JP2002095969A - Method for producing platinum-cobalt alloy catalyst - Google Patents

Method for producing platinum-cobalt alloy catalyst

Info

Publication number
JP2002095969A
JP2002095969A JP2000286683A JP2000286683A JP2002095969A JP 2002095969 A JP2002095969 A JP 2002095969A JP 2000286683 A JP2000286683 A JP 2000286683A JP 2000286683 A JP2000286683 A JP 2000286683A JP 2002095969 A JP2002095969 A JP 2002095969A
Authority
JP
Japan
Prior art keywords
platinum
cobalt
compound
catalyst
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000286683A
Other languages
Japanese (ja)
Inventor
Masayuki Oguri
雅之 小栗
Koki Sasaki
幸記 佐々木
Hideo Inoue
秀男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2000286683A priority Critical patent/JP2002095969A/en
Publication of JP2002095969A publication Critical patent/JP2002095969A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily producing a fine highly dispersible platinum-based alloy catalyst, especially a platinum-cobalt alloy supported catalyst. SOLUTION: There is provided a method for producing a platinum-cobalt alloy supported catalyst comprising adhering a mixture of a platinum compound with a cobalt compound to a carbon powder by using a solution containing a platinum compound and a cobalt compound and subjecting the product to reduction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は白金−コバルト合金
担持触媒の製造方法に関する。
[0001] The present invention relates to a method for producing a platinum-cobalt alloy-supported catalyst.

【0002】[0002]

【従来の技術】カーボン粉末を担体とする白金担持触媒
は、主に燃料電池用カソード触媒して使用されている。
しかし、燐酸型燃料電池では運転中に触媒の凝集が起こ
り電池性能の低下を招く。このため、長時間安定な触媒
性能を得るべく、白金にコバルトやクロムなどを添加し
た白金系合金触媒が開発され、使用されている。
2. Description of the Related Art Platinum-supported catalysts using carbon powder as a carrier are mainly used as cathode catalysts for fuel cells.
However, in the case of a phosphoric acid fuel cell, the catalyst aggregates during operation, which causes a decrease in cell performance. For this reason, platinum-based alloy catalysts obtained by adding cobalt, chromium, etc. to platinum have been developed and used in order to obtain stable catalyst performance for a long time.

【0003】また、固体高分子型燃料電池のカソード触
媒では、高担持した白金担持触媒が使われているが、白
金使用量の低減と高分散で微細な触媒を得るために白金
系合金担持触媒の開発が行なわれている。例えば、塩化
白金酸水溶液と塩化コバルトや塩化クロムなどの塩素化
合物を含む水溶液にカーボン粉末を分散させた後、乾燥
させ水素雰囲気中で還元して白金−コバルト合金担持触
媒を作製することが提案されているが、この方法では、
触媒粒子が大きくなってしまい、触媒として満足するも
のは得られない。
[0003] In addition, a highly supported platinum-supported catalyst is used as a cathode catalyst in a polymer electrolyte fuel cell. However, in order to reduce the amount of platinum used and obtain a highly dispersed and fine catalyst, a platinum-based alloy-supported catalyst is used. Is being developed. For example, it has been proposed to prepare a platinum-cobalt alloy-supported catalyst by dispersing carbon powder in an aqueous solution of chloroplatinic acid and an aqueous solution containing a chlorine compound such as cobalt chloride or chromium chloride, followed by drying and reduction in a hydrogen atmosphere. However, in this method,
The catalyst particles become large, and no satisfactory catalyst can be obtained.

【0004】そこで、触媒粒子の粗大化を抑え、安定し
た電池特性を有する白金系合金触媒を得るため、例え
ば、特開平5−217586号公報には、カーボン粉末
を塩化白金酸水溶液に含浸させ、これにヒドラジン等の
還元剤を加え、白金を還元し白金担持触媒を作製し、さ
らに、この触媒粉末を塩化コバルトなどの酸性重金属塩
を含む水溶液と充分に接触させ、次にアンモニアなどに
よって液性をアルカリ性としてコバルト等の重金属の水
酸化物を担体上に析出させ、その後1000〜1200
℃の窒素気流中で熱処理し水酸化物を還元して白金と合
金化させる方法が提案されている。
[0004] In order to suppress the coarsening of the catalyst particles and obtain a platinum-based alloy catalyst having stable battery characteristics, for example, Japanese Patent Application Laid-Open No. Hei 5-217586 discloses that a carbon powder is impregnated with an aqueous chloroplatinic acid solution. A reducing agent such as hydrazine is added thereto to reduce the platinum to produce a platinum-supported catalyst.Then, the catalyst powder is brought into sufficient contact with an aqueous solution containing an acidic heavy metal salt such as cobalt chloride. Is made alkaline, and a hydroxide of a heavy metal such as cobalt is precipitated on the carrier.
A method has been proposed in which a hydroxide is reduced by heat treatment in a nitrogen stream at a temperature of 0 ° C. to form an alloy with platinum.

【0005】また、特開平8−141400号公報に
は、酒石酸ナトリウムと塩化ヒドラジンを含む水溶液に
塩化コバルトなどの重金属塩を加え、水酸化ナトリウム
などでpHを調整したメッキ液に、白金担持触媒を水溶液
に分散させた触媒スラリーを投入し、白金粒子に重金属
を低温で無電解メッキし、ろ過、洗浄後、850〜95
0℃で熱処理を行って合金化触媒を得る方法が開示され
ている。
JP-A-8-141400 discloses that a platinum-supported catalyst is added to a plating solution in which a heavy metal salt such as cobalt chloride is added to an aqueous solution containing sodium tartrate and hydrazine chloride, and the pH is adjusted with sodium hydroxide or the like. A catalyst slurry dispersed in an aqueous solution is charged, and heavy metal is electrolessly plated on platinum particles at a low temperature.
A method of performing a heat treatment at 0 ° C. to obtain an alloying catalyst is disclosed.

【0006】[0006]

【発明が解決しようとする課題】上記の公開公報で提案
されている方法はいずれも、白金系合金触媒を得るため
に、白金担持触媒に合金化させる金属粒子または金属塩
を付着させ、高温雰囲気下で合金化するものであり、触
媒粒子の凝集が起こりやすく、得られる触媒は性能の点
で必ずしも満足し得るものではない。
In any of the methods proposed in the above publications, in order to obtain a platinum-based alloy catalyst, a metal particle or a metal salt to be alloyed is deposited on a platinum-supported catalyst, and a high-temperature atmosphere is obtained. Under such conditions, the catalyst particles are apt to aggregate, and the resulting catalyst is not always satisfactory in terms of performance.

【0007】本発明の目的は、微細で高分散な白金系合
金触媒、特に白金−コバルト合金担持触媒を容易に製造
することができる方法を提供することである。
An object of the present invention is to provide a method capable of easily producing a fine and highly dispersed platinum-based alloy catalyst, particularly a platinum-cobalt alloy-supported catalyst.

【0008】[0008]

【課題を解決するための手段】本発明によれば、白金化
合物及びコバルト化合物を含有する溶液を用いてカーボ
ン粉末上に白金化合物とコバルト化合物の混合物を付着
させた後還元することを特徴とする白金−コバルト合金
担持触媒の製造方法が提供される。
According to the present invention, a mixture of a platinum compound and a cobalt compound is deposited on carbon powder using a solution containing the platinum compound and the cobalt compound, and then reduced. A method for producing a platinum-cobalt alloy supported catalyst is provided.

【0009】以下、本発明の方法について更に詳細に説
明する。
Hereinafter, the method of the present invention will be described in more detail.

【0010】[0010]

【発明の実施の形態】本発明で使用される白金化合物と
しては、後述する水、アルコール等の溶媒に可溶性のも
の、例えば、塩化白金酸、テトラアンミンジクロロ白
金、ジアンミンジニトロ白金、硝酸白金、白金アンミン
系錯体などが挙げられるが、特に、特開平8−1761
75号公報に記載の方法のよって製造することができる
下記式 [Pt(NH3)x(NO2)yL]Az 式中、Lはアルコキシ基、アルカノイル基又はアルカノ
イルオキシ基を表し、AはH、NO2又はNO3を表し、
xは0、1又は2であり、yは1、2又は3であり、た
だし、xとyの合計は中心白金の電荷によって変わり3
〜5の範囲内にあり、zは中心金属の電荷によって変わ
り(y−1)〜(y−3)の範囲内にある、で示される白金
ニトロアンミン錯体が好適である。
BEST MODE FOR CARRYING OUT THE INVENTION The platinum compounds used in the present invention are soluble in solvents such as water and alcohols described below, for example, chloroplatinic acid, tetraamminedichloroplatinum, diamminedinitroplatinum, platinum nitrate, platinumammine Complex, and the like, and in particular, JP-A-8-1761.
The following formula [Pt (NH 3 ) x (NO 2 ) yL] Az which can be produced by the method described in Japanese Patent Publication No. 75-75, wherein L represents an alkoxy group, an alkanoyl group or an alkanoyloxy group, and A represents H , NO 2 or NO 3 ,
x is 0, 1 or 2, and y is 1, 2 or 3, provided that the sum of x and y depends on the charge of the central platinum and is 3
Platinum nitroammine complex represented by the following formula, wherein z is in the range of (y-1) to (y-3) and varies depending on the charge of the central metal, is preferred.

【0011】また、上記白金化合物と併用されるコバル
ト化合物としては、白金化合物の溶解のために使用され
る溶媒に溶解するもの、例えば、硝酸コバルト、塩化コ
バルト、酢酸コバルト、蟻酸コバルト、コバルトアセチ
ルアセトナートなどが挙げられるが、特に硝酸コバルト
が好適である。
The cobalt compound to be used in combination with the platinum compound may be a compound dissolved in a solvent used for dissolving the platinum compound, for example, cobalt nitrate, cobalt chloride, cobalt acetate, cobalt formate, cobalt acetylacetate. Nart and the like can be mentioned, and cobalt nitrate is particularly preferable.

【0012】白金化合物とコバルト化合物はそれぞれ任
意の組み合わせで使用することができるが、塩化白金酸
と塩化コバルトを併用した場合には、生成する合金の粒
子径が、他の白金化合物とコバルト化合物を組合わせて
製造した合金粒子より大きくなる傾向がみられる。
The platinum compound and the cobalt compound can be used in any combination. However, when chloroplatinic acid and cobalt chloride are used in combination, the particle size of the alloy formed is different from that of other platinum compounds and cobalt compounds. There is a tendency to be larger than alloy particles produced in combination.

【0013】以上に述べた白金化合物とコバルト化合物
は、これら両者を溶解する共通溶媒に溶解される。その
ような溶媒としては、水、アルコール又はそれらの混合
溶媒などが好適である。
The platinum compound and the cobalt compound described above are dissolved in a common solvent that dissolves both. As such a solvent, water, alcohol, a mixed solvent thereof and the like are suitable.

【0014】溶液中における白金化合物及びコバルト化
合物の濃度は特に制限されるものではないが、一般に
は、各化合物の濃度が20〜50重量%の範囲内になる
ように溶解することが好ましい。また、溶液中における
白金化合物とコバルト化合物の比率は、白金対コバルト
の金属換算モル比で、通常、2:8〜8:2、好ましく
は5.5:4.5〜4.5:5.5の範囲内にあること
ができ、特にほぼ等モル比であるのが好適である。
Although the concentrations of the platinum compound and the cobalt compound in the solution are not particularly limited, it is generally preferable to dissolve the compounds so that the concentration of each compound is in the range of 20 to 50% by weight. The ratio of the platinum compound to the cobalt compound in the solution is usually from 2: 8 to 8: 2, preferably from 5.5: 4.5 to 4.5: 5.5. It can be in the range of 5, especially preferably approximately equimolar.

【0015】このようにして調製される白金化合物及び
コバルト化合物を含有する溶液は、触媒担体としてのカ
ーボン粉末に適用され、カーボン粉末上に白金化合物と
コバルト化合物の混合物が付着せしめられる。
The solution containing the platinum compound and the cobalt compound thus prepared is applied to carbon powder as a catalyst carrier, and a mixture of the platinum compound and the cobalt compound is adhered to the carbon powder.

【0016】カーボン粉末への該溶液の適用は、例え
ば、白金化合物及びコバルト化合物を含有する溶液にカ
ーボン粉末を浸漬した後乾燥する方法、カーボン粉末に
白金化合物及びコバルト化合物を含有する溶液を噴霧し
た後乾燥する方法等により行うことができる。
The application of the solution to the carbon powder is performed, for example, by immersing the carbon powder in a solution containing a platinum compound and a cobalt compound and then drying the solution, and spraying the solution containing the platinum compound and the cobalt compound on the carbon powder. The post-drying method can be used.

【0017】かくして、白金化合物及びコバルト化合物
が付着したカーボン粉末が得られる。白金化合物及びコ
バルト化合物の付着量は、通常、カーボン粉末100重
量部あたり、両化合物の合計量が5〜900重量部の範
囲内となるようにするのが好適である。
Thus, a carbon powder to which the platinum compound and the cobalt compound are adhered is obtained. Usually, the amount of the platinum compound and the cobalt compound to be deposited is preferably such that the total amount of both compounds is within the range of 5 to 900 parts by weight per 100 parts by weight of the carbon powder.

【0018】上記のカーボン粉末としては、触媒担体と
して通常使用されているものが同様に使用可能であり、
例えば、カーボンブラック、グラファイト、活性炭など
が挙げられる。これらのカーボン粉末はそのまま使用す
ることもできるが、一般的には、それ自体既知の方法、
例えば、硝酸を用いて予め親水化処理を施しておくこと
が望ましい。
As the above-mentioned carbon powder, those commonly used as a catalyst carrier can be similarly used.
For example, carbon black, graphite, activated carbon and the like can be mentioned. These carbon powders can be used as they are, but generally, a method known per se,
For example, it is desirable to previously perform a hydrophilic treatment using nitric acid.

【0019】得られる白金化合物及びコバルト化合物の
混合物が付着したカーボン粉末は、次いで還元処理され
る。還元は、通常、水素ガスを用いて行われる。具体的
には、例えば、白金化合物及びコバルト化合物の混合物
が付着したカーボン粉末を、ガス置換可能な電気炉に入
れ、場合により不活性ガス雰囲気と置換した後、水素ガ
スを流しながら還元を行う。その際の還元温度は約15
0〜約800℃、好ましくは約200〜約600℃の範
囲内とすることができ、また、還元時間は通常1〜4時
間程度とすることができる。
The resulting carbon powder to which the mixture of the platinum compound and the cobalt compound adheres is then subjected to a reduction treatment. The reduction is usually performed using hydrogen gas. Specifically, for example, a carbon powder to which a mixture of a platinum compound and a cobalt compound has adhered is placed in a gas-replaceable electric furnace and, if necessary, replaced with an inert gas atmosphere, and then reduced while flowing hydrogen gas. The reduction temperature at that time is about 15
The temperature can be in the range of 0 to about 800 ° C, preferably about 200 to about 600 ° C, and the reduction time can be usually about 1 to 4 hours.

【0020】これにより、白金−コバルト合金が好まし
くは平均粒子径7nm以下の微細粒子状でカーボン粉末上
に均一に分散付着してなる白金−コバルト合金担持触媒
が得られる。
As a result, a platinum-cobalt alloy-supported catalyst is obtained in which the platinum-cobalt alloy is preferably dispersed and adhered to the carbon powder in the form of fine particles having an average particle diameter of preferably 7 nm or less.

【0021】以上述べた本発明の方法によれば、白金化
合物とコバルト化合物の混合物の低温における同時還元
という極めて簡単な方法により、白金−コバルト合金触
媒をカーボン粉末上に極めて微細な粒子状で担持するこ
とが可能であり、得られる白金−コバルト合金担持触媒
は、例えば、燃料電池の電極触媒層として有利に使用す
ることができる。
According to the method of the present invention described above, a platinum-cobalt alloy catalyst is supported on carbon powder in extremely fine particles by a very simple method of simultaneous reduction of a mixture of a platinum compound and a cobalt compound at a low temperature. The resulting platinum-cobalt alloy-supported catalyst can be advantageously used, for example, as an electrode catalyst layer of a fuel cell.

【0022】以下、実施例により本発明をさらに具体的
に説明するが、本発明の範囲はこれら実施例のみに限定
されるものではない
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.

【0023】[0023]

【実施例】実施例1 白金換算で50gのジニトロジアンミン白金塩を硝酸濃
度500g・dm-3の溶液100mlに添加し、109
℃にて5時間混合攪拌し、ジニトロジアンミン白金塩を
溶解、熟成してトリニトロジアンミン白金の硝酸溶液を
得た。次にこれを80℃のロータリーエバポレーターで
蒸発乾固させて黄茶色粉末を得た。この粉末にエタノー
ルを50℃以下に保持しながら徐々に加えて白金濃度5
0g・dm-3の白金アンミンエトキシド錯体溶液を調製
した。この白金アンミンエトキシド錯体溶液80mlに
エタノール720mlを加えて橙赤色の白金溶液を得
た。この溶液に白金対コバルトの金属換算モル比で1:
1となるように50g・dm -3の硝酸コバルト水溶液を
加えて担持溶液とした。
Example 1 50 g of dinitrodiammine platinum salt in terms of platinum was concentrated in nitric acid.
500g ・ dm-3To 100 ml of the solution of
Mix and stir at 5 ° C for 5 hours to remove dinitrodiammine platinum salt.
Dissolve and ripen the nitric acid solution of trinitrodiammine platinum
Obtained. Next, this is a rotary evaporator at 80 ° C.
Evaporation to dryness gave a yellow-brown powder. Ethanau in this powder
While maintaining the temperature below 50 ° C.
0g ・ dm-3Preparation of Platinum Ammine Ethoxide Complex Solution
did. 80 ml of this platinum ammine ethoxide complex solution
720 ml of ethanol was added to obtain an orange-red platinum solution.
Was. The solution was added with a molar ratio of platinum to cobalt in terms of metal of 1:
50g · dm to be 1 -3Of aqueous cobalt nitrate solution
In addition, a supporting solution was obtained.

【0024】この担持溶液に、60%硝酸水溶液で親水
化処理しカーボン粉末VulcanXC-72R(Cabot社製)4.8g
を加えて超音波ホモジナイザーで混合した。その後、該
担持溶液をロータリーエバポレーターにて、78℃で3
時間吸引、乾燥させた。ついで、この担持乾燥物を電気
炉に入れ、7%水素ガスを含む窒素と水素の混合ガスで
置換し、400℃まで昇温後同温度で2時間保持した。
しかる後、炉内を窒素ガスで置換し室温まで冷却して白
金−コバルト合金担持触媒を得た。
The carrier solution is hydrophilized with a 60% nitric acid aqueous solution, and 4.8 g of carbon powder VulcanXC-72R (Cabot) is prepared.
Was added and mixed with an ultrasonic homogenizer. Then, the supported solution was mixed at 78 ° C. with a rotary evaporator for 3 hours.
It was sucked and dried for a time. Next, the loaded dried product was placed in an electric furnace, replaced with a mixed gas of nitrogen and hydrogen containing 7% hydrogen gas, heated to 400 ° C., and kept at the same temperature for 2 hours.
Thereafter, the furnace was replaced with nitrogen gas and cooled to room temperature to obtain a platinum-cobalt alloy-supported catalyst.

【0025】実施例2 実施例1と同様にして得られた白金アンミンエトキシド
溶液に白金対コバルトの金属換算モル比で1:1となる
ように50g・dm-3の塩化コバルト水溶液を加えて担
持溶液とし、実施例1と同様に処理して白金−コバルト
合金担持触媒を得た。
Example 2 A 50 g · dm −3 aqueous solution of cobalt chloride was added to a platinum ammine ethoxide solution obtained in the same manner as in Example 1 so that the molar ratio of platinum to cobalt was 1: 1 in terms of metal. A platinum-cobalt alloy-supported catalyst was obtained by treating it as a supported solution in the same manner as in Example 1.

【0026】実施例3 実施例1と同様にして得られた白金アンミンエトキシド
溶液に白金対コバルトの金属換算モル比で1:1となる
ように50g・dm-3のコバルトアセチルアセトナート
水溶液加えて担持溶液とし、実施例1と同様に処理して
白金−コバルト合金担持触媒を得た。
Example 3 A 50 g · dm -3 aqueous solution of cobalt acetylacetonate was added to the platinum ammine ethoxide solution obtained in the same manner as in Example 1 so that the molar ratio of platinum to cobalt was 1: 1 in terms of metal. The resulting solution was treated in the same manner as in Example 1 to obtain a platinum-cobalt alloy supported catalyst.

【0027】実施例4 塩化白金酸を白金メタル量で4.0gとなるように秤量
してエチルアルコール800mLに溶解した白金溶液
に、白金対コバルトの金属換算モル比で1:1となるよ
うに50g・dm-3の硝酸コバルト水溶液を加えて担持
溶液とし、実施例1と同様にして白金−コバルト合金担
持触媒を得た。
Example 4 A chloroplatinic acid was weighed to a platinum metal amount of 4.0 g and dissolved in 800 mL of ethyl alcohol in a platinum solution so that the molar ratio of platinum to cobalt was 1: 1 in terms of metal. A platinum-cobalt alloy-supported catalyst was obtained in the same manner as in Example 1 by adding a 50 g · dm −3 aqueous solution of cobalt nitrate to make a supported solution.

【0028】比較例1 実施例1と同様にして得られる白金アンミンエトキシド
溶液800mLに、60%硝酸水溶液で親水化処理しカ
ーボン粉末VulcanXC-72R(Cabot社製)4.8gを加えて超
音波ホモジナイザーで混合し、白金担持溶液を得た。こ
の白金担持溶液をロータリーエバポレーターで79℃に
昇温後同温度で16時間加熱還元した後、該白金担持溶
液をろ過、乾燥して白金担持触媒を得る。この白金担持
触媒をコバルト濃度20g・dm-3の硝酸コバルト水溶
液60.5mLに超音波ホモジナイザーで分散し、ロー
タリーエバポレーターにて79℃で3時間加熱、吸引し
乾燥させる。この担持乾燥物を電気炉に入れ、7%水素
ガスを含む窒素と水素の混合ガスで置換し、400℃ま
で昇温後同温度で2時間保持した。しかる後、炉内を窒
素ガスで置換し室温まで冷却して白金−コバルト合金担
持触媒を得た。
Comparative Example 1 To 800 mL of a platinum ammine ethoxide solution obtained in the same manner as in Example 1, 4.8 g of a carbon powder VulcanXC-72R (manufactured by Cabot) subjected to hydrophilization treatment with a 60% aqueous nitric acid solution was added, and ultrasonic waves were added. The mixture was mixed with a homogenizer to obtain a platinum-supported solution. The platinum-supported solution is heated to 79 ° C. by a rotary evaporator and then reduced by heating at the same temperature for 16 hours. Then, the platinum-supported solution is filtered and dried to obtain a platinum-supported catalyst. This platinum-supported catalyst is dispersed in 60.5 mL of an aqueous cobalt nitrate solution having a cobalt concentration of 20 g · dm −3 with an ultrasonic homogenizer, heated at 79 ° C. for 3 hours by a rotary evaporator, sucked and dried. The dried support was placed in an electric furnace, replaced with a mixed gas of nitrogen and hydrogen containing 7% hydrogen gas, heated to 400 ° C., and kept at the same temperature for 2 hours. Thereafter, the furnace was replaced with nitrogen gas and cooled to room temperature to obtain a platinum-cobalt alloy-supported catalyst.

【0029】比較例2 比較例1と同様にして得られる担持乾燥物を電気炉に入
れ、7%水素ガスを含む窒素と水素の混合ガスで置換
し、800℃まで昇温後同温度で2時間保持した。しか
る後、炉内を窒素ガスで置換し室温まで冷却して白金−
コバルト合金担持触媒を得た。
Comparative Example 2 The supported dried product obtained in the same manner as in Comparative Example 1 was placed in an electric furnace, and replaced with a mixed gas of nitrogen and hydrogen containing 7% hydrogen gas. Hold for hours. Thereafter, the inside of the furnace was replaced with nitrogen gas, cooled to room temperature, and
A cobalt alloy supported catalyst was obtained.

【0030】上記実施例および比較例で得られた白金−
コバルト合金担持触媒について高分解能走査型電子顕微
鏡(SEM)で撮影を行なった。その結果、実施例1〜
4において作製した白金−コバルト合金担持触媒は触媒
粒子がカーボン担体上に微細に分散しているのに対し
て、比較例1、2の白金−コバルト合金担持触媒は触媒
粒子の一部が凝集していた。
The platinum obtained in the above Examples and Comparative Examples
The cobalt alloy-supported catalyst was photographed with a high-resolution scanning electron microscope (SEM). As a result, Examples 1 to
In the platinum-cobalt alloy-supported catalyst prepared in Example 4, the catalyst particles were finely dispersed on the carbon support, whereas in the platinum-cobalt alloy-supported catalysts of Comparative Examples 1 and 2, a part of the catalyst particles aggregated. I was

【0031】また、高分解能SEM写真により、カーボ
ン担体上に分散している白金−コバルト合金担持触媒の
平均粒子径を求めた。その結果を表1に示す。
The average particle size of the platinum-cobalt alloy-supported catalyst dispersed on the carbon support was determined from a high-resolution SEM photograph. Table 1 shows the results.

【0032】表1から明らかなように、実施例1〜4で
得られた触媒は比較例1、2で得られた触媒と比べて平
均粒子径が遥かに小さいことがわかる。また、X線回折
法により得られた実施例1〜4の白金−コバルト担持触
媒の格子定数は同一組成の白金−コバルト合金の理論格
子定数(0.373nm)とほぼ一致しており、本発明
の方法で製造される触媒の白金−コバルトは合金化して
いることが確認された。
As is clear from Table 1, the catalysts obtained in Examples 1 to 4 have a much smaller average particle diameter than the catalysts obtained in Comparative Examples 1 and 2. In addition, the lattice constants of the platinum-cobalt supported catalysts of Examples 1 to 4 obtained by the X-ray diffraction method almost coincide with the theoretical lattice constant (0.373 nm) of the platinum-cobalt alloy having the same composition. It was confirmed that the platinum-cobalt of the catalyst produced by the above method was alloyed.

【0033】[0033]

【表1】 [Table 1]

【0034】さらに、実施例1及び比較例2の白金−コ
バルト担持触媒を使って作製したカソード極と白金を4
0wt%担持した白金担持触媒を使って作製したアノー
ド極とプロトン導電性高分子電解質膜ナフィオン112
(デュポン社製)とを接合して電極接合体を作製した。
該接合体を使用して燃料電池を構成し、アノード極用ガ
スとして純水素を、またカソード極用ガスとして酸素を
使用してI−V特性の測定を行った。その結果より、
0.6A/cm2負荷時における電圧を求めた。その結
果を表2に示す。表2の結果から明らかなように、実施
例1の白金−コバルト担持触媒の電圧は高いことがわか
る。
Further, the cathode prepared using the platinum-cobalt supported catalysts of Example 1 and Comparative Example 2 and platinum
Anode and Proton-Conducting Polymer Electrolyte Membrane Nafion 112 Produced Using Pt-Supported Catalyst Supported at 0 wt%
(Manufactured by DuPont) to produce an electrode assembly.
A fuel cell was constructed using the assembly, and IV characteristics were measured using pure hydrogen as an anode electrode gas and oxygen as a cathode electrode gas. From the result,
The voltage at a load of 0.6 A / cm 2 was determined. Table 2 shows the results. As is clear from the results in Table 2, the voltage of the platinum-cobalt supported catalyst of Example 1 was high.

【0035】[0035]

【表2】 [Table 2]

フロントページの続き (72)発明者 井上 秀男 埼玉県草加市青柳2丁目12番30号 石福金 属興業株式会社草加第一工場研究部 Fターム(参考) 4G069 AA03 AA08 BA08A BA08B BA21A BA21B BA21C BA27A BA27B BA27C BB02A BB02B BB08A BB08B BB08C BB12A BB12B BB12C BC67A BC67B BC67C BC75A BC75B BC75C BE20A BE20B BE20C CC32 FB44 FC07 4K001 AA07 AA41 DB19 HA12 Continued on the front page (72) Inventor Hideo Inoue 2-12-30 Aoyagi, Soka City, Saitama Prefecture Ishifuku Jin Kogyo Co., Ltd. Soka 1st Plant Research Department F-term (reference) 4G069 AA03 AA08 BA08A BA08B BA21A BA21B BA21C BA27A BA27B BA27C BB02A BB02B BB08A BB08B BB08C BB12A BB12B BB12C BC67A BC67B BC67C BC75A BC75B BC75C BE20A BE20B BE20C CC32 FB44 FC07 4K001 AA07 AA41 DB19 HA12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 白金化合物及びコバルト化合物を含有す
る溶液を用いてカーボン粉末上に白金化合物とコバルト
化合物の混合物を付着させた後還元することを特徴とす
る白金−コバルト合金担持触媒の製造方法。
1. A method for producing a platinum-cobalt alloy-supported catalyst, comprising depositing a mixture of a platinum compound and a cobalt compound on carbon powder using a solution containing the platinum compound and a cobalt compound, and then reducing the mixture.
【請求項2】 白金化合物が塩化白金酸、テトラアンミ
ンジクロロ白金、ジアンミンジニトロ白金、硝酸白金又
は白金アンミン系錯体である請求項1に記載の方法。
2. The method according to claim 1, wherein the platinum compound is chloroplatinic acid, tetraamminedichloroplatinum, diamminedinitroplatinum, platinum nitrate or a platinumammine complex.
【請求項3】 白金化合物が式 [Pt(NH3)x(NO2)yL]Az 式中、 Lはアルコキシ基、アルカノイル基又はアルカノイルオ
キシ基を表し、 AはH、NO2又はNO3を表し、 xは0、1又は2であり、 yは1、2又は3であり、 ただし、xとyの合計は中心白金の電荷によって変わり
3〜5の範囲内にあり、 zは中心金属の電荷によって変わり(y−1)〜(y−3)
の範囲内にあるで示される白金ニトロアンミン錯体であ
る請求項1又は2に記載の方法。
3. A platinum compound having the formula [Pt (NH 3 ) x (NO 2 ) y L] A z wherein L represents an alkoxy group, an alkanoyl group or an alkanoyloxy group, and A represents H, NO 2 or NO. 3 represents, x is 0, 1 or 2, y is 1, 2 or 3, provided that the sum of x and y is in the range of 3-5 depends charge of the central platinum, z is the center (Y-1) to (y-3) depending on the charge of the metal
The method according to claim 1 or 2, which is a platinum nitroammine complex represented by the following formula:
【請求項4】 コバルト化合物が硝酸コバルト、塩化コ
バルト、酢酸コバルト、蟻酸コバルト又はコバルトアセ
チルアセトナートである請求項1〜3のいずれかに記載
の方法。
4. The method according to claim 1, wherein the cobalt compound is cobalt nitrate, cobalt chloride, cobalt acetate, cobalt formate or cobalt acetylacetonate.
【請求項5】 白金化合物とコバルト化合物の比率が白
金対コバルトの金属換算モル比で2:8〜8:2の範囲
内にある請求項1〜4のいずれかに記載の方法。
5. The method according to claim 1, wherein the ratio of the platinum compound to the cobalt compound is in the range of 2: 8 to 8: 2 in terms of the molar ratio of platinum to cobalt in terms of metal.
【請求項6】 還元を水素ガスの存在下に150〜80
0℃の温度で行う請求項1〜5項のいずれかに記載の方
法。
6. The reduction is carried out in the presence of hydrogen gas at 150-80.
The method according to any one of claims 1 to 5, which is performed at a temperature of 0 ° C.
JP2000286683A 2000-09-21 2000-09-21 Method for producing platinum-cobalt alloy catalyst Pending JP2002095969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286683A JP2002095969A (en) 2000-09-21 2000-09-21 Method for producing platinum-cobalt alloy catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286683A JP2002095969A (en) 2000-09-21 2000-09-21 Method for producing platinum-cobalt alloy catalyst

Publications (1)

Publication Number Publication Date
JP2002095969A true JP2002095969A (en) 2002-04-02

Family

ID=18770569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286683A Pending JP2002095969A (en) 2000-09-21 2000-09-21 Method for producing platinum-cobalt alloy catalyst

Country Status (1)

Country Link
JP (1) JP2002095969A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502758A (en) * 2007-11-09 2011-01-27 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing catalyst and use as electrocatalyst
EP3032624A4 (en) * 2013-08-09 2016-07-27 Nissan Motor Catalyst particles, and electrocatalyst, electrolyte membrane-electrode assembly, and fuel cell using such catalyst particles
CN111755707A (en) * 2020-07-02 2020-10-09 无锡威孚高科技集团股份有限公司 Preparation method of platinum-cobalt alloy catalyst
JP2021155784A (en) * 2020-03-26 2021-10-07 トヨタ紡織株式会社 Method for producing metal nanoparticles, method for producing membrane electrode assembly, and method for producing solid polymer electrolyte fuel cell
CN113540481A (en) * 2021-07-16 2021-10-22 无锡威孚高科技集团股份有限公司 Platinum-cobalt alloy carbon catalyst for proton exchange membrane fuel cell and preparation method thereof
DE102022101625A1 (en) 2021-01-27 2022-07-28 Toyota Boshoku Kabushiki Kaisha PROCESSES FOR THE MANUFACTURE OF A SUPPORTED ALLOY FINE PARTICULATE CATALYST, ELECTRODE, FUEL CELL, METHOD FOR THE MANUFACTURE OF ALLOY FINE PARTICLES, SUPPORTED ALLOY FINE PARTICULATE CATALYST, ALLOY FINE PARTICLES, METHOD FOR MANUFACTURE OF A DIAPHRAGM ELECTRODE ASSEMBLY AND METHOD FOR MANUFACTURE OF A FUEL CELL

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502758A (en) * 2007-11-09 2011-01-27 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing catalyst and use as electrocatalyst
EP3032624A4 (en) * 2013-08-09 2016-07-27 Nissan Motor Catalyst particles, and electrocatalyst, electrolyte membrane-electrode assembly, and fuel cell using such catalyst particles
JP2021155784A (en) * 2020-03-26 2021-10-07 トヨタ紡織株式会社 Method for producing metal nanoparticles, method for producing membrane electrode assembly, and method for producing solid polymer electrolyte fuel cell
US12002969B2 (en) 2020-03-26 2024-06-04 Toyota Boshoku Kabushiki Kaisha Method for producing metal nanoparticles, method for producing membrane electrode assembly, and method for producing polymer electrolyte fuel cell
CN111755707A (en) * 2020-07-02 2020-10-09 无锡威孚高科技集团股份有限公司 Preparation method of platinum-cobalt alloy catalyst
CN111755707B (en) * 2020-07-02 2022-05-13 无锡威孚高科技集团股份有限公司 Preparation method of platinum-cobalt alloy catalyst
DE102022101625A1 (en) 2021-01-27 2022-07-28 Toyota Boshoku Kabushiki Kaisha PROCESSES FOR THE MANUFACTURE OF A SUPPORTED ALLOY FINE PARTICULATE CATALYST, ELECTRODE, FUEL CELL, METHOD FOR THE MANUFACTURE OF ALLOY FINE PARTICLES, SUPPORTED ALLOY FINE PARTICULATE CATALYST, ALLOY FINE PARTICLES, METHOD FOR MANUFACTURE OF A DIAPHRAGM ELECTRODE ASSEMBLY AND METHOD FOR MANUFACTURE OF A FUEL CELL
CN113540481A (en) * 2021-07-16 2021-10-22 无锡威孚高科技集团股份有限公司 Platinum-cobalt alloy carbon catalyst for proton exchange membrane fuel cell and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2880450B2 (en) Platinum-aluminum alloy catalyst for fuel cell and method for its production and use
JP4590937B2 (en) Electrode catalyst and method for producing the same
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
US8541146B2 (en) Photocatalytic methods for preparation of electrocatalyst materials
JP5168452B2 (en) Method for producing electrode catalyst for fuel cell
JPH05208135A (en) Electrode catalyst for negative electrode
JPH06176766A (en) Platinoid electrode catalyst and its manufacture
JP2016003396A (en) Synthesis of alloy nanoparticles as stable core for core-shell electrode catalysts
US11814737B2 (en) Process for producing alloy nanoparticles
WO2021114056A1 (en) Fuel cell cathode catalyst and preparation method therefor, membrane electrode and fuel cell
US8178462B2 (en) Method for production of electrode catalyst for fuel cell
CN111342069B (en) Surface gold-modified high-load carbon-supported platinum-cobalt catalyst and preparation method and application thereof
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
US20100304268A1 (en) Ternary alloy catalysts for fuel cells
JP2002095969A (en) Method for producing platinum-cobalt alloy catalyst
JP2005196972A (en) Manufacturing method of electrode catalyst
JP2007324092A (en) Manufacturing method of platinum or platinum alloy supported catalyst
JP3890653B2 (en) Methanol fuel cell
JP2002222655A (en) Cathode catalyst for fuel cell
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
JP2001205086A (en) Method for manufacturing platinum/ruthenium alloy- bearing catalyst
US20100304960A1 (en) Alloy fuel cell catalysts
JP2000107606A (en) Production of catalyst
RU2778126C1 (en) Method for producing a bimetallic electrocatalyst based on platinum nuclei