JPH05311476A - Electrode for electrochemical reduction and device for utilizing the same - Google Patents

Electrode for electrochemical reduction and device for utilizing the same

Info

Publication number
JPH05311476A
JPH05311476A JP4120337A JP12033792A JPH05311476A JP H05311476 A JPH05311476 A JP H05311476A JP 4120337 A JP4120337 A JP 4120337A JP 12033792 A JP12033792 A JP 12033792A JP H05311476 A JPH05311476 A JP H05311476A
Authority
JP
Japan
Prior art keywords
electrode
carbon dioxide
ion
metal
aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4120337A
Other languages
Japanese (ja)
Inventor
Toshikatsu Mori
利克 森
Ryota Doi
良太 土井
Hiroshi Hida
紘 飛田
Hiroshi Miyadera
博 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Hitachi Ltd
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU, CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Hitachi Ltd filed Critical CHIKYU KANKYO SANGYO GIJUTSU
Priority to JP4120337A priority Critical patent/JPH05311476A/en
Publication of JPH05311476A publication Critical patent/JPH05311476A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To reduce carbon dioxide, carbonic acid, carbonate ion, bicarbonate ion, carboxylic acid, aldehyde or the like at high current efficiency. CONSTITUTION:An electrode on which the surface of metal copper and the surface of a metal belonging a group coexist is used as an electrode of an electrochemical reduction device. An electrochemical or photoelectro-chemical reactor consists of the electrode as a cathode 3 and a platinum plate, n-type photosemiconductive tin film or the like as an anode 4. Thus, as carbon dioxide, carbonate ion, formic acid or the like is selectively reduced to hydrocarbon and alcohol by utilizing solar light energy, the device contributes to mitigate the problem of warming of the earth's atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶液中の炭酸ガス,炭
酸,炭酸イオン,重炭酸イオン,カルボン酸,アルデヒ
ドなどを電気化学的または光電気化学的に還元する電極
およびそれを利用した装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrochemically or photoelectrochemically reducing carbon dioxide gas, carbonic acid, carbonate ion, bicarbonate ion, carboxylic acid, aldehyde, etc. in a solution and an apparatus using the same. ..

【0002】[0002]

【従来の技術】炭酸ガス,炭酸,炭酸イオン,重炭酸イ
オン,カルボン酸,アルデヒドなどを電気化学または光
電気化学的に還元する反応の速度および選択性に大きな
影響を与えるのは電極材料の種類および表面の形状であ
る。これまで、白金,パラジュウム,イリジュウム,ロ
ジュウム,鉄,ニッケル,コバルト,銅,スズ,亜鉛,
金,銀など多くの金属が研究されている。例えば、電気
化学58巻、No11、1990年の984ページから
989ページ、および996ページから1002ペー
ジ、さらに、ケミストリーレターズ1985年の169
5ページによれば、炭酸ガスと重炭酸イオンの還元反応
に対して金属銅が最も高い反応選択性(電流効率)を示
し、メタン,エチレン,エタノールの電流効率を合計す
ると約70%に達するとされている。また、特開平1−2
8462号では、白金,パラジウム,イリジウム,ロジウ
ム,鉄,ニッケル,コバルトの少なくとも一種を第1金
属とし、鉛,銅,亜鉛,カドミニウムの少なくとも一種
を第2金属として含む電極が炭酸ガスの変換に優れると
している。
2. Description of the Related Art The type of electrode material has a great influence on the reaction rate and selectivity for electrochemically or photoelectrochemically reducing carbon dioxide, carbonic acid, carbonate ion, bicarbonate ion, carboxylic acid, aldehyde, etc. And the shape of the surface. So far, platinum, palladium, iridium, rhodium, iron, nickel, cobalt, copper, tin, zinc,
Many metals such as gold and silver have been studied. For example, Electrochemistry 58, No 11, 1990 pages 984-989 and 996 pages-1002, and Chemistry Letters 1985 169.
According to page 5, metallic copper has the highest reaction selectivity (current efficiency) for the reduction reaction of carbon dioxide and bicarbonate ions, and when the current efficiency of methane, ethylene, and ethanol reaches about 70%, Has been done. In addition, JP-A 1-2
In No. 8462, an electrode containing at least one of platinum, palladium, iridium, rhodium, iron, nickel and cobalt as the first metal and at least one of lead, copper, zinc and cadmium as the second metal is excellent in conversion of carbon dioxide gas. I am trying.

【0003】[0003]

【発明が解決しようとする課題】従来技術は、水素原子
が吸着して活性化される第1金属の原子間を第2金属で
分断することによって、水素原子同志が結合して水素ガ
スが発生するのを抑制し、水素原子を炭酸ガスの還元に
利用するというものである。しかし、これらいずれの公
知技術においても電流密度は5〜10mA/cm2 程度で
あり、実用的な反応速度レベルに達していない。
In the prior art, the hydrogen atoms are adsorbed and activated, and the atoms of the first metal are separated from each other by the second metal, whereby the hydrogen atoms are bonded to each other to generate hydrogen gas. The use of hydrogen atoms for reducing carbon dioxide gas is suppressed. However, in any of these known techniques, the current density is about 5 to 10 mA / cm 2, which is not a practical reaction rate level.

【0004】本発明の目的は、炭酸ガス,炭酸,炭酸イ
オン,重炭酸イオン,カルボン酸,アルデヒドなどを高
い電流効率で還元できる電極およびその製造法、さらに
その電極を利用した装置を提供することにある。
An object of the present invention is to provide an electrode capable of reducing carbon dioxide gas, carbonic acid, carbonate ion, bicarbonate ion, carboxylic acid, aldehyde, etc. with high current efficiency, a method for producing the electrode, and an apparatus using the electrode. It is in.

【0005】[0005]

【課題を解決するための手段】本発明の電極は、金属銅
の表面とIIaに属する金属(第2成分)の表面とが同時
に存在することを特徴とする電極である。このうち、特
に好ましい第2成分はマグネシウム,カルシウム,スト
ロンチウム,バリウムである。これらの第2成分がアイ
ランド状をなして銅の表面に分散していると効果的であ
る。アイランド状以外にも、リソグラフィーを用いれ
ば、台形,立方形,線形などに分散させることが可能で
あり、銅の表面と第2成分の表面とを同時に電極表面に
存在させればよい。これらの第2成分の電子配列は、電
子がエネルギー準位の順序に従って軌道に充満してい
る。これらの金属の表面が銅の表面と共存すると、炭酸
ガス還元反応の中間体であるアニオンラジカル(CO2 -)
の吸着状態が変わり、反応が炭化水素、アルコールの生
成に有利な方向へ進行する。
The electrode of the present invention is characterized in that the surface of metallic copper and the surface of the metal (second component) belonging to IIa are present at the same time. Among these, particularly preferable second components are magnesium, calcium, strontium, and barium. It is effective that these second components are dispersed in the form of islands on the copper surface. In addition to the island shape, it is possible to disperse trapezoidal, cubic, linear, etc. by using lithography, and it suffices that the surface of copper and the surface of the second component be present on the electrode surface at the same time. In the electron arrangement of these second components, the orbits are filled with electrons according to the order of energy levels. When the surface of these metals coexist with the surface of the copper, the anion radical is an intermediate of the carbon dioxide reduction (CO 2 -)
The adsorbed state of is changed, and the reaction proceeds in a direction advantageous for the production of hydrocarbons and alcohols.

【0006】第2成分は蒸着,塗着,焼結拡散,リソグ
ラフィー,イオン打ち込みなどで金属銅の表面に分散さ
せることが可能である。母材の形状は板,網,発泡体,
薄膜,微粒子のいずれでもよい。また、金属銅を不活性
または還元雰囲気で加熱しながらその表面に第2金属の
化合物を含む溶液をその化合物の分解温度以下で付け、
さらにその化合物の分解温度以上で加熱処理する、いわ
ゆる塗着拡散処理によって製造してもよい。
The second component can be dispersed on the surface of metallic copper by vapor deposition, coating, sintering diffusion, lithography, ion implantation or the like. The shape of the base material is plate, net, foam,
Either thin film or fine particles may be used. Further, while heating the metallic copper in an inert or reducing atmosphere, a solution containing a compound of the second metal is attached to the surface of the metallic copper at a temperature not higher than the decomposition temperature of the compound,
Further, it may be produced by a so-called coating diffusion treatment, which is a heat treatment at a decomposition temperature of the compound or higher.

【0007】本発明による電極は、他の電極(アノー
ド)と組合わせて炭酸ガス,炭酸,炭酸イオン,重炭酸
イオン,カルボン酸,アルデヒドの還元装置として使用
することができる。アノードとして、通常の白金,金,
銅などの金属はもちろん、n型光半導体を薄膜化した光
電極を使用できる。炭酸ガスは化学的に非常に安定であ
り、その還元には多くのエネルギーを必要とするので、
太陽光エネルギーを吸収してアノードとして働く光電極
に組合わせるのに好ましい電極である。
The electrode according to the present invention can be used as a reduction device for carbon dioxide gas, carbonic acid, carbonate ion, bicarbonate ion, carboxylic acid and aldehyde in combination with another electrode (anode). As the anode, ordinary platinum, gold,
Not only metals such as copper but also photoelectrodes formed by thinning an n-type optical semiconductor can be used. Since carbon dioxide is chemically very stable and its reduction requires a lot of energy,
It is a preferred electrode for combination with a photoelectrode that absorbs solar energy and acts as an anode.

【0008】[0008]

【作用】本発明による電極(カソード)では還元反応、
他の電極(アノード)では、水の酸化反応が起こる。例
えば、重炭酸イオンからメタンが生成する反応で示すと
次の2式で表すことができる。
Function: Reduction reaction at the electrode (cathode) according to the present invention,
At the other electrode (anode), an oxidation reaction of water occurs. For example, the reaction of producing methane from bicarbonate ion can be represented by the following two equations.

【0009】[0009]

【数1】 [Equation 1]

【0010】[0010]

【数2】 [Equation 2]

【0011】これら2つの反応式を総括すると下記の式
となる。
These two reaction equations are summarized as follows.

【0012】[0012]

【数3】 [Equation 3]

【0013】この反応式の標準自由エネルギー変化は+
818kJ/mol であり、外部から何らかのエネルギー
を加えないと反応は進行しない。これに対する最も理想
的なエネルギー源は太陽光である。太陽光を利用するに
は、光を吸収して第2の式の反応を促進するTiO2
ようなn型光半導体をアノードとし、本発明による電極
をカソードとして組合わせればよい。このとき、下記の
式に示す反応が進行しTiO2 は光を吸収して表面に酸
化力のあるホール(h)が生成し、内部に電子が生成す
る。この(h)でH2Oが酸化され、プロトンが生成す
る。プロントおよび電子は数1の反応に利用される。
The standard free energy change of this reaction formula is +
It is 818 kJ / mol, and the reaction does not proceed unless some energy is externally applied. The most ideal energy source for this is sunlight. To utilize sunlight, an n-type photo-semiconductor such as TiO 2 that absorbs light and promotes the reaction of the second equation may be used as an anode and the electrode according to the present invention may be used as a cathode. At this time, the reaction represented by the following formula proceeds, and TiO 2 absorbs light to generate a hole (h) having an oxidizing power on the surface and an electron inside. In this (h), H 2 O is oxidized and protons are generated. The proton and the electron are used in the reaction of the number 1.

【0014】[0014]

【数4】 [Equation 4]

【0015】[0015]

【数5】 [Equation 5]

【0016】太陽光を利用する他の方法としては、たと
えば太陽光を太陽電池で一旦電気に変換し、その電気を
上記還元装置に供給して炭酸ガスの還元反応を促進する
ことが可能である。
As another method of utilizing sunlight, for example, sunlight can be once converted into electricity by a solar cell, and the electricity can be supplied to the reducing device to accelerate the reduction reaction of carbon dioxide gas. ..

【0017】[0017]

【実施例】以下実施例により本発明をさらに詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0018】実施例1〜4:純度99.99% の金属銅
板の表面に、平均膜厚み10Åとなるようにマグネシウ
ム,カルシウム,ストロンチウム,バリウムのイオンク
ラスタビームを蒸着して実施例1〜4の電極を作製し
た。H型セル内に電解液として0.1mol/lの重炭酸カ
リウムを入れ、上記電極をカソード,白金板をアノー
ド,Ag/AgClを参照極とし、両極間を陽イオン交
換膜で仕切り、室温、−1.7V vs.Ag/AgCl
で炭酸ガスを吹き込みながら還元実験を行ったところ、
比較例1(金属銅板をカソードとした以外は実施例1〜
4に同じ)と比較してメタン,アルコール,ギ酸,一酸
化炭素の電流効率が増大し、水素のそれは減少した。表
1に結果を示す。
Examples 1 to 4: Ion cluster beams of magnesium, calcium, strontium and barium were vapor-deposited on the surface of a metal copper plate having a purity of 99.99% so as to have an average film thickness of 10 Å. An electrode was prepared. 0.1 mol / l potassium bicarbonate was placed as an electrolytic solution in an H-shaped cell, the above electrode was used as a cathode, the platinum plate was used as an anode, and Ag / AgCl was used as a reference electrode. -1.7V vs. Ag / AgCl
When I conducted a reduction experiment while blowing carbon dioxide,
Comparative Example 1 (Examples 1 to 1 except that the metal copper plate was used as the cathode)
(Same as 4), the current efficiency of methane, alcohol, formic acid and carbon monoxide was increased, and that of hydrogen was decreased. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例5:バリウムと同時に亜鉛を同じ量
蒸着した以外は実施例1と同じ方法および条件で炭酸ガ
スの還元を行ったところ、比較例1と比較してメタン,
アルコール,ギ酸,一酸化炭素の電流効率が増大し、水
素のそれは減少した。表2に結果を示す。
Example 5 Carbon dioxide gas was reduced by the same method and conditions as in Example 1 except that the same amount of zinc was vapor-deposited at the same time as barium.
The current efficiency of alcohol, formic acid and carbon monoxide increased, and that of hydrogen decreased. The results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例6:実施例1で使用した金属銅板を
不活性雰囲気中で100℃に加熱しながら、その表面に
1mmol/l の硝酸マグネシウム溶液をスプレーした
後、500℃で1時間加熱して電極を作製した。その電
極を用いて実施例1〜4と同じ方法および条件で炭酸ガ
スの還元を行ったところ、比較例1と比較してメタン,
アルコール,ギ酸,一酸化炭素の電流効率が顕著に増大
し、水素のそれは減少した。表3に結果を示す。
Example 6 While heating the metallic copper plate used in Example 1 at 100 ° C. in an inert atmosphere, the surface was sprayed with a 1 mMol / l magnesium nitrate solution and then heated at 500 ° C. for 1 hour. To produce an electrode. When carbon dioxide was reduced using the electrode under the same method and conditions as in Examples 1 to 4, methane,
The current efficiency of alcohol, formic acid and carbon monoxide increased remarkably, and that of hydrogen decreased. The results are shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例7:電解液として0.1mol/lのギ
酸ナトリウムを入れた以外は実施例4と同じ条件で還元
実験を行ったところ、比較例2(金属銅板をカソードと
した以外は実施例7に同じ)と比較して炭化水素および
アルコールのエネルギー変換効率が増大した。表4に結
果を示す。
Example 7: A reduction experiment was conducted under the same conditions as in Example 4 except that 0.1 mol / l sodium formate was added as an electrolyte, and Comparative Example 2 (Except that a metal copper plate was used as the cathode) The energy conversion efficiencies of hydrocarbons and alcohols were increased compared to (same as Example 7). The results are shown in Table 4.

【0025】[0025]

【表4】 [Table 4]

【0026】実施例8:厚さ1μmの酸化チタン薄膜を
アノードに用いた以外は実施例3と同じ方法および条件
で炭酸ガスの還元実験を行ったところ、比較例3(金属
銅電極をカソードとして使用した以外は実施例8と同
じ)と比較して炭化水素,アルコール、およびギ酸の電
流効率が増大した。表5に結果を示す。
Example 8: A carbon dioxide reduction experiment was conducted under the same method and conditions as in Example 3 except that a titanium oxide thin film having a thickness of 1 μm was used for the anode, and Comparative Example 3 (using a metal copper electrode as a cathode) The current efficiency of hydrocarbons, alcohols, and formic acid was increased compared to Example 8 except that it was used). The results are shown in Table 5.

【0027】[0027]

【表5】 [Table 5]

【0028】実施例9:本実施例を図1を用いて説明す
る。H型セル1内に電解液2として0.1mol/lの重炭
酸カリウム水溶液を入れ、実施例4の電極をカソード
3,白金板をアノード4とし、両極間を陽イオン交換膜
5で仕切り、両極間に2Wの太陽電池7を接続し、室温
で炭酸ガス6の還元実験を行ったところ、比較例4(金
属銅電極をカソードとして使用した以外は実施例9と同
じ)と比較して炭化水素,アルコールおよびギ酸の電流
効率が増大した。表6に結果を示す。
Embodiment 9: This embodiment will be described with reference to FIG. A 0.1 mol / l potassium bicarbonate aqueous solution was put into the H-shaped cell 1 as the electrolytic solution 2, the electrode of Example 4 was used as the cathode 3, the platinum plate was used as the anode 4, and both electrodes were partitioned by the cation exchange membrane 5. When a 2 W solar cell 7 was connected between both electrodes and a carbon dioxide 6 reduction experiment was performed at room temperature, carbonization was performed in comparison with Comparative Example 4 (same as Example 9 except that a metal copper electrode was used as the cathode). The current efficiency of hydrogen, alcohol and formic acid was increased. The results are shown in Table 6.

【0029】[0029]

【表6】 [Table 6]

【0030】実施例10:本実施例を図2により説明す
る。カソード3に実施例5の電極を用い、アノード4に
厚さ0.5μm の酸化チタン薄膜を用い、それに500
Wのキセノンランプ8から光を照射した以外は実施例9
と同じ方法および条件で炭酸ガスの還元実験を行ったと
ころ、比較例5(金属銅電極をカソードとして使用した
以外は実施例10と同じ)と比較して炭化水素,ギ酸お
よびアルコールを増大した。表7に結果を示す。
Embodiment 10: This embodiment will be described with reference to FIG. The cathode of Example 5 was used as the cathode 3, and the anode 4 was made of a titanium oxide thin film having a thickness of 0.5 μm.
Example 9 except that light was emitted from the W xenon lamp 8.
When a carbon dioxide gas reduction experiment was conducted under the same method and conditions as in Example 1, the amount of hydrocarbons, formic acid and alcohol was increased as compared with Comparative Example 5 (same as Example 10 except that a metal copper electrode was used as the cathode). The results are shown in Table 7.

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【発明の効果】本発明では、クリーンで無尽蔵のエネル
ギー源である太陽光を利用して溶液中の炭酸イオン,重
炭酸イオン,カルボン酸,アルデヒド、および一酸化炭
素,炭酸ガスを還元できる。化石燃料を用いる火力発電
所および化学工場のボイラ,セメント工場のキルン、製
鉄所の高炉等の固定燃焼装置から排出される燃焼排ガス
から炭酸ガスを回収し、それを本発明により再資源化し
て燃焼装置ヘリサイクルすると、化石燃料の消費量が削
減され、炭酸ガスの排出量も削減されるので、地球温暖
化問題の解決に寄与する。
INDUSTRIAL APPLICABILITY According to the present invention, sunlight, which is a clean and inexhaustible energy source, can be used to reduce carbonate ions, bicarbonate ions, carboxylic acids, aldehydes, and carbon monoxide and carbon dioxide in a solution. Carbon dioxide is recovered from combustion exhaust gas discharged from fixed combustion devices such as boilers of thermal power plants and chemical plants that use fossil fuels, kilns of cement plants, and blast furnaces of steel plants, and the carbon dioxide gas is recycled by the present invention and burned. Recycling to equipment reduces fossil fuel consumption and carbon dioxide emissions, contributing to the solution of global warming.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による電気化学的還元装置の
概略図。
FIG. 1 is a schematic view of an electrochemical reduction device according to an embodiment of the present invention.

【図2】本発明の一実施例による電気化学的還元装置の
概略図。
FIG. 2 is a schematic view of an electrochemical reduction device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…H型セル、2…電解液、3…カソード、4…アノー
ド、5…陽イオン交換膜、6…炭酸ガス、7…キセノン
ランプ。
1 ... H type cell, 2 ... electrolyte, 3 ... cathode, 4 ... anode, 5 ... cation exchange membrane, 6 ... carbon dioxide gas, 7 ... xenon lamp.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土井 良太 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 飛田 紘 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 宮寺 博 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryota Doi 4026 Kujimachi, Hitachi City, Ibaraki Prefecture, Hitachi Research Institute Ltd. Hitachi Research Laboratory (72) Inventor Hiroshi Miyadera 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】金属銅の表面とIIa族に属する金属の表面
とが同時に存在することを特徴とする電気化学的還元用
電極。
1. An electrode for electrochemical reduction, wherein the surface of metallic copper and the surface of a metal belonging to Group IIa are present at the same time.
【請求項2】金属銅の表面と、マグネシウム,カルシウ
ム,ストロンチウム,バリウムの少なくとも一つ以上の
金属の表面とが同時に存在することを特徴とする電気化
学的還元用電極。
2. An electrode for electrochemical reduction, wherein the surface of metallic copper and the surface of at least one metal of magnesium, calcium, strontium and barium are present at the same time.
【請求項3】金属銅が、板,網,発泡体,薄膜,微粒子
のいずれかであることを特徴とする請求項1記載の電気
化学的還元用電極。
3. The electrode for electrochemical reduction according to claim 1, wherein the metallic copper is any one of a plate, a net, a foam, a thin film and fine particles.
【請求項4】請求項1記載の電極を、蒸着,塗着,焼
結,リソグラフィー或いはイオン打ち込みで作製するこ
とを特徴とする電気化学的還元用電極の製造方法。
4. A method for producing an electrode for electrochemical reduction, which comprises producing the electrode according to claim 1 by vapor deposition, coating, sintering, lithography or ion implantation.
【請求項5】請求項1記載の電極を炭酸ガス,炭酸,炭
酸イオン,重炭酸イオン,アルデヒド,カルボン酸のい
ずれかを電気化学的に還元する装置に備えたことを特徴
とする電気化学的還元装置。
5. An electrochemical device comprising the electrode according to claim 1 in an apparatus for electrochemically reducing any one of carbon dioxide gas, carbonic acid, carbonate ion, bicarbonate ion, aldehyde, and carboxylic acid. Reduction device.
【請求項6】請求項1記載の電極をカソード,光電極を
アノードとすることを特徴とする炭酸ガス,炭酸,炭酸
イオン,重炭酸イオン,アルデヒド,カルボン酸のいず
れかを光電気化学的に還元する装置。
6. The electrode according to claim 1 is used as a cathode, and the photoelectrode is used as an anode. Any one of carbon dioxide gas, carbonic acid, carbonate ion, bicarbonate ion, aldehyde, and carboxylic acid is photoelectrochemically A device to give back.
【請求項7】請求項6記載の光電極がn型光半導体で構
成されることを特徴とする炭酸ガス,炭酸,炭酸イオ
ン,重炭酸イオン,アルデヒド,カルボン酸のいずれか
を光電気化学的に還元する装置。
7. The photoelectrode according to claim 6, wherein the photoelectrode is composed of an n-type photo-semiconductor, and photochemically reacts with any one of carbon dioxide gas, carbonic acid, carbonate ion, bicarbonate ion, aldehyde and carboxylic acid. Device that returns to.
【請求項8】請求項7記載のn型光半導体が酸化チタン
であることを特徴とする炭酸ガス,炭酸,炭酸イオン,
重炭酸イオン,アルデヒド,カルボン酸のいずれかを光
電気化学的に還元する装置。
8. The carbon dioxide gas, carbonic acid, carbonate ion, wherein the n-type optical semiconductor according to claim 7 is titanium oxide,
A device that photoelectrochemically reduces any of bicarbonate ion, aldehyde, and carboxylic acid.
【請求項9】炭酸ガス,炭酸,炭酸イオン,重炭酸イオ
ン,アルデヒド,カルボン酸のいずれかを還元するのに
要するエネルギーを、太陽光または太陽電池から供給す
ることを特徴とする請求項5ないし8記載の電気化学的
または光電気化学的還元装置。
9. The energy required to reduce any one of carbon dioxide, carbonic acid, carbonate ion, bicarbonate ion, aldehyde and carboxylic acid is supplied from sunlight or a solar cell. 8. The electrochemical or photoelectrochemical reduction device according to 8.
【請求項10】金属を不活性または還元雰囲気で加熱し
ながらその表面に他の金属化合物を含む溶液をその金属
化合物の分解温度以下で付け、さらにその金属化合物の
分解温度以上で加熱処理することを特徴とする電気化学
的還元用電極の製造方法。
10. A method of applying a solution containing another metal compound to the surface of the metal while heating the metal in an inert or reducing atmosphere at a temperature not higher than the decomposition temperature of the metal compound, and further heat-treating at a temperature not lower than the decomposition temperature of the metal compound. A method for producing an electrode for electrochemical reduction, comprising:
【請求項11】金属が銅であり、金属化合物がIIa族で
あることを特徴とする請求項10記載の電気化学的還元
用電極の製造方法。
11. The method for producing an electrode for electrochemical reduction according to claim 10, wherein the metal is copper and the metal compound is Group IIa.
JP4120337A 1992-05-13 1992-05-13 Electrode for electrochemical reduction and device for utilizing the same Pending JPH05311476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4120337A JPH05311476A (en) 1992-05-13 1992-05-13 Electrode for electrochemical reduction and device for utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4120337A JPH05311476A (en) 1992-05-13 1992-05-13 Electrode for electrochemical reduction and device for utilizing the same

Publications (1)

Publication Number Publication Date
JPH05311476A true JPH05311476A (en) 1993-11-22

Family

ID=14783763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4120337A Pending JPH05311476A (en) 1992-05-13 1992-05-13 Electrode for electrochemical reduction and device for utilizing the same

Country Status (1)

Country Link
JP (1) JPH05311476A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046362A1 (en) * 2010-10-06 2012-04-12 パナソニック株式会社 Method for reducing carbon dioxide
CN103119203A (en) * 2010-05-17 2013-05-22 本田技研工业株式会社 Solar fuel cell
WO2015133127A1 (en) * 2014-03-04 2015-09-11 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used
US9157158B2 (en) 2012-07-05 2015-10-13 Panasonic Intellectual Property Management Co., Ltd. Method for producing alcohol
US9551077B2 (en) 2012-08-27 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
US9598779B2 (en) 2013-07-05 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Method for reducing carbon dioxide
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
AT523650A4 (en) * 2020-09-10 2021-10-15 Univ Linz Working electrode for the direct reduction of carbonates to hydrocarbons in an aqueous carbonate electrolyte
CN114405438A (en) * 2022-03-01 2022-04-29 中山大学 Photoelectrocatalysis reaction system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119203B (en) * 2010-05-17 2016-06-08 本田技研工业株式会社 Solar fuel cell
CN103119203A (en) * 2010-05-17 2013-05-22 本田技研工业株式会社 Solar fuel cell
US8696883B2 (en) 2010-10-06 2014-04-15 Panasonic Corporation Method for reducing carbon dioxide
WO2012046362A1 (en) * 2010-10-06 2012-04-12 パナソニック株式会社 Method for reducing carbon dioxide
US9157158B2 (en) 2012-07-05 2015-10-13 Panasonic Intellectual Property Management Co., Ltd. Method for producing alcohol
US9551077B2 (en) 2012-08-27 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Photoelectrode used for carbon dioxide reduction and method for reducing carbon dioxide using the photoelectrode
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
US9598779B2 (en) 2013-07-05 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Method for reducing carbon dioxide
JP2015180765A (en) * 2014-03-04 2015-10-15 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device in which the same is used
WO2015133127A1 (en) * 2014-03-04 2015-09-11 株式会社デンソー Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used
AT523650A4 (en) * 2020-09-10 2021-10-15 Univ Linz Working electrode for the direct reduction of carbonates to hydrocarbons in an aqueous carbonate electrolyte
AT523650B1 (en) * 2020-09-10 2021-10-15 Univ Linz Working electrode for the direct reduction of carbonates to hydrocarbons in an aqueous carbonate electrolyte
CN114405438A (en) * 2022-03-01 2022-04-29 中山大学 Photoelectrocatalysis reaction system
CN114405438B (en) * 2022-03-01 2022-11-11 中山大学 Photoelectrocatalysis reaction system

Similar Documents

Publication Publication Date Title
US4160816A (en) Process for storing solar energy in the form of an electrochemically generated compound
JP5306606B2 (en) Photoelectrolyzer and related apparatus and method
Kadirgan et al. Electrocatalytic oxidation of ethylene-glycol: Part II. Behaviour of platinum-ad-atom electrodes in alkaline medium
JPH07188961A (en) Carbon dioxide reducing electrode and carbon dioxide converter
US20020034676A1 (en) Method of fabricating catalyzed porous carbon electrode for fuel cell
RU2424603C2 (en) Photocatalytic electrode and fuel element
Srinivasan et al. Prospects for hydrogen production by water electrolysis to be competitive with conventional methods
JPH11315390A (en) Catalyst for gas diffusion electrode
JPH0551201A (en) Production of hydrogen and oxygen from water with aqueous carbonate solution having high concentration and metal carrying semiconductor photocatalyst
US4501804A (en) Photo-assisted electrolysis cell with p-silicon and n-silicon electrodes
CN113136597B (en) Copper-tin composite material and preparation method and application thereof
JPH05311476A (en) Electrode for electrochemical reduction and device for utilizing the same
US6444337B1 (en) Fuel cell with low cathodic polarization and high power density
Zafrir et al. Photoelectrochemical reduction of carbon dioxide to formic acid, formaldehyde and methanol on p-gallium arsenide in an aqueous V (II)-V (III) chloride redox system
CN113279006A (en) Gas diffusion electrode, preparation method and application thereof
JPS5929377A (en) Fuel battery anode
US3405010A (en) Spinel-ruthenium catalyzed electrode
US4734168A (en) Method of making n-silicon electrodes
Meibuhr Review of United States fuel-cell patents issued from 1860 to 1947
CN111744471B (en) Method for preparing self-supporting titanium dioxide supported noble metal catalyst
Getoff Basic problems of photochemical and photoelectrochemical hydrogen production from water
JPH0557131A (en) Carbon dioxide reducing electrode and carbon dioxide converting device
US3377204A (en) Method of incorporating platinum in carbon
JP2019127646A (en) Electrolysis system and artificial photosynthesis system
US3658595A (en) Fuel cell with anode containing a catalyst composition of iridium and ruthenium