JP3890653B2 - Methanol fuel cell - Google Patents

Methanol fuel cell Download PDF

Info

Publication number
JP3890653B2
JP3890653B2 JP05801497A JP5801497A JP3890653B2 JP 3890653 B2 JP3890653 B2 JP 3890653B2 JP 05801497 A JP05801497 A JP 05801497A JP 5801497 A JP5801497 A JP 5801497A JP 3890653 B2 JP3890653 B2 JP 3890653B2
Authority
JP
Japan
Prior art keywords
alloy
catalyst
methanol
fuel cell
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05801497A
Other languages
Japanese (ja)
Other versions
JPH10255831A (en
Inventor
優 吉武
直樹 吉田
真二 寺園
宏美 高橋
豊暁 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP05801497A priority Critical patent/JP3890653B2/en
Publication of JPH10255831A publication Critical patent/JPH10255831A/en
Application granted granted Critical
Publication of JP3890653B2 publication Critical patent/JP3890653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属間化合物を含む合金と−CF2 SO3 -基を有する化合物とから構成される触媒を用いるメタノール燃料電池に関する。
【0002】
【従来の技術】
液体燃料であるメタノールを直接使用するメタノール燃料電池は、燃料の取り扱いやすさに加え、安価な燃料ということで家庭用や産業用の比較的小出力規模の電源として期待されている。
【0003】
メタノール−酸素燃料電池の理論出力電圧は、水素燃料のものとほぼ同じ1.2V(25℃)であり原理的には同様の特性が期待できる。このためメタノールの陽極酸化反応について数多くの研究があるが、充分な活性を有するメタノールの酸化触媒は未だ見いだされていない。例えば白金触媒の場合には、メタノール燃料電池のメタノール極における陽極酸化反応の過電圧はかなり大きくなる。そのため、メタノール燃料電池の端子電圧は、空気又は酸素極における酸素還元反応の過電圧とあいまって軽負荷状態でも既に低く、さらに出力電流の増加とともに低下し、その値は熱力学的データから期待できる値よりも大幅に小さくなる。
【0004】
また、従来は導電性のカーボン担体に白金単独の他に、白金−ルテニウム合金(特開平2−111440)又は白金−スズ合金(特開平2−114452)を担持してメタノール酸化活性の向上を図る試みがなされていた。しかし、このような白金系の触媒を大量に使用してもメタノールの酸化反応は遅く、大電流を取り出すことができないため、さらにメタノール酸化活性の優れた触媒の開発が望まれている。
【0005】
さらにまた、従来のメタノール燃料電池においては、供給したメタノールがメタノール極で反応せず、電解質を通ってそのまま空気又は酸素極に達する、いわゆるクロスリーク現象により、電極上で酸素と直接反応して電池性能の低下を引き起こす問題があった。このようなメタノールのクロスリーク量を低減させるためにも、メタノール酸化活性に優れた触媒の開発が必要とされている。
【0006】
【発明が解決しようとする課題】
上記のように、従来のメタノール燃料電池用の電極触媒においては、白金を主体とする貴金属元素又はこれらとの合金系の触媒を比較的比表面積の高い(数十〜数千m2 /g)導電性のカーボン担体に高分散に担持させることにより、メタノール酸化を向上させる試みがなされている。
【0007】
しかし、白金はメタノール酸化に対する活性は比較的高いものの、メタノール酸化過程におけるCO型の吸着種が触媒表面を被毒し活性低下をまねくことが知られており、この白金表面の被毒を緩和するために、白金−ルテニウム合金や白金−スズ合金又は白金と他の貴金属元素との合金化により、メタノール酸化活性の向上が図られているが、必ずしも満足のいくものではなかった。
【0008】
本発明の目的は、従来の電極触媒に比べさらに一層のメタノール高酸化活性を有し、吸着種による被毒を受けにくい、すなわち長期的に触媒の活性が持続し得るメタノール極用触媒を使用したメタノール燃料電池を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、白金族元素から選ばれる1種以上の元素と希土類元素から選ばれる1種以上の元素との合金であって該合金中に白金族元素と希土類元素との金属間化合物を含む合金と、−CF2 SO3 -基を有する化合物とから構成される触媒が、メタノール極に用いられることを特徴とするメタノール燃料電池を提供する。
【0010】
【発明の実施の形態】
本発明のメタノール燃料電池においてメタノール極の触媒を構成する合金は白金元素すなわちルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金から選ばれる1種以上の元素と、希土類元素すなわちランタノイド元素、スカンジウム、及びイットリウムから選ばれる1種以上の元素との合金である。該合金は上記白金族元素から選ばれる1種以上の元素と上記希土類元素から選ばれる1種以上の元素との金属間化合物、例えば二元系金属間化合物を含む。
【0011】
合金中の金属間化合物の生成の確認及び含有量の算出は、粉末X線回折法により測定できる。あらかじめ同定されている金属間化合物を粉末X線回折で測定し、そのピーク強度比から検量線を作成し、この検量線を使って合金中の金属間化合物の含有量を求めうる。
【0012】
次に本発明における電極触媒のもう一つの構成要素である−CF2 SO3 -基を有する化合物について説明する。−CF2 SO3 -基を有する化合物としては、好ましくはCF3 −(CF2n −SO3 H(式中、nは0〜12の整数を示す)で表される化合物、又はオレフィン(炭化水素系又はフッ素化炭化水素系)とCF2 =CF−(OCF2 CFX)m −Oq −(CF2p −SO3 H(式中、mは0〜3の整数、pは1〜12の整数、qは0又は1、Xはフッ素原子又はトリフルオロメチル基を示す)で表される化合物との共重合体からなるイオン交換樹脂などが挙げられる。なかでも、トリフルオロメタンスルホン酸、パーフルオロカーボンスルホン酸型のイオン交換樹脂などは特に好ましい。
【0013】
本発明において触媒中の−CF2 SO3 -基を有する化合物の含有量としては、合金中の希土類元素のうち少なくとも合金粒子の表面に存在する希土類元素と安定な錯体を形成しうる量が好ましい。具体的には重量比で、(合金)/(−CF2 SO3 -基を有する化合物)が20/1〜1/20、特には10/1〜1/10であるのが好ましい。
【0014】
電極触媒を構成する合金の粒子径は、高活性を得るため、80重量%以上が1〜20nmであるのが好ましく、特には、80重量%以上が2〜5nmであるのが好ましい。
【0015】
本発明における電極触媒を構成する合金としては、そのまま合金の微粒子の状態で使用できる。さらには、適当な担体に担持させることにより、容易に高い比表面積と安定性を確保できる。担体としては導電性と耐食性を兼ね備えたものが好ましく、特に、アセチレンブラック等のカーボンブラック、グラファイトが好ましい。これらは高い担持率でも良好な分散性を確保する。上記担体の比表面積としては、30〜1600m2 /g、特には100〜1300m2 /gであるものが好ましい。
【0016】
また、固体高分子型燃料電池では、高電流密度での運転、高いガス拡散性が求められるため、電極層の厚さを薄くし、電極層内に触媒粒子を分散性よく存在させるとともに触媒量を確保することが必要である。担体に担持していない微粉末触媒は、電極層を薄くし触媒を高密度に使用するのに好適である。また担体に触媒粒子を担持した担持触媒は、好ましい粒径の触媒粒子を分散性よく得るのに好適である。よって、合金は担持触媒全重量中の5〜60重量%、特には10〜50重量%で担持されてなるものが好ましい。
【0017】
本発明における電極触媒を構成する合金粒子を調製する際の希土類元素を含む原料化合物としては、希土類元素の酸化物、水酸化物、塩化物、臭化物などのハロゲン化物、硝酸塩、硫酸塩、炭酸塩、硫化物、メトキシド、エトキシドなどのアルコキシド、酢酸塩、シュウ酸塩などの有機酸塩などが幅広く使用できる。
【0018】
電極触媒の調製方法としては、白金族元素が白金である場合を例にとると、白金を含む化合物である塩化白金酸の水溶液又は水/アルコール系溶媒の混合溶液中に、メタノールなどの還元剤を添加し、還流することにより白金コロイド液を得る。この白金コロイド液に希土類元素を含む化合物を溶解又は分散させ、加熱撹拌し、希土類元素を含む化合物を白金コロイド粒子に吸着させる。必要であれば溶液中のpHを調整して、希土類元素を水酸化物などとして白金コロイド粒子上に沈析させる。さらにろ過、洗浄、乾燥を適宜行う。そして、水素ガスなどにより還元処理を施した後、真空中又はヘリウム、アルゴン、窒素等の不活性気体雰囲気下で、熱処理を行うことにより電極触媒を構成する合金粒子が得られる。上記合金粒子をパーフルオロカーボンスルホン酸型イオン交換樹脂溶液等の−CF2 SO3 -基を有する化合物の溶液中に分散させ、還流等により上記合金粒子に該化合物を吸着させた後、分散媒を除去することにより電極触媒が得られる。
【0019】
また、担体に担持した電極触媒の調製方法としては、例えば、白金族元素を含む化合物として塩化白金酸の水溶液中又は水/アルコール系溶媒の混合溶液中などに、希土類元素を含む化合物を溶解又は分散させるとともにカーボンブラック等の担体を分散させる。次に、加熱撹拌し、上記化合物を担体に吸着させる。必要であれば、溶液中のpHを調整して、希土類元素を水酸化物などとして担体上に沈析させる。さらにろ過、洗浄、乾燥を適宜行う。そして、前述と同様の還元処理及び熱処理を行うことにより電極触媒を構成する合金粒子を担体に担持したものが得られる。これを前述と同様にトリフルオロメタンスルホン酸溶液等の−CF2 SO3 -基を有する化合物の溶液中に分散させ、還流等により該化合物を吸着させた後、分散媒を除去することにより電極触媒が得られる。
【0020】
希土類元素を含む原料化合物として酸化物を使用する場合には、粒子径5〜20nmのものを使用するのが好ましい。上記酸化物の合金粒子は、例えば白金を担持したカーボン触媒を蒸留水に分散させ、これに添加元素の酸化物を添加した後、蒸発乾固させ、同様に還元処理、熱処理を行うことにより得られる。また、上記合金粒子の形成において、熱処理温度は600〜900℃が好ましい。
【0021】
また、上述と同様の手法により電極触媒を構成する合金粒子の調製時に白金族元素を含む化合物と希土類元素を含む化合物との組成比を変えることにより、組成比の異なる金属間化合物を含む合金を得ることもできる。
【0022】
本発明におけるメタノール極としてのガス拡散電極は、通常の既知の手法にしたがって製造できる。例えば、メタノール極は、上記触媒をポリテトラフルオロエチレンなどの疎水性樹脂結着材で保持し、多孔質体のシート状のガス拡散電極とする。一方、空気又は酸素極はカーボン担持白金などの触媒をポリテトラフルオロエチレンなどの疎水性樹脂結着材で保持し、同様のガス拡散電極とする。また別の方法としては、ガス拡散電極を構成する材料を含む分散混合液の噴霧、塗布、ろ過などの方法により製造できる。
【0023】
ガス拡散電極とイオン交換膜との接合体の製造方法としては、イオン交換膜上にガス拡散電極を直接形成する方法、ポリテトラフルオロエチレンフィルムなどの基材上に一旦ガス拡散電極を層状に形成した後にこれをイオン交換膜に転写する方法、ガス拡散電極とイオン交換膜とをホットプレスする方法、接着液により密着して形成させる方法など種々の方法を適用できる。
【0024】
【作用】
本発明における電極触媒がメタノールの陽極酸化反応に対して高い活性を示す理由は明確ではないが、以下のように推測される。すなわち、合金粒子表面に存在する希土類元素に−CF2 SO3 -基を有する化合物が配位することによりルイス酸が形成される。希土類元素のルイス酸においては配位数が大きく、メタノールとの相互作用が強くなるため多電子移動が必要なメタノール酸化を促進する。またルイス酸を形成する希土類元素は白金族元素と合金を形成しているため白金族元素中に非常に分散性よく分散している。すなわち−CF2 SO3 -基を有する化合物に配位して形成されるルイス酸が触媒上に高分散かつ有効に存在するため、効果的にメタノール酸化反応に対する活性を向上させうると考えられる。
【0025】
【実施例】
以下、本発明の具体的な態様を実施例(例1〜3、例8)及び比較例(例4〜7、例9〜10)により説明するが、本発明はこれらに限定されない。
【0026】
〈例1〉
イオン交換水に金属換算で白金0.5gを含む塩化白金酸水溶液と35%ホルマリン水溶液を加え、−10℃に冷却し撹拌を行った。これに40%水酸化ナトリウム水溶液を滴下して1時間還流を行った。希硫酸で中和した後、金属換算でスカンジウム0.5gを含む硫酸スカンジウムを水溶液として添加し、2時間還流を行った。これを、ろ過洗浄した後、減圧下110℃で6時間乾燥させた。次いで、真空に保った電気炉内において、700℃で3時間熱処理を行い、得られたスカンジウム含有白金粒子をさらに硝酸で洗浄して合金を形成しなかったスカンジウム含有化合物を溶解させ、ろ過により除去、洗浄した後、140℃で乾燥させた。このようにしてPt−Sc粒子(本明細書中において「Pt−Sc」はPtとScの合金を示す。)を得た。
【0027】
このPt−Sc粒子の粉末X線回折により、金属間化合物であるPt3 Scが生成していることを確認した。合金の平均粒子径は約4.1nmであった。透過型電子顕微鏡により粒径分布を観察した結果、合金中の80重量%の粒子径は2.0〜7.0nmであった。
【0028】
このPt−Sc粒子に溶質としてCF2 =CF2 とCF2 =CFOCF2 CF(CF3 )OCF2 CF2 SO3 Hとの共重合体からなるイオン交換容量1.1ミリ当量/g乾燥樹脂のイオン交換樹脂(以下、この樹脂をパーフルオロカーボンスルホン酸型イオン交換樹脂という)を溶解した1重量%エタノール溶液5mlと塩化メチレン5mlを加え、ロータリーエバポレータを使って溶媒を留去し、Pt−Sc粒子とパーフルオロカーボンスルホン酸型イオン交換樹脂よりなる触媒を得た。
【0029】
〈例2〉
比表面積が約250m2 /gのカーボンブラック(キャボット社製品名:バルカンXC−72R)をイオン交換水中に分散し、ここに金属換算で白金0.5gを含む塩化白金酸水溶液と硝酸セリウム1.5gを50%メタノール水溶液300ml中に溶解した溶液を添加し、撹拌しながら希アンモニア水を加えpHを10に調整した。さらに、温度60℃で約1時間撹拌した後、ろ過を行い減圧下110℃で6時間乾燥させた。次いで、3%の水素を含有するアルゴン雰囲気下に保たれた電気炉内において、700℃で2時間熱処理を行い、さらに真空中で800℃で3時間熱処理を行った。得られた粉末を例1と同様に硝酸で洗浄した。担持率10重量%のPt−Ce/C粉末(本明細書中において「Pt−Ce/C」はカーボン担体に担持したPtとCeの合金を示す。以下、実施例では同様に表示する。)を得た。
【0030】
このPt−Ce/C粉末の粉末X線回折により、金属間化合物であるPt2 Ceが生成していることを確認した。合金の平均粒子径は約3.1nmであった。透過型電子顕微鏡により粒径分布を観察した結果、合金中の80重量%の粒子径は1.5〜5.5nmであった。
【0031】
このPt−Ce/C粉末に対して例1と同様にしてパーフルオロカーボンスルホン酸型イオン交換樹脂を含浸させ、Pt−Ce/C粉末とパーフルオロカーボンスルホン酸型イオン交換樹脂よりなる触媒を得た。
【0032】
〈例3〉
例2において硝酸セリウム1.5gの代わりに硝酸ユーロピウム1.5gを用いたこと以外は例2と同様にして担持率10重量%のPt−Eu/C粉末を得た。このPt−Eu/C粉末の粉末X線回折により、金属間化合物であるPt2 Euが生成していることを確認した。合金の平均粒子径は約3.2nmであった。透過型電子顕微鏡により粒径分布を観察した結果、合金中の80重量%の粒子径は1.5〜5.5nmであった。
【0033】
このPt−Eu/C粉末を、トリフルオロメタンスルホン酸0.1gを含む水溶液100ml中に分散させ、撹拌還流を2時間行い、Pt−Eu/C粉末にトリフルオロメタンスルホン酸を吸着、担持させて触媒を得た。
【0034】
〈例4〉
例1のパーフルオロカーボンスルホン酸型イオン交換樹脂の含浸処理を行っていないPt−Sc粒子を触媒として使用した。
【0035】
〈例5〉
例2のパーフルオロカーボンスルホン酸型イオン交換樹脂の含浸処理を行っていないPt−Ce/C粉末を触媒として使用した。
【0036】
〈例6〉
例3のトリフルオロメタンスルホン酸の担持処理を行っていないPt−Eu/C粉末を触媒として使用した。
【0037】
〈例7〉
市販の担持率10重量%のPt/C触媒をそのまま使用した。この触媒の粉末X線回折で測定したPt粒子径は約2.3nmであった。透過型電子顕微鏡による粒径分布は、約95重量%の粒子径が1.5〜4.5nmであった。
【0038】
〈例8〉
比表面積が約250m2 /gである市販の10重量%担持Pt−Ru/C触媒粉末(Pt:Ru=1:1、原子比)3.0gをイオン交換水中に分散し、ここに塩化イッテルビウム2.0gを50%メタノール水溶液300ml中に溶解した溶液を添加し、温度60℃で約1時間撹拌した後、ろ過を行い減圧下110℃で6時間乾燥させた。これを真空中で800℃で3時間熱処理した後、得られた粉末を例1と同様に硝酸で洗浄した。このようにして担持率11重量%のPt−Ru−Yb/C粉末を得た。
【0039】
このPt−Ru−Yb/C粉末の粉末X線回折により、金属間化合物であるPtYbが生成していることを確認した。合金の平均粒子径は約3.7nmであった。透過型電子顕微鏡により粒径分布を観察した結果、合金中の80重量%が粒子径は2.0〜6.0nmであった。
【0040】
このPt−Ru−Yb/C粉末に対して例1と同様にしてパーフルオロカーボンスルホン酸型イオン交換樹脂を含浸させ、Pt−Ru−Yb/C粉末とパーフルオロカーボンスルホン酸型イオン交換樹脂よりなる触媒を得た。
【0041】
〈例9〉
例8のパーフルオロカーボンスルホン酸型イオン交換樹脂の含浸処理を行っていないPt−Ru−Yb/C粉末を触媒として使用した。
【0042】
〈例10〉
例8で使用した市販の10重量%Pt−Ru/C触媒をそのまま使用した。
【0043】
[評価結果]
例1〜7で製造した触媒80重量部と粉末状ポリテトラフルオロエチレン20重量部から、白金量が見かけ表面積あたり0.5mg/cm2 になるようにメタノール極を作製し、メタノール燃料電池用半電池に組み込んで、1気圧、80℃でメタノール酸化反応の電極電位を測定した。表1には、メタノール極の0.4Vでの比活性度(単位:mA/mgPt)と、電流密度50mA/cm2 でのメタノール極電位(オーム損を控除したIRフリー電位(単位:mV)、対水素電極基準)を示す。
例8〜10で製造した触媒についても例1と同様の方法で活性を比較した結果を表1に示す。
【0044】
【表1】

Figure 0003890653
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a methanol fuel cell using a catalyst composed of an alloy containing an intermetallic compound and a compound having a —CF 2 SO 3 group.
[0002]
[Prior art]
A methanol fuel cell that directly uses methanol, which is a liquid fuel, is expected to be a relatively small output power source for household and industrial use because it is an inexpensive fuel in addition to easy handling of the fuel.
[0003]
The theoretical output voltage of the methanol-oxygen fuel cell is 1.2 V (25 ° C.) which is almost the same as that of hydrogen fuel, and the same characteristics can be expected in principle. For this reason, there are many studies on the anodic oxidation reaction of methanol, but no methanol oxidation catalyst having sufficient activity has been found yet. For example, in the case of a platinum catalyst, the overvoltage of the anodic oxidation reaction at the methanol electrode of the methanol fuel cell becomes considerably large. Therefore, the terminal voltage of the methanol fuel cell is already low even under light load conditions combined with the overvoltage of the oxygen reduction reaction at the air or oxygen electrode, and further decreases with the increase in output current, which can be expected from thermodynamic data. Significantly smaller than.
[0004]
Conventionally, in addition to platinum alone on a conductive carbon carrier, a platinum-ruthenium alloy (JP-A-2-111440) or a platinum-tin alloy (JP-A-2-114452) is supported to improve methanol oxidation activity. An attempt was made. However, even if such a platinum-based catalyst is used in a large amount, the oxidation reaction of methanol is slow, and a large current cannot be taken out. Therefore, development of a catalyst having further excellent methanol oxidation activity is desired.
[0005]
Furthermore, in the conventional methanol fuel cell, the supplied methanol does not react at the methanol electrode, but directly reaches the air or oxygen electrode through the electrolyte, so that the cell directly reacts with oxygen on the electrode due to the so-called cross leak phenomenon. There was a problem that caused a drop in performance. In order to reduce the amount of methanol cross-leakage, it is necessary to develop a catalyst excellent in methanol oxidation activity.
[0006]
[Problems to be solved by the invention]
As described above, in a conventional electrode catalyst for a methanol fuel cell, a noble metal element mainly composed of platinum or an alloy catalyst thereof has a relatively high specific surface area (several tens to several thousand m 2 / g). Attempts have been made to improve methanol oxidation by supporting the conductive carbon carrier in a highly dispersed manner.
[0007]
However, although platinum has a relatively high activity against methanol oxidation, it is known that CO-type adsorbed species in the methanol oxidation process poisons the catalyst surface, leading to a decrease in activity. This alleviates this poisoning of the platinum surface. Therefore, although the methanol oxidation activity has been improved by alloying platinum-ruthenium alloy, platinum-tin alloy or platinum with other noble metal elements, it has not always been satisfactory.
[0008]
The object of the present invention is to use a methanol electrode catalyst that has higher methanol oxidation activity than conventional electrode catalysts and is less susceptible to poisoning by adsorbing species, that is, the catalyst activity can be sustained for a long time. It is to provide a methanol fuel cell.
[0009]
[Means for Solving the Problems]
The present invention relates to an alloy of one or more elements selected from platinum group elements and one or more elements selected from rare earth elements, wherein the alloy contains an intermetallic compound of platinum group elements and rare earth elements. And a catalyst composed of a compound having a —CF 2 SO 3 group is used for the methanol electrode.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the methanol fuel cell of the present invention, the alloy constituting the catalyst of the methanol electrode is one or more elements selected from platinum element, that is, ruthenium, rhodium, palladium, osmium, iridium and platinum, and rare earth element, that is, lanthanoid element, scandium, and yttrium. An alloy with one or more elements selected from The alloy includes an intermetallic compound, for example, a binary intermetallic compound, of one or more elements selected from the platinum group elements and one or more elements selected from the rare earth elements.
[0011]
Confirmation of formation of intermetallic compounds in the alloy and calculation of the content can be measured by a powder X-ray diffraction method. A previously identified intermetallic compound is measured by powder X-ray diffraction, a calibration curve is created from the peak intensity ratio, and the content of the intermetallic compound in the alloy can be determined using this calibration curve.
[0012]
Next, a compound having a —CF 2 SO 3 group, which is another component of the electrode catalyst in the present invention, will be described. The compound having a —CF 2 SO 3 group is preferably a compound represented by CF 3 — (CF 2 ) n —SO 3 H (where n represents an integer of 0 to 12), or an olefin ( hydrocarbon or fluorinated hydrocarbon) and CF 2 = CF- (OCF 2 CFX ) m -O q - (CF 2) in p -SO 3 H (wherein, m is an integer of from 0 to 3, p is 1 An integer of -12, q is 0 or 1, and X represents a fluorine atom or a trifluoromethyl group). Of these, trifluoromethanesulfonic acid, perfluorocarbonsulfonic acid type ion exchange resins, and the like are particularly preferable.
[0013]
In the present invention, the content of the compound having a —CF 2 SO 3 group in the catalyst is preferably an amount capable of forming a stable complex with at least the rare earth elements present on the surface of the alloy particles among the rare earth elements in the alloy. . Specifically, it is preferable that (alloy) / (compound having a —CF 2 SO 3 group) is 20/1 to 1/20, particularly 10/1 to 1/10 in terms of weight ratio.
[0014]
In order to obtain high activity, the particle diameter of the alloy constituting the electrode catalyst is preferably 80% by weight or more and 1 to 20 nm, and particularly preferably 80% by weight or more and 2 to 5 nm.
[0015]
The alloy constituting the electrode catalyst in the present invention can be used as it is in the form of fine particles of the alloy. Furthermore, a high specific surface area and stability can be easily ensured by carrying it on an appropriate carrier. As the carrier, those having both conductivity and corrosion resistance are preferable, and carbon black such as acetylene black and graphite are particularly preferable. These ensure good dispersibility even at high loadings. The specific surface area of the carrier is preferably 30 to 1600 m 2 / g, particularly preferably 100 to 1300 m 2 / g.
[0016]
In addition, since the polymer electrolyte fuel cell requires high current density operation and high gas diffusivity, the electrode layer is made thin, the catalyst particles are present in the electrode layer with good dispersibility, and the catalyst amount is It is necessary to secure The fine powder catalyst not supported on the carrier is suitable for thinning the electrode layer and using the catalyst at high density. A supported catalyst in which catalyst particles are supported on a carrier is suitable for obtaining catalyst particles having a preferable particle diameter with good dispersibility. Therefore, it is preferable that the alloy is supported at 5 to 60% by weight, particularly 10 to 50% by weight, based on the total weight of the supported catalyst.
[0017]
The raw material compound containing rare earth elements in preparing the alloy particles constituting the electrode catalyst in the present invention includes rare earth oxides, hydroxides, chlorides, bromides and other halides, nitrates, sulfates, carbonates. In addition, alkoxides such as sulfides, methoxides and ethoxides, and organic acid salts such as acetates and oxalates can be widely used.
[0018]
As an example of a method for preparing an electrode catalyst, when the platinum group element is platinum, a reducing agent such as methanol is contained in an aqueous solution of chloroplatinic acid that is a compound containing platinum or a mixed solution of water / alcohol solvent. Is added and refluxed to obtain a platinum colloidal solution. A compound containing a rare earth element is dissolved or dispersed in the platinum colloid solution and heated and stirred to adsorb the compound containing the rare earth element onto the platinum colloid particles. If necessary, the pH in the solution is adjusted so that the rare earth element is precipitated on the platinum colloid particles as a hydroxide or the like. Further, filtration, washing and drying are appropriately performed. And after performing a reduction process with hydrogen gas etc., the alloy particle which comprises an electrode catalyst is obtained by performing heat processing in inert gas atmosphere, such as helium, argon, and nitrogen, in vacuum. The alloy particles are dispersed in a solution of a compound having a —CF 2 SO 3 group, such as a perfluorocarbon sulfonic acid type ion exchange resin solution, and the compound particles are adsorbed on the alloy particles by reflux or the like. By removing, an electrode catalyst can be obtained.
[0019]
In addition, as a method for preparing an electrode catalyst supported on a carrier, for example, a compound containing a rare earth element is dissolved or dissolved in an aqueous solution of chloroplatinic acid or a mixed solution of water / alcohol solvent as a compound containing a platinum group element. While dispersing, a carrier such as carbon black is dispersed. Next, the mixture is heated and stirred to adsorb the compound onto the carrier. If necessary, the pH in the solution is adjusted to precipitate the rare earth element as a hydroxide or the like on the support. Further, filtration, washing and drying are appropriately performed. And what carried | supported the alloy particle which comprises an electrode catalyst by the support | carrier by performing the reduction | restoration process and heat processing similar to the above-mentioned is obtained. In the same manner as described above, this was dispersed in a solution of a compound having a —CF 2 SO 3 group such as a trifluoromethanesulfonic acid solution, adsorbed by reflux or the like, and then the dispersion medium was removed to remove the electrode catalyst. Is obtained.
[0020]
When an oxide is used as the raw material compound containing a rare earth element, it is preferable to use one having a particle diameter of 5 to 20 nm. The oxide alloy particles can be obtained, for example, by dispersing a platinum-supported carbon catalyst in distilled water, adding an oxide of an additive element thereto, evaporating to dryness, and similarly performing reduction treatment and heat treatment. It is done. In the formation of the alloy particles, the heat treatment temperature is preferably 600 to 900 ° C.
[0021]
In addition, an alloy containing an intermetallic compound having a different composition ratio can be obtained by changing the composition ratio between the compound containing a platinum group element and the compound containing a rare earth element when preparing the alloy particles constituting the electrode catalyst by the same method as described above. It can also be obtained.
[0022]
The gas diffusion electrode as the methanol electrode in the present invention can be produced according to a usual known technique. For example, in the methanol electrode, the catalyst is held by a hydrophobic resin binder such as polytetrafluoroethylene to form a porous sheet-like gas diffusion electrode. On the other hand, the air or oxygen electrode holds a catalyst such as carbon-supported platinum with a hydrophobic resin binder such as polytetrafluoroethylene to form a similar gas diffusion electrode. As another method, it can be produced by a method such as spraying, coating, or filtering a dispersion liquid mixture containing the material constituting the gas diffusion electrode.
[0023]
As a method of manufacturing a joined body of a gas diffusion electrode and an ion exchange membrane, a method of directly forming a gas diffusion electrode on an ion exchange membrane, or once forming a gas diffusion electrode in a layer form on a substrate such as a polytetrafluoroethylene film After that, various methods such as a method of transferring this to an ion exchange membrane, a method of hot pressing a gas diffusion electrode and an ion exchange membrane, and a method of forming a contact with an adhesive solution can be applied.
[0024]
[Action]
The reason why the electrode catalyst in the present invention exhibits high activity for methanol anodic oxidation reaction is not clear, but is presumed as follows. That is, Lewis acid is formed by coordination of a compound having a —CF 2 SO 3 group to a rare earth element present on the surface of the alloy particle. In the rare earth element Lewis acid, the coordination number is large and the interaction with methanol is strengthened, so that the oxidation of methanol which requires multi-electron transfer is promoted. In addition, the rare earth element forming the Lewis acid forms an alloy with the platinum group element, and thus is dispersed in the platinum group element with very good dispersibility. That is, since the Lewis acid formed by coordination with the compound having a —CF 2 SO 3 group is present in a highly dispersed and effective manner on the catalyst, it is considered that the activity for the methanol oxidation reaction can be effectively improved.
[0025]
【Example】
Hereinafter, although the specific aspect of this invention is demonstrated by an Example (Examples 1-3, Example 8) and a comparative example (Examples 4-7, Examples 9-10), this invention is not limited to these.
[0026]
<Example 1>
A chloroplatinic acid aqueous solution containing 0.5 g of platinum in terms of metal and a 35% formalin aqueous solution were added to ion-exchanged water, and the mixture was cooled to −10 ° C. and stirred. A 40% aqueous sodium hydroxide solution was added dropwise thereto and refluxed for 1 hour. After neutralization with dilute sulfuric acid, scandium sulfate containing 0.5 g of scandium in terms of metal was added as an aqueous solution and refluxed for 2 hours. This was filtered and washed, and then dried at 110 ° C. under reduced pressure for 6 hours. Next, heat treatment was performed at 700 ° C. for 3 hours in an electric furnace kept in a vacuum, and the obtained scandium-containing platinum particles were further washed with nitric acid to dissolve scandium-containing compounds that did not form an alloy and removed by filtration. After washing, it was dried at 140 ° C. In this way, Pt—Sc particles (“Pt—Sc” in this specification represents an alloy of Pt and Sc) were obtained.
[0027]
It was confirmed by powder X-ray diffraction of the Pt—Sc particles that Pt 3 Sc, which is an intermetallic compound, was generated. The average particle size of the alloy was about 4.1 nm. As a result of observing the particle size distribution with a transmission electron microscope, the particle size of 80% by weight in the alloy was 2.0 to 7.0 nm.
[0028]
An ion exchange capacity of 1.1 meq / g dry resin comprising a copolymer of CF 2 ═CF 2 and CF 2 ═CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 3 H as solutes in the Pt—Sc particles. 5 ml of a 1 wt% ethanol solution in which ion exchange resin (hereinafter referred to as perfluorocarbon sulfonic acid type ion exchange resin) is dissolved and 5 ml of methylene chloride are added, and the solvent is distilled off using a rotary evaporator, and Pt-Sc. A catalyst comprising particles and a perfluorocarbon sulfonic acid type ion exchange resin was obtained.
[0029]
<Example 2>
Carbon black (Cabot Corporation product name: Vulcan XC-72R) having a specific surface area of about 250 m 2 / g is dispersed in ion-exchanged water, and a chloroplatinic acid aqueous solution containing 0.5 g of platinum in terms of metal and cerium nitrate. A solution prepared by dissolving 5 g in 300 ml of 50% methanol aqueous solution was added, and diluted ammonia water was added to adjust the pH to 10 while stirring. Furthermore, after stirring at a temperature of 60 ° C. for about 1 hour, the mixture was filtered and dried at 110 ° C. under reduced pressure for 6 hours. Next, heat treatment was performed at 700 ° C. for 2 hours in an electric furnace maintained in an argon atmosphere containing 3% hydrogen, and further heat treatment was performed at 800 ° C. for 3 hours in a vacuum. The obtained powder was washed with nitric acid as in Example 1. Pt—Ce / C powder having a loading rate of 10% by weight (in this specification, “Pt—Ce / C” indicates an alloy of Pt and Ce supported on a carbon support. Hereinafter, the same is indicated in the examples.) Got.
[0030]
It was confirmed by the powder X-ray diffraction of this Pt—Ce / C powder that Pt 2 Ce, which is an intermetallic compound, was produced. The average particle size of the alloy was about 3.1 nm. As a result of observing the particle size distribution with a transmission electron microscope, the particle size of 80% by weight in the alloy was 1.5 to 5.5 nm.
[0031]
This Pt—Ce / C powder was impregnated with a perfluorocarbon sulfonic acid type ion exchange resin in the same manner as in Example 1 to obtain a catalyst comprising Pt—Ce / C powder and a perfluorocarbon sulfonic acid type ion exchange resin.
[0032]
<Example 3>
A Pt—Eu / C powder having a loading rate of 10% by weight was obtained in the same manner as in Example 2 except that 1.5 g of europium nitrate was used instead of 1.5 g of cerium nitrate. It was confirmed by the powder X-ray diffraction of this Pt-Eu / C powder that Pt 2 Eu as an intermetallic compound was produced. The average particle size of the alloy was about 3.2 nm. As a result of observing the particle size distribution with a transmission electron microscope, the particle size of 80% by weight in the alloy was 1.5 to 5.5 nm.
[0033]
This Pt-Eu / C powder is dispersed in 100 ml of an aqueous solution containing 0.1 g of trifluoromethanesulfonic acid, stirred and refluxed for 2 hours, and adsorbed and supported with trifluoromethanesulfonic acid on the Pt-Eu / C powder. Got.
[0034]
<Example 4>
Pt—Sc particles not impregnated with the perfluorocarbon sulfonic acid type ion exchange resin of Example 1 were used as a catalyst.
[0035]
<Example 5>
Pt—Ce / C powder not impregnated with the perfluorocarbon sulfonic acid type ion exchange resin of Example 2 was used as a catalyst.
[0036]
<Example 6>
The Pt-Eu / C powder not subjected to the supporting treatment of trifluoromethanesulfonic acid of Example 3 was used as a catalyst.
[0037]
<Example 7>
A commercially available Pt / C catalyst having a loading rate of 10% by weight was used as it was. The catalyst had a Pt particle size of about 2.3 nm as measured by powder X-ray diffraction. As for the particle size distribution by a transmission electron microscope, the particle size of about 95% by weight was 1.5 to 4.5 nm.
[0038]
<Example 8>
3.0 g of a commercially available 10 wt% supported Pt—Ru / C catalyst powder (Pt: Ru = 1: 1, atomic ratio) having a specific surface area of about 250 m 2 / g is dispersed in ion-exchanged water, where ytterbium chloride is dispersed. A solution prepared by dissolving 2.0 g in 300 ml of 50% methanol aqueous solution was added and stirred at a temperature of 60 ° C. for about 1 hour, followed by filtration and drying at 110 ° C. under reduced pressure for 6 hours. This was heat treated in vacuum at 800 ° C. for 3 hours, and the obtained powder was washed with nitric acid in the same manner as in Example 1. In this way, a Pt—Ru—Yb / C powder having a loading rate of 11% by weight was obtained.
[0039]
It was confirmed by the powder X-ray diffraction of this Pt—Ru—Yb / C powder that PtYb as an intermetallic compound was produced. The average particle size of the alloy was about 3.7 nm. As a result of observing the particle size distribution with a transmission electron microscope, 80% by weight of the alloy had a particle size of 2.0 to 6.0 nm.
[0040]
This Pt—Ru—Yb / C powder was impregnated with a perfluorocarbon sulfonic acid type ion exchange resin in the same manner as in Example 1, and a catalyst comprising Pt—Ru—Yb / C powder and a perfluorocarbon sulfonic acid type ion exchange resin. Got.
[0041]
<Example 9>
Pt—Ru—Yb / C powder not impregnated with the perfluorocarbon sulfonic acid type ion exchange resin of Example 8 was used as a catalyst.
[0042]
<Example 10>
The commercially available 10 wt% Pt-Ru / C catalyst used in Example 8 was used as it was.
[0043]
[Evaluation results]
A methanol electrode was prepared from 80 parts by weight of the catalyst prepared in Examples 1 to 7 and 20 parts by weight of powdered polytetrafluoroethylene so that the platinum amount was 0.5 mg / cm 2 per apparent surface area. The electrode potential of the methanol oxidation reaction was measured at 1 atm and 80 ° C. by incorporating in the battery. Table 1 shows the specific activity (unit: mA / mgPt) of methanol electrode at 0.4 V and the methanol electrode potential (IR free potential (unit: mV) excluding ohmic loss) at a current density of 50 mA / cm 2. , With respect to hydrogen electrode).
Table 1 shows the results of comparing the activities of the catalysts produced in Examples 8 to 10 in the same manner as in Example 1.
[0044]
[Table 1]
Figure 0003890653

Claims (6)

白金族元素から選ばれる1種以上の元素と希土類元素から選ばれる1種以上の元素との合金であって該合金中に白金族元素と希土類元素との金属間化合物を含む合金と、−CF2 SO3 -基を有する化合物とから構成される触媒が、メタノール極に用いられることを特徴とするメタノール燃料電池。An alloy of one or more elements selected from platinum group elements and one or more elements selected from rare earth elements, the alloy containing an intermetallic compound of platinum group elements and rare earth elements in the alloy; A methanol fuel cell, wherein a catalyst composed of a compound having a 2 SO 3 - group is used for a methanol electrode. −CF2 SO3 -基を有する化合物が、CF3 −(CF2n −SO3 H(式中nは0〜12の整数を示す)である請求項1記載のメタノール燃料電池。The methanol fuel cell according to claim 1, wherein the compound having a —CF 2 SO 3 group is CF 3 — (CF 2 ) n —SO 3 H (wherein n represents an integer of 0 to 12). −CF2 SO3 -基を有する化合物が、オレフィンとCF2 =CF−(OCF2 CFX)m −Oq −(CF2p −A(式中mは0〜3の整数、pは1〜12の整数、qは0又は1、Xはフッ素原子又はトリフルオロメチル基、Aはスルホン酸型官能基を示す)との共重合体からなるイオン交換樹脂である請求項1記載のメタノール燃料電池。The compound having a —CF 2 SO 3 group is an olefin and CF 2 ═CF— (OCF 2 CFX) m —O q — (CF 2 ) p —A (where m is an integer of 0 to 3, p is 1) The methanol fuel according to claim 1, which is an ion exchange resin comprising a copolymer with an integer of ˜12, q is 0 or 1, X is a fluorine atom or a trifluoromethyl group, and A is a sulfonic acid type functional group. battery. 前記合金の80重量%以上が、粒子径1〜20nmの粒子である請求項1、2又は3記載のメタノール燃料電池。4. The methanol fuel cell according to claim 1, wherein 80% by weight or more of the alloy is particles having a particle diameter of 1 to 20 nm. 前記合金が、比表面積30〜1600m2 /gのカーボン担体に担持されてなる請求項1、2、3又は4記載のメタノール燃料電池。The methanol fuel cell according to claim 1, 2, 3, or 4, wherein the alloy is supported on a carbon support having a specific surface area of 30 to 1600 m 2 / g. 前記合金が、カーボン担体に担持率が5〜60重量%で担持されてなる請求項5記載のメタノール燃料電池。6. The methanol fuel cell according to claim 5, wherein the alloy is supported on a carbon support at a loading rate of 5 to 60% by weight.
JP05801497A 1997-03-12 1997-03-12 Methanol fuel cell Expired - Fee Related JP3890653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05801497A JP3890653B2 (en) 1997-03-12 1997-03-12 Methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05801497A JP3890653B2 (en) 1997-03-12 1997-03-12 Methanol fuel cell

Publications (2)

Publication Number Publication Date
JPH10255831A JPH10255831A (en) 1998-09-25
JP3890653B2 true JP3890653B2 (en) 2007-03-07

Family

ID=13072121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05801497A Expired - Fee Related JP3890653B2 (en) 1997-03-12 1997-03-12 Methanol fuel cell

Country Status (1)

Country Link
JP (1) JP3890653B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252910A (en) * 2005-03-10 2006-09-21 Konica Minolta Holdings Inc Fuel cell
WO2007086139A1 (en) * 2006-01-30 2007-08-02 Mitsubishi Denki Kabushiki Kaisha Solid polymer electrolyte fuel cell
CA2767793C (en) 2009-07-17 2017-12-05 Danmarks Tekniske Universitet Platinum and palladium alloys suitable as fuel cell electrodes
CN110600754B (en) * 2019-08-23 2021-05-07 陕西师范大学 Pt-rare earth alloy material and preparation method and application thereof
JPWO2022185877A1 (en) * 2021-03-02 2022-09-09

Also Published As

Publication number Publication date
JPH10255831A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
JP3861146B2 (en) Anode catalyst for fuel cell
US7691773B2 (en) Supported catalyst and method for preparing the same
CN112823880B (en) Catalyst with high metal loading capacity and preparation and application thereof
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
US7879752B2 (en) Electrocatalyst
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
US20060264319A1 (en) Method of preparing electrochemical catalyst for proton exchange membrane fuel cell
JPWO2007055411A1 (en) Catalyst for fuel cell, electrode for fuel cell, and polymer electrolyte fuel cell having the same
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
CN108808027B (en) Electrode catalyst for fuel cell and method for producing same
JP2006297355A (en) Catalyst and its manufacturing method
JP4785757B2 (en) Method for producing noble metal-supported electrode catalyst and noble metal-supported electrode catalyst obtained by the production method
JPH1092441A (en) Solid high molecular type fuel cell
JP2002015745A (en) Solid polymer fuel cell
JP5483002B2 (en) Polymer fuel cell electrode manufacturing method and polymer fuel cell electrode manufactured by the polymer fuel cell electrode manufacturing method
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
JP3890653B2 (en) Methanol fuel cell
JP4875266B2 (en) Cathode electrode catalyst for fuel cell and production method thereof
JPH10214630A (en) Solid polymer type fuel cell
JP2007324092A (en) Manufacturing method of platinum or platinum alloy supported catalyst
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
JP3555370B2 (en) Methanol fuel cell
JP4087651B2 (en) Electrocatalyst for solid polymer electrolyte fuel cell
JP2858329B2 (en) Fuel cell catalyst and electrode using the same
JP2002015744A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

LAPS Cancellation because of no payment of annual fees