WO2015133127A1 - Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used - Google Patents

Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used Download PDF

Info

Publication number
WO2015133127A1
WO2015133127A1 PCT/JP2015/001110 JP2015001110W WO2015133127A1 WO 2015133127 A1 WO2015133127 A1 WO 2015133127A1 JP 2015001110 W JP2015001110 W JP 2015001110W WO 2015133127 A1 WO2015133127 A1 WO 2015133127A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
type optical
reduction
electrode
substrate
Prior art date
Application number
PCT/JP2015/001110
Other languages
French (fr)
Japanese (ja)
Inventor
飯島 剛
土方 啓暢
裕明 世登
横野 照尚
村上 直也
Original Assignee
株式会社デンソー
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 国立大学法人九州工業大学 filed Critical 株式会社デンソー
Publication of WO2015133127A1 publication Critical patent/WO2015133127A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to a CO 2 reduction electrode for reducing CO 2 and a CO 2 reduction device using the same.
  • Non-Patent Document 1 In recent years, research for synthesizing organic substances from carbon dioxide using light energy such as sunlight has been regarded as important for solving the fossil fuel depletion problem. So far, development of a suspension system in which a photocatalyst is suspended in water has been advanced. Specifically, a reduction catalyst has been developed in which a photocatalyst made of brookite-type titanium oxide is loaded with a promoter made of a noble metal (see Non-Patent Document 1).
  • the present disclosure has been made in view of such a background, and an object of the present disclosure is to provide a CO 2 reduction electrode and a CO 2 reduction device that can sufficiently obtain a reduction product made of an organic substance or the like.
  • the CO 2 reduction electrode includes a conductive substrate, a p-type optical semiconductor provided on the substrate, and an n-type optical semiconductor provided on the p-type optical semiconductor. Have.
  • the energy level of the conduction band of the p-type optical semiconductor is higher than the energy level of the conduction band of the n-type optical semiconductor, and the energy level of the valence band of the p-type optical semiconductor is n It is higher than the energy level of the valence band of the type optical semiconductor.
  • a CO 2 reduction device includes the CO 2 reduction electrode, an oxidation electrode, an aqueous electrolyte in which the oxidation electrode and the CO 2 reduction electrode are immersed, and the aqueous electrolyte.
  • An ion exchange membrane for separating the CO 2 reduction electrode and the oxidation electrode therein, a light source for irradiating the CO 2 reduction electrode with light, and a supply port for supplying CO 2 to the CO 2 reduction electrode.
  • the CO 2 reduction electrode (hereinafter referred to as “reduction electrode” as appropriate) has the p-type optical semiconductor and the n-type optical semiconductor provided thereon. That is, the reduction electrode has a stacked body of a p-type optical semiconductor and an n-type optical semiconductor, and has a pn junction. Therefore, it is possible to n-type optical semiconductor keep light irradiation conditions to reduce CO 2 Te transferring electrons to CO 2. At this time, an organic substance such as methanol is generated from CO 2 in the presence of water. On the other hand, holes are generated in the p-type optical semiconductor by light irradiation.
  • the reduction electrode the reduction can be performed by stably supplying electrons to CO 2 , and a reduction product made of an organic substance or the like can be sufficiently obtained.
  • the reduction electrode can suppress the reduction of water. Therefore, CO 2 can be selectively reduced while suppressing reduction of water even in the presence of water.
  • the energy levels of the p-type optical semiconductor and the n-type optical semiconductor are in the above relationship. Therefore, it is possible to pass a current when the reduction electrode is used as an electrode.
  • the CO 2 reduction device (hereinafter referred to as “reduction device” as appropriate) includes the reduction electrode. Therefore, taking advantage of the above-described excellent performance of the reduction electrode, the reduction device can sufficiently reduce CO 2 and generate a reduction product made of an organic substance or the like.
  • the reduction electrode and the oxidation electrode are separated by an ion exchange membrane. Therefore, it is possible to suppress the reduction product of CO 2 produced in the reduction electrode is oxidized again. Therefore, a sufficient reduction product can be obtained.
  • FIG. 3 is an explanatory diagram showing a cross-sectional configuration of a reduction electrode in Example 1.
  • FIG. 3 is an explanatory diagram illustrating a process of forming a p-type optical semiconductor on a substrate from the formation surface side of the FTO film of the substrate in Example 1.
  • FIG. 2B is an explanatory diagram showing a step of forming a p-type optical semiconductor on the substrate subsequent to FIG. 2A from the FTO film formation surface side of the substrate.
  • FIG. 2B is an explanatory diagram showing a step of forming a p-type optical semiconductor on the substrate subsequent to FIG.
  • FIG. 2D is an explanatory view showing a step of forming a p-type optical semiconductor on the substrate subsequent to FIG. 2C from the FTO film forming surface side of the substrate.
  • Explanatory drawing which shows the process of forming a p-type optical semiconductor on a board
  • FIG. 3B is an explanatory diagram showing a step of forming a p-type optical semiconductor on the substrate following FIG. 3A by a cross-sectional structure.
  • FIG. 3D is an explanatory diagram showing a cross-sectional structure of a process for forming a p-type optical semiconductor on a substrate following FIG. 3B.
  • FIG. 3D is an explanatory diagram illustrating, by a cross-sectional structure, a step of forming a p-type optical semiconductor on the substrate subsequent to FIG. 3C.
  • FIG. 3 is an explanatory diagram illustrating a method for forming an n-type optical semiconductor by electrophoresis in Example 1.
  • FIG. 3 is an explanatory diagram illustrating a cross-sectional configuration of the reduction device according to the first embodiment.
  • FIG. 10 is an enlarged cross-sectional view of a reduction electrode in Example 7.
  • FIG. 10 is a schematic view of an electrodeposition apparatus for forming a p-type optical semiconductor in Example 7. The scanning electron micrograph of the magnification of 2000 times of the surface of the p-type optical semiconductor in Example 7.
  • FIG. 3D is an explanatory diagram illustrating, by a cross-sectional structure, a step of forming a p-type optical semiconductor on the substrate subsequent to FIG. 3C.
  • FIG. 3 is an explanatory diagram illustrating a method for
  • FIG. 10 is an enlarged cross-sectional view of a reduction electrode in Example 8. Scanning electron micrograph of the surface of the p-type optical semiconductor in Example 8 at a magnification of 2000 times Scanning electron micrograph of the surface of the p-type optical semiconductor in Example 8 at a magnification of 50000 times
  • FIG. 10B is a diagram of the scanning electron micrograph shown in FIG. 10A.
  • FIG. 10B is a diagram of the scanning electron micrograph shown in FIG.
  • FIG. 10 is an enlarged cross-sectional view of a reduction electrode in Example 9.
  • FIG. FIG. 12B is a diagram of the scanning electron micrograph shown in FIG. 12A.
  • FIG. 12B is a diagram of the scanning electron micrograph shown in FIG. 12B.
  • FIG. 3 is an enlarged cross-sectional view of a reduction electrode in Example 1.
  • FIG. 10 is an enlarged cross-sectional view of a reduction electrode in Example 9.
  • FIG. 12B is a diagram of the scanning electron micrograph shown in FIG. 12A.
  • FIG. 14B is a diagram of the scanning electron micrograph shown in FIG. 14A.
  • FIG. 14B is a diagram of the scanning electron micrograph shown in FIG. 14B.
  • FIG. 6 is an explanatory diagram showing a comparison result of current densities of the reduction electrodes of Example 1 and Examples 7 to 9.
  • the substrate may be a substrate having a conductive layer on the surface, even if the substrate does not have overall conductivity.
  • substrate should just have electroconductivity,
  • the material can be selected suitably.
  • the shape of the p-type optical semiconductor and the n-type optical semiconductor is a film shape, for example.
  • the thickness can be changed as appropriate.
  • the n-type optical semiconductor on the p-type optical semiconductor is preferably formed with a thickness capable of transmitting light.
  • the thickness of the p-type optical semiconductor is, for example, 0.1 to 500 ⁇ m, and the thickness of the n-type optical semiconductor is, for example, 0.01 to 200 ⁇ m.
  • Examples of the material of the n-type optical semiconductor include TiO 2 , SrTiO 3 , BaTiO 3 , CaTiO 3 , WO 3 , BiVO 4 , BiFeO 3 , CuTaN 2 , FeTiO 2 , MgFe 2 O 4 , PbS, ZnO, graphene, and graphite Examples thereof include at least one selected from carbon nitride (CN), n-Si, n-SiC, n-GaN, n-AlGaN, and the like.
  • TiO 2 includes, for example, a rutile type, an anatase type, and a brookite type. Any of these materials may be used as the material of the n-type optical semiconductor, and a mixture of two or more types may be used.
  • Examples of the material of the p-type optical semiconductor include CuO, Cu 2 O, Mg-doped CuFe 2 O 4 , CaFe 2 O 4 , CoO 3 , Cr 2 O 3 , CuCrO 2 , Fe-doped TiO 2 , Cr-doped TiO 2 , and GaP. And at least one selected from InP, NiO, Rh-doped SrTiO 3 , p-Si, p-SiC, and the like.
  • the energy level of the conduction band of the p-type optical semiconductor is higher on the base side than the energy level of the conduction band of the n-type optical semiconductor.
  • the energy level of the valence band of the p-type optical semiconductor is higher than the energy level of the valence band of the n-type optical semiconductor.
  • materials of the p-type optical semiconductor and the n-type optical semiconductor are appropriately selected from, for example, the above-described substances.
  • the oxidation electrode is the counter electrode of the reduction electrode.
  • the oxidation electrode for example, an electrode made of a noble metal or the like can be used.
  • the aqueous electrolyte solution for example, an aqueous electrolyte solution can be used.
  • Various commercially available products can be used as the ion exchange membrane.
  • the light from the light source preferably includes ultraviolet light, visible light and the like. In this case, it becomes easier to activate the CO 2 reduction reaction at the reduction electrode. More preferably, the light from the light source includes at least ultraviolet rays.
  • Example 1 examples of the CO 2 reduction electrode and the CO 2 reduction device will be described.
  • the reduction electrode 1 of this example has a conductive substrate 11, a p-type optical semiconductor 12 provided thereon, and an n-type optical semiconductor 13 provided thereon.
  • the p-type optical semiconductor 12 is completely covered with the n-type optical semiconductor 13.
  • the p-type optical semiconductor 12 is made of copper oxide (CuO)
  • the n-type optical semiconductor 13 is made of brookite-type titanium oxide (TiO 2 ).
  • the p-type optical semiconductor 12 is formed on the substrate 11 by the squeegee method.
  • a quartz glass substrate 112 having a fluorine-doped tin oxide (FTO) film 111 formed on the surface was prepared as the conductive substrate 11 (see FIGS. 2A and 3A).
  • FTO fluorine-doped tin oxide
  • the substrate 11 a product of Meijo Kagaku Kogyo Co., Ltd. was used.
  • the FTO film 111 is laminated on one side of the quartz glass substrate 112.
  • the dimensions of the substrate 11 are 30 mm long ⁇ 30 mm wide ⁇ 1.8 mm thick.
  • a plate-like spacer 120 with a hollow interior was prepared.
  • the external dimensions of the spacer 120 are 30 mm long ⁇ 30 mm wide like the substrate 11, and the dimensions of the internal space are 25 mm long ⁇ 25 mm wide.
  • the thickness of the spacer 120 is 1 mm.
  • This spacer 120 was placed on the surface of the substrate 11 where the FTO film 111 is formed.
  • a CuO paste layer 121 was formed on the FTO film 111 of the substrate 11 by applying a CuO paste in the internal space of the spacer 120 by a squeegee method.
  • the CuO paste was obtained by mixing 500 mg of CuO (manufactured by Wako Pure Chemical Industries, Ltd.) and 2 ml of ethanol.
  • the spacer 120 was removed.
  • the substrate 11 on which the CuO paste layer 121 was laminated was baked at a temperature of 550 ° C. for 1 hour. Thereby, as shown in FIG. 2D and FIG. 3D, a film-like p-type optical semiconductor 12 having a thickness of 30 ⁇ m was formed on the substrate 11.
  • the p-type optical semiconductor 12 is formed on the FTO film 111 of the substrate 11.
  • substrate A the substrate 11 on which the p-type optical semiconductor 12 is formed is referred to as “substrate A” and is denoted by reference numeral 15.
  • the p-type optical semiconductor 12 is manufactured by the squeegee method.
  • the p-type optical semiconductor 12 can also be manufactured by, for example, a spin coater method, an electrophoresis method, an electrodeposition method, or the like.
  • an n-type optical semiconductor is formed by electrophoresis.
  • brookite type titanium oxide was prepared.
  • 0.6 g of titanium powder (“204-05205” manufactured by Wako Pure Chemical Industries, Ltd.), 10 ml of 25 mass% ammonia water (“010-03166” manufactured by Wako Pure Chemical Industries, Ltd.), 30 40 ml of a mass% hydrogen peroxide solution (“081-04215” manufactured by Wako Pure Chemical Industries, Ltd.) was mixed and stirred until all of the titanium powder was dissolved.
  • 1.426 g of glycolic acid (“075-01515” manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further stirred at room temperature for 2 hours. The solution was then heated at a temperature of 100 ° C. with stirring.
  • a solution 131 for electrophoresis As shown in FIG. 4, the substrate A15 and the substrate 16 on which the p-type optical semiconductor is not formed (hereinafter, referred to as “substrate B” as appropriate) were completely immersed in the solution 131.
  • the substrate B16 is the same as the substrate before the p-type optical semiconductor is formed, and is a quartz glass substrate 162 on which the FTO film 161 is formed.
  • both were immersed in the solution 131 in a state where the distance between the substrate A15 and the substrate B16 was 1 mm.
  • Substrate A15 and substrate B16 were electrically connected to potentiostat 18.
  • the substrate A15 is a positive electrode
  • the substrate B16 is a negative electrode.
  • a voltage of 10V was applied between the substrate A15 and the substrate B16 for 120 seconds.
  • the n-type optical semiconductor 13 made of brookite-type titanium oxide was formed on the surface of the substrate A15 where the FTO film 111 is formed (see FIGS. 4 and 1).
  • the n-type optical semiconductor 13 has a thickness of 40 ⁇ m. This thickness is the thickness of the n-type optical semiconductor 13 in the stacked portion of the p-type optical semiconductor 12 and the n-type optical semiconductor 13.
  • the reduction includes the conductive substrate 11, the p-type optical semiconductor 12 stacked on the substrate 11, and the n-type optical semiconductor 13 covering the p-type optical semiconductor 12.
  • An electrode 1 was obtained.
  • FIG. 16 shows the material and thickness of the n-type optical semiconductor 13 and the material and thickness of the p-type optical semiconductor 12 in the reduction electrode 1 of this example.
  • the n-type optical semiconductor 13 is manufactured by electrophoresis.
  • the n-type optical semiconductor 13 can also be manufactured by, for example, a squeegee method, a spin coater method, or the like.
  • the reduction device 8 of this example includes a reduction electrode 1, an oxidation electrode 2, an aqueous electrolytic solution 3 (hereinafter referred to as “electrolytic solution 3” as appropriate), and an ion exchange membrane 4 (hereinafter referred to as “ A membrane 4 ”), a light source 5, and a supply port 6 for supplying CO 2 .
  • the electrolytic solution 3 is a KHCO 3 aqueous solution having a concentration of 0.2 mol / L.
  • 50 ml of the electrolytic solution 3 is injected into the case 80.
  • Case 80 is an H-type cell VB-9 manufactured by EC Frontier. That is, the case 80 is H-shaped and includes two cases 801 and 802 and a connecting portion 803 that connects the two cases.
  • the reduction electrode 1 and the reference electrode 19 made of Ag / AgCl are inserted.
  • the reduction electrode 1 and the reference electrode 19 are electrically connected.
  • the oxidation electrode 2 that is the counter electrode of the reduction electrode 1 is inserted.
  • the oxidation electrode 2 is made of a Pt wire.
  • a membrane 4 (Nafion membrane manufactured by Sigma-Aldrich) is disposed in the connecting portion 803 of the case 80. The membrane 4 exists between the reduction electrode 1 and the oxidation electrode 2 and separates them.
  • the reduction electrode 1, the reference electrode 19, the oxidation electrode 2, and the membrane 4 are immersed in the electrolytic solution 3.
  • the openings of the cases 801 and 802 are sealed with plugs 803 and 804.
  • a tube 60 for supplying CO 2 is inserted into the plug 803 on the case 801 side. CO 2 is supplied into the electrolytic solution 3 from the supply port 6 of the pipe 60.
  • the reducing device 8 includes a light source 5 for irradiating the reducing electrode 1 with light 51.
  • the light source 5 is arranged so that light is irradiated onto the surface of the reduction electrode 1 on which the p-type optical semiconductor 12 and the n-type optical semiconductor 13 are formed.
  • the light source 5 “MAX300W” manufactured by Asahi Spectroscopic Co., Ltd. was used.
  • the reduction device 8 is electrically connected to an electrochemical analyzer 9 including an ammeter 91 and a voltmeter 92 as shown in FIG.
  • the electrochemical analyzer 9 is an ALS model 660E manufactured by BAS.
  • the ammeter 91 is connected between the reduction electrode 1 and the oxidation electrode 2, and the voltmeter 92 is connected between the reduction electrode 1 and the reference electrode 19.
  • CO 2 was reduced using the reducing device 8 and the amount of reduction product produced was analyzed.
  • carbon dioxide gas (CO 2 ) having a G1 level, that is, a purity of 99.99995 vol% is supplied from the supply port 6 into the electrolyte 3 for 2 hours, and the wavelength of 340 nm or more is supplied from the light source 5.
  • the light 51 was irradiated to the reduction electrode 1 for 6 hours.
  • the flow rate of carbon dioxide gas is 5 ml / min, and the intensity of light is 10 mW / cm 2 .
  • the carbon dioxide gas supplied into the electrolytic solution 3 is reduced at the reduction electrode 1 irradiated with light.
  • This reduction reaction was carried out for 6 hours, and the amount of reduction product was detected by chromatography.
  • methanol, formic acid, hydrogen, and carbon monoxide were detected as products.
  • Methanol was detected by collecting the electrolytic solution 3 after the reduction reaction and injecting the electrolytic solution 3 into a gas chromatography apparatus (“GC-2014” manufactured by Shimadzu Corporation) using a syringe.
  • the column for chromatography is “DB-WAXetr” manufactured by Agilent Technologies.
  • the detection method is flame ionization detection (FID). The detection was performed under the condition that the temperature was maintained at 70 ° C. for 5 minutes.
  • Formic acid is detected by collecting the electrolytic solution 3 after the reduction reaction and injecting the electrolytic solution 3 into an ion chromatography apparatus (“Dionex IC-20” manufactured by Thermo Fisher Scientific Co., Ltd.) using a syringe. It was done by doing.
  • the column for chromatography is “IonPac AS20” manufactured by Thermo Fisher Scientific Co., Ltd.
  • a mixed solution of a 2.7 mmol / L Na 2 CO 3 aqueous solution and a 0.3 mmol / L NaHCO 3 aqueous solution was used as an electrolyte for chromatography.
  • the flow rate condition is 1.5 ml / min.
  • Hydrogen and carbon monoxide were detected by injecting the gas in the case 80 after the reduction reaction into a gas chromatography apparatus (“GC-2014” manufactured by Shimadzu Corporation).
  • the column for chromatography is “SHINCARBON ST” manufactured by Shimadzu Corporation.
  • the detection method is thermal conductivity detection (TCD). The detection was performed under the condition that the temperature was maintained at 40 ° C. for 12 minutes and then the temperature was increased to 200 ° C. at a temperature increase rate of 10 ° C./min.
  • Example 2 The reduction electrode 1 of Example 2 is an electrode manufactured in the same manner as in Example 1 except that the thickness of the n-type optical semiconductor 13 is changed to 15 ⁇ m.
  • the reduction electrode 1 of Example 3 is an electrode manufactured in the same manner as in Example 1 except that brookite type titanium oxide supporting metal (Ag) is used instead of brookite type titanium oxide. .
  • the brookite type titanium oxide supporting metal was prepared as follows.
  • catalyst powder AgNO 3
  • sacrificial reagent ethanol
  • N 2 nitrogen
  • a metal was supported on the reduction surface of brookite-type titanium oxide.
  • the addition amount of the catalyst powder can be adjusted in the range of 0.5 mg to 5 mg, for example, and the addition amount of the sacrificial reagent can be adjusted in the range of 0.5 ml to 5 ml, for example.
  • the reduction electrode 1 of Example 4 is an electrode produced in the same manner as in Example 1 except that the p-type optical semiconductor 12 is formed using CuFe 2 O 4 paste instead of CuO paste.
  • the reduction electrode 1 of Example 5 is made of general-purpose titanium oxide (“AEROXIDE (registered trademark) TiO 2 manufactured by Nippon Aerosil Co., Ltd.) instead of brookite-type titanium oxide.
  • the electrode was produced in the same manner as in Example 1 except that P25 ") was used.
  • the titanium oxide of this example is a mixture of a rutile type and an anatase type.
  • the reduction electrode 1 of Example 6 is an electrode manufactured in the same manner as Example 1 except that strontium titanate (SrTiO 3 ) was used instead of brookite-type titanium oxide.
  • the reduction device 8 having the same configuration as that of Example 1 was produced using each of these, and CO 2 was reduced.
  • the same reference numerals as those in the first embodiment indicate the same configuration, and the preceding description is referred to.
  • Comparative Examples 1 to 5 The reduction electrode of Comparative Example 1 is an electrode manufactured in the same manner as in Example 1 except that the n-type optical semiconductor was not formed.
  • the reduction electrode of Comparative Example 2 did not form an n-type optical semiconductor, and was the same as Example 1 except that a p-type optical semiconductor was formed using CuFe 2 O 4 paste instead of CuO paste. This is an electrode manufactured in this way.
  • the reduction electrode of Comparative Example 3 was manufactured in the same manner as in Example 1 except that the n-type optical semiconductor was not formed and that a p-type optical semiconductor was formed using InP paste instead of CuO paste. Electrode.
  • the reduction electrode of Comparative Example 4 is an electrode manufactured in the same manner as in Example 1 except that the n-type optical semiconductor was formed directly on the substrate without forming the p-type optical semiconductor.
  • the reduction electrode of Comparative Example 5 does not form a p-type optical semiconductor, and further uses general-purpose titanium oxide (“AEROXIDE (registered trademark) TiO 2 P25” manufactured by Nippon Aerosil Co., Ltd.) instead of brookite-type titanium oxide.
  • AEROXIDE registered trademark TiO 2 P25
  • the electrode was produced in the same manner as in Example 1 except that the n-type optical semiconductor was directly formed on the substrate.
  • the reduction electrode 1 of the embodiment has a stacked body of a p-type optical semiconductor 12 and an n-type optical semiconductor 13 and has a pn junction between them (see FIGS. 1 and 5). Therefore, reduction can be performed by supplying electrons to CO 2 stably under light irradiation conditions, and a reduction product composed of an organic substance or the like is sufficiently obtained.
  • methanol and formic acid are sufficiently generated from CO 2 , while generation of hydrogen and carbon monoxide is sufficiently suppressed. This is because, in the embodiment, it is possible to suppress the reduction of water and advance the reduction reaction that generates methanol and formic acid from water and carbon dioxide, not the reduction reaction that generates carbon monoxide from carbon dioxide. means.
  • the energy level of the conduction band of the p-type optical semiconductor 12 is higher than the energy level of the conduction band of the n-type optical semiconductor 13.
  • the energy level of the valence band of the p-type optical semiconductor 12 is higher on the base side than the energy level of the valence band of the n-type optical semiconductor 13. Since the p-type optical semiconductor 12 and the n-type optical semiconductor in such a combination are employed, it is possible to pass a current when the reduction electrode 1 is used as an electrode.
  • the p-type optical semiconductor 12 is completely covered with the n-type optical semiconductor 13 as in the embodiment. That is, it is preferable that the p-type optical semiconductor 12 is not exposed to the outside. In this case, since the p-type optical semiconductor 12 does not come into direct contact with the electrolytic solution 3 in the reducing device 8, the reduction of water is further suppressed. That is, the reduction electrode 1 can reduce CO 2 more selectively.
  • the n-type optical semiconductor 13 is preferably made of at least one selected from TiO 2 , SrTiO 3 , WO 3 and BiVO 4 . More preferably, the n-type optical semiconductor 13 is made of brookite-type titanium oxide. In this case, the reduction of water can be further suppressed, and CO 2 can be reduced more selectively. As a result, the amount of CO 2 reduction product can be further improved.
  • the p-type optical semiconductor 12 is preferably made of at least one selected from CuO, Cu 2 O, InP, p-SiC, and p-Si. In this case, the amount of reduction product of CO 2 can be further improved.
  • Example 3 titanium oxide supporting Ag as described above is used as the n-type optical semiconductor.
  • Other examples of the metal to be supported include Au, Rh, Cu, Ni, Ru, Ir, Re, and Pd. At least one of these metals can be used.
  • the reduction device 8 has an ion exchange membrane 4 that separates the reduction electrode 1 and the oxidation electrode 2 (see FIG. 5). Therefore, in the reduction device 8, the movement of the reduction product is limited. Therefore, reduction products such as methanol and formic acid can be prevented from being oxidized again at the oxidation electrode 2. Therefore, the reduction device 8 can obtain a sufficient reduction product.
  • Example 7 This example is an example of a reduction electrode having a p-type optical semiconductor having a branched structure.
  • the reduction electrode 1 of this example covers a conductive substrate 11, a p-type optical semiconductor 12 having a branched structure provided on the substrate 11, and the p-type optical semiconductor 12. and an n-type optical semiconductor 13.
  • the substrate 11 has a quartz glass substrate 112 and an FTO film 111 formed on the quartz glass substrate 112 in the same manner as in the first embodiment.
  • the p-type optical semiconductor 12 is an FTO film of the substrate 11. 111 is formed.
  • the p-type optical semiconductor 12 has a branched structure extending from the substrate 11 (FTO film 111) to the inside of the n-type optical semiconductor 13. Specifically, in the p-type optical semiconductor 12, a large number of branches 125 (projections 125) extending in a random direction from the substrate 11 are formed, and these branches 125 are branched structures. Is forming. It can be said that the p-type optical semiconductor 12 is a cauliflower-like structure in which a large number of protrusions 125 extending in a random direction are gathered. The p-type optical semiconductor 12 is formed on the substrate 11 with a predetermined surface roughness. The p-type optical semiconductor 12 is made of CuO as in the first embodiment.
  • the n-type optical semiconductor 13 covers the branched p-type optical semiconductor 12.
  • the n-type optical semiconductor 13 covers the p-type optical semiconductor 12 along the outer shape of the branched p-type optical semiconductor 12, and has a concavo-convex structure on the surface.
  • the n-type optical semiconductor 13 is made of brookite-type titanium oxide as in the first embodiment.
  • Example 1 a quartz glass substrate 112 having an FTO film 111 formed on the surface was prepared as the conductive substrate 11.
  • the counter electrode 17 was immersed.
  • the working electrode 14 and the counter electrode 17 are both composed of the above-described quartz glass substrate 112 having the FTO film 111 formed on the surface thereof, and are the above-described conductive substrate 11.
  • the reference electrode 19 is an Ag / AgCl electrode.
  • the working electrode 14 and the counter electrode 17 were disposed so that the FTO films 111 face each other.
  • the distance between the working electrode 14 and the counter electrode 17 is 4 mm.
  • An ammeter was installed between the working electrode 14 and the counter electrode 17, and a voltmeter was installed between the working electrode 14 and the reference electrode 19.
  • the working electrode 14 and the counter electrode 17 are electrically connected to the potentiostat 18, and a potential of ⁇ 0.75 V is applied between both electrodes for 1800 seconds so that the working electrode 14 has a negative potential with respect to the counter electrode 17. did.
  • the liquid temperature of the aqueous solution 129 at this time is room temperature (25 ° C.). Due to this potential difference, as shown in FIG. 7, Cu 2+ ions in the aqueous solution 129 are deposited as Cu on the FTO film 111 of the working electrode 14 (electrodeposition). Thereafter, the working electrode 14 was dried in a dryer at a temperature of 110 ° C. for 1 hour, and then the working electrode 14 was further fired at a temperature of 550 ° C. for 1 hour under atmospheric conditions.
  • the p-type optical semiconductor 12 having a branched structure made of copper oxide was formed on the FTO film 111 of the substrate 11 (see FIG. 6).
  • the crystal structure of the p-type optical semiconductor 12 was examined by an X-ray diffractometer using Cu—K ⁇ rays (RINT2000 manufactured by Rigaku Corporation), it was confirmed that the p-type optical semiconductor was made of CuO.
  • FIG. 8A The result of 2000 times magnification is shown in FIG. 8A, and the result of 50000 times magnification is shown in FIG. 8B.
  • 8C and 8D show diagrams of the SEM photographs shown in FIGS. 8A and 8B, respectively.
  • FIG. 8A An enlarged cross-sectional view of the p-type optical semiconductor 12 in Example 1 is shown in FIG.
  • FIG. 14A an SEM photograph at a magnification of 2000 times of the surface of the p-type optical semiconductor 12 in Example 1 is shown in FIG. 14A to be described later.
  • the SEM photograph at a magnification of 50000 is shown in FIG. 14B described later.
  • 14C and 14D show diagrams of the SEM photographs shown in FIGS. 14A and 14B, respectively.
  • the p-type optical semiconductor 12 in Example 1 is composed of an aggregate of particles made of copper oxide, whereas it is known from FIGS. 8A to 8D.
  • the p-type optical semiconductor 12 in this example has a branched structure extending from the FTO film 111 and extending.
  • the roughness of the surface of the p-type optical semiconductor 12 in this example was measured based on the arithmetic average roughness Ra (JIS 2001 standard).
  • a needle contact type surface shape measuring device “DEKTAK 6M STYLUS PROFILER” manufactured by VEECO / SLOAN was used.
  • the surface roughness (arithmetic average roughness Ra) of the p-type optical semiconductor in this example was 2701.97 nm.
  • the surface roughness Ra of the p-type optical semiconductor 12 in Example 1 was 1237.09 nm.
  • an n-type optical semiconductor 13 was formed on the p-type optical semiconductor 12 of this example by the same electrophoresis method as in Example 1. As described above, as shown in FIG. 6, a reduction electrode 1 having a branched p-type optical semiconductor 12 and an n-type optical semiconductor 13 covering the branched p-type optical semiconductor 12 was obtained.
  • a reducing device 8 having the same configuration as that of Example 1 is assembled except that the reducing electrode 1 of this example is used and the electrolytic solution 3 is changed to Na 2 SO 4 having a concentration of 0.1 mol / L. (See FIG. 5). Subsequently, CO 2 was reduced by the reduction device 8.
  • G1 level CO 2 is supplied into the electrolyte 3 for 60 minutes, light 51 (pseudo sunlight) having an intensity of 100 W / cm 2 is irradiated from the light source 5 at intervals of 1 second, and CO 2 is reduced by the reducing device 8. Reduction of 2 was performed.
  • FIG. 15 also shows the measurement results of current density when using the reduction electrode of Example 1.
  • Example 8 This example is an example of a reduction electrode in which a p-type optical semiconductor is formed by changing the electrodeposition reaction time from that of Example 7 described above.
  • the p-type optical semiconductor 12 is a branch that extends from the substrate 11 (FTO film 111) to the inside of the n-type optical semiconductor 13, as in the seventh embodiment. It has a shape structure.
  • the p-type optical semiconductor 12 of this example there are more branches 125 (projections 125) than in Example 7, and the length thereof is longer. Other configurations are the same as those of the seventh embodiment.
  • the reduction electrode 1 of this example is the same as that of the above-described embodiment except that, when the p-type optical semiconductor 12 is formed, a potential of ⁇ 0.75 V is applied between the counter electrode 17 and the working electrode 14 for 3600 seconds. 7 (see FIG. 7). Also in this example, when the crystal structure of the p-type optical semiconductor 12 was examined with an X-ray diffractometer using a Cu—K ⁇ ray (RINT2000 manufactured by Rigaku Corporation) as in Example 7, the p-type optical semiconductor was examined. It was confirmed that 12 consists of CuO. Further, an SEM photograph on the surface of the p-type optical semiconductor 12 in this example was taken under the same conditions as in Example 7. An SEM photograph at a magnification of 2000 is shown in FIG.
  • FIG. 10A an SEM photograph at a magnification of 50000 is shown in FIG. 10B.
  • 10C and 10D show diagrams of the SEM photographs shown in FIGS. 10A and 10B, respectively.
  • the surface roughness (arithmetic average roughness Ra) of the p-type optical semiconductor in this example was measured in the same manner as in Example 7. As a result, the surface roughness was 3174.66 nm.
  • the reduction device 8 is assembled in the same manner as in Example 7 (see FIG. 5), and the photocurrent density when the potential with respect to the standard hydrogen electrode is 0 V (current density flowing during light irradiation). ) The result is shown in FIG.
  • Example 9 is an example of a reduction electrode in which a p-type optical semiconductor is formed by changing the electrodeposition reaction time from Example 7 and Example 8 described above.
  • the p-type optical semiconductor is branched like extending from the substrate 11 (FTO film 111) to the inside of the n-type optical semiconductor 13 as in the seventh embodiment. It has a structure.
  • the p-type optical semiconductor 12 of this example has fewer branches 125 (projections 125) and a shorter length than that of the seventh embodiment. Other configurations are the same as those of the seventh embodiment.
  • the reduction electrode 1 of this example is the same as that of the above-described embodiment except that, when the p-type optical semiconductor 12 is formed, a potential of ⁇ 0.75 V is applied between the counter electrode 17 and the working electrode 14 for 600 seconds. 7 (see FIG. 7). Also in this example, when the crystal structure of the p-type optical semiconductor 12 was examined with an X-ray diffractometer using a Cu—K ⁇ ray (RINT2000 manufactured by Rigaku Corporation) as in Example 7, the p-type optical semiconductor was examined. It was confirmed that 12 consists of CuO. Further, an SEM photograph on the surface of the p-type optical semiconductor 12 in this example was taken under the same conditions as in Example 7. An SEM photograph at a magnification of 2000 is shown in FIG.
  • FIG. 12A an SEM photograph at a magnification of 50000 is shown in FIG. 12B.
  • 12C and 12D show diagrams of the SEM photographs shown in FIGS. 12A and 12B, respectively.
  • the surface roughness (arithmetic average roughness Ra) of the p-type optical semiconductor in this example was measured in the same manner as in Example 7. As a result, the surface roughness was 2015.23 nm.
  • the reduction device 8 is assembled in the same manner as in Example 7 (see FIG. 5), and the photocurrent density when the potential with respect to the standard hydrogen electrode is 0 V (current density flowing during light irradiation). ) The result is shown in FIG.
  • Embodiments 7 to 7 having a p-type optical semiconductor 12 (see FIGS. 6, 8A to 12D) having a branched structure extending from the substrate 11 to the inside of the n-type optical semiconductor 13 and extending.
  • the reduction electrode 1 of 9 showed a higher current density than the reduction electrode 1 of Example 1 having the p-type optical semiconductor 12 (see FIGS. 13 and 14A to 14D) that did not have a branched structure. .
  • This improvement in current density means an improvement in the CO 2 reduction reaction rate. Therefore, it can be seen that by forming the p-type optical semiconductor 12 having a branched structure as in Examples 7 to 9, the reduction rate of CO 2 can be improved and the production rate of organic substances such as methanol can be further improved.
  • the reduction electrodes 1 of Examples 7 to 9 formed by the electrodeposition method have the p-type optical semiconductor 12 having a branched structure as described above, the p-type optical semiconductor 12 and the n-type optical semiconductor 12 are combined. Since the junction region with the type optical semiconductor 13 is widened, it is assumed that the current density is improved as described above (see FIGS. 6 and 8A to 12D). In Examples 7 to 9, it is speculated that the formation of the dense p-type optical semiconductor 12 also contributes to the improvement of the current density. On the other hand, in the p-type optical semiconductor 12 in Example 1 formed by the squeegee method, since many voids exist between CuO particles (FIGS. 13 and 14A to 14D), Examples 7 to It is assumed that the current density of about 9 was not reached.
  • the p-type optical semiconductor 12 having a branched structure as in Examples 7 to 9 can be formed by the above-described electrodeposition and subsequent firing. By adjusting the potential and reaction time during electrodeposition, the length and number of the branches 125 (projections 125) in the branched structure can be controlled.
  • FIG. 17 shows the formation method, form, and surface roughness of the p-type optical semiconductor 12 in Example 1 and Examples 7 to 9.
  • the surface roughness (arithmetic average roughness Ra) of the p-type optical semiconductor is preferably 2000 nm or more. In this case, the current density can be sufficiently improved. More preferably, the surface roughness of the p-type optical semiconductor is 2500 nm or more. Moreover, from the viewpoint of realizable surface roughness by electrodeposition, the surface roughness of the p-type optical semiconductor is preferably 3200 nm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

 Provided are a CO2 reduction electrode and a CO2 reduction device making it possible to sufficiently obtain a reduction product comprising organic matter, etc. The reduction electrode (1) has an electroconductive substrate (11), a p-type optical semiconductor (12) provided thereon, and an n-type optical semiconductor (13) provided on the p-type optical semiconductor (12). The reduction electrode (1) is used in the reduction device (8). The energy level of the conduction band of the p-type optical semiconductor (12) is higher in the negative direction than the energy level of the conduction band of the n-type optical semiconductor (13). The energy level of the valence band of the p-type optical semiconductor (12) is higher in the negative direction than the energy level of the valence band of the n-type optical semiconductor (13).

Description

二酸化炭素還元電極及びこれを用いた二酸化炭素還元装置Carbon dioxide reduction electrode and carbon dioxide reduction apparatus using the same 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年3月4日に出願された日本出願番号2014-41761号および2014年12月12日に出願された日本出願番号2014-251485号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2014-41761 filed on Mar. 4, 2014 and Japanese Application No. 2014-251485 filed on Dec. 12, 2014. Incorporate.
 本開示は、CO2を還元するためのCO2還元電極、及びこれを用いたCO2還元装置に関する。 The present disclosure relates to a CO 2 reduction electrode for reducing CO 2 and a CO 2 reduction device using the same.
 近年、化石燃料枯渇問題の解決に向けて太陽光等の光エネルギーを利用して二酸化炭素から有機物を合成するための研究が重要視されている。これまでに、光触媒を水に懸濁してなる懸濁系での開発が進められてきた。具体的には、ブルッカイト型酸化チタンからなる光触媒に、貴金属からなる助触媒を担持した還元触媒が開発されている(非特許文献1参照)。 In recent years, research for synthesizing organic substances from carbon dioxide using light energy such as sunlight has been regarded as important for solving the fossil fuel depletion problem. So far, development of a suspension system in which a photocatalyst is suspended in water has been advanced. Specifically, a reduction catalyst has been developed in which a photocatalyst made of brookite-type titanium oxide is loaded with a promoter made of a noble metal (see Non-Patent Document 1).
 しかしながら、上述のように還元触媒を水に分散させてCO2の還元を行っても、還元反応が十分に進行しない。その結果、還元生成物が十分に得られないという問題がある。 However, even if the reduction catalyst is dispersed in water and CO 2 is reduced as described above, the reduction reaction does not proceed sufficiently. As a result, there is a problem that a reduction product cannot be obtained sufficiently.
 本開示は、かかる背景に鑑みてなされたものであり、有機物等からなる還元生成物を十分に得ることができるCO2還元電極、及びCO2還元装置を提供しようとするものである。 The present disclosure has been made in view of such a background, and an object of the present disclosure is to provide a CO 2 reduction electrode and a CO 2 reduction device that can sufficiently obtain a reduction product made of an organic substance or the like.
 本開示の一態様によれば、CO2還元電極は、導電性の基板と、該基板上に設けられたp型光半導体と、該p型光半導体上に設けられたn型光半導体とを有する。 According to one aspect of the present disclosure, the CO 2 reduction electrode includes a conductive substrate, a p-type optical semiconductor provided on the substrate, and an n-type optical semiconductor provided on the p-type optical semiconductor. Have.
 上記p型光半導体の伝導帯のエネルギー準位は、上記n型光半導体の伝導帯のエネルギー準位よりも卑側に高く、上記p型光半導体の価電子帯のエネルギー準位は、上記n型光半導体の価電子帯のエネルギー準位よりも卑側に高い。 The energy level of the conduction band of the p-type optical semiconductor is higher than the energy level of the conduction band of the n-type optical semiconductor, and the energy level of the valence band of the p-type optical semiconductor is n It is higher than the energy level of the valence band of the type optical semiconductor.
 本開示の他の態様によれば、CO2還元装置は、上記CO2還元電極と、酸化電極と、該酸化電極と上記CO2還元電極とが浸漬された水系電解液と、該水系電解液中において上記CO2還元電極と上記酸化電極とを隔てるイオン交換膜と、上記CO2還元電極に光を照射する光源と、上記CO2還元電極にCO2を供給する供給口とを有する。 According to another aspect of the present disclosure, a CO 2 reduction device includes the CO 2 reduction electrode, an oxidation electrode, an aqueous electrolyte in which the oxidation electrode and the CO 2 reduction electrode are immersed, and the aqueous electrolyte. An ion exchange membrane for separating the CO 2 reduction electrode and the oxidation electrode therein, a light source for irradiating the CO 2 reduction electrode with light, and a supply port for supplying CO 2 to the CO 2 reduction electrode.
 上記CO2還元電極(以下、適宜「還元電極」という)は、上記p型光半導体と、この上に設けられた上記n型光半導体とを有している。即ち、上記還元電極は、p型光半導体とn型光半導体との積層体を有し、pn接合を有している。そのため、光照射条件下おいてn型光半導体がCO2に電子を受け渡してCO2を還元することができる。このとき、水の存在下においてCO2からメタノール等の有機物が生成される。一方、光照射によりp型光半導体には正孔が生じる。このとき、p型光半導体において生じる余剰の電子がpn接合を通ってn型光半導体へ補われる。また、p型光半導体には、導電性の基板から電子が補われる。このように、上記還元電極においては、安定してCO2に電子を供給して還元を行うことができ、有機物等からなる還元生成物を十分に得ることができる。 The CO 2 reduction electrode (hereinafter referred to as “reduction electrode” as appropriate) has the p-type optical semiconductor and the n-type optical semiconductor provided thereon. That is, the reduction electrode has a stacked body of a p-type optical semiconductor and an n-type optical semiconductor, and has a pn junction. Therefore, it is possible to n-type optical semiconductor keep light irradiation conditions to reduce CO 2 Te transferring electrons to CO 2. At this time, an organic substance such as methanol is generated from CO 2 in the presence of water. On the other hand, holes are generated in the p-type optical semiconductor by light irradiation. At this time, surplus electrons generated in the p-type optical semiconductor are supplemented to the n-type optical semiconductor through the pn junction. Further, electrons are supplemented from the conductive substrate to the p-type optical semiconductor. Thus, in the reduction electrode, the reduction can be performed by stably supplying electrons to CO 2 , and a reduction product made of an organic substance or the like can be sufficiently obtained.
 また、上記還元電極は、水の還元を抑制することが可能である。そのため、水の存在下においても、水の還元を抑制しつつCO2を選択的に還元することができる。また、上記還元電極においては、p型光半導体とn型光半導体とのエネルギー準位が上述の関係にある。そのため、還元電極を電極として用いた場合に電流を流すことが可能になる。 Further, the reduction electrode can suppress the reduction of water. Therefore, CO 2 can be selectively reduced while suppressing reduction of water even in the presence of water. In the reduction electrode, the energy levels of the p-type optical semiconductor and the n-type optical semiconductor are in the above relationship. Therefore, it is possible to pass a current when the reduction electrode is used as an electrode.
 次に、上記CO2還元装置(以下、適宜「還元装置」という)は、上記還元電極を備えている。そのため、還元電極が有する上述の優れた性能を生かして、上記還元装置は、CO2を還元して、有機物等からなる還元生成物を十分に生成することができる。また、上記還元装置においては、還元電極と酸化電極とがイオン交換膜により隔てられている。そのため、還元電極において生成されるCO2の還元生成物が再度酸化されることを抑制することができる。そのため、還元生成物を十分に得ることができる。 Next, the CO 2 reduction device (hereinafter referred to as “reduction device” as appropriate) includes the reduction electrode. Therefore, taking advantage of the above-described excellent performance of the reduction electrode, the reduction device can sufficiently reduce CO 2 and generate a reduction product made of an organic substance or the like. In the reducing device, the reduction electrode and the oxidation electrode are separated by an ion exchange membrane. Therefore, it is possible to suppress the reduction product of CO 2 produced in the reduction electrode is oxidized again. Therefore, a sufficient reduction product can be obtained.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
実施例1における還元電極の断面構成を示す説明図。 実施例1における、基板上にp型光半導体を形成する工程を、基板のFTO膜の形成面側から示す説明図。 図2Aに続く基板上にp型光半導体を形成する工程を、基板のFTO膜の形成面側から示す説明図。 図2Bに続く基板上にp型光半導体を形成する工程を、基板のFTO膜の形成面側から示す説明図。 図2Cに続く基板上にp型光半導体を形成する工程を、基板のFTO膜の形成面側から示す説明図。 実施例1における、基板上にp型光半導体を形成する工程を、断面構造により示す説明図。 図3Aに続く基板上にp型光半導体を形成する工程を、断面構造により示す説明図。 図3Bに続く基板上にp型光半導体を形成する工程を、断面構造により示す説明図。 図3Cに続く基板上にp型光半導体を形成する工程を、断面構造により示す説明図。 実施例1における、電気泳動法によりn型光半導体を形成する方法を示す説明図。 実施例1における還元装置の断面構成を示す説明図。 実施例7における還元電極の拡大断面図。 実施例7におけるp型光半導体を形成するための電析装置の概略図。 実施例7におけるp型光半導体の表面の倍率2000倍の走査型電子顕微鏡写真。 実施例7におけるp型光半導体の表面の倍率50000倍の走査型電子顕微鏡写真。 図8Aに示す走査型電子顕微鏡写真の線図。 図8Bに示す走査型電子顕微鏡写真の線図。 実施例8における還元電極の拡大断面図。 実施例8におけるp型光半導体の表面の倍率2000倍の走査型電子顕微鏡写真 実施例8におけるp型光半導体の表面の倍率50000倍の走査型電子顕微鏡写真 図10Aに示す走査型電子顕微鏡写真の線図。 図10Bに示す走査型電子顕微鏡写真の線図。 実施例9における還元電極の拡大断面図。 実施例9におけるp型光半導体の表面の倍率2000倍の走査型電子顕微鏡写真。 実施例9におけるp型光半導体の表面の倍率50000倍の走査型電子顕微鏡写真。 図12Aに示す走査型電子顕微鏡写真の線図。 図12Bに示す走査型電子顕微鏡写真の線図。 実施例1における還元電極の拡大断面図。 実施例1におけるp型光半導体の表面の倍率2000倍の走査型電子顕微鏡写真。 実施例1におけるp型光半導体の表面の倍率50000倍の走査型電子顕微鏡写真。 図14Aに示す走査型電子顕微鏡写真の線図。 図14Bに示す走査型電子顕微鏡写真の線図。 実施例1、実施例7~実施例9の各還元電極の電流密度の比較結果を示す説明図。 各実施例及び各比較例における還元電極のn型光半導体の材質及び厚み、p型光半導体の材質及び厚み、及び還元生成物を示す図。 各実施例における還元電極のp型光半導体について、形成方法、形態、及び表面粗さを示す図。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing
FIG. 3 is an explanatory diagram showing a cross-sectional configuration of a reduction electrode in Example 1. FIG. 3 is an explanatory diagram illustrating a process of forming a p-type optical semiconductor on a substrate from the formation surface side of the FTO film of the substrate in Example 1. FIG. 2B is an explanatory diagram showing a step of forming a p-type optical semiconductor on the substrate subsequent to FIG. 2A from the FTO film formation surface side of the substrate. FIG. 2B is an explanatory diagram showing a step of forming a p-type optical semiconductor on the substrate subsequent to FIG. 2B from the FTO film formation surface side of the substrate. FIG. 2D is an explanatory view showing a step of forming a p-type optical semiconductor on the substrate subsequent to FIG. 2C from the FTO film forming surface side of the substrate. Explanatory drawing which shows the process of forming a p-type optical semiconductor on a board | substrate in Example 1 by sectional structure. FIG. 3B is an explanatory diagram showing a step of forming a p-type optical semiconductor on the substrate following FIG. 3A by a cross-sectional structure. FIG. 3D is an explanatory diagram showing a cross-sectional structure of a process for forming a p-type optical semiconductor on a substrate following FIG. 3B. FIG. 3D is an explanatory diagram illustrating, by a cross-sectional structure, a step of forming a p-type optical semiconductor on the substrate subsequent to FIG. 3C. FIG. 3 is an explanatory diagram illustrating a method for forming an n-type optical semiconductor by electrophoresis in Example 1. FIG. 3 is an explanatory diagram illustrating a cross-sectional configuration of the reduction device according to the first embodiment. FIG. 10 is an enlarged cross-sectional view of a reduction electrode in Example 7. FIG. 10 is a schematic view of an electrodeposition apparatus for forming a p-type optical semiconductor in Example 7. The scanning electron micrograph of the magnification of 2000 times of the surface of the p-type optical semiconductor in Example 7. FIG. The scanning electron micrograph of the magnification of 50000 times of the surface of the p-type optical semiconductor in Example 7. FIG. FIG. 8B is a diagram of the scanning electron micrograph shown in FIG. 8A. FIG. 8B is a diagram of the scanning electron micrograph shown in FIG. 8B. FIG. 10 is an enlarged cross-sectional view of a reduction electrode in Example 8. Scanning electron micrograph of the surface of the p-type optical semiconductor in Example 8 at a magnification of 2000 times Scanning electron micrograph of the surface of the p-type optical semiconductor in Example 8 at a magnification of 50000 times FIG. 10B is a diagram of the scanning electron micrograph shown in FIG. 10A. FIG. 10B is a diagram of the scanning electron micrograph shown in FIG. 10B. FIG. 10 is an enlarged cross-sectional view of a reduction electrode in Example 9. The scanning electron micrograph of the magnification of 2000 times of the surface of the p-type optical semiconductor in Example 9. FIG. The scanning electron micrograph of the magnification of 50000 times of the surface of the p-type optical semiconductor in Example 9. FIG. FIG. 12B is a diagram of the scanning electron micrograph shown in FIG. 12A. FIG. 12B is a diagram of the scanning electron micrograph shown in FIG. 12B. FIG. 3 is an enlarged cross-sectional view of a reduction electrode in Example 1. The scanning electron micrograph of the magnification of 2000 times of the surface of the p-type optical semiconductor in Example 1. FIG. The scanning electron micrograph of the magnification of 50000 times of the surface of the p-type optical semiconductor in Example 1. FIG. FIG. 14B is a diagram of the scanning electron micrograph shown in FIG. 14A. FIG. 14B is a diagram of the scanning electron micrograph shown in FIG. 14B. FIG. 6 is an explanatory diagram showing a comparison result of current densities of the reduction electrodes of Example 1 and Examples 7 to 9. The figure which shows the material and thickness of the n-type optical semiconductor of the reduction | restoration electrode in each Example and each comparative example, the material and thickness of a p-type optical semiconductor, and a reduction product. The figure which shows a formation method, a form, and surface roughness about the p-type optical semiconductor of the reduction electrode in each Example.
 次に、還元電極及び還元装置の好ましい実施形態について説明する。 Next, preferred embodiments of the reduction electrode and the reduction device will be described.
 還元電極において、基板は、全体が導電性を有していなくても、表面に導電性の層を有する基板であればよい。基板は、導電性を有していればよく、その材質は適宜選択できる。 In the reduction electrode, the substrate may be a substrate having a conductive layer on the surface, even if the substrate does not have overall conductivity. The board | substrate should just have electroconductivity, The material can be selected suitably.
 p型光半導体及びn型光半導体の形状は、例えば膜状である。厚みは適宜変更することができる。p型光半導体上のn型光半導体は、光を透過できる厚みで形成されていることが好ましい。p型光半導体の厚みは、例えば0.1~500μmであり、n型光半導体の厚みは、例えば0.01~200μmである。 The shape of the p-type optical semiconductor and the n-type optical semiconductor is a film shape, for example. The thickness can be changed as appropriate. The n-type optical semiconductor on the p-type optical semiconductor is preferably formed with a thickness capable of transmitting light. The thickness of the p-type optical semiconductor is, for example, 0.1 to 500 μm, and the thickness of the n-type optical semiconductor is, for example, 0.01 to 200 μm.
 n型光半導体の材質としては、例えばTiO2、SrTiO3、BaTiO3、CaTiO3、WO3、BiVO4、BiFeO3、CuTaN2、FeTiO2、MgFe24、PbS、ZnO、グラフェン、グラファイト状窒化炭素(CN)、n-Si、n-SiC、n-GaN、n-AlGaN等から選ばれる少なくとも1種が挙げられる。なお、TiO2には、例えばルチル型、アナターゼ型、ブルッカイト型がある。n型光半導体の材質としては、これらのいずれであってもよく、2種以上の混合物であってもよい。 Examples of the material of the n-type optical semiconductor include TiO 2 , SrTiO 3 , BaTiO 3 , CaTiO 3 , WO 3 , BiVO 4 , BiFeO 3 , CuTaN 2 , FeTiO 2 , MgFe 2 O 4 , PbS, ZnO, graphene, and graphite Examples thereof include at least one selected from carbon nitride (CN), n-Si, n-SiC, n-GaN, n-AlGaN, and the like. TiO 2 includes, for example, a rutile type, an anatase type, and a brookite type. Any of these materials may be used as the material of the n-type optical semiconductor, and a mixture of two or more types may be used.
 p型光半導体の材質としては、例えばCuO、Cu2O、MgドープCuFe24、CaFe24、CoO3、Cr23、CuCrO2、FeドープTiO2、CrドープTiO2、GaP、InP、NiO、RhドープSrTiO3、p-Si、p-SiC等から選ばれる少なくとも1種が挙げられる。 Examples of the material of the p-type optical semiconductor include CuO, Cu 2 O, Mg-doped CuFe 2 O 4 , CaFe 2 O 4 , CoO 3 , Cr 2 O 3 , CuCrO 2 , Fe-doped TiO 2 , Cr-doped TiO 2 , and GaP. And at least one selected from InP, NiO, Rh-doped SrTiO 3 , p-Si, p-SiC, and the like.
 還元電極において、p型光半導体の伝導帯のエネルギー準位は、n型光半導体の伝導帯のエネルギー準位よりも卑側に高い。また、p型光半導体の価電子帯のエネルギー準位は、n型光半導体の価電子帯のエネルギー準位よりも卑側に高い。このような関係となるように、p型光半導体とn型光半導体との材質が例えば上述の物質の中から適宜選択される。 In the reduction electrode, the energy level of the conduction band of the p-type optical semiconductor is higher on the base side than the energy level of the conduction band of the n-type optical semiconductor. In addition, the energy level of the valence band of the p-type optical semiconductor is higher than the energy level of the valence band of the n-type optical semiconductor. In order to satisfy such a relationship, materials of the p-type optical semiconductor and the n-type optical semiconductor are appropriately selected from, for example, the above-described substances.
 還元装置において、酸化電極は還元電極の対極である。酸化電極としては、例えば貴金属等からなる電極を用いることができる。水系電解液としては、例えば電解質の水溶液を用いることができる。イオン交換膜としては、各種市販品を採用することができる。 In the reduction device, the oxidation electrode is the counter electrode of the reduction electrode. As the oxidation electrode, for example, an electrode made of a noble metal or the like can be used. As the aqueous electrolyte solution, for example, an aqueous electrolyte solution can be used. Various commercially available products can be used as the ion exchange membrane.
 光源からの光は、紫外線、可視光等を含むことが好ましい。この場合には、還元電極におけるCO2の還元反応をより活性化し易くなる。より好ましくは、光源からの光は、少なくとも紫外線を含むことがよい。 The light from the light source preferably includes ultraviolet light, visible light and the like. In this case, it becomes easier to activate the CO 2 reduction reaction at the reduction electrode. More preferably, the light from the light source includes at least ultraviolet rays.
 (実施例1)
 次に、CO2還元電極及びCO2還元装置の実施例について説明する。
Example 1
Next, examples of the CO 2 reduction electrode and the CO 2 reduction device will be described.
 図1に示すごとく、本例の還元電極1は、導電性の基板11と、この上に設けられたp型光半導体12と、この上に設けられたn型光半導体13とを有する。p型光半導体12は、n型光半導体13に完全に被覆されている。本例において、p型光半導体12は、酸化銅(CuO)からなり、n型光半導体13は、ブルッカイト型酸化チタン(TiO2)からなる。 As shown in FIG. 1, the reduction electrode 1 of this example has a conductive substrate 11, a p-type optical semiconductor 12 provided thereon, and an n-type optical semiconductor 13 provided thereon. The p-type optical semiconductor 12 is completely covered with the n-type optical semiconductor 13. In this example, the p-type optical semiconductor 12 is made of copper oxide (CuO), and the n-type optical semiconductor 13 is made of brookite-type titanium oxide (TiO 2 ).
 本例の還元電極1の製造方法について説明する。まず、スキージ法により基板11上にp型光半導体12を形成する。具体的には、まず、導電性の基板11として、フッ素ドープ酸化スズ(FTO)膜111が表面に形成された石英ガラス基板112を準備した(図2A、図3A参照)。基板11としては、名城科学工業(株)の製品を用いた。基板11において、FTO膜111は、石英ガラス基板112の片側面に積層されている。基板11の寸法は、縦30mm×横30mm×厚み1.8mmである。 A method for manufacturing the reduction electrode 1 of this example will be described. First, the p-type optical semiconductor 12 is formed on the substrate 11 by the squeegee method. Specifically, first, a quartz glass substrate 112 having a fluorine-doped tin oxide (FTO) film 111 formed on the surface was prepared as the conductive substrate 11 (see FIGS. 2A and 3A). As the substrate 11, a product of Meijo Kagaku Kogyo Co., Ltd. was used. In the substrate 11, the FTO film 111 is laminated on one side of the quartz glass substrate 112. The dimensions of the substrate 11 are 30 mm long × 30 mm wide × 1.8 mm thick.
 次に、図2B、図3Bに示すごとく、内部がくり抜かれた板状のスペーサ120を準備した。スペーサ120の外形寸法は基板11と同様に縦30mm×横30mmであり、内部空間の寸法は縦25mm×横25mmである。スペーサ120の厚みは1mmである。このスペーサ120を基板11のFTO膜111の形成面上に載置した。次いで、図2C、図3Cに示すごとく、スキージ法により、スペーサ120の内部空間内にCuOペーストを塗布することにより、基板11のFTO膜111上にCuOペースト層121を形成した。CuOペーストは、CuO(和光純薬(株)製)500mgとエタノール2mlとを混合して得られた。 Next, as shown in FIG. 2B and FIG. 3B, a plate-like spacer 120 with a hollow interior was prepared. The external dimensions of the spacer 120 are 30 mm long × 30 mm wide like the substrate 11, and the dimensions of the internal space are 25 mm long × 25 mm wide. The thickness of the spacer 120 is 1 mm. This spacer 120 was placed on the surface of the substrate 11 where the FTO film 111 is formed. Next, as shown in FIGS. 2C and 3C, a CuO paste layer 121 was formed on the FTO film 111 of the substrate 11 by applying a CuO paste in the internal space of the spacer 120 by a squeegee method. The CuO paste was obtained by mixing 500 mg of CuO (manufactured by Wako Pure Chemical Industries, Ltd.) and 2 ml of ethanol.
 次いで、CuOペースト層121を温度50℃で1時間乾燥させた後、スペーサ120を取り外した。次いで、CuOペースト層121が積層された基板11を温度550℃で1時間焼成した。これにより、図2D、図3Dに示すごとく、厚み30μmの膜状のp型光半導体12を基板11上に形成した。p型光半導体12は、基板11のFTO膜111上に形成されている。以下、p型光半導体12が形成された基板11を「基板A」といい、符号15で示す。 Next, after the CuO paste layer 121 was dried at a temperature of 50 ° C. for 1 hour, the spacer 120 was removed. Next, the substrate 11 on which the CuO paste layer 121 was laminated was baked at a temperature of 550 ° C. for 1 hour. Thereby, as shown in FIG. 2D and FIG. 3D, a film-like p-type optical semiconductor 12 having a thickness of 30 μm was formed on the substrate 11. The p-type optical semiconductor 12 is formed on the FTO film 111 of the substrate 11. Hereinafter, the substrate 11 on which the p-type optical semiconductor 12 is formed is referred to as “substrate A” and is denoted by reference numeral 15.
 なお、上述の例においては、スキージ法により、p型光半導体12を作製したが、p型光半導体12は、例えばスピンコータ法、電気泳動法、電析法等により作製することもできる。 In the above example, the p-type optical semiconductor 12 is manufactured by the squeegee method. However, the p-type optical semiconductor 12 can also be manufactured by, for example, a spin coater method, an electrophoresis method, an electrodeposition method, or the like.
 次に、電気泳動法により、n型光半導体を形成する。 Next, an n-type optical semiconductor is formed by electrophoresis.
 具体的には、まず、ブルッカイト型酸化チタンを調整した。まず、チタン粉末(和光純薬工業(株)製の「204-05205」)0.6gと、25質量%アンモニア水(和光純薬工業(株)製の「010-03166」)10mlと、30質量%過酸化水素水(和光純薬工業(株)製の「081-04215」)40mlとを混合し、チタン粉末がすべて溶けるまで撹拌を行った。得られた溶液に、グリコール酸(和光純薬工業(株)製の「075-01515」)1.426gを添加し、室温でさらに2時間の撹拌を行った。その後、撹拌しながら溶液を温度100℃で加熱した。続けて、加熱及び撹拌を行うことにより、溶液からアンモニア、過酸化水素を蒸発させた。得られたゲル状の固体にイオン交換水40mlを添加し、固体を再度溶解させた。次いで、溶液を撹拌しながらアンモニア水を添加することにより、溶液のpHを10に調整した。次いで、溶液にイオン交換水を添加し、総量を50mlまでメスアップした。次に、温度200℃、48時間という条件で水熱合成を行った。そして、得られた生成物の上澄み液を除去した。その後、固体状の沈殿物にイオン交換水を加えて、遠心分離を行った。そして、得られた物質の電気伝導度を測定した。この電気伝導度の値が10μS/cmとなるまで、イオン交換水の添加から遠心分離までの操作を繰り返し行った。次に、温度60℃、24時間という条件で真空乾燥を実施した。その後、得られた物質を、乳鉢を用いて解砕することにより、粉末状のブルッカイト型酸化チタンを得た。 Specifically, first, brookite type titanium oxide was prepared. First, 0.6 g of titanium powder (“204-05205” manufactured by Wako Pure Chemical Industries, Ltd.), 10 ml of 25 mass% ammonia water (“010-03166” manufactured by Wako Pure Chemical Industries, Ltd.), 30 40 ml of a mass% hydrogen peroxide solution (“081-04215” manufactured by Wako Pure Chemical Industries, Ltd.) was mixed and stirred until all of the titanium powder was dissolved. To the obtained solution, 1.426 g of glycolic acid (“075-01515” manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was further stirred at room temperature for 2 hours. The solution was then heated at a temperature of 100 ° C. with stirring. Subsequently, ammonia and hydrogen peroxide were evaporated from the solution by heating and stirring. To the obtained gel-like solid, 40 ml of ion-exchanged water was added to dissolve the solid again. Next, the pH of the solution was adjusted to 10 by adding aqueous ammonia while stirring the solution. Subsequently, ion exchange water was added to the solution, and the total amount was made up to 50 ml. Next, hydrothermal synthesis was performed under conditions of a temperature of 200 ° C. and 48 hours. And the supernatant liquid of the obtained product was removed. Thereafter, ion-exchanged water was added to the solid precipitate and centrifuged. And the electrical conductivity of the obtained substance was measured. The operation from the addition of ion exchange water to centrifugation was repeated until the value of electrical conductivity reached 10 μS / cm. Next, vacuum drying was performed under conditions of a temperature of 60 ° C. and 24 hours. Thereafter, the obtained substance was pulverized using a mortar to obtain powdered brookite type titanium oxide.
 次いで、ブルッカイト型酸化チタン0.5gをエタノール25mlに添加し混合することにより、電気泳動用の溶液131を作製した(図4参照)。図4に示すごとく、この溶液131中に、基板A15と、p型光半導体が形成されていない基板16(以下、適宜「基板B」という)を完全に浸漬させた。基板B16は、p型光半導体が形成される前の基板と同じものであり、FTO膜161が表面に形成された石英ガラス基板162である。 Next, 0.5 g of brookite type titanium oxide was added to 25 ml of ethanol and mixed to prepare a solution 131 for electrophoresis (see FIG. 4). As shown in FIG. 4, the substrate A15 and the substrate 16 on which the p-type optical semiconductor is not formed (hereinafter, referred to as “substrate B” as appropriate) were completely immersed in the solution 131. The substrate B16 is the same as the substrate before the p-type optical semiconductor is formed, and is a quartz glass substrate 162 on which the FTO film 161 is formed.
 図4に示すごとく、基板A15と基板B16との間隔を1mmにした状態で両者を溶液131に浸漬した。基板A15と基板B16をポテンショスタット18に電気的に接続した。基板A15が正極、基板B16が負極である。そして、基板A15と基板B16との間に10Vの電圧を120秒間印加した。これにより、基板A15のFTO膜111の形成面側にブルッカイト型酸化チタンからなるn型光半導体13を形成した(図4及び図1参照)。n型光半導体13の厚みは、40μmである。なお、この厚みは、p型光半導体12とn型光半導体13との積層部分におけるn型光半導体13の厚みである。 As shown in FIG. 4, both were immersed in the solution 131 in a state where the distance between the substrate A15 and the substrate B16 was 1 mm. Substrate A15 and substrate B16 were electrically connected to potentiostat 18. The substrate A15 is a positive electrode, and the substrate B16 is a negative electrode. A voltage of 10V was applied between the substrate A15 and the substrate B16 for 120 seconds. Thus, the n-type optical semiconductor 13 made of brookite-type titanium oxide was formed on the surface of the substrate A15 where the FTO film 111 is formed (see FIGS. 4 and 1). The n-type optical semiconductor 13 has a thickness of 40 μm. This thickness is the thickness of the n-type optical semiconductor 13 in the stacked portion of the p-type optical semiconductor 12 and the n-type optical semiconductor 13.
 以上のようにして、図1に示すごとく、導電性の基板11と、基板11上に積層されたp型光半導体12と、p型光半導体12を被覆するn型光半導体13とを有する還元電極1を得た。本例の還元電極1におけるn型光半導体13の材質及び厚み、p型光半導体12の材質及び厚みを図16に示す。 As described above, as shown in FIG. 1, the reduction includes the conductive substrate 11, the p-type optical semiconductor 12 stacked on the substrate 11, and the n-type optical semiconductor 13 covering the p-type optical semiconductor 12. An electrode 1 was obtained. FIG. 16 shows the material and thickness of the n-type optical semiconductor 13 and the material and thickness of the p-type optical semiconductor 12 in the reduction electrode 1 of this example.
 なお、上述の例においては、電気泳動法により、n型光半導体13を作製したが、n型光半導体13は、例えばスキージ法、スピンコータ法等により作製することもできる。 In the above example, the n-type optical semiconductor 13 is manufactured by electrophoresis. However, the n-type optical semiconductor 13 can also be manufactured by, for example, a squeegee method, a spin coater method, or the like.
 次に、本例の還元電極1を用いて還元装置を組み立てた。 Next, a reduction device was assembled using the reduction electrode 1 of this example.
 図5に示すごとく、本例の還元装置8は、還元電極1と、酸化電極2と、水系電解液3(以下、適宜「電解液3」という)と、イオン交換膜4(以下、適宜「膜4」という)と、光源5と、CO2を供給するための供給口6とを有する。電解液3は、濃度0.2mol/LのKHCO3水溶液である。還元装置8においては、50mlの電解液3がケース80内に注入されている。ケース80は、(株)イーシーフロンティア製のH型セルVB-9である。即ち、ケース80は、H型であり、2つのケース801、802と両者を連結する連結部803とからなる。 As shown in FIG. 5, the reduction device 8 of this example includes a reduction electrode 1, an oxidation electrode 2, an aqueous electrolytic solution 3 (hereinafter referred to as “electrolytic solution 3” as appropriate), and an ion exchange membrane 4 (hereinafter referred to as “ A membrane 4 ”), a light source 5, and a supply port 6 for supplying CO 2 . The electrolytic solution 3 is a KHCO 3 aqueous solution having a concentration of 0.2 mol / L. In the reducing device 8, 50 ml of the electrolytic solution 3 is injected into the case 80. Case 80 is an H-type cell VB-9 manufactured by EC Frontier. That is, the case 80 is H-shaped and includes two cases 801 and 802 and a connecting portion 803 that connects the two cases.
 ケース801内には、還元電極1と、Ag/AgClからなる参照電極19とが挿入されている。還元電極1と参照電極19とは電気的に接続されている。一方、ケース802内には、還元電極1の対極である酸化電極2が挿入されている。酸化電極2は、Ptワイヤからなる。ケース80の連結部803には、膜4(シグマアルドリッチ社製のナフィオン膜)が配置されている。膜4は、還元電極1と酸化電極2との間に存在し、両者を分離している。ケース80内において、還元電極1、参照電極19、酸化電極2、及び膜4は、電解液3中に浸されている。 In the case 801, the reduction electrode 1 and the reference electrode 19 made of Ag / AgCl are inserted. The reduction electrode 1 and the reference electrode 19 are electrically connected. On the other hand, in the case 802, the oxidation electrode 2 that is the counter electrode of the reduction electrode 1 is inserted. The oxidation electrode 2 is made of a Pt wire. A membrane 4 (Nafion membrane manufactured by Sigma-Aldrich) is disposed in the connecting portion 803 of the case 80. The membrane 4 exists between the reduction electrode 1 and the oxidation electrode 2 and separates them. In the case 80, the reduction electrode 1, the reference electrode 19, the oxidation electrode 2, and the membrane 4 are immersed in the electrolytic solution 3.
 各ケース801、802の開口部は、栓803、804により密閉されている。ケース801側の栓803には、CO2を供給する管60が挿入されている。この管60の供給口6から電解液3中にCO2が供給される。 The openings of the cases 801 and 802 are sealed with plugs 803 and 804. A tube 60 for supplying CO 2 is inserted into the plug 803 on the case 801 side. CO 2 is supplied into the electrolytic solution 3 from the supply port 6 of the pipe 60.
 また、図5に示すごとく、還元装置8は、還元電極1に光51を照射するための光源5を備えている。光源5は、還元電極1におけるp型光半導体12とn型光半導体13とが形成された面に光が照射されるように配置されている。光源5としては、朝日分光(株)製の「MAX300W」を用いた。 Further, as shown in FIG. 5, the reducing device 8 includes a light source 5 for irradiating the reducing electrode 1 with light 51. The light source 5 is arranged so that light is irradiated onto the surface of the reduction electrode 1 on which the p-type optical semiconductor 12 and the n-type optical semiconductor 13 are formed. As the light source 5, “MAX300W” manufactured by Asahi Spectroscopic Co., Ltd. was used.
 また、還元装置8は、図5に示すように、電流計91及び電圧計92を備える電気化学アナライザ9に電気的に接続されている。電気化学アナライザ9は、ビー・エー・エス(株)製のALSモデル660Eである。電流計91は、還元電極1と酸化電極2との間に接続されており、電圧計92は、還元電極1と参照電極19との間に接続されている。 Further, the reduction device 8 is electrically connected to an electrochemical analyzer 9 including an ammeter 91 and a voltmeter 92 as shown in FIG. The electrochemical analyzer 9 is an ALS model 660E manufactured by BAS. The ammeter 91 is connected between the reduction electrode 1 and the oxidation electrode 2, and the voltmeter 92 is connected between the reduction electrode 1 and the reference electrode 19.
 次に、還元装置8を用いて、CO2の還元を行い、還元生成物の生成量の分析を行った。具体的には、図5に示すごとく、供給口6から電解液3中に、G1レベル、即ち純度99.99995vol%の炭酸ガス(CO2)を2時間供給し、光源5から波長340nm以上の光51を還元電極1に6時間照射した。炭酸ガスの流速は、5ml/minであり、光の強度は、10mW/cm2である。このとき、電解液3中に供給された炭酸ガスは、光が照射された還元電極1において還元される。この還元反応を6時間実施し、還元生成物の量をクロマトグラフィにより検出した。なお、本例においては、生成物として、メタノール、ギ酸、水素、一酸化炭素の検出を行った。 Next, CO 2 was reduced using the reducing device 8 and the amount of reduction product produced was analyzed. Specifically, as shown in FIG. 5, carbon dioxide gas (CO 2 ) having a G1 level, that is, a purity of 99.99995 vol% is supplied from the supply port 6 into the electrolyte 3 for 2 hours, and the wavelength of 340 nm or more is supplied from the light source 5. The light 51 was irradiated to the reduction electrode 1 for 6 hours. The flow rate of carbon dioxide gas is 5 ml / min, and the intensity of light is 10 mW / cm 2 . At this time, the carbon dioxide gas supplied into the electrolytic solution 3 is reduced at the reduction electrode 1 irradiated with light. This reduction reaction was carried out for 6 hours, and the amount of reduction product was detected by chromatography. In this example, methanol, formic acid, hydrogen, and carbon monoxide were detected as products.
 メタノールの検出は、還元反応後の電解液3を採取し、シリンジを用いて電解液3をガスクロマトグラフィ装置((株)島津製作所製の「GC-2014」)に注入することにより行った。なお、クロマトグラフィ用のカラムは、アジレント・テクノロジー(株)製の「DB-WAXetr」である。検出方法は、水素炎イオン化検出(FID)である。検出は、温度70℃で5分間保持するという条件で行った。 Methanol was detected by collecting the electrolytic solution 3 after the reduction reaction and injecting the electrolytic solution 3 into a gas chromatography apparatus (“GC-2014” manufactured by Shimadzu Corporation) using a syringe. The column for chromatography is “DB-WAXetr” manufactured by Agilent Technologies. The detection method is flame ionization detection (FID). The detection was performed under the condition that the temperature was maintained at 70 ° C. for 5 minutes.
 ギ酸の検出は、還元反応後の電解液3を採取し、シリンジを用いて電解液3をイオンクロマトグラフィ装置((株)サーモフィッシャーサイエンティフィック(株)製の「Dionex IC-20」)に注入することにより行った。なお、クロマトグラフィ用のカラムは、(株)サーモフィッシャーサイエンティフィック(株)製の「IonPac AS20」である。検出には、濃度2.7mmol/LのNa2CO3水溶液と濃度0.3mmol/LのNaHCO3水溶液との混合溶液をクロマトグラフィ用の電解液として用いた。流速条件は、1.5ml/minである。 Formic acid is detected by collecting the electrolytic solution 3 after the reduction reaction and injecting the electrolytic solution 3 into an ion chromatography apparatus (“Dionex IC-20” manufactured by Thermo Fisher Scientific Co., Ltd.) using a syringe. It was done by doing. The column for chromatography is “IonPac AS20” manufactured by Thermo Fisher Scientific Co., Ltd. For the detection, a mixed solution of a 2.7 mmol / L Na 2 CO 3 aqueous solution and a 0.3 mmol / L NaHCO 3 aqueous solution was used as an electrolyte for chromatography. The flow rate condition is 1.5 ml / min.
 水素、一酸化炭素の検出は、還元反応後のケース80内のガスをガスクロマトグラフィ装置((株)島津製作所製の「GC-2014」)に注入することにより行った。なお、クロマトグラフィ用のカラムは、(株)島津製作所製の「SHINCARBON ST」である。検出方法は、熱伝導度検出(TCD)である。検出は、温度40℃で12分間保持した後、昇温速度10℃/minで温度200℃まで昇温させるという条件で行った。 Hydrogen and carbon monoxide were detected by injecting the gas in the case 80 after the reduction reaction into a gas chromatography apparatus (“GC-2014” manufactured by Shimadzu Corporation). The column for chromatography is “SHINCARBON ST” manufactured by Shimadzu Corporation. The detection method is thermal conductivity detection (TCD). The detection was performed under the condition that the temperature was maintained at 40 ° C. for 12 minutes and then the temperature was increased to 200 ° C. at a temperature increase rate of 10 ° C./min.
 各還元生成物の量を図16に示す。 The amount of each reduction product is shown in FIG.
 (実施例2~6)
 実施例2の還元電極1は、n型光半導体13の厚みを15μmに変更した点を除いては、実施例1と同様にして作製した電極である。
(Examples 2 to 6)
The reduction electrode 1 of Example 2 is an electrode manufactured in the same manner as in Example 1 except that the thickness of the n-type optical semiconductor 13 is changed to 15 μm.
 実施例3の還元電極1は、ブルッカイト型酸化チタンの代わりに、金属(Ag)を担持させたブルッカイト型酸化チタンを用いた点を除いては、実施例1と同様にして作製した電極である。金属を担持させたブルッカイト型酸化チタンは、次のようにして調整した。 The reduction electrode 1 of Example 3 is an electrode manufactured in the same manner as in Example 1 except that brookite type titanium oxide supporting metal (Ag) is used instead of brookite type titanium oxide. . The brookite type titanium oxide supporting metal was prepared as follows.
 即ち、まず、ブルッカイト型酸化チタン5gを分散した水50mlに、触媒粉末(AgNO3)0.5mgと犠牲試薬(エタノール)5mlとを添加した。次いで、これらの混合液に窒素(N2)ガスを30分間供給した後、LED光源(波長365nm)からの光を強度0.3mW/cm2で24時間照射した。この光電着法により、ブルッカイト型酸化チタンの還元面に金属を担時させた。なお、触媒粉末の添加量は、例えば0.5mg~5mgの範囲で調整が可能であり、犠牲試薬の添加量は、例えば0.5ml~5mlの範囲で調整が可能である。 That is, first, 0.5 mg of catalyst powder (AgNO 3 ) and 5 ml of sacrificial reagent (ethanol) were added to 50 ml of water in which 5 g of brookite-type titanium oxide was dispersed. Next, nitrogen (N 2 ) gas was supplied to these mixed solutions for 30 minutes, and then light from an LED light source (wavelength 365 nm) was irradiated for 24 hours at an intensity of 0.3 mW / cm 2 . By this photodeposition method, a metal was supported on the reduction surface of brookite-type titanium oxide. The addition amount of the catalyst powder can be adjusted in the range of 0.5 mg to 5 mg, for example, and the addition amount of the sacrificial reagent can be adjusted in the range of 0.5 ml to 5 ml, for example.
 実施例4の還元電極1は、CuOペーストの代わりにCuFe24ペーストを用いてp型光半導体12を形成した点を除いては、実施例1と同様にして作製した電極である。 The reduction electrode 1 of Example 4 is an electrode produced in the same manner as in Example 1 except that the p-type optical semiconductor 12 is formed using CuFe 2 O 4 paste instead of CuO paste.
 実施例5の還元電極1は、ブルッカイト型酸化チタンの代わりに汎用の酸化チタン(日本エアロジル(株)製の「AEROXIDE(登録商標) TiO2
 P25」)を用いた点を除いては、実施例1と同様にして作製した電極である。なお、本例の酸化チタンは、ルチル型とアナターゼ型との混合物である。
The reduction electrode 1 of Example 5 is made of general-purpose titanium oxide (“AEROXIDE (registered trademark) TiO 2 manufactured by Nippon Aerosil Co., Ltd.) instead of brookite-type titanium oxide.
The electrode was produced in the same manner as in Example 1 except that P25 ") was used. In addition, the titanium oxide of this example is a mixture of a rutile type and an anatase type.
 実施例6の還元電極1は、ブルッカイト型酸化チタンの代わりにチタン酸ストロンチウム(SrTiO3)を用いた点を除いては、実施例1と同様にして作製した電極である。 The reduction electrode 1 of Example 6 is an electrode manufactured in the same manner as Example 1 except that strontium titanate (SrTiO 3 ) was used instead of brookite-type titanium oxide.
 上述の実施例2~6の還元電極1についても、これらをそれぞれ用いて実施例1と同様の構成の還元装置8を作製し、CO2の還元を行った。なお、実施例2~6において、実施例1と同じ符号は、同一の構成を示し、先行する説明を参照する。 For the reduction electrodes 1 of Examples 2 to 6 described above, the reduction device 8 having the same configuration as that of Example 1 was produced using each of these, and CO 2 was reduced. In the second to sixth embodiments, the same reference numerals as those in the first embodiment indicate the same configuration, and the preceding description is referred to.
 (比較例1~5)
 比較例1の還元電極は、n型光半導体を形成しなかった点を除いては、実施例1と同様にして作製した電極である。
(Comparative Examples 1 to 5)
The reduction electrode of Comparative Example 1 is an electrode manufactured in the same manner as in Example 1 except that the n-type optical semiconductor was not formed.
 比較例2の還元電極は、n型光半導体を形成せず、さらにCuOペーストの代わりにCuFe24ペーストを用いてp型光半導体を形成した点を除いては、実施例1と同様にして作製した電極である。 The reduction electrode of Comparative Example 2 did not form an n-type optical semiconductor, and was the same as Example 1 except that a p-type optical semiconductor was formed using CuFe 2 O 4 paste instead of CuO paste. This is an electrode manufactured in this way.
 比較例3の還元電極は、n型光半導体を形成せず、さらにCuOペーストの代わりにInPペーストを用いてp型光半導体を形成した点を除いては、実施例1と同様にして作製した電極である。 The reduction electrode of Comparative Example 3 was manufactured in the same manner as in Example 1 except that the n-type optical semiconductor was not formed and that a p-type optical semiconductor was formed using InP paste instead of CuO paste. Electrode.
 比較例4の還元電極は、p型光半導体を形成せずに、基板上に直接n型光半導体を形成した点を除いては、実施例1と同様にして作製した電極である。 The reduction electrode of Comparative Example 4 is an electrode manufactured in the same manner as in Example 1 except that the n-type optical semiconductor was formed directly on the substrate without forming the p-type optical semiconductor.
 比較例5の還元電極は、p型光半導体を形成せずに、さらに、ブルッカイト型酸化チタンの代わりに汎用の酸化チタン(日本エアロジル社製の「AEROXIDE(登録商標) TiO2 P25」)を用いて基板上に直接n型光半導体を形成した点を除いては、実施例1と同様にして作製した電極である。 The reduction electrode of Comparative Example 5 does not form a p-type optical semiconductor, and further uses general-purpose titanium oxide (“AEROXIDE (registered trademark) TiO 2 P25” manufactured by Nippon Aerosil Co., Ltd.) instead of brookite-type titanium oxide. The electrode was produced in the same manner as in Example 1 except that the n-type optical semiconductor was directly formed on the substrate.
 比較例1~5の還元電極についても、これらをそれぞれ用いて実施例1と同様の構成の還元装置を作製し、CO2の還元を行った。 For the reduction electrodes of Comparative Examples 1 to 5, a reduction device having the same configuration as that of Example 1 was produced using each of these reduction electrodes, and CO 2 was reduced.
 (実施例1~6と比較例1~5との比較)
 各実施例1~6及び比較例1~5における還元生成物の生成量は、図16に示す通りである。なお、図16中の「N.D.」は、不検出を意味する。
(Comparison between Examples 1 to 6 and Comparative Examples 1 to 5)
The amount of reduction product produced in each of Examples 1 to 6 and Comparative Examples 1 to 5 is as shown in FIG. Note that “ND” in FIG. 16 means non-detection.
 図16より知られるように、実施例の還元電極1を用いた電極装置8においては、CO2の還元生成物であるメタノールやギ酸が十分に生成されていた。これに対し、比較例の還元電極を用いた還元装置においては、メタノールやギ酸の生成量が不十分であった。即ち、実施例の還元電極1は、p型光半導体12とn型光半導体13との積層体を有し、両者の間にpn接合を有している(図1及び図5参照)。そのため、光照射条件下おいて安定してCO2に電子を供給して還元を行うことができ、有機物等からなる還元生成物が十分に得られる。また、各実施例においては、上述のように、CO2からメタノールやギ酸が十分に生成される一方で、水素や一酸化炭素の生成が十分に抑制されている。これは、実施例においては、水の還元を抑制できると共に、二酸化炭素から一酸化炭素を生成する還元反応ではなく、水と二酸化炭素からメタノールやギ酸を生成する還元反応を進行させることができることを意味する。 As can be seen from FIG. 16, in the electrode device 8 using the reduction electrode 1 of the example, methanol and formic acid, which are reduction products of CO 2 , were sufficiently generated. On the other hand, in the reduction apparatus using the reduction electrode of the comparative example, the amount of methanol or formic acid produced was insufficient. That is, the reduction electrode 1 of the embodiment has a stacked body of a p-type optical semiconductor 12 and an n-type optical semiconductor 13 and has a pn junction between them (see FIGS. 1 and 5). Therefore, reduction can be performed by supplying electrons to CO 2 stably under light irradiation conditions, and a reduction product composed of an organic substance or the like is sufficiently obtained. In each example, as described above, methanol and formic acid are sufficiently generated from CO 2 , while generation of hydrogen and carbon monoxide is sufficiently suppressed. This is because, in the embodiment, it is possible to suppress the reduction of water and advance the reduction reaction that generates methanol and formic acid from water and carbon dioxide, not the reduction reaction that generates carbon monoxide from carbon dioxide. means.
 また、実施例の還元電極1においては、p型光半導体12の伝導帯のエネルギー準位は、n型光半導体13の伝導帯のエネルギー準位よりも卑側に高い。また、p型光半導体12の価電子帯のエネルギー準位は、n型光半導体13の価電子帯のエネルギー準位よりも卑側に高い。このような組み合わせのp型光半導体12とn型光半導体が採用されているため、還元電極1を電極として用いた場合に電流を流すことが可能になる。 Further, in the reduction electrode 1 of the example, the energy level of the conduction band of the p-type optical semiconductor 12 is higher than the energy level of the conduction band of the n-type optical semiconductor 13. In addition, the energy level of the valence band of the p-type optical semiconductor 12 is higher on the base side than the energy level of the valence band of the n-type optical semiconductor 13. Since the p-type optical semiconductor 12 and the n-type optical semiconductor in such a combination are employed, it is possible to pass a current when the reduction electrode 1 is used as an electrode.
 また、還元電極1においては、実施例のようにp型光半導体12がn型光半導体13に完全に被覆されていることが好ましい。即ち、p型光半導体12は、外部に露出していないことが好ましい。この場合には、還元装置8において、p型光半導体12が電解液3と直接接触することがないため、水の還元がより一層抑制される。即ち、還元電極1は、CO2をより選択的に還元することができる。 Moreover, in the reduction electrode 1, it is preferable that the p-type optical semiconductor 12 is completely covered with the n-type optical semiconductor 13 as in the embodiment. That is, it is preferable that the p-type optical semiconductor 12 is not exposed to the outside. In this case, since the p-type optical semiconductor 12 does not come into direct contact with the electrolytic solution 3 in the reducing device 8, the reduction of water is further suppressed. That is, the reduction electrode 1 can reduce CO 2 more selectively.
 n型光半導体13は、TiO2、SrTiO3、WO3、BiVO4から選ばれる少なくとも1種からなることが好ましい。より好ましくは、n型光半導体13は、ブルッカイト型酸化チタンからなることがよい。この場合には、水の還元をより一層抑制することができ、CO2をより選択的に還元することができる。その結果、CO2の還元生成物の量をより向上させることができる。 The n-type optical semiconductor 13 is preferably made of at least one selected from TiO 2 , SrTiO 3 , WO 3 and BiVO 4 . More preferably, the n-type optical semiconductor 13 is made of brookite-type titanium oxide. In this case, the reduction of water can be further suppressed, and CO 2 can be reduced more selectively. As a result, the amount of CO 2 reduction product can be further improved.
 また、p型光半導体12は、CuO、Cu2O、InP、p-SiC、p-Siから選ばれる少なくとも1種からなることが好ましい。この場合には、CO2の還元生成物の生成量をより向上させることができる。 The p-type optical semiconductor 12 is preferably made of at least one selected from CuO, Cu 2 O, InP, p-SiC, and p-Si. In this case, the amount of reduction product of CO 2 can be further improved.
 なお、実施例3においては、n型光半導体として、上述のようにAgを担持させた酸化チタンを用いている。担持させる金属としては、その他にも例えばAu、Rh、Cu、Ni、Ru、Ir、Re、Pd等を用いることができる。これらの金属は少なくとも1種を用いることができる。 In Example 3, titanium oxide supporting Ag as described above is used as the n-type optical semiconductor. Other examples of the metal to be supported include Au, Rh, Cu, Ni, Ru, Ir, Re, and Pd. At least one of these metals can be used.
 また、還元装置8は、還元電極1と酸化電極2とを分離するイオン交換膜4を有している(図5参照)。そのため、還元装置8においては、還元生成物の移動が制限される。それ故、メタノール、ギ酸等の還元生成物が酸化電極2において再度酸化されてしまうことを抑制することができる。したがって、還元装置8においては、還元生成物をより十分得ることができる。 The reduction device 8 has an ion exchange membrane 4 that separates the reduction electrode 1 and the oxidation electrode 2 (see FIG. 5). Therefore, in the reduction device 8, the movement of the reduction product is limited. Therefore, reduction products such as methanol and formic acid can be prevented from being oxidized again at the oxidation electrode 2. Therefore, the reduction device 8 can obtain a sufficient reduction product.
 (実施例7)
 本例は、分枝状構造のp型光半導体を有する還元電極の例である。
(Example 7)
This example is an example of a reduction electrode having a p-type optical semiconductor having a branched structure.
 図6に示すごとく、本例の還元電極1は、導電性の基板11と、この基板11上に設けられた分枝状構造のp型光半導体12と、このp型光半導体12を被覆するn型光半導体13とを有する。基板11は、実施例1と同様に、石英ガラス基板112と、この石英ガラス基板112上に積層形成されたFTO膜111とを有しており、p型光半導体12は、基板11のFTO膜111上に形成されている。 As shown in FIG. 6, the reduction electrode 1 of this example covers a conductive substrate 11, a p-type optical semiconductor 12 having a branched structure provided on the substrate 11, and the p-type optical semiconductor 12. and an n-type optical semiconductor 13. The substrate 11 has a quartz glass substrate 112 and an FTO film 111 formed on the quartz glass substrate 112 in the same manner as in the first embodiment. The p-type optical semiconductor 12 is an FTO film of the substrate 11. 111 is formed.
 p型光半導体12は、基板11(FTO膜111)上からn型光半導体13の内部に広がって伸びる分枝状構造を有している。具体的には、p型光半導体12においては、基板11上からランダムな方向に広がって伸びる多数の分枝125(突起物125)が形成されており、これらの分枝125が分枝状構造を形成している。p型光半導体12は、ランダムな方向に伸びる突起物125が多数集合してなるカリフラワー状の構造体であるともいえる。p型光半導体12は、所定の表面粗さで基板11上に形成されている。p型光半導体12は、実施例1と同様にCuOからなる。 The p-type optical semiconductor 12 has a branched structure extending from the substrate 11 (FTO film 111) to the inside of the n-type optical semiconductor 13. Specifically, in the p-type optical semiconductor 12, a large number of branches 125 (projections 125) extending in a random direction from the substrate 11 are formed, and these branches 125 are branched structures. Is forming. It can be said that the p-type optical semiconductor 12 is a cauliflower-like structure in which a large number of protrusions 125 extending in a random direction are gathered. The p-type optical semiconductor 12 is formed on the substrate 11 with a predetermined surface roughness. The p-type optical semiconductor 12 is made of CuO as in the first embodiment.
 また、図6に示すごとく、n型光半導体13は、分枝状構造のp型光半導体12を被覆している。n型光半導体13は、分枝状構造のp型光半導体12の外形に沿ってp型光半導体12を被覆しており、表面に凹凸構造を有する。n型光半導体13は、実施例1と同様にブルッカイト型酸化チタンからなる。 Also, as shown in FIG. 6, the n-type optical semiconductor 13 covers the branched p-type optical semiconductor 12. The n-type optical semiconductor 13 covers the p-type optical semiconductor 12 along the outer shape of the branched p-type optical semiconductor 12, and has a concavo-convex structure on the surface. The n-type optical semiconductor 13 is made of brookite-type titanium oxide as in the first embodiment.
 次に、本例の還元電極1の製造方法について説明する。具体的には、まず、実施例1と同様に、導電性の基板11として、FTO膜111が表面に形成された石英ガラス基板112を準備した。次いで、図7に示すごとく、硫酸銅とグリシンとの濃度がそれぞれ0.02mol/l、0.1mol/lに調整された水溶液129を調整し、この水溶液129中に参照電極19、作用電極14、対極17を浸漬した。作用電極14と対極17は、いずれもFTO膜111が表面に形成された上述の石英ガラス基板112からなり、上述の導電性の基板11である。参照電極19は、Ag/AgCl電極である。作用電極14と対極17とは、互いのFTO膜111が対向するように配置した。作用電極14と対極17との間隔は4mmである。そして、作用電極14と対極17との間に電流計を設置すると共に、作用電極14と参照極19との間に電圧計を設置した。 Next, a method for manufacturing the reduction electrode 1 of this example will be described. Specifically, first, as in Example 1, a quartz glass substrate 112 having an FTO film 111 formed on the surface was prepared as the conductive substrate 11. Next, as shown in FIG. 7, an aqueous solution 129 in which the concentrations of copper sulfate and glycine are adjusted to 0.02 mol / l and 0.1 mol / l, respectively, is prepared, and the reference electrode 19 and the working electrode 14 are contained in the aqueous solution 129. The counter electrode 17 was immersed. The working electrode 14 and the counter electrode 17 are both composed of the above-described quartz glass substrate 112 having the FTO film 111 formed on the surface thereof, and are the above-described conductive substrate 11. The reference electrode 19 is an Ag / AgCl electrode. The working electrode 14 and the counter electrode 17 were disposed so that the FTO films 111 face each other. The distance between the working electrode 14 and the counter electrode 17 is 4 mm. An ammeter was installed between the working electrode 14 and the counter electrode 17, and a voltmeter was installed between the working electrode 14 and the reference electrode 19.
 次いで、作用電極14と対極17とをポテンショスタット18に電気的に接続し、対極17に対して作用電極14が負の電位になるように、両極間に-0.75Vの電位を1800秒間印加した。このときの水溶液129の液温は室温(25℃)である。この電位差により、図7に示すごとく、水溶液129中のCu2+イオンが作用電極14のFTO膜111上でCuとして析出する(電析)。その後、温度110℃の乾燥機内で作用電極14を1時間乾燥させた後、さらに大気条件下、温度550℃で作用電極14を1時間焼成した。これにより、基板11のFTO膜111上に、酸化銅からなる分枝状構造のp型光半導体12を形成した(図6参照)。このp型光半導体12の結晶構造を、Cu-Kα線を用いたX線回折装置((株)リガク製のRINT2000)により調べたところ、p型光半導体はCuOからなることが確認された。 Next, the working electrode 14 and the counter electrode 17 are electrically connected to the potentiostat 18, and a potential of −0.75 V is applied between both electrodes for 1800 seconds so that the working electrode 14 has a negative potential with respect to the counter electrode 17. did. The liquid temperature of the aqueous solution 129 at this time is room temperature (25 ° C.). Due to this potential difference, as shown in FIG. 7, Cu 2+ ions in the aqueous solution 129 are deposited as Cu on the FTO film 111 of the working electrode 14 (electrodeposition). Thereafter, the working electrode 14 was dried in a dryer at a temperature of 110 ° C. for 1 hour, and then the working electrode 14 was further fired at a temperature of 550 ° C. for 1 hour under atmospheric conditions. Thereby, the p-type optical semiconductor 12 having a branched structure made of copper oxide was formed on the FTO film 111 of the substrate 11 (see FIG. 6). When the crystal structure of the p-type optical semiconductor 12 was examined by an X-ray diffractometer using Cu—Kα rays (RINT2000 manufactured by Rigaku Corporation), it was confirmed that the p-type optical semiconductor was made of CuO.
 次に、p型光半導体12の表面を走査型電子顕微鏡(SEM;日本電子(株)製の「JSM-6700F」)を用いて観察した。SEMの観察条件は、加速電圧が5.0kV(反射電子像)であり、観察倍率が2000倍、及び50000倍である。倍率2000倍の結果を図8Aに示し、倍率50000倍の結果を図8Bに示す。図8C及び図8Dは、それぞれ、図8A及び図8Bに示すSEM写真の線図を示す。なお、比較用として、実施例1におけるp型光半導体12の拡大断面図を後述の図13に示し、実施例1におけるp型光半導体12の表面の倍率2000倍のSEM写真を後述の図14Aに示し、倍率50000倍のSEM写真を後述の図14Bに示す。図14C及び図14Dは、それぞれ、図14A及び図14Bに示すSEM写真の線図を示す。 Next, the surface of the p-type optical semiconductor 12 was observed using a scanning electron microscope (SEM; “JSM-6700F” manufactured by JEOL Ltd.). The SEM observation conditions are an acceleration voltage of 5.0 kV (reflected electron image), and observation magnifications of 2000 times and 50000 times. The result of 2000 times magnification is shown in FIG. 8A, and the result of 50000 times magnification is shown in FIG. 8B. 8C and 8D show diagrams of the SEM photographs shown in FIGS. 8A and 8B, respectively. For comparison, an enlarged cross-sectional view of the p-type optical semiconductor 12 in Example 1 is shown in FIG. 13 to be described later, and an SEM photograph at a magnification of 2000 times of the surface of the p-type optical semiconductor 12 in Example 1 is shown in FIG. 14A to be described later. The SEM photograph at a magnification of 50000 is shown in FIG. 14B described later. 14C and 14D show diagrams of the SEM photographs shown in FIGS. 14A and 14B, respectively.
 図13、図14A~図14Dより知られるように、実施例1におけるp型光半導体12が酸化銅からなる粒子の凝集体から構成されているのに対し、図8A~図8Dより知られるように、本例におけるp型光半導体12は、FTO膜111上から広がって伸びる分枝状構造を有している。また、本例におけるp型光半導体12の表面の粗さを算術平均粗さRa(JIS 2001年規格)に基づいて計測した。計測には、VEECO/SLOAN社製の針接触式表面形状測定装置「DEKTAK 6M STYLUS PROFILER」を用いた。その結果、本例におけるp型光半導体の表面粗さ(算術平均粗さRa)は、2701.97nmであった。一方、実施例1におけるp型光半導体12の表面粗さRaは、1237.09nmであった。 As is known from FIGS. 13 and 14A to 14D, the p-type optical semiconductor 12 in Example 1 is composed of an aggregate of particles made of copper oxide, whereas it is known from FIGS. 8A to 8D. In addition, the p-type optical semiconductor 12 in this example has a branched structure extending from the FTO film 111 and extending. Further, the roughness of the surface of the p-type optical semiconductor 12 in this example was measured based on the arithmetic average roughness Ra (JIS 2001 standard). For measurement, a needle contact type surface shape measuring device “DEKTAK 6M STYLUS PROFILER” manufactured by VEECO / SLOAN was used. As a result, the surface roughness (arithmetic average roughness Ra) of the p-type optical semiconductor in this example was 2701.97 nm. On the other hand, the surface roughness Ra of the p-type optical semiconductor 12 in Example 1 was 1237.09 nm.
 次に、本例のp型光半導体12上に、実施例1と同様の電気泳動法によりn型光半導体13を形成した。以上のようにして、図6に示すごとく、分枝状構造のp型光半導体12と、これを被覆するn型光半導体13とを有する還元電極1を得た。 Next, an n-type optical semiconductor 13 was formed on the p-type optical semiconductor 12 of this example by the same electrophoresis method as in Example 1. As described above, as shown in FIG. 6, a reduction electrode 1 having a branched p-type optical semiconductor 12 and an n-type optical semiconductor 13 covering the branched p-type optical semiconductor 12 was obtained.
 次に、本例の還元電極1を用い、さらに電解液3を濃度0.1mol/LのNa2SO4に変更した点を除いては、実施例1と同様の構成の還元装置8を組み立てた(図5参照)。次いで、この還元装置8によりCO2の還元を行った。本例においては、G1レベルのCO2を電解液3中に60分間供給し、光源5から強度100W/cm2の光51(疑似太陽光)を1秒間隔で照射し、還元装置8によりCO2の還元を行った。このとき、電気化学アナライザ9(ビー・エー・エス(株)製のALSモデル660E)により、掃引速度10mV/sで電位を0.6Vから-0.1Vまで変化させたときの電流密度を測定した。そして、標準水素電極に対する電位が0Vのときの光電流密度(光照射時に流れる電流密度)を求めた。その結果を後述の図15に示す。図15には、比較のために、実施例1の還元電極を用いた時の電流密度の測定結果を併記している。 Next, a reducing device 8 having the same configuration as that of Example 1 is assembled except that the reducing electrode 1 of this example is used and the electrolytic solution 3 is changed to Na 2 SO 4 having a concentration of 0.1 mol / L. (See FIG. 5). Subsequently, CO 2 was reduced by the reduction device 8. In this example, G1 level CO 2 is supplied into the electrolyte 3 for 60 minutes, light 51 (pseudo sunlight) having an intensity of 100 W / cm 2 is irradiated from the light source 5 at intervals of 1 second, and CO 2 is reduced by the reducing device 8. Reduction of 2 was performed. At this time, the current density when the potential was changed from 0.6 V to −0.1 V at a sweep speed of 10 mV / s was measured by an electrochemical analyzer 9 (ALS model 660E manufactured by BAS Co., Ltd.). did. Then, the photocurrent density when the electric potential with respect to the standard hydrogen electrode was 0 V (current density flowing during light irradiation) was obtained. The result is shown in FIG. For comparison, FIG. 15 also shows the measurement results of current density when using the reduction electrode of Example 1.
 なお、本例及び後述の実施例8及び実施例9において、実施例1と同じ符号は、同一の構成を示し、先行する説明を参照する。 In addition, in this example and Example 8 and Example 9 to be described later, the same reference numerals as those in Example 1 indicate the same configurations, and refer to the preceding description.
 (実施例8)
 本例は、上述の実施例7とは電析の反応時間を変更して、p型光半導体を形成した還元電極の例である。図9に示すごとく、本例の還元電極1において、p型光半導体12は、実施例7と同様に、基板11(FTO膜111)上からn型光半導体13の内部に広がって伸びる分枝状構造を有している。本例のp型光半導体12においては、実施例7よりも分枝125(突起物125)が多く、その長さが長くなっている。その他の構成は、実施例7と同様である。
(Example 8)
This example is an example of a reduction electrode in which a p-type optical semiconductor is formed by changing the electrodeposition reaction time from that of Example 7 described above. As shown in FIG. 9, in the reduction electrode 1 of this example, the p-type optical semiconductor 12 is a branch that extends from the substrate 11 (FTO film 111) to the inside of the n-type optical semiconductor 13, as in the seventh embodiment. It has a shape structure. In the p-type optical semiconductor 12 of this example, there are more branches 125 (projections 125) than in Example 7, and the length thereof is longer. Other configurations are the same as those of the seventh embodiment.
 本例の還元電極1は、p型光半導体12を形成する際に、対極17と作用電極14との間に-0.75Vの電位を3600秒間印加した点を除いては、上述の実施例7と同様にして作製した(図7参照)。本例においても、実施例7と同様にp型光半導体12の結晶構造を、Cu-Kα線を用いたX線回折装置((株)リガク製のRINT2000)により調べたところ、p型光半導体12はCuOからなることが確認された。また、本例におけるp型光半導体12の表面におけるSEM写真を実施例7と同様の条件で撮影した。倍率2000倍のSEM写真を図10Aに示し、倍率50000倍のSEM写真を図10Bに示す。図10C及び図10Dは、それぞれ、図10A及び図10Bに示すSEM写真の線図を示す。また、本例のけるp型光半導体の表面粗さ(算術平均粗さRa)を実施例7と同様にして計測した。その結果、表面粗さは、3174.66nmであった。 The reduction electrode 1 of this example is the same as that of the above-described embodiment except that, when the p-type optical semiconductor 12 is formed, a potential of −0.75 V is applied between the counter electrode 17 and the working electrode 14 for 3600 seconds. 7 (see FIG. 7). Also in this example, when the crystal structure of the p-type optical semiconductor 12 was examined with an X-ray diffractometer using a Cu—Kα ray (RINT2000 manufactured by Rigaku Corporation) as in Example 7, the p-type optical semiconductor was examined. It was confirmed that 12 consists of CuO. Further, an SEM photograph on the surface of the p-type optical semiconductor 12 in this example was taken under the same conditions as in Example 7. An SEM photograph at a magnification of 2000 is shown in FIG. 10A, and an SEM photograph at a magnification of 50000 is shown in FIG. 10B. 10C and 10D show diagrams of the SEM photographs shown in FIGS. 10A and 10B, respectively. Further, the surface roughness (arithmetic average roughness Ra) of the p-type optical semiconductor in this example was measured in the same manner as in Example 7. As a result, the surface roughness was 3174.66 nm.
 また、本例の還元電極1を用いて、実施例7と同様にして還元装置8を組み立て(図5参照)、標準水素電極に対する電位が0Vのときの光電流密度(光照射時に流れる電流密度)を求めた。その結果を後述の図15に示す。 Further, using the reduction electrode 1 of this example, the reduction device 8 is assembled in the same manner as in Example 7 (see FIG. 5), and the photocurrent density when the potential with respect to the standard hydrogen electrode is 0 V (current density flowing during light irradiation). ) The result is shown in FIG.
 (実施例9)
 本例は、上述の実施例7及び実施例8とは電析の反応時間を変更して、p型光半導体を形成した還元電極の例である。図11に示すごとく、本例の還元電極1において、p型光半導体は、実施例7と同様に、基板11(FTO膜111)上からn型光半導体13の内部に広がって伸びる分枝状構造を有している。本例のp型光半導体12は、実施例7よりも分枝125(突起物125)が少なく、その長さが短くなっている。その他の構成は、実施例7と同様である。
Example 9
This example is an example of a reduction electrode in which a p-type optical semiconductor is formed by changing the electrodeposition reaction time from Example 7 and Example 8 described above. As shown in FIG. 11, in the reduction electrode 1 of the present example, the p-type optical semiconductor is branched like extending from the substrate 11 (FTO film 111) to the inside of the n-type optical semiconductor 13 as in the seventh embodiment. It has a structure. The p-type optical semiconductor 12 of this example has fewer branches 125 (projections 125) and a shorter length than that of the seventh embodiment. Other configurations are the same as those of the seventh embodiment.
 本例の還元電極1は、p型光半導体12を形成する際に、対極17と作用電極14との間に-0.75Vの電位を600秒間印加した点を除いては、上述の実施例7と同様にして作製した(図7参照)。本例においても、実施例7と同様にp型光半導体12の結晶構造を、Cu-Kα線を用いたX線回折装置((株)リガク製のRINT2000)により調べたところ、p型光半導体12はCuOからなることが確認された。また、本例におけるp型光半導体12の表面におけるSEM写真を実施例7と同様の条件で撮影した。倍率2000倍のSEM写真を図12Aに示し、倍率50000倍のSEM写真を図12Bに示す。図12C及び図12Dは、それぞれ、図12A及び図12Bに示すSEM写真の線図を示す。また、本例のけるp型光半導体の表面粗さ(算術平均粗さRa)を実施例7と同様にして計測した。その結果、表面粗さは、2015.23nmであった。 The reduction electrode 1 of this example is the same as that of the above-described embodiment except that, when the p-type optical semiconductor 12 is formed, a potential of −0.75 V is applied between the counter electrode 17 and the working electrode 14 for 600 seconds. 7 (see FIG. 7). Also in this example, when the crystal structure of the p-type optical semiconductor 12 was examined with an X-ray diffractometer using a Cu—Kα ray (RINT2000 manufactured by Rigaku Corporation) as in Example 7, the p-type optical semiconductor was examined. It was confirmed that 12 consists of CuO. Further, an SEM photograph on the surface of the p-type optical semiconductor 12 in this example was taken under the same conditions as in Example 7. An SEM photograph at a magnification of 2000 is shown in FIG. 12A, and an SEM photograph at a magnification of 50000 is shown in FIG. 12B. 12C and 12D show diagrams of the SEM photographs shown in FIGS. 12A and 12B, respectively. Further, the surface roughness (arithmetic average roughness Ra) of the p-type optical semiconductor in this example was measured in the same manner as in Example 7. As a result, the surface roughness was 2015.23 nm.
 また、本例の還元電極1を用いて、実施例7と同様にして還元装置8を組み立て(図5参照)、標準水素電極に対する電位が0Vのときの光電流密度(光照射時に流れる電流密度)を求めた。その結果を後述の図15に示す。 Further, using the reduction electrode 1 of this example, the reduction device 8 is assembled in the same manner as in Example 7 (see FIG. 5), and the photocurrent density when the potential with respect to the standard hydrogen electrode is 0 V (current density flowing during light irradiation). ) The result is shown in FIG.
 (実施例1、実施例7~実施例9との比較)
 図15より知られるように、基板11上からn型光半導体13の内部に広がって伸びる分枝状構造のp型光半導体12(図6、図8A~図12D参照)を有する実施例7~9の還元電極1は、分枝状構造を有していないp型光半導体12(図13及び図14A~図14D参照)を有する実施例1の還元電極1よりも高い電流密度を示していた。この電流密度の向上は、CO2の還元反応速度の向上を意味する。したがって、実施例7~9のように分枝状構造のp型光半導体12を形成することにより、CO2の還元速度を向上させ、メタノール等の有機物の生成速度をより向上できることがわかる。
(Comparison with Example 1 and Examples 7 to 9)
As is known from FIG. 15, Embodiments 7 to 7 having a p-type optical semiconductor 12 (see FIGS. 6, 8A to 12D) having a branched structure extending from the substrate 11 to the inside of the n-type optical semiconductor 13 and extending. The reduction electrode 1 of 9 showed a higher current density than the reduction electrode 1 of Example 1 having the p-type optical semiconductor 12 (see FIGS. 13 and 14A to 14D) that did not have a branched structure. . This improvement in current density means an improvement in the CO 2 reduction reaction rate. Therefore, it can be seen that by forming the p-type optical semiconductor 12 having a branched structure as in Examples 7 to 9, the reduction rate of CO 2 can be improved and the production rate of organic substances such as methanol can be further improved.
 電析法により形成された実施例7~実施例9の還元電極1においては、上述のように、分枝状構造のp型光半導体12を有しているため、p型光半導体12とn型光半導体13との接合領域が広くなるため、上述のように電流密度が向上したと推察される(図6、図8A~図12D参照)。また、実施例7~9においては、緻密なp型光半導体12が形成されていることも電流密度の向上に寄与していると推察される。一方、スキージ法により形成された実施例1におけるp型光半導体12においては、CuO粒子間に多数の空隙が存在しているため(図13及び図14A~図14D)、実施例7~実施例9ほどの電流密度には達しなかったものと推察される。 Since the reduction electrodes 1 of Examples 7 to 9 formed by the electrodeposition method have the p-type optical semiconductor 12 having a branched structure as described above, the p-type optical semiconductor 12 and the n-type optical semiconductor 12 are combined. Since the junction region with the type optical semiconductor 13 is widened, it is assumed that the current density is improved as described above (see FIGS. 6 and 8A to 12D). In Examples 7 to 9, it is speculated that the formation of the dense p-type optical semiconductor 12 also contributes to the improvement of the current density. On the other hand, in the p-type optical semiconductor 12 in Example 1 formed by the squeegee method, since many voids exist between CuO particles (FIGS. 13 and 14A to 14D), Examples 7 to It is assumed that the current density of about 9 was not reached.
 実施例7~9のような分枝状構造のp型光半導体12は、上述の電析及びその後の焼成により形成することができる。電析時の電位及び反応時間を調整することにより、分枝状構造における分枝125(突起物125)の長さや数を制御することができる。実施例1、実施例7~9におけるp型光半導体12について、形成方法、形態、及び表面粗さを図17に示す。 The p-type optical semiconductor 12 having a branched structure as in Examples 7 to 9 can be formed by the above-described electrodeposition and subsequent firing. By adjusting the potential and reaction time during electrodeposition, the length and number of the branches 125 (projections 125) in the branched structure can be controlled. FIG. 17 shows the formation method, form, and surface roughness of the p-type optical semiconductor 12 in Example 1 and Examples 7 to 9.
 図17及び図15の結果から知られるごとく、p型光半導体の表面粗さ(算術平均粗さRa)は2000nm以上であることが好ましい。この場合には、電流密度を十分に向上させることが可能になる。より好ましくは、p型光半導体の表面粗さは2500nm以上がよい。また、電析による実現可能な表面粗さという観点から、p型光半導体の表面粗さは、3200nm以下であることが好ましい。 As known from the results of FIGS. 17 and 15, the surface roughness (arithmetic average roughness Ra) of the p-type optical semiconductor is preferably 2000 nm or more. In this case, the current density can be sufficiently improved. More preferably, the surface roughness of the p-type optical semiconductor is 2500 nm or more. Moreover, from the viewpoint of realizable surface roughness by electrodeposition, the surface roughness of the p-type optical semiconductor is preferably 3200 nm or less.
 以上、本開示の実施例について詳細に説明したが、本開示は上記実施例に限定されるものではなく、本開示の趣旨を損なわない範囲内で種々の変更が可能である。
 
As mentioned above, although the Example of this indication was described in detail, this indication is not limited to the said Example, A various change is possible within the range which does not impair the meaning of this indication.

Claims (7)

  1.  導電性の基板(11)と、該基板(11)上に設けられたp型光半導体(12)と、該p型光半導体(12)上に設けられたn型光半導体(13)とを有し、
     上記p型光半導体(12)の伝導帯のエネルギー準位は、上記n型光半導体(13)の伝導帯のエネルギー準位よりも卑側に高く、上記p型光半導体(12)の価電子帯のエネルギー準位は、上記n型光半導体(13)の価電子帯のエネルギー準位よりも卑側に高いCO2還元電極。
    A conductive substrate (11), a p-type optical semiconductor (12) provided on the substrate (11), and an n-type optical semiconductor (13) provided on the p-type optical semiconductor (12). Have
    The energy level of the conduction band of the p-type optical semiconductor (12) is higher than the energy level of the conduction band of the n-type optical semiconductor (13), and the valence electrons of the p-type optical semiconductor (12). A CO 2 reduction electrode in which the energy level of the band is higher on the base side than the energy level of the valence band of the n-type optical semiconductor (13).
  2.  上記p型光半導体(12)は、上記n型光半導体(13)に完全に被覆されている請求項1に記載のCO2還元電極。 The CO 2 reduction electrode according to claim 1, wherein the p-type optical semiconductor (12) is completely covered with the n-type optical semiconductor (13).
  3.  上記n型光半導体(13)は、TiO2、SrTiO3、WO3、及びBiVO4から選ばれる少なくとも1種からなる請求項1又は2に記載のCO2還元電極。 The CO 2 reduction electrode according to claim 1 or 2, wherein the n-type optical semiconductor (13) is made of at least one selected from TiO 2 , SrTiO 3 , WO 3 , and BiVO 4 .
  4.  上記n型光半導体(13)は、ブルッカイト型酸化チタンからなる請求項1~3のいずれか1項に記載のCO2還元電極。 The CO 2 reduction electrode according to any one of claims 1 to 3, wherein the n-type optical semiconductor (13) is made of brookite-type titanium oxide.
  5.  上記p型光半導体(12)は、CuO、Cu2O、InP、p-SiC、及びp-Siから選ばれる少なくとも1種からなる請求項1~4のいずれか1項に記載のCO2還元電極。 The CO 2 reduction according to any one of claims 1 to 4, wherein the p-type optical semiconductor (12) comprises at least one selected from CuO, Cu 2 O, InP, p-SiC, and p-Si. electrode.
  6.  上記p型光半導体(12)は、上記基板(11)上から上記n型光半導体(13)の内部に広がって伸びる分枝状構造を有している請求項1~5のいずれか1項に記載のCO2還元電極。 The p-type optical semiconductor (12) has a branched structure extending from the substrate (11) to the inside of the n-type optical semiconductor (13). The CO 2 reduction electrode according to 1.
  7.  請求項1~6のいずれか1項に記載のCO2還元電極と、酸化電極(2)と、該酸化電極(2)と上記CO2還元電極とが浸漬された水系電解液(3)と、該水系電解液(2)中において上記CO2還元電極と上記酸化電極(2)とを隔てるイオン交換膜(4)と、上記CO2還元電極に光を照射する光源(5)と、上記CO2還元電極にCO2を供給する供給口(6)とを有するCO2還元装置。 The CO 2 reduction electrode according to any one of claims 1 to 6, an oxidation electrode (2), an aqueous electrolyte (3) in which the oxidation electrode (2) and the CO 2 reduction electrode are immersed. An ion exchange membrane (4) separating the CO 2 reduction electrode and the oxidation electrode (2) in the aqueous electrolyte (2), a light source (5) for irradiating the CO 2 reduction electrode with light, and A CO 2 reduction device having a supply port (6) for supplying CO 2 to the CO 2 reduction electrode.
PCT/JP2015/001110 2014-03-04 2015-03-03 Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used WO2015133127A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-041761 2014-03-04
JP2014041761 2014-03-04
JP2014251485A JP2015180765A (en) 2014-03-04 2014-12-12 Carbon dioxide reduction electrode and carbon dioxide reduction device in which the same is used
JP2014-251485 2014-12-12

Publications (1)

Publication Number Publication Date
WO2015133127A1 true WO2015133127A1 (en) 2015-09-11

Family

ID=54054943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001110 WO2015133127A1 (en) 2014-03-04 2015-03-03 Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used

Country Status (2)

Country Link
JP (1) JP2015180765A (en)
WO (1) WO2015133127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170199A1 (en) * 2016-03-31 2017-10-05 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569495B2 (en) * 2015-11-19 2019-09-04 株式会社豊田中央研究所 Semiconductor electrode, light energy conversion device, and method of manufacturing semiconductor electrode
FR3046425B1 (en) * 2016-01-04 2018-01-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives PHOTOCATHODE FOR A PHOTOELECTROLYTIC DEVICE, A METHOD FOR MANUFACTURING SUCH A PHOTOCATHODE AND A PHOTOELECTROLYTIC DEVICE
KR101791515B1 (en) 2016-12-09 2017-11-20 서강대학교산학협력단 Carbon dioxide reduction device
CN107099815B (en) * 2017-04-24 2018-11-16 太原师范学院 A kind of application of Bipolar Membrane surface powder state photochemical catalyst in CO2 reduction
CN107974691B (en) * 2017-12-01 2020-04-21 宁波大学 Phosphide/copper oxide electrode and preparation method thereof
US20240124996A1 (en) * 2021-05-25 2024-04-18 Nippon Telegraph And Telephone Corporation Carbon Dioxide Gas-Phase Reduction Device And Carbon Dioxide Gas-Phase Reduction Method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311476A (en) * 1992-05-13 1993-11-22 Hitachi Ltd Electrode for electrochemical reduction and device for utilizing the same
JPH07188961A (en) * 1993-12-27 1995-07-25 Hitachi Ltd Carbon dioxide reducing electrode and carbon dioxide converter
JP2005133174A (en) * 2003-10-31 2005-05-26 Toyota Motor Corp Water decomposition type hydrogen generation cell
WO2005063393A1 (en) * 2003-12-26 2005-07-14 Kansai Technology Licensing Organization Co., Ltd. Method for electrolyzing water using organic photocatalyst
JP2010050115A (en) * 2008-08-19 2010-03-04 Hirosaki Univ Reaction cell for organic optical response element
JP5259889B1 (en) * 2011-08-29 2013-08-07 パナソニック株式会社 How to reduce carbon dioxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484303B (en) * 2010-03-31 2015-12-09 松下知识产权经营株式会社 The energy system of Optical Electro-Chemistry element and this element of use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311476A (en) * 1992-05-13 1993-11-22 Hitachi Ltd Electrode for electrochemical reduction and device for utilizing the same
JPH07188961A (en) * 1993-12-27 1995-07-25 Hitachi Ltd Carbon dioxide reducing electrode and carbon dioxide converter
JP2005133174A (en) * 2003-10-31 2005-05-26 Toyota Motor Corp Water decomposition type hydrogen generation cell
WO2005063393A1 (en) * 2003-12-26 2005-07-14 Kansai Technology Licensing Organization Co., Ltd. Method for electrolyzing water using organic photocatalyst
JP2010050115A (en) * 2008-08-19 2010-03-04 Hirosaki Univ Reaction cell for organic optical response element
JP5259889B1 (en) * 2011-08-29 2013-08-07 パナソニック株式会社 How to reduce carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170199A1 (en) * 2016-03-31 2017-10-05 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device using same

Also Published As

Publication number Publication date
JP2015180765A (en) 2015-10-15

Similar Documents

Publication Publication Date Title
WO2015133127A1 (en) Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used
Hu et al. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films
Zhu et al. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review
Mohapatra et al. Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays
Wu et al. Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction
Sun et al. Enabling silicon for solar-fuel production
Kim et al. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting
Liu et al. Highly Efficient Photoelectrochemical Hydrogen Generation Using Zn x Bi2S3+ x Sensitized Platelike WO3 Photoelectrodes
Baran et al. Effect of different nano-structured Ag doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production
Allam et al. Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: Structural and optical properties
Bledowski et al. Improving the performance of hybrid photoanodes for water splitting by photodeposition of iridium oxide nanoparticles
Lee et al. Electrodeposited heterogeneous nickel-based catalysts on silicon for efficient sunlight-assisted water splitting
Lu et al. In situ integration of ReS2/Ni3S2 pn heterostructure for enhanced photoelectrocatalytic performance
Garcia-Esparza et al. Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel production
Ma et al. Solar water splitting with p-SiC film on p-Si: Photoelectrochemical behavior and XPS characterization
Chang et al. Cu2O loaded titanate nanotube arrays for simultaneously photoelectrochemical ibuprofen oxidation and hydrogen generation
Siavash Moakhar et al. AuPd bimetallic nanoparticle decorated TiO 2 rutile nanorod arrays for enhanced photoelectrochemical water splitting
Minggu et al. Bilayer n-WO3/p-Cu2O photoelectrode with photocurrent enhancement in aqueous electrolyte photoelectrochemical reaction
Shi et al. CuO-functionalized silicon photoanodes for photoelectrochemical water splitting devices
Ojani et al. Photoinduced deposition of palladium nanoparticles on TiO2 nanotube electrode and investigation of its capability for formaldehyde oxidation
Zhang et al. Enhanced photoelectrochemical oxidation of water over Ti-doped α-Fe2O3 electrodes by surface electrodeposition InOOH
Janáky et al. On the substantially improved photoelectrochemical properties of nanoporous WO 3 through surface decoration with RuO 2
Yu et al. Enhanced photoelectrochemical performance of coaxial-nanocoupled strontium-rich SrTiO3/TiO2 {001} nanotube arrays
Hosseini et al. Evaluation of the Performance of Platinum Nanoparticle–Titanium Oxide Nanotubes as a New Refreshable Electrode for Formic Acid Electro‐oxidation
Costa Bassetto et al. Print-Light-Synthesis of Ni and NiFe-nanoscale catalysts for oxygen evolution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758442

Country of ref document: EP

Kind code of ref document: A1