JPH07188961A - Carbon dioxide reducing electrode and carbon dioxide converter - Google Patents

Carbon dioxide reducing electrode and carbon dioxide converter

Info

Publication number
JPH07188961A
JPH07188961A JP5330995A JP33099593A JPH07188961A JP H07188961 A JPH07188961 A JP H07188961A JP 5330995 A JP5330995 A JP 5330995A JP 33099593 A JP33099593 A JP 33099593A JP H07188961 A JPH07188961 A JP H07188961A
Authority
JP
Japan
Prior art keywords
carbon dioxide
electrode
dioxide gas
metal oxide
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5330995A
Other languages
Japanese (ja)
Inventor
Ryota Doi
良太 土井
Shinichi Ichikawa
伸一 市川
Hiroshi Hida
紘 飛田
Hiroshi Miyadera
博 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Hitachi Ltd
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU, CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Hitachi Ltd filed Critical CHIKYU KANKYO SANGYO GIJUTSU
Priority to JP5330995A priority Critical patent/JPH07188961A/en
Publication of JPH07188961A publication Critical patent/JPH07188961A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

PURPOSE:To reduce CO2 with high current efficiency at the time of reducing CO2 electrochemically and photoelectrochemically to reduce it into hydrocarbons and alcohols by using an electrode obtained by coating the surface of a copper sheet with a specified metal oxide as the reducing electrode. CONSTITUTION:A KHCO3 soln. 2 is filled in an electrolytic cell 1 provided with a light transmitting window, a photoelectrode 4 as a thin film of Pt or an n-type optical semiconductor is used as an anode, an electrode 3 obtained by coating the surface of metallic copper with a conductive oxide consisting of at least one kind of metallic oxide among ZnO, Fe2O3, TiO, SnO2, IrO2, RuO2, ReO2, PbO2, etc., and having <=3.5eC of band gap or <=100OMEGAm electric resistance is used as the cathode, both electrodes 3 and 4 are separated by an ion-exchange membrane 6, a current is applied while blowing CO2 8 into the electrolyte 2, and the electrolyte is irradiated with the light of an Xe lamp 10. The CO2 blown into the electrolyte 2 is reduced to hydrocarbons and alcohols with high current efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭酸ガスを炭化水素およ
びアルコールヘ電気化学的または光電気化学的に還元す
る電極およびそれを利用した炭酸ガス変換装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrochemically or photoelectrochemically reducing carbon dioxide into hydrocarbons and alcohols, and a carbon dioxide converter using the same.

【0002】[0002]

【従来の技術】炭酸ガスを電気化学または光電気化学的
に還元する反応の速度および選択性に大きな影響を与え
るのは電極材料の種類および表面の形状である。これま
でに、単味金属で多く研究されインジウム,スズ,鉛で
はギ酸,金,銀、亜鉛では一酸化炭素、銅ではメタン,
エチレンなどが選択的に生成するとされている。たとえ
ば、電気化学58巻,No.11,1990年の984ペ
ージから989ページ、および996ページから100
2ページによれば炭酸ガス,重炭酸イオンの還元反応に
対して金属銅が炭化水素,アルコールへの高い反応選択
性(電流効率)を示し、メタン,エチレン,エタノール
の電流効率を合計すると約70%に達するとされてい
る。また、特開平1−28462号公報では、白金,パラジウ
ム,イリジウム,ロジウム,鉄,ニッケル,コバルトの
少なくとも一種を第1金属とし、鉛,銅,亜鉛,カドミ
ニウムの少なくとも一種を第2金属として含む電極が炭
酸ガスの還元に優れるとしている。
2. Description of the Related Art It is the type of electrode material and the shape of the surface that have a great influence on the rate and selectivity of the reaction for electrochemically or photoelectrochemically reducing carbon dioxide. So far, many studies have been conducted on plain metals, formic acid for indium, tin and lead, carbon monoxide for gold, silver and zinc, methane for copper,
It is said that ethylene and the like are selectively produced. For example, Electrochemistry 58, No. 11, 1990, pages 984-989, and pages 996-100.
According to page 2, metallic copper shows a high reaction selectivity (current efficiency) to hydrocarbons and alcohols for the reduction reaction of carbon dioxide and bicarbonate ions, and the total current efficiency of methane, ethylene and ethanol is about 70. It is said that it will reach%. Further, in JP-A-1-28462, an electrode containing at least one of platinum, palladium, iridium, rhodium, iron, nickel and cobalt as a first metal and at least one of lead, copper, zinc and cadmium as a second metal. Is said to be excellent in reducing carbon dioxide.

【0003】従来技術の単味金属では炭化水素,アルコ
ールへの変換で最も高い反応選択性を示す金属銅でも単
一成分の反応選択性に限界があり、まだ実用的なレベル
に達していない。また、先の特開平1−28462号公報で
は、水素原子が吸着して活性化される第1金属の原子間
を第2金属で分断することによって、水素原子同志が結
合して水素ガスが発生するのを抑制し、水素原子を炭酸
ガスの還元に利用するというものである。しかし、これ
らいずれの公知技術においても反応速度が小さく、ま
た、生成物の選択性も小さくその向上が望まれている。
[0006] Among conventional simple metals, metal copper, which has the highest reaction selectivity in conversion to hydrocarbons and alcohols, has a limited reaction selectivity of a single component and has not yet reached a practical level. Further, in the above-mentioned Japanese Patent Application Laid-Open No. 1-28462, hydrogen atoms are adsorbed and activated, and the atoms of the first metal are separated from each other by the second metal, whereby hydrogen atoms are bonded to each other to generate hydrogen gas. The use of hydrogen atoms for the reduction of carbon dioxide gas is suppressed. However, in any of these known techniques, the reaction rate is low, and the selectivity of the product is low, and its improvement is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明はこれらの従来
技術に鑑みてなされたものであり、その目的は炭酸ガス
を炭化水素およびアルコールヘ高い電流効率で還元でき
る電極およびその電極を利用した炭酸ガス変換装置を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of these prior arts, and an object thereof is an electrode capable of reducing carbon dioxide gas to hydrocarbons and alcohols with high current efficiency and carbon dioxide utilizing the electrode. It is to provide a gas conversion device.

【0005】[0005]

【課題を解決するための手段】本発明の炭酸ガス還元電
極は、金属銅の表面の一部又は全部を亜鉛,鉄,チタ
ン,スズ,イリジウム,ルテニウム,レニウム,鉛のバ
ンドギャップが3.5eV以下または電気抵抗が100Ω
m以下の導電性がある金属酸化物の少なくとも一つで被
覆したことを特徴とする。このうち、特に好ましい金属
酸化物はZnO,Fe23,TiO2,SnO2,IrO
2,RuO2,ReO2,PbO2である。これらの金属酸
化物が金属銅の表面に200Å以下の厚みでアイランド
状に分散または全面に被覆されていると効果的である。
第2成分すなわち亜鉛,鉄,チタン,スズ,イリジウ
ム,ルテニウム,レニウム,鉛の少なくとも1つは、蒸
着,塗着,焼結,溶射などで金属銅の表面に分散状態ま
たは全面に被覆させることが可能である。たとえば、第
2成分の金属を酸素雰囲気中でスパッタリング法,イオ
ンプレーテング法で銅表面上に蒸着させることにより金
属酸化物を形成させることができる。
The carbon dioxide gas reduction electrode of the present invention has a band gap of zinc, iron, titanium, tin, iridium, ruthenium, rhenium, and lead of 3.5 eV on a part or all of the surface of metallic copper. Below or 100 Ω electric resistance
It is characterized by being coated with at least one metal oxide having a conductivity of m or less. Of these, particularly preferable metal oxides are ZnO, Fe 2 O 3 , TiO 2 , SnO 2 , and IrO.
2 , RuO 2 , ReO 2 and PbO 2 . It is effective that these metal oxides are dispersed or coated in the form of islands on the surface of metallic copper in a thickness of 200 Å or less.
The second component, that is, at least one of zinc, iron, titanium, tin, iridium, ruthenium, rhenium, and lead, can be dispersed or entirely coated on the surface of metallic copper by vapor deposition, coating, sintering, thermal spraying, or the like. It is possible. For example, the metal oxide can be formed by depositing the metal of the second component on the copper surface by a sputtering method or an ion plating method in an oxygen atmosphere.

【0006】母材である銅の形状は板,網,発泡体,薄
膜,微粒子のいずれでもよい。第2成分である金属の酸
化物の表面と銅の表面とが共存するあるいは銅表面を金
属酸化物で被覆すると炭酸ガスおよびプロトンの吸着状
態が変わり還元反応が炭化水素,アルコールの生成に有
利な方向へ進行する。本反応は電子の授受を含む表面電
気化学反応であり、導電性を有する金属酸化物が還元反
応を促進する。
The shape of the base material copper may be any of plate, net, foam, thin film and fine particles. If the surface of the second component metal oxide and the surface of copper coexist, or if the copper surface is coated with a metal oxide, the adsorption state of carbon dioxide and protons changes and the reduction reaction is advantageous for the production of hydrocarbons and alcohols. Proceed in the direction. This reaction is a surface electrochemical reaction including the transfer of electrons, and the conductive metal oxide promotes the reduction reaction.

【0007】金属銅表面上の金属酸化物の厚みを200
Å以下にすると金属銅と金属酸化物の相乗効果がより強
力に作用する。
The thickness of the metal oxide on the metallic copper surface is 200
If it is less than Å, the synergistic effect of metallic copper and metallic oxide acts more strongly.

【0008】本発明による電極は、アノード電極と組み
合わせて炭酸ガスの変換装置として使用することができ
る。アノードとして、通常の白金,金,ロジウム,イリ
ジウムなどの金属はもちろん、n型光半導体を薄膜化し
た光電極を使用できる。炭酸ガスは化学的に非常に安定
であり、その還元には多くのエネルギーを必要とする。
本発明による電極では炭酸ガスの還元反応,アノードで
は水の酸化反応が起こる。たとえば、メタンが生成する
場合の反応は次式で表すことができる。
The electrode according to the present invention can be used as a carbon dioxide conversion device in combination with an anode electrode. As the anode, not only ordinary metals such as platinum, gold, rhodium, and iridium but also a photoelectrode obtained by thinning an n-type optical semiconductor can be used. Carbon dioxide is chemically very stable and its reduction requires a lot of energy.
The electrode according to the present invention causes a reduction reaction of carbon dioxide gas, and the anode causes an oxidation reaction of water. For example, the reaction when methane is produced can be expressed by the following equation.

【0009】[0009]

【化1】 [Chemical 1]

【0010】これら二つの反応式を総括すると下記の式
のようになる。
These two reaction equations are summarized as follows.

【0011】 CO2+2H2O …………> CH4+2O2 この反応式の標準自由エネルギーは+818kJ/mol
であり、外部から何らかのエネルギーを加えないと反応
は進行しない。化石燃料をエネルギー源に用いれば新た
な炭酸ガスの排出をもたらすため炭酸ガス低減に逆行す
る。これに対する最も理想的エネルギー源は太陽光であ
る。太陽光エネルギーを吸収してアノードとして働く光
電極は組み合わせるのに好ましい電極である。光エネル
ギーを吸収して水の分解反応を行わせるにはTiO2
ようなn型光半導体を光電極に用いれば良い。
CO 2 + 2H 2 O …………> CH 4 + 2O 2 The standard free energy of this reaction formula is +818 kJ / mol.
Therefore, the reaction does not proceed unless some kind of energy is applied from the outside. If fossil fuel is used as an energy source, it will lead to the emission of new carbon dioxide gas, which is contrary to carbon dioxide reduction. The most ideal energy source for this is sunlight. A photoelectrode that absorbs solar energy and acts as an anode is the preferred electrode to combine. An n-type optical semiconductor such as TiO 2 may be used for the photoelectrode in order to absorb the light energy and cause the water decomposition reaction.

【0012】太陽光を利用する他の方法として、太陽光
をいったん電気に変換し、その電気を上記炭酸ガス変換
器に供給して還元反応を行わせるハイブリッド方式にす
ることも可能である。
As another method using sunlight, it is also possible to adopt a hybrid system in which sunlight is once converted into electricity and the electricity is supplied to the carbon dioxide converter to carry out a reduction reaction.

【0013】[0013]

【作用】金属銅の表面の一部又は全部を亜鉛,鉄,チタ
ン,スズ,イリジウム,ルテニウム,レニウム及び鉛か
ら選ばれたバンドギャップが3.5eV 以下または電気
抵抗が100Ωm以下の導電性がある金属酸化物の少な
くとも一つで被覆することにより、炭酸ガスを効率よく
炭化水素及びアルコールへ変換することができる。
[Function] A part or all of the surface of metallic copper has conductivity such that the band gap selected from zinc, iron, titanium, tin, iridium, ruthenium, rhenium and lead is 3.5 eV or less or the electric resistance is 100 Ωm or less. By coating with at least one of the metal oxides, carbon dioxide gas can be efficiently converted into hydrocarbon and alcohol.

【0014】[0014]

【実施例】【Example】

(実施例1)純度99.999%,面積8cm2の金属銅板
上に白金網を置き、酸素雰囲気中でのスパッタリングに
よりZnOを両面に分散被覆して電極を作製した。図1
に示すようなH型セル1に0.1mol/lの重炭酸カリウ
ム水溶液(電解液)2を入れ、ZnOで修飾した金属銅電
極をカソード3,白金板をアノード4,Ag/AgClを
参照電極5とし、両電極間をイオン交換膜6で仕切り、
電源7でカソード電位を−1.8VVS.Ag/AgClに
制御した条件で、炭酸ガス8を吹き込みながら還元実験
を行った。生成物の電流効率を比較例1と比較して表1
に示す。比較例1は金属銅をカソードとした以外は実施
例1と同じである。ZnOで修飾した電極は比較例1の
電極と比較してメタンの電流効率が増大した。
Example 1 A platinum net was placed on a metal copper plate having a purity of 99.999% and an area of 8 cm 2 , and ZnO was dispersed and coated on both surfaces by sputtering in an oxygen atmosphere to prepare an electrode. Figure 1
0.1 mol / l potassium bicarbonate aqueous solution (electrolyte) 2 was put into the H-type cell 1 as shown in Fig. 3, and the metallic copper electrode modified with ZnO was the cathode 3, the platinum plate was the anode 4, and Ag / AgCl was the reference electrode. 5 and partition between both electrodes with an ion exchange membrane 6,
A reduction experiment was conducted under the condition that the cathode potential was controlled to −1.8 V VS. Ag / AgCl by the power supply 7 while blowing carbon dioxide gas 8. The current efficiency of the product is compared with Comparative Example 1 and Table 1
Shown in. Comparative Example 1 is the same as Example 1 except that metallic copper is used as the cathode. The ZnO-modified electrode increased the current efficiency of methane as compared with the electrode of Comparative Example 1.

【0015】(実施例2)実施例1のZnOに変えてF
23を用いた以外は実施例1と全く同様にして電極を
作製し、実施例1と同様の実験を行った。結果を表1に
示す。Fe23で修飾した電極も比較例1の電極と比較
してメタンの電流効率が増大した。
(Example 2) Instead of ZnO in Example 1, F
An electrode was prepared in the same manner as in Example 1 except that e 2 O 3 was used, and the same experiment as in Example 1 was performed. The results are shown in Table 1. The electrode modified with Fe 2 O 3 also increased the current efficiency of methane as compared with the electrode of Comparative Example 1.

【0016】[0016]

【表1】 [Table 1]

【0017】(実施例3)純度99.999%,面積8c
m2の金属銅板の両面に酸素雰囲気中でのイオンクラスタ
ービームによりTiO2 を分散被覆して電極を作製し
た。H型セルに0.1mol/l の重炭酸カリウム水溶液を
入れ、TiO2 で修飾した金属銅電極をカソード,白金
板をアノード,Ag/AgClを参照電極とし、両電極
間をイオン交換膜で仕切り、室温,カソード電位−1.
8VVS.Ag/AgClの条件で炭酸ガスを吹き込みな
がら還元実験を行ったところ、表2に示すように比較例
1と比較してメタンの電流効率が増大し、H2 のそれは
減少した。
(Example 3) Purity 99.999%, area 8c
Both sides of a metal copper plate of m 2 were dispersedly coated with TiO 2 by an ion cluster beam in an oxygen atmosphere to prepare an electrode. An H-type cell was charged with 0.1 mol / l potassium bicarbonate aqueous solution, a metal copper electrode modified with TiO 2 was used as a cathode, a platinum plate was used as an anode, Ag / AgCl was used as a reference electrode, and both electrodes were partitioned by an ion exchange membrane, Room temperature, cathode potential -1.
When a reduction experiment was carried out while blowing carbon dioxide gas under the condition of 8 V VS. Ag / AgCl, as shown in Table 2, the current efficiency of methane was increased and that of H 2 was decreased as compared with Comparative Example 1.

【0018】(実施例4)実施例3のTiO2に変えて
SnO2を用いた以外は実施例3と全く同様にして電極
を作製し、実施例3と同様の実験を行った。結果を表2
に示す。SnO2 で修飾した電極を用いた場合も比較例
1の電極と比較してメタンの電流効率が増大し、H2
それは減少した。
Example 4 An electrode was prepared in the same manner as in Example 3 except that SnO 2 was used instead of TiO 2 in Example 3, and the same experiment as in Example 3 was conducted. The results are shown in Table 2.
Shown in. When the electrode modified with SnO 2 was used, the current efficiency of methane was increased and that of H 2 was decreased as compared with the electrode of Comparative Example 1.

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例5)純度99.999%,面積8c
m2の金属銅板の両面に溶射法によりIrO2 の被覆膜を
形成して電極を作製した。H型セルに0.1mol/lの重
炭酸カリウム水溶液を入れ、IrO2 を被覆した金属銅
電極をカソード,白金板をアノード,Ag/AgClを
参照電極とし、両電極間をイオン交換膜で仕切り、室
温,カソード電位−1.8VVS.Ag/AgClの条件で
炭酸ガスを吹き込みながら還元実験を行ったところ、表
3に示すように比較例1と比較してメタンの電流効率が
増大した。
(Example 5) Purity 99.999%, area 8c
IrO 2 coating films were formed on both surfaces of a metal copper plate of m 2 by a thermal spraying method to prepare electrodes. A 0.1 mol / l potassium bicarbonate aqueous solution was placed in an H-type cell, a metallic copper electrode coated with IrO 2 was used as a cathode, a platinum plate was used as an anode, and Ag / AgCl was used as a reference electrode, and both electrodes were partitioned by an ion exchange membrane. At room temperature and cathode potential of −1.8 V VS. Ag / AgCl, a reduction experiment was conducted while blowing carbon dioxide gas. As shown in Table 3, the current efficiency of methane was increased as compared with Comparative Example 1.

【0021】(実施例6)実施例5のIrO2に変えて
RuO2を用いた以外は実施例5と全く同様にして電極
を作製し、実施例5と同様の実験を行った。結果を表3
に示す。RuO2 で修飾した電極を用いた場合も比較例
1の電極と比較してメタンの電流効率が増大した。
Example 6 An electrode was prepared in the same manner as in Example 5 except that RuO 2 was used instead of IrO 2 in Example 5, and the same experiment as in Example 5 was conducted. The results are shown in Table 3.
Shown in. Also when the electrode modified with RuO 2 was used, the current efficiency of methane was increased as compared with the electrode of Comparative Example 1.

【0022】(実施例7)実施例5のIrO2に変えて
ReO2を用いた以外は実施例5と全く同様にして電極
を作製し、実施例5と同様の実験を行った。結果を表3
に示す。ReO2 で修飾した電極を用いた場合も比較例
1の電極と比較してメタンの電流効率が増大した。
Example 7 An electrode was prepared in the same manner as in Example 5 except that ReO 2 was used instead of IrO 2 in Example 5, and the same experiment as in Example 5 was conducted. The results are shown in Table 3.
Shown in. Even when the electrode modified with ReO 2 was used, the current efficiency of methane was increased as compared with the electrode of Comparative Example 1.

【0023】[0023]

【表3】 [Table 3]

【0024】(実施例8)純度99.999%,面積8c
m2の金属銅板の両面にZnの酸素プラズマスパッタ法で
ZnOを被覆して電極を作製した。H型セルに0.1mol
/lの重炭酸カリウム水溶液を入れ、作製した電極をカ
ソード,白金板をアノードにし、両電極間をイオン交換
膜で仕切り、両電極間に太陽電池により4Vの電圧を印
加して炭酸ガスの還元実験を行ったところ、表4に示す
ように比較例2と比較してメタンの電流効率が増大し
た。比較例2は金属銅をカソードとした以外は実施例8
と同じである。
(Example 8) Purity 99.999%, area 8c
An electrode was prepared by coating both surfaces of a metal copper plate of m 2 with ZnO by a Zn oxygen plasma sputtering method. 0.1 mol in H type cell
/ L of potassium bicarbonate aqueous solution was added, the prepared electrode was used as a cathode and the platinum plate was used as an anode, and both electrodes were partitioned by an ion exchange membrane. A solar cell applied a voltage of 4 V between both electrodes to reduce carbon dioxide gas. When an experiment was conducted, as shown in Table 4, the current efficiency of methane was increased as compared with Comparative Example 2. Comparative Example 2 is Example 8 except that metallic copper is used as the cathode.
Is the same as.

【0025】[0025]

【表4】 [Table 4]

【0026】(実施例9)本実施例を図2により説明す
る。光透過窓9を設けたH型セル1内に0.1mol/lの
重炭酸カリウム水溶液2を入れ、ゾルゲル法により酸化
スズコーテングガラス上に酸化チタン薄膜を0.5μm
形成した光電極をアノード4,純度99.999%,面積8cm
2 の金属銅板にマスキングの金属網を置かない状態で、
スパッタリング法でZnOを1分間蒸着して作製した実
施例9の電極をカソード3とした。両電極間をイオン交
換膜6で仕切り、室温の条件で、アノード4側ヘ太陽光
に類似した500Wキセノンランプ10の光を照射し、
両電極間に2Wの太陽電池11の出力端子を接続し、炭
酸ガス8の還元実験を行ったところ、表5に示すように
比較例3と比較してメタンの電流効率が増大した。比較
例3は金属銅をカソードとした以外は実施例9と同じで
ある。
(Embodiment 9) This embodiment will be described with reference to FIG. A 0.1 mol / l potassium bicarbonate aqueous solution 2 was placed in an H-shaped cell 1 provided with a light transmission window 9, and a titanium oxide thin film was formed on a tin oxide coating glass by a sol-gel method to a thickness of 0.5 μm.
The formed photoelectrode is anode 4, purity 99.999%, area 8 cm
With the metal net of masking not placed on the metal copper plate of 2 ,
The electrode of Example 9 prepared by vapor-depositing ZnO for 1 minute by the sputtering method was used as the cathode 3. The two electrodes are partitioned by an ion exchange membrane 6, and at room temperature, the anode 4 side is irradiated with light of a 500 W xenon lamp 10 similar to sunlight,
When the output terminal of the solar cell 11 of 2 W was connected between both electrodes and the reduction experiment of carbon dioxide gas 8 was performed, as shown in Table 5, the current efficiency of methane increased as compared with Comparative Example 3. Comparative Example 3 is the same as Example 9 except that metallic copper is used as the cathode.

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【発明の効果】本発明によれば、炭酸ガスを電気化学的
および光電気化学的還元方法により効率良く炭化水素お
よびアルコールに変換できる。
INDUSTRIAL APPLICABILITY According to the present invention, carbon dioxide can be efficiently converted into hydrocarbon and alcohol by an electrochemical and photoelectrochemical reduction method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による電気化学的還元装置の
概略図である。
FIG. 1 is a schematic view of an electrochemical reduction device according to an embodiment of the present invention.

【図2】本発明の一実施例による光電気化学的還元装置
の概略図である。
FIG. 2 is a schematic view of a photoelectrochemical reduction device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…H型セル、2…電解液、3…カソード、4…アノー
ド、5…参照電極、6…イオン交換膜、7…ポテンショ
スタット、8…炭酸ガス、9…光透過窓、10…キセノ
ンランプ、11…太陽電池。
DESCRIPTION OF SYMBOLS 1 ... H-type cell, 2 ... Electrolyte, 3 ... Cathode, 4 ... Anode, 5 ... Reference electrode, 6 ... Ion exchange membrane, 7 ... Potentiostat, 8 ... Carbon dioxide, 9 ... Light transmission window, 10 ... Xenon lamp , 11 ... Solar cells.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飛田 紘 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 宮寺 博 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hiroshi Tobita, 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Hiroshi Miyadera 1-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd. Hitachi Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】金属銅の表面の一部又は全部を亜鉛,鉄,
チタン,スズ,イリジウム,ルテニウム,レニウム及び
鉛から選ばれたバンドギャップが3.5eV 以下または
電気抵抗が100Ωm以下の導電性がある金属酸化物の
少なくとも一つで被覆したことを特徴とする炭酸ガス還
元電極。
1. A part or all of the surface of metallic copper is zinc, iron,
Carbon dioxide gas characterized by being coated with at least one conductive metal oxide having a band gap selected from titanium, tin, iridium, ruthenium, rhenium, and lead of 3.5 eV or less or an electric resistance of 100 Ωm or less. Reduction electrode.
【請求項2】請求項1において、前記金属酸化物がZn
O,Fe23,TiO2,SnO2,IrO2,RuO2
ReO2,PbO2の少なくとも一つからなることを特徴
とする炭酸ガス還元電極。
2. The metal oxide according to claim 1, wherein the metal oxide is Zn.
O, Fe 2 O 3 , TiO 2 , SnO 2 , IrO 2 , RuO 2 ,
A carbon dioxide gas reduction electrode comprising at least one of ReO 2 and PbO 2 .
【請求項3】請求項1において、前記金属酸化物が前記
金属銅の表面で200Å以下のアイランド状態に分散又
は全面に被覆されていることを特徴とする炭酸ガス還元
電極。
3. The carbon dioxide gas reduction electrode according to claim 1, wherein the metal oxide is dispersed or coated on the surface of the metal copper in an island state of 200 Å or less.
【請求項4】請求項1において、前記金属銅が板,網,
発泡体,薄膜のいずれかからなることを特徴とする炭酸
ガス還元電極。
4. The metallic copper according to claim 1, wherein the metallic copper is a plate, a net,
A carbon dioxide gas reduction electrode characterized by comprising either a foam or a thin film.
【請求項5】請求項1ないし4に記載の電極をカソー
ド,光電極をアノードとして構成したことを特徴とする
炭酸ガス変換装置。
5. A carbon dioxide gas converter comprising the electrode according to any one of claims 1 to 4 as a cathode and the photoelectrode as an anode.
【請求項6】請求項5に記載の光電極がn型半導体で構
成されたことを特徴とする炭酸ガス変換装置。
6. A carbon dioxide converter according to claim 5, wherein the photoelectrode is composed of an n-type semiconductor.
【請求項7】請求項5または6において、前記光電極が
酸化チタンで構成されたことを特徴とする炭酸ガス変換
装置。
7. The carbon dioxide gas conversion device according to claim 5, wherein the photoelectrode is made of titanium oxide.
【請求項8】炭酸ガスの変換に要するエネルギーを太陽
光および太陽電池で供給することを特徴とする請求項5
ないし7に記載の炭酸ガス変換装置。
8. The energy required for conversion of carbon dioxide gas is supplied by sunlight and a solar cell.
The carbon dioxide gas conversion device according to any one of 1 to 7.
JP5330995A 1993-12-27 1993-12-27 Carbon dioxide reducing electrode and carbon dioxide converter Pending JPH07188961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5330995A JPH07188961A (en) 1993-12-27 1993-12-27 Carbon dioxide reducing electrode and carbon dioxide converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5330995A JPH07188961A (en) 1993-12-27 1993-12-27 Carbon dioxide reducing electrode and carbon dioxide converter

Publications (1)

Publication Number Publication Date
JPH07188961A true JPH07188961A (en) 1995-07-25

Family

ID=18238661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5330995A Pending JPH07188961A (en) 1993-12-27 1993-12-27 Carbon dioxide reducing electrode and carbon dioxide converter

Country Status (1)

Country Link
JP (1) JPH07188961A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135782A1 (en) * 2010-04-26 2011-11-03 パナソニック株式会社 Method for reducing carbon dioxide
WO2011135783A1 (en) * 2010-04-26 2011-11-03 パナソニック株式会社 Method of reducing carbon dioxide
CN102605385A (en) * 2012-01-13 2012-07-25 天津理工大学 Method for preparing methanol from carbon dioxide by photoelectric catalytic reduction
CN103119203A (en) * 2010-05-17 2013-05-22 本田技研工业株式会社 Solar fuel cell
JP2014017080A (en) * 2012-07-06 2014-01-30 National Institute Of Advanced Industrial & Technology Stabilization method for visible light responsive semiconductor photoelectrode, and water decomposition reaction device using the method
JP2014015661A (en) * 2012-07-09 2014-01-30 Sharp Corp Electrolytic deposition apparatus
WO2014018091A1 (en) * 2012-07-25 2014-01-30 The Board Of Trustees Of The Leland Stanford Junior University Catalysts for low temperature electrolytic co2 or co reduction
US8696883B2 (en) 2010-10-06 2014-04-15 Panasonic Corporation Method for reducing carbon dioxide
US8709227B2 (en) 2011-08-31 2014-04-29 Panasonic Corporation Method for reducing carbon dioxide
US8709228B2 (en) 2011-08-31 2014-04-29 Panasonic Corporation Method for reducing carbon dioxide
WO2015133127A1 (en) * 2014-03-04 2015-09-11 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used
US9157158B2 (en) 2012-07-05 2015-10-13 Panasonic Intellectual Property Management Co., Ltd. Method for producing alcohol
US9255335B2 (en) 2011-07-26 2016-02-09 The Board Of Trustees Of The Leland Stanford Junior University Catalysts for low temperature electrolytic CO2 reduction
CN105332002A (en) * 2015-12-13 2016-02-17 兰州大学 Method for preparing ethyl alcohol through carbon dioxide and water
US9551077B2 (en) 2012-08-27 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
US9598779B2 (en) 2013-07-05 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Method for reducing carbon dioxide
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
CN107406993A (en) * 2014-12-19 2017-11-28 雷普索尔有限公司 Press filtration optical electro-chemistry water oxygen and CO2Reduction cell
CN107447229A (en) * 2017-07-14 2017-12-08 中国科学院长春应用化学研究所 A kind of method of electro-catalysis reduction carbon dioxide generation ethanol
JP2018024895A (en) * 2016-08-08 2018-02-15 古河電気工業株式会社 Catalyst, electrode catalyst, and manufacturing method of electrode catalyst
JP2018031034A (en) * 2016-08-23 2018-03-01 古河電気工業株式会社 Electrode carrying metal-containing nanoparticles and carbon dioxide reduction apparatus
WO2019197527A1 (en) * 2018-04-11 2019-10-17 Háskóli Íslands Electroreduction of carbon dioxide on transition metal oxide catalysts
CN111172552A (en) * 2020-01-08 2020-05-19 福建师范大学 Light-gathering three-electrode electrolysis device
JP2020147776A (en) * 2019-03-12 2020-09-17 国立大学法人長岡技術科学大学 Device of reducing carbon dioxide, and method of reducing carbon dioxide
WO2022186232A1 (en) * 2021-03-02 2022-09-09 国立大学法人九州大学 Electrochemical reduction method, catalyst, and method for producing catalyst

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135782A1 (en) * 2010-04-26 2011-11-03 パナソニック株式会社 Method for reducing carbon dioxide
WO2011135783A1 (en) * 2010-04-26 2011-11-03 パナソニック株式会社 Method of reducing carbon dioxide
JP4907745B2 (en) * 2010-04-26 2012-04-04 パナソニック株式会社 How to reduce carbon dioxide
JP5017498B2 (en) * 2010-04-26 2012-09-05 パナソニック株式会社 How to reduce carbon dioxide
US8597488B2 (en) 2010-04-26 2013-12-03 Panasonic Corporation Method for reducing carbon dioxide
US8617375B2 (en) 2010-04-26 2013-12-31 Panasonic Corporation Method for reducing carbon dioxide
CN103119203A (en) * 2010-05-17 2013-05-22 本田技研工业株式会社 Solar fuel cell
CN103119203B (en) * 2010-05-17 2016-06-08 本田技研工业株式会社 Solar fuel cell
US8696883B2 (en) 2010-10-06 2014-04-15 Panasonic Corporation Method for reducing carbon dioxide
US9255335B2 (en) 2011-07-26 2016-02-09 The Board Of Trustees Of The Leland Stanford Junior University Catalysts for low temperature electrolytic CO2 reduction
US8709228B2 (en) 2011-08-31 2014-04-29 Panasonic Corporation Method for reducing carbon dioxide
US8709227B2 (en) 2011-08-31 2014-04-29 Panasonic Corporation Method for reducing carbon dioxide
CN102605385A (en) * 2012-01-13 2012-07-25 天津理工大学 Method for preparing methanol from carbon dioxide by photoelectric catalytic reduction
US9157158B2 (en) 2012-07-05 2015-10-13 Panasonic Intellectual Property Management Co., Ltd. Method for producing alcohol
JP2014017080A (en) * 2012-07-06 2014-01-30 National Institute Of Advanced Industrial & Technology Stabilization method for visible light responsive semiconductor photoelectrode, and water decomposition reaction device using the method
JP2014015661A (en) * 2012-07-09 2014-01-30 Sharp Corp Electrolytic deposition apparatus
WO2014018091A1 (en) * 2012-07-25 2014-01-30 The Board Of Trustees Of The Leland Stanford Junior University Catalysts for low temperature electrolytic co2 or co reduction
US9551077B2 (en) 2012-08-27 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
US9598779B2 (en) 2013-07-05 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Method for reducing carbon dioxide
JP2015180765A (en) * 2014-03-04 2015-10-15 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device in which the same is used
WO2015133127A1 (en) * 2014-03-04 2015-09-11 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used
CN107406993A (en) * 2014-12-19 2017-11-28 雷普索尔有限公司 Press filtration optical electro-chemistry water oxygen and CO2Reduction cell
CN107406993B (en) * 2014-12-19 2019-06-25 雷普索尔有限公司 Filters pressing optical electro-chemistry water oxygen and CO2Reduction cell
CN105332002A (en) * 2015-12-13 2016-02-17 兰州大学 Method for preparing ethyl alcohol through carbon dioxide and water
JP2018024895A (en) * 2016-08-08 2018-02-15 古河電気工業株式会社 Catalyst, electrode catalyst, and manufacturing method of electrode catalyst
JP2018031034A (en) * 2016-08-23 2018-03-01 古河電気工業株式会社 Electrode carrying metal-containing nanoparticles and carbon dioxide reduction apparatus
CN107447229B (en) * 2017-07-14 2019-01-25 中国科学院长春应用化学研究所 A kind of method that electro-catalysis reduction carbon dioxide generates ethyl alcohol
CN107447229A (en) * 2017-07-14 2017-12-08 中国科学院长春应用化学研究所 A kind of method of electro-catalysis reduction carbon dioxide generation ethanol
WO2019197527A1 (en) * 2018-04-11 2019-10-17 Háskóli Íslands Electroreduction of carbon dioxide on transition metal oxide catalysts
JP2020147776A (en) * 2019-03-12 2020-09-17 国立大学法人長岡技術科学大学 Device of reducing carbon dioxide, and method of reducing carbon dioxide
CN111172552A (en) * 2020-01-08 2020-05-19 福建师范大学 Light-gathering three-electrode electrolysis device
CN111172552B (en) * 2020-01-08 2022-04-22 福建师范大学 Light-gathering three-electrode electrolysis device
WO2022186232A1 (en) * 2021-03-02 2022-09-09 国立大学法人九州大学 Electrochemical reduction method, catalyst, and method for producing catalyst

Similar Documents

Publication Publication Date Title
JPH07188961A (en) Carbon dioxide reducing electrode and carbon dioxide converter
US7241950B2 (en) Solar cell electrolysis of water to make hydrogen and oxygen
Kadirgan et al. Electrocatalytic oxidation of ethylene-glycol: Part II. Behaviour of platinum-ad-atom electrodes in alkaline medium
US20020034676A1 (en) Method of fabricating catalyzed porous carbon electrode for fuel cell
US6183894B1 (en) Electrocatalyst for alcohol oxidation in fuel cells
WO2010140353A1 (en) Photoelectrochemical cell
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
DE102012003597A1 (en) Photovoltaic hybrid electrolysis cell
EP2808425A1 (en) Electrochemical reduction device and method for producing hydride of nitrogen-containing-heterocyclic aromatic compound or aromatic hydrocarbon compound
Kannan et al. Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries
EP2730681A1 (en) Electrode for electrolysis, method for producing same, and electrolysis apparatus
US3779812A (en) Hydrophilic treatment for hydrophobic gas electrodes
US7691770B2 (en) Electrode structure and methods of making same
JPH05311476A (en) Electrode for electrochemical reduction and device for utilizing the same
CN106987859B (en) The preparation method of water electrolysis hydrogen production Ag bases oxygen-separating catalyst membrane material under temperate condition
CN1472834A (en) Method for preparing proton interchange film fuel battery electrodes
KR102318719B1 (en) Current collector for reduction apparatus of carbon dioxide, reduction apparatus of carbon dioxide comprising the same, and reducing method of carbon dioxide using the same
CN105431974B (en) Metal electrode box and metal-air battery
GB2603077A (en) Application of high conductivity electrodes in the electrolysis of water
JP2001256982A (en) Electrode for fuel cell and fuel cell
JPH0557131A (en) Carbon dioxide reducing electrode and carbon dioxide converting device
US20060100100A1 (en) Tetrahedrally-bonded oxide semiconductors for photoelectrochemical hydrogen production
Zhang et al. CO2-to-Formate Conversion by Pulse Electrodeposited Sn on Cu Electrode
JP7327341B2 (en) Separator for reaction cell and reaction cell using it
Miura et al. Highly active Ag/C electrode for oxygen depolarized chlor-alkali electrolytic cell