし、凹凸構造と空隙孔の比は1:3とした(第1工程S301)。撥水剤にはオプツールDSXを用いた。還元電極の凹凸構造の表面のみをオプツールDSX溶液に触れさせた後(第2工程S302)、引き上げて乾燥した(第3工程S303)。S303の第3工程では、空隙孔をフッ素系溶媒で埋まる毛細管現象は見られなかった。 For the reduction electrode 4, a structure having an uneven structure and voids was formed using a metal 3D printer. The concavo-convex structure had a cylindrical shape with a diameter of 10 μm and a height of 20 μm, and the voids had a diameter of 10 μm. The intervals between the concavo-convex structure and the void holes were equal, and the pitch was 15 μm. A close-packed point structure was formed, and the ratio of the concavo-convex structure to the voids was 1:3 (first step S301). Optool DSX was used as the water repellent. After only the surface of the uneven structure of the reduction electrode was brought into contact with the OpTool DSX solution (second step S302), it was pulled up and dried (third step S303). In the third step of S303, no capillary phenomenon in which the pores were filled with the fluorine-based solvent was observed.
 これらの工程により、還元電極4と電解質膜6の接触面だけは撥水膜9がないため、この接触面にて還元槽5の二酸化炭素と還元電極4の電子と電解質膜6のプロトンの反応を進行することができる。 Through these steps, since there is no water-repellent film 9 on the contact surface between the reduction electrode 4 and the electrolyte membrane 6, a reaction between carbon dioxide in the reduction tank 5, electrons in the reduction electrode 4, and protons in the electrolyte membrane 6 occurs at this contact surface. can proceed.
 次に、上記の二酸化炭素還元装置100による電気化学測定及びその測定結果を説明する。 Next, electrochemical measurement using the carbon dioxide reduction device 100 described above and the measurement results will be explained.
 まず、サファイア基板上にn型半導体である窒化ガリウム(GaN)の薄膜と窒化アルミニウムガリウム(AlGaN)とをその順にエピタキシャル成長させ、その上にニッケル(Ni)を真空蒸着して熱処理を行うことで、酸化ニッケル(NiO)の助触媒薄膜を形成した。そして、その助触媒薄膜を酸化電極1とし、その酸化電極1を酸化槽2内の1.0mol/Lの水酸化カリウム水溶液の電解液3に浸漬させた。 First, a thin film of gallium nitride (GaN), which is an n-type semiconductor, and aluminum gallium nitride (AlGaN) are epitaxially grown on a sapphire substrate in that order, and nickel (Ni) is vacuum-deposited on top of that and heat-treated. A promoter thin film of nickel oxide (NiO) was formed. Then, the promoter thin film was used as an oxidation electrode 1, and the oxidation electrode 1 was immersed in an electrolytic solution 3 of a 1.0 mol/L potassium hydroxide aqueous solution in an oxidation tank 2.
 上記製造方法にて製造した還元電極4は、熱圧着を施すことで電解質膜6と密着させた。本実施例では熱圧着法を用いたが、還元電極4と電解質膜6が物理的に密着していれば、その他の方法を用いてもよい。その還元電極4を導線7で酸化電極1に接続し、その還元電極4を還元槽5内に設置した。 The reduction electrode 4 manufactured by the above manufacturing method was brought into close contact with the electrolyte membrane 6 by thermocompression bonding. Although a thermocompression bonding method was used in this embodiment, other methods may be used as long as the reduction electrode 4 and the electrolyte membrane 6 are in close physical contact. The reduction electrode 4 was connected to the oxidation electrode 1 with a conducting wire 7, and the reduction electrode 4 was placed in a reduction tank 5.
 また、酸化槽2と還元槽5と物理的に分離する電解質膜6には、ナフィオンを用いた。その電解質膜6の両面のうち、撥水膜9が形成されている片面を還元槽5内に向け、空隙孔を有する片面を電解質膜6に接触するように配置した。 Furthermore, Nafion was used for the electrolyte membrane 6 that physically separates the oxidation tank 2 and the reduction tank 5. Of both surfaces of the electrolyte membrane 6, one side on which the water-repellent membrane 9 was formed was placed facing into the reduction tank 5, and the other side having the voids was placed in contact with the electrolyte membrane 6.
 また、光源8には、300Wのキセノンランプを用いた。450nm以上の波長をフィルターでカットし、照度を6.6mW/cmとした。酸化電極1の照射面を2.5cmとした。 Moreover, a 300W xenon lamp was used as the light source 8. Wavelengths of 450 nm or more were cut with a filter, and the illuminance was set to 6.6 mW/cm 2 . The irradiation surface of the oxidation electrode 1 was 2.5 cm 2 .
 そして、酸化槽2と還元槽5とに窒素と二酸化炭素とをそれぞれ流量5ml/min、かつ、圧力0.5MPaで供給した。酸化槽2への窒素のバブリングは、反応生成物を分析する目的で行った。酸化槽2と還元槽5との各内部をそれぞれ窒素と二酸化炭素とで十分に置換し、光源8から光を照射した。その後、還元電極4である銅多孔体の表面で二酸化炭素の還元反応が進行した。 Then, nitrogen and carbon dioxide were supplied to the oxidation tank 2 and the reduction tank 5 at a flow rate of 5 ml/min and a pressure of 0.5 MPa, respectively. Nitrogen bubbling into the oxidation tank 2 was performed for the purpose of analyzing reaction products. The insides of the oxidation tank 2 and the reduction tank 5 were sufficiently replaced with nitrogen and carbon dioxide, respectively, and light was irradiated from the light source 8. Thereafter, a reduction reaction of carbon dioxide proceeded on the surface of the copper porous body serving as the reduction electrode 4.
 このとき、照射光により酸化電極1と還元電極4との間に流れる電流を電気化学測定装置(Solartron社製、1287型ポテンショガルバノスタット)で測定した。また、酸化槽2と還元槽5とで生じるガスと液体を採取し、ガスクロマトグラフ、液体クロマトグラフ、ガスクロマトグラフ質量分析計を用いて反応生成物を分析した。 At this time, the current flowing between the oxidation electrode 1 and the reduction electrode 4 due to the irradiation light was measured using an electrochemical measuring device (Model 1287 potentiogalvanostat manufactured by Solartron). Further, gas and liquid generated in the oxidation tank 2 and the reduction tank 5 were collected, and reaction products were analyzed using a gas chromatograph, a liquid chromatograph, and a gas chromatograph mass spectrometer.
 特に、本実施形態では、二酸化炭素還元反応のファラデー効率を求めることで、還元電極4の表面に形成した撥水膜9の効果を検討した。なお、二酸化炭素還元反応のファラデー効率の計算方法は、後述する。 In particular, in this embodiment, the effect of the water-repellent film 9 formed on the surface of the reduction electrode 4 was investigated by determining the Faraday efficiency of the carbon dioxide reduction reaction. Note that a method for calculating the Faraday efficiency of the carbon dioxide reduction reaction will be described later.
 実施例1では、第1製造方法で製造した還元電極4と撥水膜9を用いた。 In Example 1, the reduction electrode 4 and water-repellent film 9 manufactured by the first manufacturing method were used.
 実施例2では、第2製造方法で製造した還元電極4と撥水膜9を用いた。 In Example 2, the reduction electrode 4 and water-repellent film 9 manufactured by the second manufacturing method were used.
 実施例3では、第3製造方法で製造した還元電極4と撥水膜9を用いた。 In Example 3, the reduction electrode 4 and water-repellent film 9 manufactured by the third manufacturing method were used.
 比較例1では、第1製造方法で説明した製造法において、円柱状の凹凸構造の高さが0μmであるもの、すなわち凹凸構造を有さない還元電極4を用いた。 In Comparative Example 1, in the manufacturing method described in the first manufacturing method, the reduction electrode 4 in which the height of the cylindrical uneven structure was 0 μm, that is, the reduction electrode 4 without the uneven structure was used.
 比較例2では、第1製造方法で説明した製造法において、撥水膜9を形成しない還元電極4を用いた。 In Comparative Example 2, the reduction electrode 4 on which the water-repellent film 9 was not formed was used in the manufacturing method described in the first manufacturing method.
 図7は、第1実施形態に係るギ酸のファラデー効率の測定結果を示す図である。凹凸構造を有さない比較例1では、ファラデー効率が50時間以降減少した。撥水膜9を形成していない比較例2では、ファラデー効率が50時間以降減少した。一方、凹凸構造と撥水膜9を形成した実施例1~実施例3では、50時間以降でもファラデー効率は減少しなかった。これは、還元電極4表面に液体の滑落を促す凹凸構造と撥水膜9を導入した結果、液漏れした結果の還元電極4表面の液体が滑落しやすくなり、還元電極4の反応サイトが電解液3で埋まらなくなったためである。 FIG. 7 is a diagram showing the measurement results of the faradaic efficiency of formic acid according to the first embodiment. In Comparative Example 1, which does not have an uneven structure, the Faraday efficiency decreased after 50 hours. In Comparative Example 2 in which the water-repellent film 9 was not formed, the Faraday efficiency decreased after 50 hours. On the other hand, in Examples 1 to 3 in which the uneven structure and the water-repellent film 9 were formed, the Faraday efficiency did not decrease even after 50 hours. As a result of introducing the uneven structure and the water-repellent film 9 on the surface of the reduction electrode 4 that promote the sliding of liquid, the liquid on the surface of the reduction electrode 4 that is a result of liquid leakage becomes easier to slide down, and the reaction sites of the reduction electrode 4 are This is because it is no longer filled with liquid 3.
 ここで、二酸化炭素還元反応のファラデー効率の計算方法を説明する。二酸化炭素のファラデー効率は、光照射や電流電圧印加によって酸化電極1と還元電極4との間を移動した電子数に対して、二酸化炭素還元反応に使われた電子数の割合を示すものであり、式(1)で計算できる。 Here, we will explain how to calculate the faradaic efficiency of the carbon dioxide reduction reaction. The Faraday efficiency of carbon dioxide indicates the ratio of the number of electrons used in the carbon dioxide reduction reaction to the number of electrons transferred between the oxidation electrode 1 and the reduction electrode 4 due to light irradiation or the application of current and voltage. , can be calculated using equation (1).
 ファラデー効率={還元反応の電子数}/{電極間を移動した電子数}・・・(1)
 式(1)の「還元反応の電子数」は、二酸化炭素の還元生成物の積算生成量の測定値を、その生成反応に必要な電子数に換算することで求める。例えば、還元生成物が気体の場合の「還元反応の電子数」は、式(2)で計算できる。
Faraday efficiency = {number of electrons in reduction reaction} / {number of electrons transferred between electrodes}...(1)
The "number of electrons for the reduction reaction" in equation (1) is determined by converting the measured value of the cumulative production amount of the reduction product of carbon dioxide into the number of electrons required for the production reaction. For example, when the reduction product is a gas, "the number of electrons in the reduction reaction" can be calculated using equation (2).
 各還元反応の電子数(C)={(A×B×Z×F×T×10-6)}/V・・・(2)
 Aは、還元反応生成物の濃度(ppm)である。Bは、キャリアガスの流量(L/sec)である。Zは、還元反応に必要な電子数である。Fは、ファラデー定数(C/mol)である。Tは、光照射時間又は電流電圧印加時間を(sec)である。Vは、気体のモル体積(L/mol)である。
Number of electrons in each reduction reaction (C) = {(A×B×Z×F×T×10 −6 )}/V g ...(2)
A is the concentration (ppm) of the reduction reaction product. B is the flow rate (L/sec) of carrier gas. Z is the number of electrons required for the reduction reaction. F is Faraday constant (C/mol). T is the light irradiation time or the current/voltage application time (sec). V g is the molar volume of the gas (L/mol).
 還元生成物が液体の場合の「還元反応の電子数」は、式(3)で計算できる。 The "number of electrons in the reduction reaction" when the reduction product is a liquid can be calculated using equation (3).
 各還元反応の電子数(C)=C×V×Z×F・・・(3)
 Cは、還元反応生成物の濃度(mol/L)である。Vは、液体サンプルの体積(L)である。Zは、還元反応に必要な電子数である。Fは、ファラデー定数(C/mol)である。
Number of electrons in each reduction reaction (C) = C x V l x Z x F... (3)
C is the concentration (mol/L) of the reduction reaction product. V l is the volume of the liquid sample (L). Z is the number of electrons required for the reduction reaction. F is Faraday constant (C/mol).
 以上、第1実施形態を説明した。第1実施形態に係る二酸化炭素還元装置100によれば、ファラデー効率を落とすことなく、二酸化炭素還元反応を進行させられる二酸化炭素還元装置100を提供できる。 The first embodiment has been described above. According to the carbon dioxide reduction device 100 according to the first embodiment, it is possible to provide a carbon dioxide reduction device 100 that allows the carbon dioxide reduction reaction to proceed without reducing Faraday efficiency.
 すなわち、第1実施形態では、電解液3と電解液3に浸漬させる半導体の酸化電極1とを用いて光源8からの照射光により水の酸化反応を行う酸化槽2と、酸化電極1に導線7を介して接続される還元電極4と還元電極4に直接接触させる二酸化炭素とを用いて二酸化炭素の還元反応を行う還元槽5と、酸化槽2内の電解液3と還元槽5内の還元電極4との間にそれぞれに接触して配置される電解質膜6と、を備えた二酸化炭素還元装置100において、還元槽5側の電解質膜6に接触して配置され、還元槽5側に凹凸構造および空隙孔10を備え、凹凸構造は表面に付着する液体を滑落させることのできる撥水膜9を備える。 That is, in the first embodiment, the oxidation tank 2 performs an oxidation reaction of water using the irradiation light from the light source 8 using the electrolytic solution 3 and the semiconductor oxidizing electrode 1 immersed in the electrolytic solution 3, and the conducting wire is connected to the oxidizing electrode 1. A reduction tank 5 that performs a reduction reaction of carbon dioxide using the reduction electrode 4 connected via the oxidation tank 7 and carbon dioxide brought into direct contact with the reduction electrode 4, and the electrolyte 3 in the oxidation tank 2 and the In the carbon dioxide reduction device 100, which includes an electrolyte membrane 6 disposed between and in contact with the reduction electrode 4, an electrolyte membrane 6 disposed in contact with the electrolyte membrane 6 on the reduction tank 5 side, and an electrolyte membrane 6 disposed on the reduction tank 5 side. It has an uneven structure and voids 10, and the uneven structure has a water-repellent film 9 that can slide off liquid adhering to the surface.
 そのため、還元電極4の凹凸構造表面に備わる撥水膜9により、酸化槽2内の電解液3が電解質膜6の外部に滲出した結果である還元電極4表面の液体が凹凸構造表面へ移動しやすくなり、凹凸構造表面の水滴はロータス効果により滑落することで、還元電極4の反応サイトが電解液3で埋まらなくなる。その結果、二酸化炭素の還元反応を進行でき、その還元反応効率の低下を抑制できる。 Therefore, due to the water-repellent film 9 provided on the uneven structure surface of the reduction electrode 4, the liquid on the surface of the reduction electrode 4, which is the result of the electrolytic solution 3 in the oxidation tank 2 seeping out to the outside of the electrolyte membrane 6, moves to the uneven structure surface. Water droplets on the surface of the uneven structure slide down due to the lotus effect, so that the reaction sites of the reduction electrode 4 are not filled with the electrolyte 3. As a result, the reduction reaction of carbon dioxide can proceed, and a decrease in the efficiency of the reduction reaction can be suppressed.
 なお、上記の実験では、酸化電極1に対する光の照射量を定量的に管理するために光をキセノンランプで生じさせたが、太陽光等を用いて酸化反応を起こすことも可能である。 Note that in the above experiment, light was generated using a xenon lamp in order to quantitatively control the amount of light irradiated to the oxidation electrode 1, but it is also possible to cause the oxidation reaction using sunlight or the like.
 [第2実施形態]
 第1実施形態では、光源8と半導体で構成される酸化電極1とを用いる場合を説明した。第2実施形態では、それらに代えて、外部電源及び金属で構成される酸化電極1を用いて酸化・還元反応を進行させる。比較のため、第1実施形態と同じ電圧値・電流値を調整して印加した。
[Second embodiment]
In the first embodiment, a case has been described in which the light source 8 and the oxidized electrode 1 made of a semiconductor are used. In the second embodiment, instead of these, an external power source and an oxidizing electrode 1 made of metal are used to proceed with the oxidation/reduction reaction. For comparison, the same voltage and current values as in the first embodiment were adjusted and applied.
 図8は、第2実施形態に係る二酸化炭素還元装置100の構成例を示す図である。酸化電極1は、白金である。その他、酸化電極1は、例えば、金、銀でもよい。外部の電源11は、電気化学測定装置であり、酸化電極1と還元電極4とを接続している導線7に直列接続される。電源11は、その他の電源装置でもよい。その他の構成要素は、第1実施形態と同一である。 FIG. 8 is a diagram showing a configuration example of the carbon dioxide reduction device 100 according to the second embodiment. Oxidation electrode 1 is platinum. In addition, the oxidation electrode 1 may be made of gold or silver, for example. The external power source 11 is an electrochemical measuring device, and is connected in series to the conductive wire 7 connecting the oxidation electrode 1 and the reduction electrode 4. The power supply 11 may be any other power supply device. Other components are the same as in the first embodiment.
 本実施形態に係る二酸化炭素還元装置100において、酸化槽2では、電解液3と電解液3に浸漬させた白金(金属)の酸化電極1とを用いて電源11からの電流電圧(電気エネルギー)により電解液3内の水の酸化反応が行われる。還元槽5では、電源11(電気エネルギーの源)に接続された還元電極4と還元電極4に直接接触させた二酸化炭素とを用いて二酸化炭素の還元反応が行われる。 In the carbon dioxide reduction apparatus 100 according to the present embodiment, the oxidation tank 2 uses the electrolyte 3 and the platinum (metal) oxidation electrode 1 immersed in the electrolyte 3 to generate current and voltage (electrical energy) from the power source 11. This causes an oxidation reaction of water in the electrolytic solution 3. In the reduction tank 5, a reduction reaction of carbon dioxide is performed using the reduction electrode 4 connected to a power source 11 (a source of electrical energy) and carbon dioxide brought into direct contact with the reduction electrode 4.
 具体的には、電源11が電流電圧を導線7に印加すると、電解液3内の水の酸化反応により酸素及びプロトンが生成する。プロトンは、電解質膜6を通過して酸化槽2内の電解液3から還元槽5内の還元電極4に到達する。電子は、導線7を介して電源11から還元槽5内の還元電極4に流れる。還元槽5では、還元電極4において、プロトンと電子と還元電極4に直接接触された気相の二酸化炭素とによる二酸化炭素の還元反応が引き起こされる。 Specifically, when the power source 11 applies current and voltage to the conductive wire 7, oxygen and protons are generated by an oxidation reaction of water in the electrolytic solution 3. Protons pass through the electrolyte membrane 6 and reach the reduction electrode 4 in the reduction tank 5 from the electrolyte 3 in the oxidation tank 2 . Electrons flow from the power source 11 to the reduction electrode 4 in the reduction tank 5 via the conductor 7 . In the reduction tank 5 , a reduction reaction of carbon dioxide is caused at the reduction electrode 4 by protons, electrons, and gaseous carbon dioxide brought into direct contact with the reduction electrode 4 .
 第2実施形態においても、第1実施形態と同様に、還元電極4は、還元槽5側の電解質膜6に接触して配置され、還元槽5側に凹凸構造および空隙孔10を備えており、凹凸構造は表面に付着する液体を滑落させることのできる撥水膜9を備える。撥水膜9の製造方法は、第1実施形態と同様に、第1製造方法~第3製造方法を用いる。 In the second embodiment, as in the first embodiment, the reduction electrode 4 is placed in contact with the electrolyte membrane 6 on the reduction tank 5 side, and is provided with an uneven structure and void holes 10 on the reduction tank 5 side. The uneven structure includes a water-repellent film 9 that can slide off liquid adhering to the surface. As the method for manufacturing the water-repellent film 9, the first to third manufacturing methods are used as in the first embodiment.
 図9は、第2実施形態に係るギ酸のファラデー効率の測定結果を示す図である。第1実施形態で説明した実施例1~実施例3のそれぞれと同一の還元電極4を用いたそれぞれの実施例を実施例4~実施例6としている。比較例3では、第1製造方法で説明した製造法において、円柱状の凹凸構造の高さが0μmであるもの、すなわち凹凸構造を有さない還元電極4を用いた。比較例4では、第1製造方法で説明した製造法において、撥水膜9を形成しない還元電極4を用いた。 FIG. 9 is a diagram showing the measurement results of the faradaic efficiency of formic acid according to the second embodiment. Examples using the same reduction electrode 4 as Examples 1 to 3 described in the first embodiment are referred to as Examples 4 to 6. In Comparative Example 3, in the manufacturing method described in the first manufacturing method, a reduction electrode 4 having a columnar uneven structure having a height of 0 μm, that is, a reduction electrode 4 having no uneven structure was used. In Comparative Example 4, the reduction electrode 4 on which the water-repellent film 9 was not formed was used in the manufacturing method described in the first manufacturing method.
 凹凸構造を有さない比較例3では、ファラデー効率が50時間以降減少した。撥水膜9を形成していない比較例4では、ファラデー効率が50時間以降減少した。一方、凹凸構造と撥水膜9を形成した実施例4~実施例6では、50時間以降でもファラデー効率は減少しなかった。これは、還元電極4表面に液体の滑落を促す凹凸構造と撥水膜9を導入した結果、液漏れした結果の還元電極4表面の液体が滑落しやすくなり、還元電極4の反応サイトが電解液3で埋まらなくなったためである。 In Comparative Example 3, which did not have an uneven structure, the Faraday efficiency decreased after 50 hours. In Comparative Example 4 in which the water-repellent film 9 was not formed, the Faraday efficiency decreased after 50 hours. On the other hand, in Examples 4 to 6 in which the uneven structure and the water-repellent film 9 were formed, the Faraday efficiency did not decrease even after 50 hours. As a result of introducing the uneven structure and the water-repellent film 9 on the surface of the reduction electrode 4 that promote the sliding of liquid, the liquid on the surface of the reduction electrode 4 that is a result of liquid leakage becomes easier to slide down, and the reaction sites of the reduction electrode 4 are This is because it is no longer filled with liquid 3.
 以上、第2実施形態を説明した。第2実施形態に係る二酸化炭素還元装置100によれば、ファラデー効率を落とすことなく、二酸化炭素還元反応を進行させられる二酸化炭素還元装置100を提供できる。 The second embodiment has been described above. According to the carbon dioxide reduction device 100 according to the second embodiment, it is possible to provide a carbon dioxide reduction device 100 that allows the carbon dioxide reduction reaction to proceed without reducing Faraday efficiency.
 すなわち、第2実施形態では、電解液3と電解液3に浸漬させる白金(金属)の酸化電極1とを用いて電源11からの電流電圧により水の酸化反応を行う酸化槽2と、電源11に接続される還元電極4と還元電極4に直接接触させる二酸化炭素とを用いて二酸化炭素の還元反応を行う還元槽5と、酸化槽2内の電解液3と還元槽5内の還元電極4との間にそれぞれに接触して配置される電解質膜6と、を備えた二酸化炭素還元装置100において、還元槽5側の電解質膜6に接触して配置され、還元槽5側に凹凸構造および空隙孔10を備え、凹凸構造は表面に付着する液体を滑落させることのできる撥水膜9を備える。 That is, in the second embodiment, an oxidation tank 2 performs an oxidation reaction of water using a current voltage from a power source 11 using an electrolytic solution 3 and a platinum (metal) oxidizing electrode 1 immersed in the electrolytic solution 3; A reduction tank 5 that performs a reduction reaction of carbon dioxide using a reduction electrode 4 connected to the oxidation tank 4 and carbon dioxide brought into direct contact with the reduction electrode 4, an electrolytic solution 3 in the oxidation tank 2, and a reduction electrode 4 in the reduction tank 5. and an electrolyte membrane 6 disposed in contact with the electrolyte membrane 6 on the reduction tank 5 side, and an uneven structure on the reduction tank 5 side. The uneven structure includes a water-repellent film 9 that can slide off liquid adhering to the surface.
 そのため、還元電極4の凹凸構造表面に備わる撥水膜9により、酸化槽2内の電解液3が電解質膜6の外部に滲出した結果である還元電極4表面の液体が凹凸構造表面へ移動しやすくなり、凹凸構造表面の水滴はロータス効果により滑落することで、還元電極4の反応サイトが電解液3で埋まらなくなる。その結果、二酸化炭素の還元反応を進行でき、その還元反応効率の低下を抑制できる。 Therefore, due to the water-repellent film 9 provided on the uneven structure surface of the reduction electrode 4, the liquid on the surface of the reduction electrode 4, which is the result of the electrolytic solution 3 in the oxidation tank 2 seeping out to the outside of the electrolyte membrane 6, moves to the uneven structure surface. Water droplets on the surface of the uneven structure slide down due to the lotus effect, so that the reaction sites of the reduction electrode 4 are not filled with the electrolyte 3. As a result, the reduction reaction of carbon dioxide can proceed, and a decrease in the efficiency of the reduction reaction can be suppressed.
 [その他]
 本発明は、二酸化炭素の再資源化に関する分野に広く利用できる。第1実施形態では光エネルギーを用い、第2実施形態では電気エネルギーを用いたが、その他の再生可能エネルギーを用いてもよい。また、第1実施形態と第2実施形態とを組み合わせることも可能である。
[others]
INDUSTRIAL APPLICABILITY The present invention can be widely used in fields related to carbon dioxide recycling. Although optical energy was used in the first embodiment and electrical energy was used in the second embodiment, other renewable energy may be used. It is also possible to combine the first embodiment and the second embodiment.
 本発明は、酸化槽2内の電解液3と還元槽5内の還元電極4との間にそれぞれに接触して配置され、還元電極4に二酸化炭素を直接接触させて二酸化炭素の還元反応を行う二酸化炭素還元装置100に用いられる電解質膜6であれば、任意の電解質膜にも適用可能である。 In the present invention, the electrolytic solution 3 in the oxidation tank 2 and the reduction electrode 4 in the reduction tank 5 are placed in contact with each other, and the reduction reaction of carbon dioxide is carried out by directly contacting the reduction electrode 4 with carbon dioxide. Any electrolyte membrane can be used as long as it is the electrolyte membrane 6 used in the carbon dioxide reduction apparatus 100.
 1:酸化電極
 2:酸化槽
 3:電解液
 4:還元電極
 5:還元槽
 6:電解質膜
 7:導線
 8:光源
 9:撥水膜
 10:空隙孔
 11:電源
 100:二酸化炭素還元装置
1: Oxidation electrode 2: Oxidation tank 3: Electrolyte solution 4: Reduction electrode 5: Reduction tank 6: Electrolyte membrane 7: Conductive wire 8: Light source 9: Water-repellent membrane 10: Pore 11: Power source 100: Carbon dioxide reduction device

Claims (6)

  1.  酸化槽と還元槽との間に設置された電解質膜の還元槽側に接触して配置され、二酸化炭素を直接接触させて二酸化炭素の還元反応を行う二酸化炭素還元装置に用いられる還元電極において、前記還元槽側に凹凸構造および空隙孔を備え、前記凹凸構造は表面に付着する液体を滑落させることのできる撥水剤を備える還元電極。 In a reduction electrode used in a carbon dioxide reduction device that is placed in contact with the reduction tank side of an electrolyte membrane installed between an oxidation tank and a reduction tank, and performs a reduction reaction of carbon dioxide by directly contacting the carbon dioxide, The reduction electrode is provided with an uneven structure and void holes on the reduction tank side, and the uneven structure includes a water repellent agent capable of causing liquid adhering to the surface to slide off.
  2.  前記酸化槽は、前記酸化槽の電解液と前記電解液に浸漬させる半導体の酸化電極とを用いて光エネルギーにより水の酸化反応を行い、
     前記還元槽は、前記酸化電極に導線を介して接続される前記還元電極と前記還元電極に直接接触させる二酸化炭素とを用いて二酸化炭素の還元反応を行う請求項1に記載の還元電極。
    The oxidation tank performs an oxidation reaction of water using light energy using an electrolyte in the oxidation tank and a semiconductor oxidation electrode immersed in the electrolyte,
    The reduction electrode according to claim 1, wherein the reduction tank performs a reduction reaction of carbon dioxide using the reduction electrode connected to the oxidation electrode via a conductive wire and carbon dioxide brought into direct contact with the reduction electrode.
  3.  前記酸化槽は、前記酸化槽の電解液と前記電解液に浸漬させる金属の酸化電極とを用いて電気エネルギーにより水の酸化反応を行い、
     前記還元槽は、前記電気エネルギーの源に接続される前記還元電極と前記還元電極に直接接触させる二酸化炭素とを用いて二酸化炭素の還元反応を行う請求項1に記載の還元電極。
    The oxidation tank performs an oxidation reaction of water using electrical energy using the electrolyte of the oxidation tank and a metal oxidation electrode immersed in the electrolyte,
    The reduction electrode according to claim 1, wherein the reduction tank performs a reduction reaction of carbon dioxide using the reduction electrode connected to the source of electrical energy and carbon dioxide brought into direct contact with the reduction electrode.
  4.  前記請求項1乃至3のいずれかに記載の還元電極を製造する還元電極の製造方法において、
     還元電極に凹凸構造および空隙孔を形成する工程と、
     撥水剤を含む溶媒に前記還元電極を浸漬する工程と、
     前記還元電極を乾燥し前記溶媒を除去する工程と、
     前記還元電極の空隙孔周囲の撥水層を除去する工程と、
     を行う還元電極の製造方法。
    In the method for manufacturing a reduction electrode for manufacturing the reduction electrode according to any one of claims 1 to 3,
    forming an uneven structure and void holes in the reduction electrode;
    immersing the reduction electrode in a solvent containing a water repellent;
    drying the reduction electrode to remove the solvent;
    removing a water-repellent layer around the pores of the reduction electrode;
    A method for manufacturing a reduction electrode.
  5.  前記請求項1乃至3のいずれかに記載の還元電極を製造する還元電極の製造方法において、
     還元電極に凹凸構造および空隙孔を形成する工程と、
     前記還元電極と撥水剤を容器に入れて加熱する工程と、
     前記還元電極の空隙孔周囲の撥水層を除去する工程と、
     を行う還元電極の製造方法。
    In the method for manufacturing a reduction electrode for manufacturing the reduction electrode according to any one of claims 1 to 3,
    forming an uneven structure and void holes in the reduction electrode;
    placing the reduction electrode and water repellent in a container and heating it;
    removing a water-repellent layer around the pores of the reduction electrode;
    A method for manufacturing a reduction electrode.
  6.  前記請求項1乃至3のいずれかに記載の還元電極を製造する還元電極の製造方法において、
     還元電極に凹凸構造および空隙孔を形成する工程と、
     撥水剤を含む溶媒に前記還元電極の凹凸構造を触れさせる工程と、
     前記還元電極を乾燥し前記溶媒を除去する工程と、
     を行う還元電極の製造方法。
    In the method for manufacturing a reduction electrode for manufacturing the reduction electrode according to any one of claims 1 to 3,
    forming an uneven structure and void holes in the reduction electrode;
    a step of bringing the uneven structure of the reduction electrode into contact with a solvent containing a water repellent;
    drying the reduction electrode to remove the solvent;
    A method for manufacturing a reduction electrode.
PCT/JP2022/022337 2022-06-01 2022-06-01 Reduction electrode, and method for producing reduction electrode WO2023233590A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022337 WO2023233590A1 (en) 2022-06-01 2022-06-01 Reduction electrode, and method for producing reduction electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022337 WO2023233590A1 (en) 2022-06-01 2022-06-01 Reduction electrode, and method for producing reduction electrode

Publications (1)

Publication Number Publication Date
WO2023233590A1 true WO2023233590A1 (en) 2023-12-07

Family

ID=89026085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022337 WO2023233590A1 (en) 2022-06-01 2022-06-01 Reduction electrode, and method for producing reduction electrode

Country Status (1)

Country Link
WO (1) WO2023233590A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240882A (en) * 1979-11-08 1980-12-23 Institute Of Gas Technology Gas fixation solar cell using gas diffusion semiconductor electrode
WO2019176141A1 (en) * 2018-03-16 2019-09-19 株式会社 東芝 Carbon dioxide electrolysis cell and electrolysis device
WO2020121556A1 (en) * 2018-12-10 2020-06-18 日本電信電話株式会社 Carbon dioxide gas-phase reduction device and carbon dioxide gas-phase reduction method
JP2021147680A (en) * 2020-03-23 2021-09-27 株式会社東芝 Carbon dioxide electrolytic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240882A (en) * 1979-11-08 1980-12-23 Institute Of Gas Technology Gas fixation solar cell using gas diffusion semiconductor electrode
WO2019176141A1 (en) * 2018-03-16 2019-09-19 株式会社 東芝 Carbon dioxide electrolysis cell and electrolysis device
WO2020121556A1 (en) * 2018-12-10 2020-06-18 日本電信電話株式会社 Carbon dioxide gas-phase reduction device and carbon dioxide gas-phase reduction method
JP2021147680A (en) * 2020-03-23 2021-09-27 株式会社東芝 Carbon dioxide electrolytic device

Similar Documents

Publication Publication Date Title
Yang et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric–thermal field on copper nanoneedles
DuChene et al. Optical excitation of a nanoparticle Cu/p-NiO photocathode improves reaction selectivity for CO2 reduction in aqueous electrolytes
Andrei et al. Scalable triple cation mixed halide perovskite–bivo4 tandems for bias‐free water splitting
Moriya et al. Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation
Zhu et al. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review
Hu et al. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films
Yang et al. Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition
Ba et al. New way for CO2 reduction under visible light by a combination of a Cu electrode and semiconductor thin film: Cu2O conduction type and morphology effect
Berglund et al. p-Si/W2C and p-Si/W2C/Pt photocathodes for the hydrogen evolution reaction
John et al. Mechanistic studies of formate oxidation on platinum in alkaline medium
Liu et al. (Photo) electrocatalytic CO2 reduction at the defective anatase TiO2 (101) surface
Sang et al. Effect of quantum dot deposition on the interfacial flatband potential, depletion layer in TiO2 nanotube electrodes, and resulting H2 generation rates
Stoll et al. Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants
Wang et al. Field-assisted splitting of pure water based on deep-sub-Debye-length nanogap electrochemical cells
Lu et al. In situ integration of ReS2/Ni3S2 pn heterostructure for enhanced photoelectrocatalytic performance
Kronawitter et al. Observation of surface-bound negatively charged hydride and hydroxide on GaP (110) in H2O environments
Gurudayal et al. Revealing the influence of doping and surface treatment on the surface carrier dynamics in hematite nanorod photoanodes
Hellstern et al. Molybdenum disulfide catalytic coatings via atomic layer deposition for solar hydrogen production from copper gallium diselenide photocathodes
WO2015133127A1 (en) Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used
Rahaman et al. Solar-driven liquid multi-carbon fuel production using a standalone perovskite–BiVO4 artificial leaf
Priyadarshani et al. Semiconductor-to-Metal-like Behavior of Si with Dopant Concentration—An Electrochemical Investigation and Illustration with Surface Hydride Formation and Hydrogen Evolution Reaction
Cui et al. Robust protection of III–V nanowires in water splitting by a thin compact TiO2 layer
Arunachalam et al. Reliable bi-functional nickel-phosphate/TiO2 integration enables stable n-GaAs photoanode for water oxidation under alkaline condition
WO2023233590A1 (en) Reduction electrode, and method for producing reduction electrode
Tóth et al. Structural features dictate the photoelectrochemical activities of two-dimensional MoSe2 and WSe2 nanostructures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944874

Country of ref document: EP

Kind code of ref document: A1