JP2002222655A - Cathode catalyst for fuel cell - Google Patents

Cathode catalyst for fuel cell

Info

Publication number
JP2002222655A
JP2002222655A JP2001016144A JP2001016144A JP2002222655A JP 2002222655 A JP2002222655 A JP 2002222655A JP 2001016144 A JP2001016144 A JP 2001016144A JP 2001016144 A JP2001016144 A JP 2001016144A JP 2002222655 A JP2002222655 A JP 2002222655A
Authority
JP
Japan
Prior art keywords
platinum
catalyst
ruthenium
alloy
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001016144A
Other languages
Japanese (ja)
Inventor
Masayuki Oguri
雅之 小栗
Hideo Inoue
秀男 井上
Koki Sasaki
幸記 佐々木
Tomomi Asaki
知美 朝木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2001016144A priority Critical patent/JP2002222655A/en
Publication of JP2002222655A publication Critical patent/JP2002222655A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cathode catalyst for solid polymer fuel cells, which can obtain high oxygen reduction reaction activity. SOLUTION: The catalyst consists of fine particles of an alloy of platinum and ruthenium held by carbon powder, and the alloy particles has an average particle diameter of 6 nm or less, and has a face-centered cubic lattice, having lattice constant for the crystal structure of within the range of 0.3923 to 0.3883 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池において高い酸素還元反応活性を得ることができる
カソード触媒に関する。
The present invention relates to a cathode catalyst capable of obtaining a high oxygen reduction reaction activity in a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術と課題】固体高分子型燃料電池はアノード
極(水素極)とカソード極(空気極)とが高分子固体電
解質膜を狭持する層構造を有する。また、アノード極、
カソード極の両電極は、通常、担持された白金又は白金
合金からなる触媒と固体電解質との混合体よりなる。こ
のような構成において、アノード極に供給される水素ガ
スは、電極中の細孔を通過して触媒に達し、触媒により
電子を放出して水素イオンとなる。この水素イオンは電
極中の固体電解質及び両電極間の固体電解質を通じてカ
ソード極の触媒に達し、カソード極に供給された酸素と
外部回路より流れ込む電子と反応して水を生じる。
2. Description of the Related Art A polymer electrolyte fuel cell has a layer structure in which an anode (hydrogen electrode) and a cathode (air electrode) sandwich a polymer solid electrolyte membrane. Also, the anode electrode,
Both electrodes of the cathode usually consist of a mixture of a supported platinum or platinum alloy catalyst and a solid electrolyte. In such a configuration, the hydrogen gas supplied to the anode electrode passes through the pores in the electrode, reaches the catalyst, and emits electrons by the catalyst to become hydrogen ions. The hydrogen ions reach the catalyst of the cathode through the solid electrolyte in the electrode and the solid electrolyte between the electrodes, and react with oxygen supplied to the cathode and electrons flowing from an external circuit to produce water.

【0003】一方、水素から放出される電子は、電極中
の触媒担体を通って、外部回路へ導き出され、外部回路よ
りカソード極に流れ込む。この結果、外部回路ではアノ
ード極からカソード極へ向かって電子が流れ、電力が生
ずる。
On the other hand, electrons released from hydrogen pass through a catalyst carrier in an electrode, are led to an external circuit, and flow into the cathode from the external circuit. As a result, in the external circuit, electrons flow from the anode to the cathode, and power is generated.

【0004】固体高分子型燃料電池におけるカソード電
極反応は、固体電解質と導電性カーボンに担持された白
金触媒粒子と気相の三層界面で起こるものと考えられ、
この界面面積を増やすことが、より高いカソード酸素還
元活性を得るためのひとつの手段として重要である。そ
こで、従来から、三層界面をより多く確保するために、
微細な白金粒子を導電性カーボン粉末上に均一に分散担
持させたカソード触媒の開発が要望されている。
The cathode electrode reaction in a polymer electrolyte fuel cell is considered to occur at a three-layer interface between a solid electrolyte, platinum catalyst particles supported on conductive carbon, and a gas phase,
Increasing the interface area is important as one means for obtaining higher cathode oxygen reduction activity. Therefore, conventionally, in order to secure more three-layer interfaces,
There is a demand for development of a cathode catalyst in which fine platinum particles are uniformly dispersed and supported on conductive carbon powder.

【0005】この要望に応えるべく、例えば、表面積の
大きなカーボン粉末上に微細な白金粒子を分散担持させ
る方法や、カーボン粉末上に微細な白金粒子を高担持し
て活性の高い触媒を得る方法などが検討されている。し
かし、表面積の大きいカーボン粉末を担体として用いた
場合には、触媒を担持する工程でカーボン粉末が腐食し
たりグラファイト化してしまうことがあり、また、白金
粒子を高担持する方法では、白金量当りの触媒利用効率
が低下し、しかも燃料電池のコストが高くなるなども問
題がある。
In order to meet this demand, for example, a method of dispersing and supporting fine platinum particles on a carbon powder having a large surface area, a method of obtaining a highly active catalyst by highly supporting fine platinum particles on a carbon powder, etc. Is being considered. However, when a carbon powder having a large surface area is used as a carrier, the carbon powder may be corroded or graphitized in the step of supporting the catalyst. However, there is a problem that the catalyst utilization efficiency of the fuel cell decreases and the cost of the fuel cell increases.

【0006】[0006]

【課題を解決するための手段】本発明者らは、かかる問
題を解決すべく鋭意検討した結果、今回、白金と同じ面
心立方格子の結晶構造をもつ白金とルテニウムの合金の
微粒子を導電性カーボン粉末上に担持させることによ
り、白金担持触媒に比較して白金単位重量当りの酸素還
元活性が向上した固体高分子型燃料電池用カソード触媒
が得られることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve such a problem. As a result, this time, the present inventors have made it possible to convert the fine particles of an alloy of platinum and ruthenium having the same crystal structure of face-centered cubic lattice as platinum into conductive particles. The present inventors have found that, by supporting on a carbon powder, a cathode catalyst for a polymer electrolyte fuel cell having improved oxygen reduction activity per unit weight of platinum as compared with a platinum-supported catalyst can be obtained. Was.

【0007】かくして、本発明は、カーボン粉末に担持
された白金とルテニウムの合金の微粒子からなり、該合
金微粒子は平均粒子径が6nm以下であり且つ結晶構造の
格子定数が0.3923〜0.3883 nmの範囲内の面心立方格子
を有することを特徴とする燃料電池用カソ−ド触媒を提
供するものである。
Thus, the present invention comprises fine particles of an alloy of platinum and ruthenium supported on carbon powder, and the fine particles of the alloy have an average particle diameter of 6 nm or less and a lattice constant of a crystal structure in a range of 0.3923 to 0.3883 nm. A cathode catalyst for a fuel cell, characterized by having a face-centered cubic lattice inside.

【0008】以下、本発明の燃料電池用カソ−ド触媒
(以下、本発明触媒という)についてさらに詳細に説明
する。
Hereinafter, the cathode catalyst for a fuel cell of the present invention (hereinafter referred to as the catalyst of the present invention) will be described in more detail.

【0009】[0009]

【発明の実施の形態】本発明触媒は、導電性カーボン粉
末上に、白金とルテニウムの合金が微粒子状で均一に分
散担持された構成からなるものであり、例えば、白金化
合物とルテニウム化合物の両者を含有する溶液を用い
て、カーボン粉末上に白金化合物とルテニウム化合物の
混合物を付着させた後還元することにより製造すること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention has a structure in which an alloy of platinum and ruthenium is finely and uniformly dispersed and supported on conductive carbon powder. For example, both a platinum compound and a ruthenium compound are used. Can be produced by depositing a mixture of a platinum compound and a ruthenium compound on carbon powder using a solution containing

【0010】本発明触媒の製造に使用される白金化合物
としては、例えば、塩化白金酸、テトラアンミンジクロ
ロ白金、ジアンミンジニトロ白金、硝酸白金、白金アン
ミン錯体などが挙げられるが、特に、特開平8-176175号
公報に記載の方法によって製造される下記式 [Pt(NH3)x(NO2)yL]Az 式中、Lはアルコキシ基、アルカノイル基又はアルカノ
イルオキシ基を表し、AはH、NO2又はNO3を表し、
xは0、1又は2であり、yは1、 2又は3であり、
ただし、xとyの合計は中心白金の電荷によって変わり
3〜5であり、zは中心金属の電荷によって変わり(y
−1)〜(y−3)である、で示される白金ニトロアンミ
ン錯体が好適である。
The platinum compound used for producing the catalyst of the present invention includes, for example, chloroplatinic acid, tetraamminedichloroplatinum, diamminedinitroplatinum, platinum nitrate, platinumammine complex, and in particular, JP-A-8-176175. [Pt (NH 3 ) x (NO 2 ) yL] Az wherein L represents an alkoxy group, an alkanoyl group or an alkanoyloxy group, and A represents H, NO 2 or NO 3
x is 0, 1 or 2; y is 1, 2 or 3;
However, the sum of x and y changes depending on the charge of the central platinum and is 3 to 5, and z changes depending on the charge of the central metal (y
Platinum nitroammine complexes represented by the following formulas -1) to (y-3) are preferable.

【0011】また、上記白金化合物と併用されるルテニ
ウム化合物としては、例えば、硝酸ルテニウム、塩化ル
テニウム、ルテニウムアセチルアセトナートなどが挙げ
られるが、特に硝酸ルテニウムが好適である。
The ruthenium compound used in combination with the platinum compound includes, for example, ruthenium nitrate, ruthenium chloride and ruthenium acetylacetonate, with ruthenium nitrate being particularly preferred.

【0012】上記白金化合物及びルテニウム化合物は、
これら両者を溶解する溶媒中に溶解して担持溶液を調製
する。その際に使用される溶媒としては、例えば、メタ
ノール、エタノール、プロパノール、イソプロパノー
ル、ブタノールなどのアルコール、これらアルコールと
水との混合物などが挙げられる。
The above platinum compound and ruthenium compound are
A carrier solution is prepared by dissolving both in a solvent that dissolves them. Examples of the solvent used in this case include alcohols such as methanol, ethanol, propanol, isopropanol and butanol, and a mixture of these alcohols and water.

【0013】担持溶液中における白金化合物に対するル
テニウム化合物の比率は、本発明触媒に望まれる合金の
組成等によって変えることができるが、金属白金/金属
ルテニウムの重量比で、一般に99.995/0.005〜80.000/2
0.000、好ましくは99.99/0.01〜90.0/10.0、さらに好ま
しくは99.99/0.01〜99.0/1.0の範囲内とすることができ
る。また、担持溶液中における白金化合物とルテニウム
化合物の混合物の濃度は厳密に制限されるものではな
く、使用する溶媒の種類や得られる触媒に望まれる合金
の担持量等によって変えることができるが、通常、0.01
〜30重量%、特に0.1〜10重量%の範囲内が適当であ
る。
The ratio of the ruthenium compound to the platinum compound in the supporting solution can be changed depending on the composition of the alloy desired for the catalyst of the present invention, etc., and is generally 99.995 / 0.005 to 80.000 / weight ratio of metal platinum / metal ruthenium. Two
0.000, preferably 99.99 / 0.01 to 90.0 / 10.0, and more preferably 99.99 / 0.01 to 99.0 / 1.0. In addition, the concentration of the mixture of the platinum compound and the ruthenium compound in the supporting solution is not strictly limited, and can be changed depending on the type of the solvent used, the amount of supported alloy desired for the obtained catalyst, and the like. , 0.01
An appropriate amount is in the range of -30% by weight, especially 0.1-10% by weight.

【0014】他方、担体である導電性カーボン粉末とし
ては、一般に市販されているカーボンブラックや活性炭
などを使用することができる。また、これらのカーボン
粉末を既知の方法で表面改質した、例えば親水化処理し
たカーボン粉末を使用することもできる。
On the other hand, as the conductive carbon powder as a carrier, commercially available carbon black, activated carbon and the like can be used. In addition, carbon powders obtained by surface-modifying these carbon powders by a known method, for example, hydrophilized carbon powders can also be used.

【0015】白金化合物とルテニウム化合物の混合物の
導電性カーボン粉末上への付着は、例えば、上記の如く
して調製される白金化合物とルテニウム化合物の両者を
溶解含有する溶液にカーボン粉末を浸漬する方法、該溶
液をカーボン粉末に噴霧する方法などの方法により、白
金化合物とルテニウム化合物を溶解含有する溶液をカー
ボン粉末上に付着させた後、乾燥させることにより行う
ことができる。
The deposition of the mixture of the platinum compound and the ruthenium compound on the conductive carbon powder can be performed, for example, by immersing the carbon powder in a solution prepared by dissolving both the platinum compound and the ruthenium compound. By applying a solution containing a platinum compound and a ruthenium compound on a carbon powder by a method such as spraying the solution onto the carbon powder, and then drying the solution.

【0016】白金化合物とルテニウム化合物の混合物が
付着した導電性カーボン粉末は次いで還元することによ
り、カーボン粉末上の白金化合物とルテニウム化合物の
混合物を白金とルテニウムの合金に変える。この還元
は、通常、水素ガスを用い、約100〜約800℃で行
うことができるが、好ましくは約150〜約600℃
で、より好ましくは約200〜約500℃の範囲内の温
度で行うことができる。
The conductive carbon powder to which the mixture of the platinum compound and the ruthenium compound has adhered is then reduced to convert the mixture of the platinum compound and the ruthenium compound on the carbon powder into an alloy of platinum and ruthenium. This reduction can be usually carried out using hydrogen gas at about 100 to about 800 ° C, preferably at about 150 to about 600 ° C.
And more preferably at a temperature in the range of about 200 to about 500C.

【0017】かくして、導電性カーボン粉末上に、白金
とルテニウムの合金の微粒子が均一に分散して担持され
た触媒が得られる。該合金微粒子は一般に6nm以下の
平均粒子径を有しており、好ましくは2〜4nmの範囲
内の平均粒子径を有する。
Thus, a catalyst in which fine particles of an alloy of platinum and ruthenium are uniformly dispersed and supported on the conductive carbon powder is obtained. The alloy fine particles generally have an average particle diameter of 6 nm or less, and preferably have an average particle diameter in the range of 2 to 4 nm.

【0018】また、導電性カーボン粉末上に担持された
白金−ルテニウム合金微粒子における金属白金/金属ル
テニウムの重量比は、原料として使用した白金化合物と
ルテニウム化合物の混合物における金属白金/金属ルテ
ニウムの重量比に対応して、一般に99.995/0.005〜80.0
00/20.000、好ましくは99.99/0.01〜90.0/10.0、さらに
好ましくは99.99/0.01〜99.0/1.0の範囲内であることが
できる。
The weight ratio of metal platinum / metal ruthenium in the platinum-ruthenium alloy fine particles supported on the conductive carbon powder is determined by the weight ratio of metal platinum / metal ruthenium in the mixture of the platinum compound and the ruthenium compound used as the raw materials. Corresponding to 99.995 / 0.005 ~ 80.0
00 / 20.000, preferably 99.99 / 0.01 to 90.0 / 10.0, more preferably 99.99 / 0.01 to 99.0 / 1.0.

【0019】さらに、担持された白金−ルテニウム合金
微粒子は、白金金属と同じ面心立方格子の結晶構造を有
し、0.3923〜0.3883nmnの範囲内の格子定数を有する
ことができる。この格子定数は、該合金微粒子中の金属
ルテニウム含有量、還元条件等を変えて白金とルテニウ
ムの合金状態を制御することにより、上記の範囲内で調
節することができ、それによって、触媒金属表面積を大
きくし、カソードにおける酸素還元活性を高めることが
できる。
Furthermore, the supported platinum-ruthenium alloy fine particles have the same crystal structure of the face-centered cubic lattice as platinum metal, and can have a lattice constant in the range of 0.3923 to 0.3883 nm. The lattice constant can be adjusted within the above range by controlling the alloy state of platinum and ruthenium by changing the content of metal ruthenium in the alloy fine particles, reducing conditions, and the like, whereby the catalyst metal surface area can be adjusted. And the oxygen reduction activity at the cathode can be increased.

【0020】[0020]

【実施例】次に本発明の燃料電池用カソード触媒を実施
例によりさらに具体的に説明するが、本実施例は本発明
を限定するものではない。
EXAMPLES Next, the fuel cell cathode catalyst of the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0021】実施例1 白金換算で50gのジニトロジアンミン白金塩を硝酸濃度5
00g・dm-3の水溶液100mLに添加し、109℃にて5時間
混合攪拌し、ジニトロジアンミン白金塩を溶解、熟成し
たトリニトロジアンミン白金の硝酸溶液を得た。次に、
80℃のロータリーエバポレーターで蒸発乾固させて黄茶
色粉末を得た。この粉末にエタノールを50℃以下に保持
しながら徐々に加えて白金濃度50g・dm-3の白金アン
ミンエトキシド錯体溶液を調製した。この白金アンミン
エトキシド錯体溶液20mLにエタノール780mLを加えて橙
赤色の溶液を得た。さらに金属白金:金属ルテニウムの
重量比が99.9:0.1となるような割合で硝酸ルテニウム
水溶液を加えて担持溶液とした。
Example 1 50 g of dinitrodiammine platinum salt in terms of platinum was converted to a nitric acid concentration of 5
It was added to 100 mL of an aqueous solution of 00 g · dm −3 , mixed and stirred at 109 ° C. for 5 hours to obtain a nitric acid solution of trinitrodiammineplatinum dissolved and aged trinitrodiammineplatinum. next,
Evaporation to dryness with a rotary evaporator at 80 ° C. gave a yellow-brown powder. Ethanol was gradually added to the powder while keeping the temperature at 50 ° C. or lower to prepare a platinum ammine ethoxide complex solution having a platinum concentration of 50 g · dm −3 . 780 mL of ethanol was added to 20 mL of this platinum ammine ethoxide complex solution to obtain an orange-red solution. Further, an aqueous ruthenium nitrate solution was added at a ratio such that the weight ratio of metal platinum: metal ruthenium became 99.9: 0.1 to obtain a supporting solution.

【0022】この担持溶液に60%硝酸水溶液で親水処理
したカーボン粉末「ケッチェンブラックEC」(三菱化学
社製)9.0gを加えて超音波ホモジナイザーで混合した
後、乾燥させた。その乾燥物を電気炉に入れ、窒素ガス
で充分に置換した後、7%水素ガスを含む窒素と水素の
混合ガスで置換し、200℃に昇温後2時間保持し還元を行
い、室温まで冷却して白金とルテニウムの合金を担持し
た触媒を得た。
9.0 g of carbon powder "Ketjen Black EC" (manufactured by Mitsubishi Chemical Corporation) hydrophilically treated with a 60% nitric acid aqueous solution was added to the supporting solution, mixed with an ultrasonic homogenizer, and dried. Put the dried product in an electric furnace, replace with nitrogen gas sufficiently, replace with a mixed gas of nitrogen and hydrogen containing 7% hydrogen gas, raise the temperature to 200 ° C, hold for 2 hours, and reduce to room temperature. Upon cooling, a catalyst carrying an alloy of platinum and ruthenium was obtained.

【0023】実施例2 実施例1と同様の方法で白金アンミンエトキシド錯体溶
液20mLにエタノール780mLを加えて橙赤色の溶液を調製
しこれに金属白金:金属ルテニウムの重量比が90:10と
なるような割合で硝酸ルテニウム水溶液を加えて担持溶
液とした。
Example 2 In the same manner as in Example 1, 780 mL of ethanol was added to 20 mL of the platinum ammine ethoxide complex solution to prepare an orange-red solution, and the weight ratio of platinum metal: ruthenium metal became 90:10. A ruthenium nitrate aqueous solution was added at such a ratio to obtain a supported solution.

【0024】この担持溶液に60%硝酸水溶液で親水処理
したカーボン粉末「ケッチェンブラックEC」(三菱化学
社製)9.0gを加えて超音波ホモジナイザーで混合した
後、実施例1と同様の還元操作を行って白金とルテニウ
ムの合金を担持した合金触媒を得た。
After adding 9.0 g of carbon powder “Ketjen Black EC” (manufactured by Mitsubishi Chemical Corporation) hydrophilically treated with a 60% nitric acid aqueous solution to this supported solution and mixing with an ultrasonic homogenizer, the same reduction operation as in Example 1 was performed. Was carried out to obtain an alloy catalyst supporting an alloy of platinum and ruthenium.

【0025】比較例1 実施例1と同様の方法で白金アンミンエトキシド錯体溶
液20mLにエタノール780mLを加えて橙赤色の溶液を調製
した。この溶液に60%硝酸水溶液で親水処理したカーボ
ン粉末「ケッチェンブラックEC」(三菱化学社製)9.0g
を加えて超音波ホモジナイザーで混合した後、実施例1
と同様の還元操作を行って白金を担持した触媒を得た。
Comparative Example 1 In the same manner as in Example 1, 780 mL of ethanol was added to 20 mL of the platinum ammine ethoxide complex solution to prepare an orange-red solution. 9.0 g of carbon powder "Ketjen Black EC" (manufactured by Mitsubishi Chemical Corporation) treated with a 60% nitric acid aqueous solution to this solution
And then mixed with an ultrasonic homogenizer.
By performing the same reduction operation as described above, a catalyst carrying platinum was obtained.

【0026】上記実施例1及び比較例1で得られた触媒
を透過電子顕微鏡で観察し、触媒金属粒子径を測定し
た。実施例1の合金触媒の平均触媒金属粒子径は1.6nm
であった。一方、比較例1の白金触媒の平均触媒金属粒
子径は3.0nmであった。
The catalysts obtained in Example 1 and Comparative Example 1 were observed with a transmission electron microscope, and the particle diameter of the catalyst metal was measured. The average catalyst metal particle diameter of the alloy catalyst of Example 1 was 1.6 nm.
Met. On the other hand, the average catalyst metal particle diameter of the platinum catalyst of Comparative Example 1 was 3.0 nm.

【0027】また、上記実施例1、2及び比較例1で得
られた触媒のカソード酸素還元活性を評価するために、
触媒金属表面積(m2/g-Pt)を、高精度全自動ガス吸着
測定装置「BELSORP28SA」(日本ベル株式会
社)を使用し、一酸化炭素の不可逆吸着量より求めた。
その結果を表1に示す。
In order to evaluate the cathode oxygen reduction activity of the catalysts obtained in Examples 1 and 2 and Comparative Example 1,
The catalytic metal surface area (m 2 / g-Pt) was determined from the irreversible adsorption amount of carbon monoxide using a high-precision fully automatic gas adsorption measurement device “BELSORP28SA” (Nippon Bell Co., Ltd.).
Table 1 shows the results.

【0028】また、上記実施例1、2及び比較例1で得
られた触媒についてX線回折を行なった結果、いずれの
触媒のプロファイルも白金の面心立方格子の結晶構造を
示めしていた。また、そのプロファイルのピ−ク位置よ
り触媒金属粒子の格子定数を求めた。その結果も表1に
示す。
The catalysts obtained in Examples 1 and 2 and Comparative Example 1 were subjected to X-ray diffraction. As a result, the profiles of all the catalysts showed a crystal structure of platinum face-centered cubic lattice. The lattice constant of the catalyst metal particles was determined from the peak position of the profile. Table 1 also shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果から明らかなように、実施例
1、2の触媒の格子定数は比較例1の触媒の格子定数と
比較して同等もしくは小さくなることがわかる。さら
に、実施例2の触媒の格子定数は、白金とルテニウムが
上記の重量比で完全に固溶したときの合金のベガード則
より求めた理論格子定数と一致していた。
As is clear from the results shown in Table 1, the lattice constants of the catalysts of Examples 1 and 2 are equal to or smaller than the lattice constant of the catalyst of Comparative Example 1. Further, the lattice constant of the catalyst of Example 2 coincided with the theoretical lattice constant obtained by Vegard's rule of the alloy when platinum and ruthenium were completely dissolved in the above-mentioned weight ratio.

【0031】また、実施例1、2の白金とルテニウムの
合金を担持した触媒は、比較例1の白金触媒と比較し
て、触媒金属表面積が明らかに大きくなっており、カソ
ード酸素還元活性が向上していることがわかる。
Further, the catalysts carrying the alloy of platinum and ruthenium of Examples 1 and 2 had a clearly larger catalytic metal surface area than the platinum catalyst of Comparative Example 1, and improved the cathode oxygen reduction activity. You can see that it is doing.

【0032】実施例1の触媒及び比較例1の触媒を使っ
てそれぞれ作製したカソード極と、市販の白金触媒を使
って作製したアノード極とプロトン導電性高分子電解質
膜「ナフィオン112」(デュポン社製)を接合した電
極接合体を作製した。この接合体を使用して電池を構成
し、アノード極用ガスとして純水素をそしてカソード極
用ガスとして酸素をそれぞれ使用し、電流密度1.0A/cm
2で負荷をかけた時の出力電圧を表2に示す。表2から
明らかなように、実施例1(本発明)のカソード触媒
は、固体高分子型燃料電池の電池出力を向上させること
がわかる。
A cathode prepared using the catalyst of Example 1 and the catalyst of Comparative Example 1, an anode prepared using a commercially available platinum catalyst, and a proton-conductive polymer electrolyte membrane “Nafion 112” (DuPont) Manufactured by the above method. A battery was constructed using this joined body, and pure hydrogen was used as an anode electrode gas and oxygen was used as a cathode electrode gas, and the current density was 1.0 A / cm.
The output voltage when applying the load 2 are shown in Table 2. As is clear from Table 2, the cathode catalyst of Example 1 (the present invention) improves the cell output of the polymer electrolyte fuel cell.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】以上述べたとおり、本発明の白金とルテ
ニウムの合金からなる微粒子を導電性カーボン粉末に担
持させた燃料電池用カソード触媒は、従来の白金触媒よ
りカソード酸素還元反応活性が高く、固体高分子型燃料
電池の発電効率を向上させることができる。
As described above, the cathode catalyst for a fuel cell of the present invention in which fine particles made of an alloy of platinum and ruthenium are supported on conductive carbon powder has a higher cathode oxygen reduction reaction activity than a conventional platinum catalyst. The power generation efficiency of the polymer electrolyte fuel cell can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 幸記 埼玉県草加市青柳2丁目12番30号 石福金 属興業株式会社草加第一工場研究部 (72)発明者 朝木 知美 埼玉県草加市青柳2丁目12番30号 石福金 属興業株式会社草加第一工場研究部 Fターム(参考) 4G069 AA03 AA08 BA08A BA08B BB02A BB02B BC70A BC70B BC75A BC75B CC32 DA05 EA01X EA01Y EB18X EB19 EC22X EC22Y EC27 FA01 FA02 FB14 FB24 FB44 FC08 5H018 AA06 AS03 BB05 BB06 EE03 EE07 EE08 EE10 HH01 HH03 HH05 5H026 AA06 EE08 HH01 HH03 HH05 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuki Sasaki 2-12-30 Aoyagi, Soka-shi, Saitama Pref. No. 12-30 Ishifuku Kin Sekiyo Kogyo Co., Ltd. Soka Daiichi Plant Research Department F-term (reference) 4G069 AA03 AA08 BA08A BA08B BB02A BB02B BC70A BC70B BC75A BC75B CC32 DA05 EA01X EA01Y EB18X EB19 EC22X EC22Y EC27 FA01 AS02 FC14 BB05 BB06 EE03 EE07 EE08 EE10 HH01 HH03 HH05 5H026 AA06 EE08 HH01 HH03 HH05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カーボン粉末に担持された白金とルテニ
ウムの合金の微粒子からなり、該合金微粒子は平均粒子
径が6nm以下であり且つ結晶構造の格子定数が0.3923〜
0.3883 nmの範囲内の面心立方格子を有することを特徴
とする燃料電池用カソード触媒。
1. An alloy comprising fine particles of an alloy of platinum and ruthenium supported on carbon powder, wherein the fine particles of the alloy have an average particle diameter of 6 nm or less and a lattice constant of a crystal structure of 0.3923 to 0.3923.
A cathode catalyst for a fuel cell having a face-centered cubic lattice in the range of 0.3883 nm.
【請求項2】 合金微粒子が99.995〜80.000wt%の範
囲内の白金を含有する請求項1に記載の燃料電池用カソ
−ド触媒。
2. The cathode catalyst for a fuel cell according to claim 1, wherein the alloy fine particles contain platinum in the range of 99.995 to 80.000 wt%.
JP2001016144A 2001-01-24 2001-01-24 Cathode catalyst for fuel cell Pending JP2002222655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001016144A JP2002222655A (en) 2001-01-24 2001-01-24 Cathode catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001016144A JP2002222655A (en) 2001-01-24 2001-01-24 Cathode catalyst for fuel cell

Publications (1)

Publication Number Publication Date
JP2002222655A true JP2002222655A (en) 2002-08-09

Family

ID=18882567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001016144A Pending JP2002222655A (en) 2001-01-24 2001-01-24 Cathode catalyst for fuel cell

Country Status (1)

Country Link
JP (1) JP2002222655A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007125A1 (en) * 2002-07-16 2004-01-22 Nippon Sheet Glass Co., Ltd. Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using the same, and low temperature oxidation catalyst, method for preparing the same and fuel cell fuel modifying device using the same
JP2006056750A (en) * 2004-08-20 2006-03-02 Shinshu Univ Porous carbonaceous material and its manufacturing method
JP2006512736A (en) * 2002-12-30 2006-04-13 ユーティーシー フューエル セルズ,エルエルシー Fuel cell having a corrosion-resistant and corrosion-protective cathode catalyst layer
US7642217B2 (en) * 2005-01-06 2010-01-05 Samsung Sdi Co., Ltd. Pt/Ru alloy catalyst for fuel cell
JP2023061148A (en) * 2021-10-19 2023-05-01 株式会社キャタラー Electrode catalyst for hydrogen fuel cell anode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309262A (en) * 1988-06-06 1989-12-13 Hitachi Ltd Electrode catalyzer and fuel cell using same
JPH10228912A (en) * 1996-10-25 1998-08-25 Johnson Matthey Plc Improved catalyst
JPH11250918A (en) * 1997-12-19 1999-09-17 Degussa Ag Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
JP2000012043A (en) * 1998-04-23 2000-01-14 Ne Chemcat Corp Electrode catalyst for solid high-polymer electrolyte- type fuel cell, and electrode, electrolyte film/electrode junction body and solid high-polymer electrolyte-type fuel cell using the catalyst
JP2000323145A (en) * 1999-05-17 2000-11-24 Fuji Electric Co Ltd Electrochemical catalyst and fuel cell using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309262A (en) * 1988-06-06 1989-12-13 Hitachi Ltd Electrode catalyzer and fuel cell using same
JPH10228912A (en) * 1996-10-25 1998-08-25 Johnson Matthey Plc Improved catalyst
JPH11250918A (en) * 1997-12-19 1999-09-17 Degussa Ag Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
JP2000012043A (en) * 1998-04-23 2000-01-14 Ne Chemcat Corp Electrode catalyst for solid high-polymer electrolyte- type fuel cell, and electrode, electrolyte film/electrode junction body and solid high-polymer electrolyte-type fuel cell using the catalyst
JP2000323145A (en) * 1999-05-17 2000-11-24 Fuji Electric Co Ltd Electrochemical catalyst and fuel cell using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007125A1 (en) * 2002-07-16 2004-01-22 Nippon Sheet Glass Co., Ltd. Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using the same, and low temperature oxidation catalyst, method for preparing the same and fuel cell fuel modifying device using the same
EP1547708A1 (en) * 2002-07-16 2005-06-29 Nippon Sheet Glass Company, Limited Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using the same, and low temperature oxidation catalyst, method for preparing the same and fuel cell fuel modifyi
EP1547708A4 (en) * 2002-07-16 2008-10-29 Nippon Sheet Glass Co Ltd Method for preparing colloidal solution and carrier having colloidal particles fixed on surface thereof, fuel cell cathode, fuel cell anode and method for preparing the same and fuel cell using the same, and low temperature oxidation catalyst, method for preparing the same and fuel cell fuel modifyi
JP2006512736A (en) * 2002-12-30 2006-04-13 ユーティーシー フューエル セルズ,エルエルシー Fuel cell having a corrosion-resistant and corrosion-protective cathode catalyst layer
JP2006056750A (en) * 2004-08-20 2006-03-02 Shinshu Univ Porous carbonaceous material and its manufacturing method
US7642217B2 (en) * 2005-01-06 2010-01-05 Samsung Sdi Co., Ltd. Pt/Ru alloy catalyst for fuel cell
JP2023061148A (en) * 2021-10-19 2023-05-01 株式会社キャタラー Electrode catalyst for hydrogen fuel cell anode

Similar Documents

Publication Publication Date Title
US6797667B2 (en) Process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
JP4993867B2 (en) Fuel cell
JP4083721B2 (en) High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same
KR100670267B1 (en) Pt/Ru alloy catalyst for fuel cell
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
EP2441108B1 (en) Method for producing electrode catalyst for fuel cell
EP1164651A1 (en) Electrode catalyst for polymer electrolyte fuel cell and method for its production
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP2001325964A (en) Electrode catalyst for solid polymer electrolyte fuel cell
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
EP3525272B1 (en) Catalyst for solid polymer fuel cell and method for producing the same
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
US7931998B2 (en) Catalyst for fuel cell and fuel cell comprising the same
JP2002015745A (en) Solid polymer fuel cell
JP2000100448A (en) Catalyst for polymer solid electrolyte fuel cell
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2002222655A (en) Cathode catalyst for fuel cell
JP2007324092A (en) Manufacturing method of platinum or platinum alloy supported catalyst
JP2006092957A (en) Cathode catalyst for solid polymer fuel cell, cathode electrode equipped with catalyst, solid polymer fuel cell equipped with electrode, and manufacturing method of catalyst
JP2002095969A (en) Method for producing platinum-cobalt alloy catalyst
JP2001205086A (en) Method for manufacturing platinum/ruthenium alloy- bearing catalyst
JP2001015120A (en) Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
EP1260269A1 (en) A process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130