JP2002358971A - Fuel cell electrode and its manufacturing method and fuel cell using the same - Google Patents

Fuel cell electrode and its manufacturing method and fuel cell using the same

Info

Publication number
JP2002358971A
JP2002358971A JP2001163862A JP2001163862A JP2002358971A JP 2002358971 A JP2002358971 A JP 2002358971A JP 2001163862 A JP2001163862 A JP 2001163862A JP 2001163862 A JP2001163862 A JP 2001163862A JP 2002358971 A JP2002358971 A JP 2002358971A
Authority
JP
Japan
Prior art keywords
fuel cell
ruthenium
cation
electrode
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001163862A
Other languages
Japanese (ja)
Other versions
JP2002358971A5 (en
Inventor
Naohiro Tsumura
直宏 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001163862A priority Critical patent/JP2002358971A/en
Publication of JP2002358971A publication Critical patent/JP2002358971A/en
Publication of JP2002358971A5 publication Critical patent/JP2002358971A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To obtain a fuel cell electrode that has a high CO toxication resistance performance. SOLUTION: The fuel cell electrode comprises a positive ion exchange resin, carbon particles, and a catalyst metal, and the quantity of the catalyst metal carried by the contact face of the proton conductive passage of the positive ion exchange resin and the carbon particle surface is more than 50 wt.% of the total catalyst metal carrying quantity. The above catalyst contains platinum and ruthenium, and the ratio of the number of ruthenium atoms to the total number of atoms of platinum and ruthenium is 60-90%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用電極と
その製造方法およびそれを用いた燃料電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode, a method of manufacturing the same, and a fuel cell using the same.

【0002】[0002]

【従来の技術】固体高分子形燃料電池は、固体高分子電
解質膜およびその膜を挟むように配置されたアノ−ドと
カソ−ドとで構成される。アノ−ドおよびカソ−ドにそ
れぞれ水素と酸素とを供給することによってこの装置を
作動させた場合、各電極上ではつぎのような電気化学反
応が進行する。
2. Description of the Related Art A polymer electrolyte fuel cell comprises a solid polymer electrolyte membrane and an anode and a cathode which are arranged so as to sandwich the membrane. When this apparatus is operated by supplying hydrogen and oxygen to the anode and the cathode, respectively, the following electrochemical reaction proceeds on each electrode.

【0003】 アノ−ド:2H→4H+4e カソ−ド:O+4H+4e→HO この反応式から明らかなように、活物質であるガス(水
素または酸素)の反応は、プロトン(H)と電子(e
)との授受が同時におこなうことができる場所でのみ
進行する。このことに着目することによって、白金触媒
の担持量を大幅に削減した電極が提案された(人見周二
他、第40回電池討論会要旨集、167−168、(1
999))。
Anode: 2H 2 → 4H + + 4e Cathode: O 2 + 4H + + 4e → H 2 O As is clear from this reaction formula, the reaction of a gas (hydrogen or oxygen) as an active material is , Proton (H + ) and electron (e
) Only progresses in places where the transfer with) can take place at the same time. By paying attention to this, an electrode with a significantly reduced platinum catalyst loading has been proposed (Sumitomi Hitomi et al., The 40th Battery Symposium, 167-168, (1)
999)).

【0004】この電極は、まず、陽イオン交換樹脂とカ
ーボン粒子とを含む電極を製作し、つぎにこの電極に白
金の陽イオンを吸着させたのちに、その吸着した白金の
陽イオンを化学的に還元することによって製造すること
ができる。
In this electrode, first, an electrode containing a cation exchange resin and carbon particles is manufactured, and then, a platinum cation is adsorbed on the electrode, and then the adsorbed platinum cation is chemically converted. Can be produced by reduction.

【0005】この方法で製造された電極は、陽イオン交
換樹脂のプロトン伝導経路とカーボン粒子表面との接面
に担持された白金量が全白金担持量の50wt%を越え
た構造となる。陽イオン交換樹脂のプロトン伝導経路と
カーボン粒子表面との接面は、上で述べたようなプロト
ン(H)と電子(e)との授受が同時に行うことが
できる場所であるので、この電極では白金利用率が著し
く高くなる。そのため、この電極は、白金をあらかじめ
担持したカーボン粒子と陽イオン交換樹脂とで製作され
る電極に比べてきわめて少ない白金の担持量で同等の活
性を示す。
[0005] The electrode manufactured by this method has a structure in which the amount of platinum carried on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon particles exceeds 50 wt% of the total amount of platinum carried. The contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon particles is a place where the transfer of protons (H + ) and electrons (e ) as described above can be performed at the same time. Electrodes have significantly higher platinum utilization. Therefore, this electrode shows the same activity with an extremely small amount of loaded platinum as compared to an electrode made of carbon particles preloaded with platinum and a cation exchange resin.

【0006】固体高分子形燃料電池の燃料には、貯蔵や
運搬の容易なメタノールや天然ガスなどから製造される
改質ガスが使用される。このガスは、主成分を水素と
し、10〜100ppmのCOを含む。そのような燃料
を使用した場合、電極に備えられた白金触媒はCOによ
って被毒されることが知られている。
[0006] As a fuel for a polymer electrolyte fuel cell, a reformed gas produced from methanol, natural gas, or the like, which is easily stored and transported, is used. This gas is mainly composed of hydrogen and contains 10 to 100 ppm of CO. It is known that when such a fuel is used, the platinum catalyst provided on the electrode is poisoned by CO.

【0007】これに対して、そのようなCO被毒を受け
にくい触媒として、白金とルテニウムとの二元合金があ
る(M.Watanabe、Journal of E
lectroanalytical Chemistr
229,(1987)395)。特に、約50原子
%のルテニウムを含む白金とルテニウムとの合金は耐C
O被毒性能が著しく高いので、そのような組成の合金を
備えた電極は、COの影響がほとんど見られない(M.
Iwase、Electrochemical Soc
iety Proceedings Volume95
−23,(1995) 12)。
On the other hand, as a catalyst which is less susceptible to CO poisoning, there is a binary alloy of platinum and ruthenium (M. Watanabe, Journal of E.).
Electroanalytical Chemistr
y 229, (1987) 395). In particular, an alloy of platinum and ruthenium containing about 50 atomic% of ruthenium is resistant to C.
Due to the remarkably high O poisoning performance, electrodes with alloys of such composition show little CO effect (M.
Iwase, Electrochemical Soc
iety Proceedings Volume 95
-23, (1995) 12).

【0008】[0008]

【発明が解決しようとする課題】本発明者は、陽イオン
交換樹脂のプロトン伝導経路とカーボン粒子表面との接
面に担持された触媒金属量が全触媒金属担持量の50w
t%を越え、その触媒金属が50原子%のルテニウムを
含む白金とルテニウムとの二元合金である電極を製作し
た。しかし、この電極を備えた燃料電池は、触媒が耐C
O被毒性の高いとされている従来の組成の合金であった
にも関わらず、改質ガスを燃料に用いた時、CO被毒に
よって出力が低下した。すなわち、本発明者が用いたよ
うな特殊な構造の電極では、従来の組成の触媒を担持し
た場合に十分な耐CO被毒性能を付与することができな
いという問題があった。
SUMMARY OF THE INVENTION The present inventors have found that the amount of the catalyst metal supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon particles is 50 w of the total amount of the supported catalyst metal.
An electrode was fabricated in which the catalytic metal exceeded t% and whose catalytic metal was a binary alloy of platinum and ruthenium containing 50 atomic percent ruthenium. However, in the fuel cell provided with this electrode, the catalyst is C-resistant.
When the reformed gas was used as a fuel, the output decreased due to CO poisoning, despite the fact that the alloy had a conventional composition which was considered to be highly poisonous. In other words, there is a problem in that an electrode having a special structure as used by the present inventors cannot impart sufficient CO poisoning resistance when a catalyst having a conventional composition is supported.

【0009】そこで、本発明者は、陽イオン交換樹脂の
プロトン伝導経路とカーボン粒子表面との接面に担持さ
れた触媒金属量が全触媒金属担持量の50wt%を越え
る燃料電池用電極の耐CO被毒性能を向上させるため
に、白金とルテニウムとを含む触媒に含まれるルテニウ
ムの量について検討した。その結果、本発明者は、この
電極ではその触媒が従来とはまったく異なるルテニウム
の配合量のときに最も高い耐CO被毒性能を示すととも
に、さらに、この電極を用いた燃料電池の性能が従来の
ものと比べて著しく高いという特異な性質を見出すこと
によって、本発明をなすに至った。
Therefore, the present inventor has proposed that the amount of catalyst metal supported on the interface between the proton conduction path of the cation exchange resin and the surface of the carbon particles exceeds 50 wt% of the total amount of supported catalyst metal. In order to improve the CO poisoning performance, the amount of ruthenium contained in the catalyst containing platinum and ruthenium was examined. As a result, the present inventor has found that the catalyst exhibits the highest CO poisoning resistance when the catalyst has a completely different amount of ruthenium than the conventional one, and furthermore, the performance of the fuel cell using this electrode is The present invention has been accomplished by finding a unique property that is significantly higher than that of the present invention.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、陽イ
オン交換樹脂とカーボン粒子と触媒金属とを含み、陽イ
オン交換樹脂のプロトン伝導経路とカーボン粒子表面と
の接面に担持された触媒金属量が全触媒金属担持量の5
0wt%を越える燃料電池用電極において、前記触媒が
白金とルテニウムを含み、白金とルテニウムとの合計原
子数に対するルテニウムの原子数比が60〜90%であ
ることを特徴とする。
The invention of claim 1 includes a cation exchange resin, carbon particles and a catalyst metal, and is supported on a contact surface between a proton conduction path of the cation exchange resin and the surface of the carbon particles. The amount of catalyst metal is 5 times the total amount of catalyst metal carried.
In a fuel cell electrode exceeding 0 wt%, the catalyst contains platinum and ruthenium, and the ratio of the number of ruthenium atoms to the total number of platinum and ruthenium atoms is 60 to 90%.

【0011】請求項1の発明によれば、耐CO被毒性能
に優れた燃料電池用電極を得ることができる。
According to the first aspect of the present invention, it is possible to obtain an electrode for a fuel cell having excellent resistance to CO poisoning.

【0012】請求項2の発明は、上記燃料電池用電極の
製造方法に関するもので、陽イオン交換樹脂とカーボン
粒子とを含む混合体に、白金を含む陽イオンとルテニウ
ムを含む陽イオンとを吸着させる第1の工程と、第1の
工程で得られた混合体中の各陽イオンを還元する第2の
工程とを経ることを特徴とする。
A second aspect of the present invention relates to a method for producing the above-mentioned fuel cell electrode, wherein a mixture containing a cation exchange resin and carbon particles adsorbs a cation containing platinum and a cation containing ruthenium. And a second step of reducing each cation in the mixture obtained in the first step.

【0013】請求項3の発明は、上記燃料電池用電極の
製造方法に関するもので、第1の工程において、白金を
含む陽イオンが白金アンミン錯体陽イオン、ルテニウム
を含む陽イオンがルテニウムアンミン錯体陽イオンであ
ることを特徴とする。
[0013] The invention of claim 3 relates to a method of manufacturing the fuel cell electrode, wherein in the first step, the cation containing platinum is a platinum ammine complex cation, and the cation containing ruthenium is a ruthenium ammine complex cation. It is an ion.

【0014】請求項4の発明は、上記燃料電池用電極の
製造方法に関するもので、第1の工程において、陽イオ
ン交換樹脂とカーボン粒子とを含む混合体を、テトラア
ンミンPt(2価)陽イオンとヘキサアンミンRu(3
価)陽イオンとの合計モル数に対するヘキサアンミンR
u(3価)陽イオンのモル数の比率が40〜95モル%
の溶液に浸漬する工程を含むことを特徴とする請求項
2、3および4の発明によれば、上記燃料電池用電極を
容易に製造することができる。
The invention according to claim 4 relates to a method for producing the above-mentioned fuel cell electrode, wherein in the first step, a mixture containing a cation exchange resin and carbon particles is mixed with a tetraammine Pt (divalent) cation. And hexaammine Ru (3
Hexammine R based on the total number of moles with the cation
The ratio of the number of moles of u (trivalent) cation is 40 to 95 mol%
According to the invention of the second, third and fourth aspects, the electrode for a fuel cell can be easily manufactured.

【0015】請求項5の発明は、燃料電池において、上
記燃料電池用電極または上記製造方法で作製した燃料電
池用電極アノードに用いたことを特徴とする。請求項5
の発明によれば、優れた特性を示す燃料電池を得ること
ができる。
According to a fifth aspect of the present invention, in the fuel cell, the fuel cell is used as the fuel cell electrode or the fuel cell electrode anode produced by the above-described manufacturing method. Claim 5
According to the invention, a fuel cell exhibiting excellent characteristics can be obtained.

【0016】[0016]

【発明の実施の形態】本発明の燃料電池用電極の一例
を、図面を参照して説明する。図1は本発明の燃料電池
用電極に含まれる、陽イオン交換樹脂とカーボン粒子と
触媒の関係を示す概念図である。図1において、11は
カーボン粒子、12は陽イオン交換樹脂のプロトン伝導
経路、13は陽イオン交換樹脂のテフロン(登録商標)
骨格部、14は白金とルテニウムとを含む触媒金属であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One example of an electrode for a fuel cell according to the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing the relationship between a cation exchange resin, carbon particles, and a catalyst contained in the fuel cell electrode of the present invention. In FIG. 1, reference numeral 11 denotes carbon particles, 12 denotes a proton conduction path of a cation exchange resin, and 13 denotes Teflon (registered trademark) of a cation exchange resin.
The skeleton portion 14 is a catalytic metal containing platinum and ruthenium.

【0017】この電極は、カーボン粒子11の表層を、
プロトン伝導経路12とテフロン骨格部13とで構成さ
れる陽イオン交換樹脂が被覆し、陽イオン交換樹脂のプ
ロトン伝導経路12とカーボン粒子11の表面との接面
に触媒金属14が担持され、陽イオン交換樹脂のプロト
ン伝導経路12とカーボン粒子11の表面との接面に担
持された触媒金属量が全触媒金属担持量の50wt%を
越えた構造である。陽イオン交換樹脂のプロトン伝導経
路12とカーボン粒子11の表面との接面には、カーボ
ン粒子により形成される電子伝導チャンネルと陽イオン
交換樹脂により形成されるプロトン伝導チャンネルとが
存在することによって、電子(e)とプロトン
(H)との授受が同時におこなうことができる場所と
なっている。
This electrode forms the surface layer of the carbon particles 11
A cation exchange resin composed of a proton conduction path 12 and a Teflon skeleton 13 is coated, and a catalyst metal 14 is supported on a contact surface between the proton conduction path 12 of the cation exchange resin and the surface of the carbon particles 11. The structure is such that the amount of catalyst metal supported on the contact surface between the proton conduction path 12 of the ion exchange resin and the surface of the carbon particles 11 exceeds 50 wt% of the total amount of catalyst metal supported. At the interface between the proton conduction path 12 of the cation exchange resin and the surface of the carbon particles 11, the existence of the electron conduction channel formed by the carbon particles and the proton conduction channel formed by the cation exchange resin, It is a place where the transfer of electrons (e ) and protons (H + ) can be performed simultaneously.

【0018】すなわち、外部から供給される活物質の反
応は、その場所のみで進行するので、陽イオン交換樹脂
のプロトン伝導経路とカーボン粒子表面との接面に担持
された触媒金属量が全触媒金属担持量の50wt%を越
える本発明の電極は、触媒利用率が高い。本発明の電極
において、きわめて少ない触媒担持量でありながら高い
活性を示すためには、陽イオン交換樹脂のプロトン伝導
経路とカーボン粒子表面との接面に担持された触媒量が
全触媒担持量の80wt%以上であることが好ましく、
90wt%を超えていることがさらに好ましい。
That is, since the reaction of the active material supplied from the outside proceeds only at that location, the amount of the catalyst metal carried on the interface between the proton conduction path of the cation exchange resin and the surface of the carbon particles is reduced by the total amount of the catalyst. The electrode of the present invention exceeding 50 wt% of the metal loading has a high catalyst utilization. In the electrode of the present invention, in order to exhibit high activity while having a very small amount of catalyst carried, the amount of catalyst carried on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon particles must be equal to the total amount of catalyst carried. It is preferably at least 80 wt%,
More preferably, it exceeds 90 wt%.

【0019】また、本発明の燃料電池用電極の白金とル
テニウムとを含む触媒は、白金とルテニウムとの合計原
子数に対するルテニウムの原子数比が60〜90%であ
ることが、その耐CO被毒性能が高くなることから好ま
しい。さらに著しくその性能が向上することから、その
割合が70〜90%であることがとくに好ましい。
Further, the catalyst containing platinum and ruthenium of the fuel cell electrode according to the present invention is preferably such that the ratio of the number of ruthenium atoms to the total number of platinum and ruthenium atoms is 60 to 90%, that is, its CO resistance. It is preferable because poison performance is increased. Since the performance is further remarkably improved, the ratio is particularly preferably 70 to 90%.

【0020】なお、本発明の燃料電池用電極の触媒は、
白金とルテニウムとだけでなく、その他の白金族金属を
含んでもよい。たとえば、ロジウム、イリジウム、パラ
ジウム、オスニウムである。これらの金属を含むことに
よって、触媒活性を高めることができる。
The catalyst for an electrode for a fuel cell according to the present invention comprises:
It may contain not only platinum and ruthenium but also other platinum group metals. For example, rhodium, iridium, palladium, and osnium. By including these metals, the catalytic activity can be increased.

【0021】さらに、本発明の燃料電池用電極の触媒
は、マグネシウム、アルミニウム、バナジウム、クロ
ム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、
銀、タングステンおよび金からなる群より選ばれた少な
くともひとつ以上の元素を含有させてもよく、その場
合、白金とルテニウムとの触媒活性を向上できること
や、安価で製造できるなどの効果がある。
Further, the catalyst for an electrode for a fuel cell of the present invention includes magnesium, aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc,
At least one element selected from the group consisting of silver, tungsten and gold may be contained. In this case, there are effects such as improvement in catalytic activity of platinum and ruthenium and inexpensive production.

【0022】ただし、触媒中に含まれる全ての金属元素
に対する白金とルテニウムの合計重量は、50%以上と
した場合に、優れた耐CO被毒性能が得られる。
However, when the total weight of platinum and ruthenium with respect to all metal elements contained in the catalyst is 50% or more, excellent CO poisoning resistance can be obtained.

【0023】ここで、触媒中のルテニウムは、他の金属
と固溶体を形成した状態、RuOxで表されるルテニウ
ム酸化物の状態、またはアンミン錯体やフタロシアニン
錯体やポルフィリン錯体等の錯体の状態で存在してもよ
い。そして、触媒の形状は、触媒の質量活性が高くなる
ことから粒径4nm以下の粒子状であることが好まし
く、その活性が著しく向上する1.5nm以下であるこ
とがさらに好ましい。
Here, ruthenium in the catalyst exists in a state of forming a solid solution with another metal, a state of ruthenium oxide represented by RuOx, or a state of a complex such as an ammine complex, a phthalocyanine complex or a porphyrin complex. You may. The shape of the catalyst is preferably in the form of particles having a particle size of 4 nm or less, since the mass activity of the catalyst is increased, and more preferably 1.5 nm or less, in which the activity is significantly improved.

【0024】本発明の電極に用いられる陽イオン交換樹
脂としては、パーフルオロカーボンスルフォン酸型また
はスチレン−ジビニルベンゼン系のスルフォン酸型陽イ
オン交換樹脂が好ましい。なかでも、電極に含まれる陽
イオン交換樹脂は、2.5meq/g以下のものを用い
ることができ、高い活性をもつ触媒が得られることから
1.0meq/g以上であることがさらに好ましい。ま
た、カーボン粒子としては、カーボンブラックを用いる
ことができ、例えば、Denka Black、 Vul
can XC―72、Black Pearl 2000
等のカーボンブラックがとくに好ましい。
The cation exchange resin used in the electrode of the present invention is preferably a perfluorocarbon sulfonic acid type or a styrene-divinylbenzene type sulfonic acid type cation exchange resin. Among them, the cation exchange resin contained in the electrode may be 2.5 meq / g or less, and is more preferably 1.0 meq / g or more because a catalyst having high activity can be obtained. As the carbon particles, carbon black can be used. For example, Denka Black, Vul
can XC-72, Black Pearl 2000
And the like are particularly preferred.

【0025】本発明の燃料電池は、固体高分子電解質膜
の少なくとも一方の面に本発明の燃料電池用電極を配置
した構造である。特に、本発明の燃料電池は、電極のC
O被毒性能が高いことから、その電極をアノードとして
備えていることが好ましい。
The fuel cell of the present invention has a structure in which the fuel cell electrode of the present invention is disposed on at least one surface of the solid polymer electrolyte membrane. In particular, the fuel cell of the present invention has a C
Since the O poisoning performance is high, it is preferable to provide the electrode as an anode.

【0026】本発明の燃料電池用電極は、例えば次のよ
うな方法で製造することができる。陽イオン交換樹脂と
カーボン粒子とを含む混合体に、その陽イオン交換樹脂
の対イオンと金属元素を含む陽イオンとのイオン交換反
応により、金属元素を含む陽イオンを陽イオン交換樹脂
に吸着させる第1の工程と、第1の工程で得られた混合
体中の金属元素を含む陽イオンを化学的に還元する第2
の工程とを経る燃料電池用電極の製造方法である。
The fuel cell electrode of the present invention can be manufactured, for example, by the following method. The cation containing the metal element is adsorbed on the cation exchange resin by the ion exchange reaction between the counter ion of the cation exchange resin and the cation containing the metal element in the mixture containing the cation exchange resin and the carbon particles. A first step and a second step of chemically reducing a cation containing a metal element in the mixture obtained in the first step.
And a process for producing an electrode for a fuel cell.

【0027】具体的には、陽イオン交換樹脂とカーボン
粒子とを含む混合体に、白金を含む陽イオンとルテニウ
ムを含む陽イオンとを吸着させる第1の工程と、第1の
工程で得られた混合体中の各陽イオンを還元する第2の
工程とを経る燃料電池用電極の製造方法である。
Specifically, a first step of adsorbing a cation containing platinum and a cation containing ruthenium on a mixture containing a cation exchange resin and carbon particles, and a first step obtained by the first step. And a second step of reducing each cation in the mixture obtained.

【0028】ここで、第1の工程は、例えば、水溶液中
またはアルコールを含む溶液中で金属元素を含む陽イオ
ンを生成する化合物を、水またはアルコールを含む溶液
などに溶解し、陽イオン交換樹脂とカーボン粒子とを含
む混合体をその水またはアルコールを含む溶液に浸漬す
ることでなされる。
Here, in the first step, for example, a compound that generates a cation containing a metal element in an aqueous solution or a solution containing an alcohol is dissolved in a solution containing water or an alcohol, and the cation exchange resin is dissolved. The mixture is prepared by immersing a mixture containing carbon and carbon particles in a solution containing water or alcohol.

【0029】この第1の工程では、含まれる金属元素の
異なる2種類以上の陽イオンを混合体に吸着させるため
に、それらの各種の陽イオンを含む溶液に混合体を浸漬
してもよいし、金属元素を含む陽イオンを含む溶液に浸
漬した後にさらにそれとは異なる金属元素を含む陽イオ
ン含む溶液に浸漬してもよい。
In the first step, the mixture may be immersed in a solution containing those various cations in order to adsorb two or more cations having different metal elements to the mixture. After dipping in a solution containing a cation containing a metal element, it may be further dipped in a solution containing a cation containing a different metal element.

【0030】特に、2種類以上の陽イオンを含む溶液に
混合体を浸漬する場合では、溶液中の各陽イオンの比率
を調節することによって、電極に担持される各金属の比
率を制御することができる。例えば、白金を含む陽イオ
ンとルテニウムを含む陽イオンとを含む溶液に混合体を
浸漬する場合、各陽イオンの比率を制御することによっ
て、電極に担持される白金とルテニウムとの合計原子数
に対するルテニウムの原子数比を60〜90%に制御す
ることができる。
In particular, when the mixture is immersed in a solution containing two or more cations, the ratio of each metal carried on the electrode is controlled by adjusting the ratio of each cation in the solution. Can be. For example, when the mixture is immersed in a solution containing a cation containing platinum and a cation containing ruthenium, by controlling the ratio of each cation, the total number of atoms of platinum and ruthenium supported on the electrode is controlled. The atomic ratio of ruthenium can be controlled to 60 to 90%.

【0031】また、第2の工程は、混合体を還元雰囲気
下に放置することによってなされる。この工程では、量
産に適した還元剤を用いる化学的な還元方法を用いるこ
とが好ましく、とくに、水素ガスまたは水素を含むガス
によって気相還元する方法またはヒドラジンを含む不活
性ガスによって気相還元する方法が好ましい。
The second step is performed by leaving the mixture under a reducing atmosphere. In this step, it is preferable to use a chemical reduction method using a reducing agent suitable for mass production. In particular, a gas phase reduction method using hydrogen gas or a gas containing hydrogen or a gas phase reduction method using an inert gas containing hydrazine is preferable. The method is preferred.

【0032】ここで、水素ガスを含むガスとは、水素ガ
スと窒素やヘリウム、アルゴンなどの不活性ガスとの混
合ガスであることが好ましく、水素ガスを10vol%
以上含むことが好ましい。カーボン粒子は金属元素を含
む陽イオンの還元反応に対して活性であることから、陽
イオン交換樹脂に吸着している金属元素を含む陽イオン
であって、カーボン粒子表面の近傍に存在するものは、
その他の場所に存在する陽イオンに比べて優先的に還元
される。
Here, the gas containing hydrogen gas is preferably a mixed gas of hydrogen gas and an inert gas such as nitrogen, helium, or argon.
It is preferable to include the above. Since the carbon particles are active in the reduction reaction of the cation containing the metal element, the cations containing the metal element adsorbed on the cation exchange resin and those existing near the carbon particle surface are ,
It is preferentially reduced compared to cations present elsewhere.

【0033】そこで、この工程では、還元剤の種類、還
元圧力、還元剤濃度、還元時間、還元温度を適時調整す
ることによって、カーボン粒子表面近傍の金属元素を含
む陽イオンがその他の場所の陽イオンに比べてより優先
的に還元することができ、そうすることによって、触媒
を主に陽イオン交換樹脂のプロトン伝導経路とカーボン
粒子の表面との接面に担持することができる。
Therefore, in this step, by appropriately adjusting the type of the reducing agent, the reducing pressure, the reducing agent concentration, the reducing time, and the reducing temperature, the cation containing the metal element in the vicinity of the carbon particle surface can be positively changed in other places. The reduction can be performed more preferentially than the ions, so that the catalyst can be supported mainly on the interface between the proton conduction path of the cation exchange resin and the surface of the carbon particles.

【0034】具体的には、陽イオン交換樹脂に吸着して
いる金属元素を含む陽イオンであってカーボン粒子表面
の近傍に存在していない陽イオンが還元される温度より
も低く、カーボン粒子表面の近傍に存在している陽イオ
ンを還元する温度よりも高い温度で還元することによっ
て、陽イオン交換樹脂のプロトン伝導経路とカーボン粒
子表面との接面に担持された触媒金属量が全触媒金属担
持量の80wt%を越えるようにするのがよい。
Specifically, the temperature is lower than the temperature at which cations containing a metal element adsorbed on the cation exchange resin and not present near the surface of the carbon particles are reduced. Is reduced at a temperature higher than the temperature at which the cations present in the vicinity of the cation exchange resin are reduced. It is preferable that the amount exceeds 80 wt% of the supported amount.

【0035】なお、本発明の製造方法では、第1の工程
と第2の工程とをおこなった後、さらに第1の工程と第
2の工程とを1回以上繰り返すことによって、触媒中の
金属の種類やそれらの金属の担持量の比率を調整するこ
とができる。また、この一連の工程を繰り返すことによ
って、先に担持された触媒金属を核としてさらに触媒の
大きさ増大せることが可能であり、任意の大きさの触媒
を担持させることができる。また、本発明の電極の活性
を向上させるために、第1の工程と第2の工程とを経た
混合体を酸化性ガスを含む雰囲気下、不活性ガスを主成
分とするガスの雰囲気下、酸性の溶液中、あるいは、ア
ルカリ性の溶液中などでエージングしてもよい。
In the production method of the present invention, after the first step and the second step are performed, the first step and the second step are further repeated once or more, so that the metal in the catalyst can be obtained. And the ratio of the amounts of the metals supported can be adjusted. Further, by repeating this series of steps, it is possible to further increase the size of the catalyst using the previously supported catalyst metal as a nucleus, and to support a catalyst of an arbitrary size. Further, in order to improve the activity of the electrode of the present invention, the mixture obtained through the first step and the second step is mixed under an atmosphere containing an oxidizing gas, under an atmosphere containing a gas mainly containing an inert gas, Aging may be performed in an acidic solution or an alkaline solution.

【0036】本発明の製造方法に用いられる金属元素を
含む陽イオンは、その陽イオンが還元されることで触媒
となることが可能な陽イオンであって、その触媒の形状
等はとくに問わない。上記の製造方法には、たとえば、
白金、ルテニウム、ロジウム、イリジウム、パラジウ
ム、オスニウム、マグネシウム、アルミニウム、バナジ
ウム、クロム、マンガン、鉄、コバルト、ニッケル、
銅、亜鉛、銀、タングステンおよび金からなる群より選
ばれた少なくとも一つの元素を含む陽イオンを用いるこ
とができる。
The cation containing a metal element used in the production method of the present invention is a cation that can be used as a catalyst by reducing the cation, and the shape of the catalyst is not particularly limited. . The above manufacturing method includes, for example,
Platinum, ruthenium, rhodium, iridium, palladium, osmium, magnesium, aluminum, vanadium, chromium, manganese, iron, cobalt, nickel,
A cation containing at least one element selected from the group consisting of copper, zinc, silver, tungsten, and gold can be used.

【0037】中でも、この方法で用いる金属元素を含む
陽イオンは、陽イオン交換樹脂によって被覆されていな
いカーボン表面には吸着し難く、陽イオン交換樹脂の対
イオンとのイオン交換反応により陽イオン交換樹脂のプ
ロトン伝導経路に優先的に吸着するものであることが好
ましい。
Above all, the cation containing the metal element used in this method is hardly adsorbed on the carbon surface not coated with the cation exchange resin, and is subjected to cation exchange reaction with the counter ion of the cation exchange resin. It is preferable that the resin preferentially adsorbs to the proton conduction path of the resin.

【0038】例えば、そのような吸着特性を持つ白金ま
たはルテニウムを含む陽イオンとして、[Pt(N
2+や[Pt(NH4+などとあら
わすことができる白金のアンミン錯イオン、または[R
u(NH2+や[Ru(NH3+があ
る。
For example, as a cation containing platinum or ruthenium having such adsorption characteristics, [Pt (N
H 3 ) 4 ] 2+ , [Pt (NH 3 ) 6 ] 4+, etc., or an ammine complex ion of platinum, or [R
u (NH 3 ) 4 ] 2+ and [Ru (NH 3 ) 6 ] 3+ .

【0039】そこで、本発明の燃料電池用電極の製造方
法の第1の工程においては、白金を含む陽イオンが白金
アンミン錯体陽イオン、ルテニウムを含む陽イオンがル
テニウムアンミン錯体陽イオンであることが好ましい。
Therefore, in the first step of the method for producing a fuel cell electrode according to the present invention, the cation containing platinum may be a platinum ammine complex cation and the cation containing ruthenium may be a ruthenium ammine complex cation. preferable.

【0040】さらに、本発明の上記燃料電池用電極の製
造方法の第1の工程においては、陽イオン交換樹脂とカ
ーボン粒子とを含む混合体を、テトラアンミンPt(2
価)陽イオンとヘキサアンミンRu(3価)陽イオンと
の合計モル数に対するヘキサアンミンRu(3価)陽イ
オンのモル数の比率が40〜95モル%の溶液に浸漬す
る工程を含むことがより好ましい。
Further, in the first step of the method for producing an electrode for a fuel cell according to the present invention, the mixture containing a cation exchange resin and carbon particles is mixed with tetraammine Pt (2
Immersion in a solution in which the ratio of the number of moles of hexaammine Ru (trivalent) cation to the total number of moles of (valent) cation and hexaammine Ru (trivalent) cation is 40 to 95 mol%. More preferred.

【0041】本発明の上記燃料電池用電極の製造方法の
第1の工程において、混合体を上記の溶液に浸漬する工
程を含むことにより、作製された燃料電池用電極におい
て、白金とルテニウムとの合計原子数に対するルテニウ
ムの原子数比を60〜90%とすることが容易となる。
In the first step of the method for producing a fuel cell electrode according to the present invention, a step of immersing the mixture in the above solution is included. It is easy to make the ratio of the number of ruthenium atoms to the total number of atoms 60 to 90%.

【0042】一方、カーボン粒子と陽イオン交換樹脂と
を含む混合体は、陽イオン交換樹脂とカーボン粒子、必
要に応じてPTFE粒子とが分散した多孔体として用意
されることが好ましい。混合体は、膜状ものであること
が好ましく、その膜の厚さは3〜30μm以内、さらに
好ましくは3〜20μm以内が好ましい。また、カーボ
ン粒子としては、金属元素を含む陽イオンの還元反応に
対して高い活性を示すカーボンブラックが好ましく、例
えば、、Denka Black、 Vulcan XC
―72、Black Pearl 2000等のカーボン
ブラックが特に好ましい。
On the other hand, the mixture containing the carbon particles and the cation exchange resin is preferably prepared as a porous body in which the cation exchange resin, the carbon particles and, if necessary, the PTFE particles are dispersed. The mixture is preferably in the form of a film, and the thickness of the film is preferably 3 to 30 μm, more preferably 3 to 20 μm. Further, as the carbon particles, carbon black exhibiting a high activity for a reduction reaction of a cation containing a metal element is preferable. For example, Denka Black, Vulcan XC
-72, carbon black such as Black Pearl 2000 is particularly preferred.

【0043】[0043]

【実施例】以下、本発明を好適な実施例を用いて説明す
る。[実施例1]陽イオン交換樹脂(アルドリッチ社
製、ナフィオン5wt%溶液)とカーボン粒子(Vul
can XC―72)とを混錬し、加熱濃縮してペース
ト状にして、高分子(FEP)フィルム上に製膜(膜厚
約13μm)した後、室温で乾燥した。この混合体を
[Pt(NH]Clと[Ru(NH]C
とを溶解した水溶液中に24時間浸漬し、200℃
の水素雰囲気中で7時間放置することによって電極を製
造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to preferred embodiments. [Example 1] A cation exchange resin (manufactured by Aldrich, Nafion 5 wt% solution) and carbon particles (Vul
can XC-72), heated and concentrated to form a paste, formed into a film (about 13 μm in thickness) on a polymer (FEP) film, and then dried at room temperature. This mixture is combined with [Pt (NH 3 ) 4 ] Cl 2 and [Ru (NH 3 ) 6 ] C
immersed l 3 and 24 hours in an aqueous solution prepared by dissolving, 200 ° C.
Was left in a hydrogen atmosphere for 7 hours to produce an electrode.

【0044】ここで、[Pt(NH]Cl
[Ru(NH]Clとのそれぞれの配合比を様
々に変更した溶液を用いた電極を製造し、それらの白金
とルテニウムとの担持量を調べた。その結果を図2に示
す。図2は、電極製造時の、原料溶液中と得られた電極
中の、白金とルテニウムとの合計原子数に対するルテニ
ウムの原子数比の関係を示す図であり、この図から明ら
かなように、白金とルテニウムとの異なった配合比の溶
液を用いることによって、担持される各金属の割合を調
節することができる。
Here, electrodes using solutions in which the mixing ratio of [Pt (NH 3 ) 4 ] Cl 2 and [Ru (NH 3 ) 6 ] Cl 3 were variously changed were manufactured, and their platinum was used. And the supported amount of ruthenium were examined. The result is shown in FIG. FIG. 2 is a diagram showing the relationship between the atomic ratio of ruthenium to the total number of platinum and ruthenium atoms in the raw material solution and the obtained electrode during the production of the electrode, as is clear from this figure. By using solutions of platinum and ruthenium having different compounding ratios, the ratio of each metal supported can be adjusted.

【0045】上記の方法で、白金とルテニウムとの合計
原子数に対するルテニウム原子数の比率が、0.0、
1.0、5.0、10、20、30、40、50、6
0、70、80、90、95、99および100%の触
媒を担持した電極を製造した。それぞれの電極の触媒担
持量は0.05mg/cmとなるようにした。
In the above method, the ratio of the number of ruthenium atoms to the total number of platinum and ruthenium atoms is 0.0,
1.0, 5.0, 10, 20, 30, 40, 50, 6
Electrodes carrying 0, 70, 80, 90, 95, 99 and 100% of the catalyst were produced. The catalyst carrying amount of each electrode was adjusted to 0.05 mg / cm 2 .

【0046】[比較例1]Pt−Ru担持カーボン(田
中貴金属株式会社製、白金18.6wt%、ルテニウム
14.4wt%、担体:Vulcan XC―72)と
陽イオン交換樹脂(アルドリッチ社製、ナフィオン5w
t%溶液)とを混錬、加熱濃縮してペースト状にして、
高分子(FEP)フィルム上に製膜(膜厚約13μm)
したのち室温で乾燥して比較例の電極Aを得た。ペース
ト製作時のPt−Ru担持カーボンの量を調整すること
によって、この電極の触媒担持量を約0.05mg/c
となるようにした。電極Aにおいては、白金とルテ
ニウムとの合計原子数に対するルテニウムの原子数比は
60%である。
[Comparative Example 1] Pt-Ru-supported carbon (manufactured by Tanaka Kikinzoku Co., Ltd., platinum 18.6 wt%, ruthenium 14.4 wt%, carrier: Vulcan XC-72) and a cation exchange resin (manufactured by Aldrich, Nafion) 5w
t% solution) and heat-concentrate to form a paste,
Film formation on polymer (FEP) film (thickness about 13μm)
Thereafter, drying was performed at room temperature to obtain an electrode A of a comparative example. By adjusting the amount of Pt-Ru supported carbon at the time of paste production, the amount of supported catalyst of this electrode was reduced to about 0.05 mg / c.
It was made to be m 2. In the electrode A, the ratio of the number of ruthenium atoms to the total number of platinum and ruthenium atoms is 60%.

【0047】[比較例2]Pt−Ru担持カーボン(E
TEK社製、白金20.0wt%、ルテニウム10.3
wt%、担体:Vulcan XC―72)と陽イオン
交換樹脂(アルドリッチ社製、ナフィオン5wt%溶
液)とを混錬、加熱濃縮してペースト状にして、高分子
(FEP)フィルム上に製膜(膜厚約13μm)したの
ち室温で乾燥して比較例の電極Bを得た。ペースト製作
時のPt−Ru担持カーボンの量を調整することによっ
て、この電極の触媒担持量を約0.05mg/cm
なるようにした。電極Bにおいては、白金とルテニウム
との合計原子数に対するルテニウムの原子数比は50%
である。
[Comparative Example 2] Pt-Ru supported carbon (E
TEK, platinum 20.0wt%, ruthenium 10.3
wt%, carrier: Vulcan XC-72) and a cation exchange resin (manufactured by Aldrich, Nafion 5 wt% solution) are kneaded, heated and concentrated to form a paste, and formed into a film on a polymer (FEP) film ( After drying at room temperature, an electrode B of Comparative Example was obtained. By adjusting the amount of Pt-Ru supported carbon during paste production, the amount of catalyst supported on this electrode was adjusted to about 0.05 mg / cm 2 . In the electrode B, the atomic ratio of ruthenium to the total number of atoms of platinum and ruthenium is 50%.
It is.

【0048】[比較例3]白金担持カーボン(田中貴金
属株式会社製、白金30wt%、担体:Vulcan
XC―72)と陽イオン交換樹脂(アルドリッチ社製、
ナフィオン5wt%溶液)とを混錬し、加熱濃縮してペ
ースト状にして、高分子(FEP)フィルム上に製膜
(膜厚約13μm)したのち室温で乾燥して比較例の電
極Cを得た。ペースト製作時の白金担持カーボンの量を
調整することによって、この電極の白金量を約0.05
mg/cmとなるようにした。
[Comparative Example 3] Platinum-supported carbon (manufactured by Tanaka Kikinzoku Co., Ltd., platinum 30 wt%, carrier: Vulcan
XC-72) and a cation exchange resin (manufactured by Aldrich,
Nafion 5 wt% solution), and then heat-concentrated to form a paste, formed on a polymer (FEP) film (thickness: about 13 μm), and dried at room temperature to obtain electrode C of Comparative Example. Was. By adjusting the amount of platinum-carrying carbon during paste production, the platinum amount of this electrode was reduced to about 0.05.
mg / cm 2 .

【0049】実施例で製作した各電極、比較例の電極
A、BおよびCをアノードとして燃料電池を作製した。
その際、それぞれの燃料電池には、カソードとしては、
比較例3の電極Cを用いた。つぎに各セルに、燃料とし
て20ppmのCOを含む水素(2気圧、80℃)を用
いて、0.5Vのセル電圧で運転した際の定常状態での
電流密度を測定した。その結果を図3に示す。
A fuel cell was manufactured using the electrodes manufactured in the examples and the electrodes A, B and C of the comparative example as anodes.
At that time, each fuel cell has, as a cathode,
The electrode C of Comparative Example 3 was used. Next, the current density in a steady state when operating at a cell voltage of 0.5 V using hydrogen (2 atm, 80 ° C.) containing 20 ppm of CO as a fuel was measured for each cell. The result is shown in FIG.

【0050】図3は、実施例の電極と比較例の電極とを
備えた燃料電池を0.5Vで運転した時の、触媒中の白
金とルテニウムとの合計原子数に対するルテニウムの原
子数比(%)と0.5Vでの電流密度との関係を示した
ものである。図3において、記号○は実施例の電極の、
記号▲は比較例1の電極Aの、記号◆は比較例2の電極
Bの、記号■は比較例3の電極Cの、関係を示す。
FIG. 3 shows the ratio of the number of ruthenium atoms to the total number of platinum and ruthenium atoms in the catalyst when the fuel cell including the electrodes of the example and the electrodes of the comparative example was operated at 0.5 V. %) And the current density at 0.5 V. In FIG. 3, the symbol は indicates the electrode of the embodiment,
The symbol ▲ indicates the relationship of the electrode A of Comparative Example 1, the symbol ◆ indicates the relationship of the electrode B of Comparative Example 2, and the symbol ■ indicates the relationship of the electrode C of Comparative Example 3.

【0051】図3より、比較例1の電極A、比較例2の
電極Bおよび比較例3の電極Cでは、一般的に知られて
いるように、白金とルテニウムとの合計原子数に対する
ルテニウムの原子数比が50%のときに最も高い電流値
を示す傾向が得られた。これに対して、実施例の電極で
は、白金とルテニウムとの合計原子数に対するルテニウ
ムの原子数比が60〜90原子%の時に特に高い電流値
を示した。これらの結果は、本発明の電極が特異なルテ
ニウムの配合量のときに耐CO被毒性能が高くなり、本
発明の電極を用いた燃料電池の性能は従来のものよりも
著しく高いことを示している。
As shown in FIG. 3, as is generally known, the electrode A of Comparative Example 1, the electrode B of Comparative Example 2, and the electrode C of Comparative Example 3 have, as generally known, the ratio of ruthenium to the total number of platinum and ruthenium atoms. The tendency to show the highest current value when the atomic ratio was 50% was obtained. On the other hand, the electrode of the example showed a particularly high current value when the atomic ratio of ruthenium to the total atomic number of platinum and ruthenium was 60 to 90 atomic%. These results indicate that when the electrode of the present invention has a specific ruthenium content, the resistance to CO poisoning is high, and the performance of the fuel cell using the electrode of the present invention is significantly higher than that of the conventional one. ing.

【0052】[0052]

【発明の効果】本発明の燃料電池用電極を用いることに
より、COを含む水素を燃料として用いた場合でも、高
い出力を発生することのできる燃料電池を提供すること
ができる。また、本発明の燃料電池によれば、COを含
む水素を燃料として用いた場合でも、大電力を供給する
電源システムを提供することができる。
By using the fuel cell electrode of the present invention, it is possible to provide a fuel cell capable of generating a high output even when hydrogen containing CO is used as fuel. Further, according to the fuel cell of the present invention, it is possible to provide a power supply system that supplies large power even when hydrogen containing CO is used as fuel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池用電極に含まれる、陽イオン
交換樹脂とカーボン粒子と触媒の関係を示す概念図。
FIG. 1 is a conceptual diagram showing the relationship between a cation exchange resin, carbon particles, and a catalyst contained in a fuel cell electrode of the present invention.

【図2】電極製造時の、原料溶液中と得られた電極中
の、白金とルテニウムとの合計原子数に対するルテニウ
ムの原子数比の関係を示す図。
FIG. 2 is a diagram showing the relationship between the atomic ratio of ruthenium to the total number of platinum and ruthenium atoms in a raw material solution and an obtained electrode during electrode production.

【図3】燃料電池を0.5Vで運転した時の、触媒中の
白金とルテニウムとの合計原子数に対するルテニウムの
原子数比(%)と0.5Vでの電流密度との関係を示す
図。
FIG. 3 is a diagram showing the relationship between the atomic ratio (%) of ruthenium to the total number of platinum and ruthenium in the catalyst and the current density at 0.5 V when the fuel cell is operated at 0.5 V. .

【符号の説明】[Explanation of symbols]

11 カーボン粒子 12 陽イオン交換樹脂 13 イオン交換膜 14 触媒 DESCRIPTION OF SYMBOLS 11 Carbon particle 12 Cation exchange resin 13 Ion exchange membrane 14 Catalyst

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換樹脂とカーボン粒子と触媒
金属とを含み、陽イオン交換樹脂のプロトン伝導経路と
カーボン粒子表面との接面に担持された触媒金属量が全
触媒金属担持量の50wt%を越える燃料電池用電極で
あって、前記触媒が白金とルテニウムを含み、白金とル
テニウムとの合計原子数に対するルテニウムの原子数比
が60〜90%であることを特徴とする燃料電池用電
極。
1. A catalyst comprising a cation exchange resin, carbon particles and a catalyst metal, wherein the amount of catalyst metal supported on the contact surface between the proton conduction path of the cation exchange resin and the surface of the carbon particles is 50 wt. %, Wherein the catalyst contains platinum and ruthenium, and the ratio of the number of ruthenium atoms to the total number of platinum and ruthenium atoms is 60 to 90%. .
【請求項2】 陽イオン交換樹脂とカーボン粒子とを含
む混合体に、白金を含む陽イオンとルテニウムを含む陽
イオンとを吸着させる第1の工程と、第1の工程で得ら
れた混合体中の各陽イオンを還元する第2の工程とを経
ることを特徴とする請求項1記載の燃料電池用電極の製
造方法。
2. A first step of adsorbing a cation containing platinum and a cation containing ruthenium on a mixture containing a cation exchange resin and carbon particles, and a mixture obtained in the first step. 2. The method for producing an electrode for a fuel cell according to claim 1, further comprising: a second step of reducing each cation therein.
【請求項3】 第1の工程において、白金を含む陽イオ
ンが白金アンミン錯体陽イオン、ルテニウムを含む陽イ
オンがルテニウムアンミン錯体陽イオンであることを特
徴とする請求項2記載の燃料電池用電極の製造方法。
3. The fuel cell electrode according to claim 2, wherein, in the first step, the cation containing platinum is a platinum ammine complex cation, and the cation containing ruthenium is a ruthenium ammine complex cation. Manufacturing method.
【請求項4】 第1の工程において、陽イオン交換樹脂
とカーボン粒子とを含む混合体を、テトラアンミンPt
(2価)陽イオンとヘキサアンミンRu(3価)陽イオ
ンとの合計モル数に対するヘキサアンミンRu(3価)
陽イオンのモル数の比率が40〜95モル%の溶液に浸
漬する工程を含むことを特徴とする請求項3記載の燃料
電池用電極の製造方法。
4. In a first step, a mixture containing a cation exchange resin and carbon particles is mixed with tetraammine Pt.
Hexammine Ru (trivalent) based on the total number of moles of (divalent) cations and hexaammine Ru (trivalent) cations
The method for producing an electrode for a fuel cell according to claim 3, further comprising a step of immersing in a solution having a molar ratio of cations of 40 to 95 mol%.
【請求項5】請求項1記載の燃料電池用電極または請求
項2、3または4記載の製造方法で作製した燃料電池用
電極をアノードに用いたことを特徴とする燃料電池。
5. A fuel cell, wherein the fuel cell electrode according to claim 1 or the fuel cell electrode produced by the manufacturing method according to claim 2, 3 or 4 is used as an anode.
JP2001163862A 2001-05-31 2001-05-31 Fuel cell electrode and its manufacturing method and fuel cell using the same Pending JP2002358971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163862A JP2002358971A (en) 2001-05-31 2001-05-31 Fuel cell electrode and its manufacturing method and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163862A JP2002358971A (en) 2001-05-31 2001-05-31 Fuel cell electrode and its manufacturing method and fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2002358971A true JP2002358971A (en) 2002-12-13
JP2002358971A5 JP2002358971A5 (en) 2008-07-10

Family

ID=19006760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163862A Pending JP2002358971A (en) 2001-05-31 2001-05-31 Fuel cell electrode and its manufacturing method and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2002358971A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088387A1 (en) * 2002-04-12 2003-10-23 Tanaka Kikinzoku Kogyo K.K. Catalyst for fuel electrode of polymer solid electrolyte fuel cell
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and its manufacturing method, electrode for fuel cell, and manufacturing method for membrane electrode structure
EP1970984A1 (en) * 2005-12-28 2008-09-17 Toyota Jidosha Kabushiki Kaisha Catalyst for fuel cell electrode, process for producing catalyst for fuel cell electrode, film-electrode assembly, and fuel cell
JP2009028599A (en) * 2007-07-25 2009-02-12 Toshiba Corp Catalyst, its manufacturing method, composite membrane electrode and fuel cell
JP2012109072A (en) * 2010-11-16 2012-06-07 Toshiba Fuel Cell Power Systems Corp Fuel battery, fuel battery system, and method for operation thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334925A (en) * 1997-05-21 1998-12-18 Degussa Ag Platinum carrier catalyst, its manufacture, gas diffusion electrode, proton conductive polymer film covered with catalyst and film electrode unit for anode of pem fuel cell
JP2000003712A (en) * 1998-06-16 2000-01-07 Tanaka Kikinzoku Kogyo Kk Catalyst for high molecular solid electrolyte fuel cell
JP2000012043A (en) * 1998-04-23 2000-01-14 Ne Chemcat Corp Electrode catalyst for solid high-polymer electrolyte- type fuel cell, and electrode, electrolyte film/electrode junction body and solid high-polymer electrolyte-type fuel cell using the catalyst
JP2000012041A (en) * 1998-06-18 2000-01-14 Japan Storage Battery Co Ltd Fuel cell electrode and its manufacture
JP2000215899A (en) * 1999-01-27 2000-08-04 Japan Storage Battery Co Ltd Manufacture of fuel cell electrode
JP2001118582A (en) * 1999-10-19 2001-04-27 Japan Storage Battery Co Ltd Electrode of fuel cell and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334925A (en) * 1997-05-21 1998-12-18 Degussa Ag Platinum carrier catalyst, its manufacture, gas diffusion electrode, proton conductive polymer film covered with catalyst and film electrode unit for anode of pem fuel cell
JP2000012043A (en) * 1998-04-23 2000-01-14 Ne Chemcat Corp Electrode catalyst for solid high-polymer electrolyte- type fuel cell, and electrode, electrolyte film/electrode junction body and solid high-polymer electrolyte-type fuel cell using the catalyst
JP2000003712A (en) * 1998-06-16 2000-01-07 Tanaka Kikinzoku Kogyo Kk Catalyst for high molecular solid electrolyte fuel cell
JP2000012041A (en) * 1998-06-18 2000-01-14 Japan Storage Battery Co Ltd Fuel cell electrode and its manufacture
JP2000215899A (en) * 1999-01-27 2000-08-04 Japan Storage Battery Co Ltd Manufacture of fuel cell electrode
JP2001118582A (en) * 1999-10-19 2001-04-27 Japan Storage Battery Co Ltd Electrode of fuel cell and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088387A1 (en) * 2002-04-12 2003-10-23 Tanaka Kikinzoku Kogyo K.K. Catalyst for fuel electrode of polymer solid electrolyte fuel cell
US7001865B2 (en) 2002-04-12 2006-02-21 Tanaka Kikinzoku Kogyo K.K. Catalyst for use in fuel electrode of polymer solid electrolyte type fuel cell
EP1970984A1 (en) * 2005-12-28 2008-09-17 Toyota Jidosha Kabushiki Kaisha Catalyst for fuel cell electrode, process for producing catalyst for fuel cell electrode, film-electrode assembly, and fuel cell
EP1970984A4 (en) * 2005-12-28 2008-12-31 Toyota Motor Co Ltd Catalyst for fuel cell electrode, process for producing catalyst for fuel cell electrode, film-electrode assembly, and fuel cell
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and its manufacturing method, electrode for fuel cell, and manufacturing method for membrane electrode structure
JP2009028599A (en) * 2007-07-25 2009-02-12 Toshiba Corp Catalyst, its manufacturing method, composite membrane electrode and fuel cell
JP2012109072A (en) * 2010-11-16 2012-06-07 Toshiba Fuel Cell Power Systems Corp Fuel battery, fuel battery system, and method for operation thereof

Similar Documents

Publication Publication Date Title
JP3649009B2 (en) Fuel cell electrode and method of manufacturing the same
US6528201B1 (en) Electrode for fuel cell and process for producing the same
KR101793770B1 (en) Method to prepare full monolayer of platinum on palladium based core nanoparticles
JP5138584B2 (en) Method for producing electrode catalyst for fuel cell
US6866960B2 (en) Electrodes for fuel cell and processes for producing the same
JP5115193B2 (en) Catalyst-supported powder and method for producing the same
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2002100374A (en) Electrode for fuel cell and its manufacturing method
CN110911700B (en) Catalyst, preparation method and application thereof
US20080090128A1 (en) Electrode Catalyst for Fuel Cell and Fuel Cell
JP3649061B2 (en) Fuel cell electrode and manufacturing method thereof
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JP3684570B2 (en) Fuel cell electrode and method of manufacturing the same
JP2002358971A (en) Fuel cell electrode and its manufacturing method and fuel cell using the same
JP5521959B2 (en) Catalyst for polymer electrolyte fuel cell, electrode and battery using the same
JP5092381B2 (en) Catalyst powder for fuel cell, method for producing catalyst powder for fuel cell, and fuel cell
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
JP2005251455A (en) Catalyst for fuel cell, manufacturing method of the same, electrode, and direct methanol type fuel cell
Viva Platinum-based cathode catalyst systems for direct methanol fuel cells
JPH11111305A (en) Fuel cell
JP2007103175A (en) Electrode for polymeric fuel cell and polymeric fuel cell using the same
JP2002134119A (en) Fuel cell and electrode for fuel cell
JP2007287598A (en) Membrane/electrode joint body for direct methanol fuel cell and its method of manufacture
JP2002222655A (en) Cathode catalyst for fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220