WO2007086139A1 - Solid polymer electrolyte fuel cell - Google Patents
Solid polymer electrolyte fuel cell Download PDFInfo
- Publication number
- WO2007086139A1 WO2007086139A1 PCT/JP2006/301419 JP2006301419W WO2007086139A1 WO 2007086139 A1 WO2007086139 A1 WO 2007086139A1 JP 2006301419 W JP2006301419 W JP 2006301419W WO 2007086139 A1 WO2007086139 A1 WO 2007086139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- polymer electrolyte
- electrolyte fuel
- compound
- cell according
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a polymer electrolyte fuel cell, and more particularly to a catalyst used for a negative electrode reaction layer of a polymer electrolyte fuel cell.
- the negative electrode reaction layer of a conventional polymer electrolyte fuel cell (hereinafter sometimes simply referred to as "fuel cell") is composed of carbon paper and a catalyst supported thereon.
- a noble metal such as platinum (Pt), a platinum ruthenium alloy (Pt—Ru), or palladium (Pd) is used as a catalyst material.
- Ru of Pt_Ru is added to reduce the poisoning of carbon monoxide (C0) generated when reforming liquid fuel such as methanol (see Patent Document 1). ).
- Patent Document 1 JP 2004-281211 A
- the catalyst of the negative electrode reaction layer so far is a metal particle made of a noble metal such as Pt, Pt—Ru, Pd, etc. Aggregation by sintering increases the particle size and reduces the total surface area.
- An object of the present invention is to solve the above-described problems and provide a fuel cell having a long battery life without increasing the manufacturing cost even if the discharge chemical reaction is repeated by long-term operation. To do.
- the polymer electrolyte fuel cell according to the embodiment of the present invention includes an electrolyte membrane, a positive electrode reaction layer formed on one main surface of the electrolyte membrane, and the other main surface of the electrolyte membrane. And a negative electrode reaction layer, wherein the negative electrode reaction layer is a thin film carrier.
- a carrier AB and a compound AB (0.2.
- the material A is any metal of Sr, Ca, Mg, Be, and the material B is a metal having d orbitals It is characterized by that.
- the compound AB is used as a catalyst for the negative electrode reaction layer.
- material B is a metal with d orbitals, so compound A
- material A is alkaline earth metal, sintering
- the battery life of the polymer electrolyte fuel cell can be extended as compared with the case where conventional Pt, Pt—Ru, Pd is used as the catalyst for the negative electrode reaction layer.
- FIG. 1 is a cross-sectional view showing a configuration of a polymer electrolyte fuel cell according to a first embodiment.
- FIG. 2 is a graph showing a current-voltage characteristic of the polymer electrolyte fuel cell according to the first embodiment.
- FIG. 3 is a diagram showing current-voltage characteristics after 10,000 hours of operation of the polymer electrolyte fuel cell according to the first embodiment.
- FIG. 4 is a cross-sectional view showing a configuration of a polymer electrolyte fuel cell according to Embodiment 3.
- FIG. 5 is a circuit diagram showing a configuration in which two wound fuel cells according to Embodiment 4 are connected in series.
- FIG. 6 is a circuit diagram showing a configuration in which two wound fuel cells according to Embodiment 4 are connected in parallel.
- FIG. 7 is a circuit diagram showing a configuration in which a plurality of wound fuel cells according to Embodiment 4 are connected in series and parallel.
- the metal particles do not agglomerate due to sintering and that the catalytic activity is the same as that in the initial stage with different elements.
- transition metal is a metal
- metals of Group III of the periodic table are stable as metals. At normal temperature, no oxide film is formed on the surface of the particles, and it dissolves not only in alkaline but also in acidic solution.
- the polymer electrolyte membrane has a sulfone group and is acidic at that portion.
- metals belonging to Group VIII of the periodic table cannot be used because they dissolve when they come into contact with the polymer electrolyte membrane.
- alkaline earth metals of Group II of the periodic table that contain many elements that form an oxide film at room temperature where the metallicity is weaker than that of alkali metals and are not soluble in acidic solutions.
- the alkaline earth metal elements include beryllium (Be), magnesium (Mg), and calcium.
- Be oxide is immediately removed by reacting with hydrogen to change into water vapor. Therefore, release It exists as metal particles in the electricity.
- the thickness of the oxide film is Be> Mg> Ca> Sr, and the oxide film formed on Sr is the thinnest, and it is considered that the oxide film is excluded and returned to the metal first. It is considered a promising material.
- Sr, Ca, Mg, and Be are not poisoned by carbon monoxide generated by reforming liquid fuel such as methanol.
- material B is a transition metal of group VIII or VI or VII of the periodic table
- compound AB material A is Sr, as described in the following embodiment
- any of a, Mg and Be, material B is a metal having d orbital, especially platinum (Pt), ruthenium (Ru), molybdenum (Mo), nickel (Ni), cobalt (Co), palladium (Pd), rhodium (Rh), iridium (Ir), osmium (Os), rhenium (Re), technetium (Tc), titanium (Ti), iron (Fe), vanadium (V), chromium (Cr), manganese Catalysts (Mn), copper (Cu), and zinc (Zn)) were discovered.
- the compound A B has catalytic activity by forming a bimetal with the material A even when it does not have catalytic activity.
- FIG. 1 is a cross-sectional view showing a configuration of a polymer electrolyte fuel cell according to Embodiment 1.
- a positive electrode reaction layer 2 is formed on one main surface of the electrolyte membrane 1.
- the negative electrode reaction layer 3 is formed on the other main surface of the electrolyte membrane 1.
- a positive electrode 4 is formed on the positive electrode reaction layer 2.
- a positive electrode separator 6 is formed on the positive electrode 4, and a positive electrode current collector plate 8 is formed on the positive electrode separator 6.
- a negative electrode 5 is formed on the negative electrode reaction layer 3.
- a negative electrode separator 7 is formed on the negative electrode 5.
- a negative electrode current collector plate 9 is formed on the negative electrode separator 7.
- the positive electrode separator 6 is formed with a flow channel 10 for flowing an oxygen-containing gas.
- the negative electrode separator 7 is formed with a channel groove 11 for flowing fuel gas.
- the positive electrode reaction layer 2 is composed of carbon paper as a thin film carrier and a platinum (Pt) catalyst carried thereon.
- the negative electrode reaction layer 3 is composed of carbon paper as a thin film carrier and a catalyst supported on carbon paper.
- the catalyst is Compound A B (0.2 ⁇ X ⁇ 0.8) consisting of Material A and Material B.
- the thin film carrier is
- Any material other than carbon paper may be used as long as it can carry a medium.
- the material A is any metal of Sr, Ca, Mg, and Be
- the material B is selected from Pt, Ru, Mo, Ni, and Co. Any metal with d orbitals.
- Any compound of Pt and Be Pt is used as a catalyst.
- composition ratio X is 0.
- composition ratio X is 0.2 ⁇ X ⁇ 0.8. Limited to the range of
- the compound AB used as a catalyst for the negative electrode reaction layer 3 is produced by a production method described later.
- the negative electrode reaction layer 3 is manufactured by supporting the carbon paper at the same volume ratio as the conventional platinum catalyst.
- the fuel cell shown in FIG. 1 can be obtained by preparing each layer constituting the fuel cell, such as the electrolyte membrane 1, and stacking and joining them in a predetermined order.
- strontium powder and platinum powder are pulverized and mixed at a predetermined ratio (1_X: X).
- the product name KST (purity: 99. 95%) of ⁇ ⁇ ⁇ ⁇ Co., Ltd. was used as the strontium powder. Platinum powder used was Tanaka Kikinzoku Co., Ltd., with a purity of 5 Nup.
- a strontium powder and a ruthenium powder are mixed at a predetermined ratio using a stainless steel ball mill.
- the product name KST (purity 99. 95%) of ⁇ ⁇ ⁇ ⁇ Co., Ltd. was used as the strontium powder.
- the ruthenium powder used was Tanaka Kikinzoku Co., Ltd. with a purity of 5 Nup.
- a strontium powder and a molybdenum powder are mixed at a predetermined ratio using a stainless steel ball mill.
- the mixture is heated to 2650 ° C under an argon atmosphere, and the mixture is melted to be alloyed.
- the alloyed mixture is cooled and then crushed to produce the compound Sr Mo (0.2 ⁇ X ⁇ 0.8).
- the product name KST of Sakai Chemical Industry Co., Ltd. was used as the strontium powder.
- the product name M12 of Toshiba Material Co., Ltd. was used for the molybdenum powder.
- strontium powder and Nikkenole powder are mixed in a predetermined ratio (1 x: x) with a stainless ball mill.
- the mixture is heated to 2000 ° C under an argon atmosphere, and the mixture is melted to be alloyed.
- the product name KST of Sakai Chemical Industry Co., Ltd. was used as the strontium powder.
- the nickel powder used was a 45N purity product from Nippon Heavy Chemical Industry Co., Ltd.
- the mixture is heated to 2000 ° C under an argon atmosphere, and the mixture is melted to be alloyed.
- the alloyed mixture is cooled and then crushed to produce the compound Sr Ni (0.2 ⁇ X ⁇ 0.8).
- the material A was replaced with strontium, and calcium, magnesium, and beryllium were used. A compound was also produced, and a fuel cell was prepared using it as a catalyst for the negative electrode reaction layer 3. Since the manufacturing method is the same as that when strontium is used, detailed description is omitted.
- FIG. 2 is a graph showing the current-voltage characteristics of the polymer electrolyte fuel cell according to the first embodiment.
- Figure 2 illustrates the initial characteristics of the fuel cell at 80 ° C.
- X 0.4, which showed the best fuel cell characteristics in the range of 0.2 ⁇ X ⁇ 0.8, are shown.
- Fig. 2 shows the characteristics of the fuel cell when conventional Pt, Pt-Ru, and Pd are used as the catalyst.
- the characteristics of X 0.4, which was good, are also shown.
- the catalytic power of these compounds is higher than that of conventional catalysts such as Pt, Pt-Ru, and Pd.
- the surface of the group VIII, VI, and VII transition metals such as Pt (111) and Ru (0001) is the catalytically active surface, whereas in the catalyst with the compound AB, they are combined with Sr. , Ca
- Pt, Pt-Ru, and Pd have surface hydrogen molecule adsorption / dissociation ability, but do not have hydrogen absorption ability, and therefore no catalytic reaction occurs inside the catalyst.
- Sr, Ca, Mg, and Be have not only surface hydrogen molecule adsorption / dissociation ability but also hydrogen absorption ability, so that hydrogen penetrates into the catalyst and causes catalytic reaction.
- FIG. 3 is a graph showing current-voltage characteristics after the polymer electrolyte fuel cell according to Embodiment 1 has been operated for 10,000 hours.
- the polymer electrolyte fuel cell using the conventional platinum group catalyst has a voltage drop of 40%, whereas the polymer electrolyte fuel cell according to Embodiment 1 is It can be seen that there is no decline at all.
- a compound B was produced using the metal B as Pd, Rh, Ir, Os, Re, Tc, Ti, Fe, V, Cr, Mn, Cu, and Zn.
- a fuel cell was manufactured by supporting these catalysts on carbon paper at the same volume ratio as a conventional catalyst such as platinum. Then, we measured the current-voltage characteristics at the beginning and after 10,000 hours of the fuel cell. The current-voltage characteristics were worse than those of Pt, Ru, Mo, Ni, and Co, both at the beginning and after 10,000 hours.
- the battery life of the fuel cell can be made longer than that of the conventional catalyst made of Pt, Pt-Ru, Pd.
- the material B having the d orbital contains a metal having no catalytic activity. Therefore, both material A and material B may not have catalytic activity. However, even in such a case, if the material B is a metal having d orbitals, the compound A B has catalytic activity.
- the polymer electrolyte fuel cell according to Embodiment 1 uses Compound A B as a catalyst.
- the solid polymer fuel cell catalyst according to the first embodiment has a lower material cost than the catalyst having Pt, Pt-Ru, Pd force, and therefore can reduce the manufacturing cost of the fuel cell. .
- the output can be increased by selecting Sr as the material A.
- the output of the fuel cell can be further improved as compared with the case where the material B does not have catalytic activity.
- the material A a metal complex of any one of Sr, Ca, Mg, and Be is used, and as the material B, Pt, Ru, Mo, Ni, Co, Pd, Rh, Ir, Os, Re , Tc, Ti, Fe, V, Cr, Mn, Cu, Zn using a metal complex to form compound AB and react with it as a negative electrode
- a fuel cell used as the catalyst for layer 3 was also formed.
- the catalyst is formed by the melt alloying method, but may be manufactured by the thermal decomposition method described below.
- the compound catalyst such as Sr B, for example, when B is Pt,
- It can be created by decomposing at 500 ° C in a vacuum and blowing off chlorine gas.
- Compound AB can be easily formed by producing a catalyst using the thermal decomposition method or the melt alloying method described above.
- the surface of the Sr particle is not completely covered with Pt, but the Sr particle surface has an appropriate gap between Pt so that the fuel gas can react with the Sr particle surface through Pt. It is covered.
- the catalyst thus obtained was supported on carbon paper at the same volume ratio as that of a conventional catalyst such as platinum to produce a fuel cell.
- the nitro complex or nitroammine complex of material A or B is subjected to electroless oxidation-reduction reaction with material A or B in a reducing agent hydrazine and a stabilizer hydroxy noreamine salt solution to remove the solution. By doing so, it is possible to obtain compound AB.
- liquid fuel such as methanol or ethanol where the fuel gas is not hydrogen gas
- the liquid reacts with the Sr portion in the compound Pt catalyst.
- the polymer electrolyte fuel cell according to Embodiment 2 is thinly coated with a high-density polymer film made of Pt on the Sr particle surface.
- the material A is any metal of Sr, Ca, Mg, and Be
- the material B is Ru, Mo
- Compound AB which is any metal among Ni, Co, Pd, Rh, Ir, Os, Re, Fe, V, Cr, Mn, Cu, and Zn, was also produced by electroless plating.
- the surface of Sr particles as material A is coated with Pt as material B.
- the surface of Pt particles may be coated with Sr.
- the catalyst is formed by the electroless plating method, but may be manufactured by the manufacturing method described below.
- the Sr-coated electrode was electrolyzed at 25 ° C, pH 12 (PH12), 0.5 A / dm2 in alkaline cyanate solution with strontium tetracianoplatinate, and then Sr Pt was removed.
- liquid raw materials bis (ethylcyclopentagenyl) strontium and ethylcyclopentagenyl (trimethyl) platinum were flown on the Si substrate at a predetermined ratio by the CVD method to deposit Sr Pt.
- the vacuum vapor deposition method first, a material A heating evaporation of at 10- 6 ⁇ (10- 4 Pa) or more vacuum And condensing on a substrate made of material B.
- the coating material A is made into fine particles by melting or softening by heating. Then, the coating material A is accelerated and collided with the surface of the coating target material B to solidify and deposit the flattened particles on the substrate. Thereafter, the deposit was scraped and pulverized to obtain a coating powder of the compound A B.
- a plasma discharge part was placed between the evaporation source of material A and the substrate made of material B, and before material A reached the substrate, it was excited by plasma of IKeV or less lOOeV.
- the ionized evaporative flow is accelerated toward a substrate made of metal B with a negative voltage applied, and collides with the substrate with a high level of kinetic energy.
- a mixture of material A or material B and material B + ions or material A + ions forms a colloidal solution of material B + ions or material A + ions, which is then immersed in a substrate made of material A or material B, and then immersed in a hydrochloric acid solution.
- Material A was then coated with Material B by promoting the chemical plating reaction.
- the following plasma ion implantation method and plasma CVD method were performed.
- Plasma ion implantation means that material A is made into positive plasma and metal B immersed in the plasma is used. A negative pulse high voltage was applied to the resulting substrate, and ions were implanted into material B and coated. Thereafter, the coated powder is scraped off and pulverized to obtain a coating powder having a compound AB force.
- the raw material gas of material A and the raw material gas of material B are discharged and decomposed together with an appropriate diluent gas to be deposited on the substrate.
- the compound A B can be obtained by scraping and crushing the deposited metal.
- any of direct current, high frequency, and ECR may be used, but in the first embodiment, high frequency is used.
- the material B to be used for the heat was evaporated by heating and agglomerated on the surface of the material A. Coating powder with compound A B power by scraping off the agglomerated material and crushing
- the target of material A or material B is irradiated with a laser and sublimated. And it recrystallizes on the board
- the crystallized film is scraped off and pulverized to produce a compound A B coating.
- a coating powder that is a powder of compound A B in which one of material A and material B is coated with the other can be easily formed.
- FIG. 4 is a cross-sectional view showing the configuration of the polymer electrolyte fuel cell according to the third embodiment.
- the polymer electrolyte fuel cell according to Embodiment 3 has a wound shape.
- the polymer electrolyte fuel cell is disposed inside the housing 14.
- the positive electrode side layer 12 is a collection of the positive electrode reaction layer 2 and the positive electrode 4 (see FIG. 1). That is, the positive electrode side layer 12 indicates a layer in which the inner side is the positive electrode reaction layer 2 and the outer side is the positive electrode 4.
- the negative electrode side layer 13 is a layer in which the inner side is the negative electrode reaction layer 3 and the outer side is the negative electrode 5.
- lead wires (not shown) connected to the positive electrode 4 and the negative electrode 5, respectively, are drawn out from holes (not shown) provided in the housing 14 in order to extract the current to the outside. ing . Note that a gap generated between the hole of the housing 14 and the lead wire is sealed with resin or the like.
- the alkaline earth metals Sr, Ca, Mg, and Be are quite ductile. Therefore, the compound AB of the present invention is also quite ductile.
- the carbon paper of the negative electrode reaction layer 3 is firm and difficult to bend when a platinum group catalyst is supported, but is flexible when the catalyst of the present invention is supported. Easy to bend at.
- the electrolyte membrane 1, the positive electrode reaction layer 2, the negative electrode reaction layer 3, the positive electrode 4, the negative electrode 5, the positive electrode separator 6, the negative electrode separator 7, the positive electrode current collector plate 8, and the negative electrode current collector plate 9 are predetermined. Laminate and join in order.
- the cell-shaped solid polymer fuel cell shown in Fig. 4 can be produced by bending it compactly.
- the polymer electrolyte fuel cell according to Embodiment 3 has a spiral shape, the structure can be simplified and the occupied volume can be reduced by simply pulling out two electrode leads.
- the constant is set from the device power supply voltage. With respect to voltage, the number of stacked layers is constant in the stacked type, so the height and length of the fuel cell are determined.
- the fuel cell according to the third embodiment is a whirling type, when it is connected in series to make a constant voltage, the number of whistling can be freely changed, so that the height and length can be freely changed. For this reason, a shape can also be changed freely.
- the polymer electrolyte fuel cell according to Embodiment 4 is obtained by electrically connecting a plurality of wound fuel cells 40 in series, in parallel, or in series-parallel according to the output required for the device.
- Figs. 5 to 7 are circuit diagrams of the polymer electrolyte fuel cells electrically connected as described above.
- FIG. 5 is a circuit diagram of a fuel cell in which two cell-shaped fuel cells 40 are connected in series.
- FIG. 6 is a circuit diagram of a fuel cell in which two fired fuel cells 40 are connected in parallel.
- FIG. 7 is a circuit diagram of a fuel cell in which a plurality of fired fuel cells 40 are connected in series and parallel.
- a plurality of fired fuel cells 40 are connected in series, and a plurality of sets of fired fuel cells 40 connected in series are connected in parallel.
- the reference potential V is applied to the terminal 71. And from terminals 72 and 74 , the reference potential V is applied to the terminal 71. And from terminals 72 and 74 , the reference potential V is applied to the terminal 71. And from terminals 72 and 74 , the reference potential V is applied to the terminal 71. And from terminals 72 and 74 , the reference potential V is applied to the terminal 71. And from terminals 72 and 74 , the reference potential V is applied to the terminal 71. And from terminals 72 and 74
- a constant voltage is output to the outside.
- the voltage output from the terminal 72 is lower than the voltage output from the terminal 74. That is, the polymer electrolyte fuel cell according to Embodiment 4 is configured to output a plurality of voltages to the outside in accordance with the output required for the device.
- Each individual fuel cell 40 is connected so that it can be removed from the other fuel cell 40.
- the old fuel cell 40 can be freely replaced with a new one. It is structured so that it can be replaced.
- the polymer electrolyte fuel cell according to Embodiment 4 is configured using a plurality of wound fuel cells 40. Therefore, even if the characteristics of a single fuel cell 40 deteriorate, only it can be replaced with a new one, so that it can be repaired easily and inexpensively.
- the size of one fuel cell can be reduced by making it so that a plurality of fuel cells 40 are connected in series.
- An integrated fuel cell can also be miniaturized.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
This invention provides a solid polymer electrolyte fuel cell that, even when a discharge chemical reaction is repeated during long-term operation, exhibits a prolonged cell service life without increasing the production cost. A compound comprising material A and material B, i.e., A1-XBX (0.2 ≤ X ≤ 0.8), is used as a catalyst for a negative electrode reaction layer (3). Material A is any metal selected from Sr, Ca, Mg and Be, and material B is a metal having d orbit. Since material A is an alkaline earth metal, aggregation by sintering does not occur even when a discharge chemical reaction is repeated during long-term operation of the solid polymer electrolyte fuel cell and the total surface area of the metal particles is not reduced. As a result, the use of this compound as a catalyst can provide a solid polymer electrolyte fuel cell that does not cause a deterioration in current-voltage characteristics and has a prolonged service life.
Description
明 細 書 Specification
固体高分子型燃料電池 Polymer electrolyte fuel cell
技術分野 Technical field
[0001] 本発明は、固体高分子型燃料電池に関し、特に、固体高分子型燃料電池の負極 反応層に用レ、られる触媒に関する。 TECHNICAL FIELD [0001] The present invention relates to a polymer electrolyte fuel cell, and more particularly to a catalyst used for a negative electrode reaction layer of a polymer electrolyte fuel cell.
背景技術 Background art
[0002] 従来の固体高分子型燃料電池 (以下、単に「燃料電池」と称する場合がある。)の負 極反応層は、カーボンペーパーとそれに担持された触媒により構成されている。 [0002] The negative electrode reaction layer of a conventional polymer electrolyte fuel cell (hereinafter sometimes simply referred to as "fuel cell") is composed of carbon paper and a catalyst supported thereon.
[0003] そして、一般的に、触媒の材料は、白金 (Pt)、白金ルテニウム合金 (Pt— Ru)、パ ラジウム(Pd)等の貴金属のみが用いられている。 In general, only a noble metal such as platinum (Pt), a platinum ruthenium alloy (Pt—Ru), or palladium (Pd) is used as a catalyst material.
[0004] ここで、 Pt_Ruの Ruは、メタノールなど液体燃料を改質する際に発生する Ptの一 酸化炭素(C〇)被毒を少なくするために添加されてレ、る(特許文献 1参照)。 [0004] Here, Ru of Pt_Ru is added to reduce the poisoning of carbon monoxide (C0) generated when reforming liquid fuel such as methanol (see Patent Document 1). ).
[0005] 特許文献 1 :特開 2004— 281211 [0005] Patent Document 1: JP 2004-281211 A
[0006] 前述したように、これまでの負極反応層の触媒は、 Pt, Pt— Ru, Pd等の貴金属か らなる金属粒子であるため、燃料電池の長期運転で放電化学反応が繰り返されると シンタリングにより凝集して粒子径が大きくなり総表面積が小さくなる。 [0006] As described above, since the catalyst of the negative electrode reaction layer so far is a metal particle made of a noble metal such as Pt, Pt—Ru, Pd, etc. Aggregation by sintering increases the particle size and reduces the total surface area.
[0007] そのため、電流密度が落ちて電流—電圧特性が悪くなる。即ち、燃料電池の出力 が下がり、電池寿命が短くなつていた。 For this reason, the current density is lowered, and the current-voltage characteristics are deteriorated. In other words, the output of the fuel cell decreased and the battery life was shortened.
[0008] そして、貴金属は高価なため、触媒量を増やし、電流密度を上げ、高出力にするこ とが困難であった。 [0008] Since noble metals are expensive, it has been difficult to increase the amount of catalyst, increase the current density, and achieve high output.
発明の開示 Disclosure of the invention
[0009] 本発明では、上記のような問題点を解決し、長期運転により放電化学反応が繰り返 されても、製造コストを上げることなぐ電池寿命の長い燃料電池を提供することを目 的とする。 An object of the present invention is to solve the above-described problems and provide a fuel cell having a long battery life without increasing the manufacturing cost even if the discharge chemical reaction is repeated by long-term operation. To do.
[0010] 本発明に係る態様の固体高分子型燃料電池は、電解質膜と、前記電解質膜の一 方の主面に形成された正極反応層と、前記電解質膜の他方の主面に形成された負 極反応層と、を備える固体高分子型燃料電池であって、前記負極反応層は、薄膜担
持体と、前記薄膜担持体に担持され、材料 A及び材料 Bからなる化合物 A B (0. 2 [0010] The polymer electrolyte fuel cell according to the embodiment of the present invention includes an electrolyte membrane, a positive electrode reaction layer formed on one main surface of the electrolyte membrane, and the other main surface of the electrolyte membrane. And a negative electrode reaction layer, wherein the negative electrode reaction layer is a thin film carrier. A carrier AB and a compound AB (0.2.
1-X X 1-X X
≤X≤0. 8)である触媒と、を有し、前記材料 Aは、 Sr, Ca, Mg, Beのうちの何れか の金属であり、前記材料 Bは、 d軌道を有する金属であることを特徴とする。 ≤X≤0.8)), the material A is any metal of Sr, Ca, Mg, Be, and the material B is a metal having d orbitals It is characterized by that.
[0011] 本発明に係る態様の固体高分子型燃料電池によれば、負極反応層の触媒として 化合物 A Bを用いている。ここで、材料 Bは、 d軌道を有する金属なので、化合物 A [0011] According to the polymer electrolyte fuel cell of the aspect of the present invention, the compound AB is used as a catalyst for the negative electrode reaction layer. Where material B is a metal with d orbitals, so compound A
1-X X 1-X X
Bは触媒活性を有する。そして、材料 Aは、アルカリ土類金属なので、シンタリング B has catalytic activity. And since material A is alkaline earth metal, sintering
1-X X 1-X X
による化合物 A Bの凝集が抑制される。 Aggregation of compound A B due to is suppressed.
1-X X 1-X X
[0012] そのため、長期運転により放電化学反応が繰り返されても、触媒の総表面積が初 期とほぼ同じなので、電流密度の低下を抑制できる。 [0012] Therefore, even if the discharge chemical reaction is repeated in a long-term operation, the total surface area of the catalyst is almost the same as in the initial stage, so that a decrease in current density can be suppressed.
[0013] その結果、従来の Pt, Pt-Ru, Pdを負極反応層の触媒として用いた場合よりも、 固体高分子型燃料電池の電池寿命を長くできる。 As a result, the battery life of the polymer electrolyte fuel cell can be extended as compared with the case where conventional Pt, Pt—Ru, Pd is used as the catalyst for the negative electrode reaction layer.
[0014] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。 [0014] The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図面の簡単な説明 Brief Description of Drawings
[0015] [図 1]本実施の形態 1に係る固体高分子型燃料電池の構成を示す断面図である。 FIG. 1 is a cross-sectional view showing a configuration of a polymer electrolyte fuel cell according to a first embodiment.
[図 2]本実施の形態 1に係る固体高分子型燃料電池の電流一電圧特性を示す図で ある。 FIG. 2 is a graph showing a current-voltage characteristic of the polymer electrolyte fuel cell according to the first embodiment.
[図 3]本実施の形態 1に係る固体高分子型燃料電池の一万時間動作後の電流ー電 圧特性を示す図である。 FIG. 3 is a diagram showing current-voltage characteristics after 10,000 hours of operation of the polymer electrolyte fuel cell according to the first embodiment.
[図 4]本実施の形態 3に係る固体高分子型燃料電池の構成を示す断面図である。 FIG. 4 is a cross-sectional view showing a configuration of a polymer electrolyte fuel cell according to Embodiment 3.
[図 5]本実施の形態 4に係る 2個の巻き形燃料電池を直列接続した構成を示す回路 図である。 FIG. 5 is a circuit diagram showing a configuration in which two wound fuel cells according to Embodiment 4 are connected in series.
[図 6]本実施の形態 4に係る 2個の巻き形燃料電池を並列接続した構成を示す回路 図である。 FIG. 6 is a circuit diagram showing a configuration in which two wound fuel cells according to Embodiment 4 are connected in parallel.
[図 7]本実施の形態 4に係る複数個の巻き形燃料電池を直並列接続した構成を示す 回路図である。 FIG. 7 is a circuit diagram showing a configuration in which a plurality of wound fuel cells according to Embodiment 4 are connected in series and parallel.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0016] (実施の形態 1)
<A.発明の技術的思想 > [0016] (Embodiment 1) <A. Technical idea of the invention>
まず、実施の形態 1に係る固体高分子型燃料電池の構成について説明する前に、 本発明の技術的思想にっレ、て説明する。 First, before describing the configuration of the polymer electrolyte fuel cell according to Embodiment 1, the technical idea of the present invention will be described.
[0017] 燃料電池の長期運転で放電化学反応が繰り返された場合に、出力が下がる原因 は、触媒の金属粒子がシンタリングにより凝集して表面積が小さくなることが原因であ る。 [0017] When the discharge chemical reaction is repeated in the long-term operation of the fuel cell, the output decreases because the metal particles of the catalyst aggregate due to sintering and the surface area is reduced.
[0018] そこで、燃料電池の長期運転で放電化学反応が繰り返されても、金属粒子がシン タリングにより凝集せず触媒活性は初期と同じである負極の化学反応を促進する触 媒を見つけることとした。 [0018] Therefore, even if the discharge chemical reaction is repeated in the long-term operation of the fuel cell, the catalyst that promotes the chemical reaction of the negative electrode, in which the metal particles do not aggregate due to sintering and the catalytic activity is the same as the initial, did.
[0019] ここで、我々は金属粒子がシンタリングにより凝集しないことと、触媒活性が初期と 同じであることを別々の元素で持たせることを考えた。 Here, we considered that the metal particles do not agglomerate due to sintering and that the catalytic activity is the same as that in the initial stage with different elements.
[0020] まず、金属粒子が凝集しない元素について考えると、遷移金属は金属であるがゆえ に、白金族ほどではないがシンタリングにより凝集する。このことは周期表第 I族のァ ルカリ金属も金属性が強いので同様である。 [0020] First, considering an element in which metal particles do not aggregate, since the transition metal is a metal, it aggregates by sintering although not as much as the platinum group. This is the same because the alkali metals of Group I of the periodic table are also highly metallic.
[0021] —方、周期表第 III族の金属は、金属として安定である。そして、常温で粒子表面に 酸化膜を形成せず、アルカリ性のみならず酸性溶液にも溶ける。 [0021] On the other hand, metals of Group III of the periodic table are stable as metals. At normal temperature, no oxide film is formed on the surface of the particles, and it dissolves not only in alkaline but also in acidic solution.
[0022] しかし、高分子電解質膜は、スルフォン基を持ち、その部分では酸性となっている。 However, the polymer electrolyte membrane has a sulfone group and is acidic at that portion.
そのため、周期表第 ΠΙ族の金属は、高分子電解質膜に接すると溶けてしまうので採 用できない。 For this reason, metals belonging to Group VIII of the periodic table cannot be used because they dissolve when they come into contact with the polymer electrolyte membrane.
[0023] そこで、金属性がアルカリ金属よりも弱ぐ常温で酸化膜を形成して酸性溶液に溶 けない元素が多く含まれる周期表第 II族のアルカリ土類金属に注目した。 [0023] In view of this, attention was paid to alkaline earth metals of Group II of the periodic table that contain many elements that form an oxide film at room temperature where the metallicity is weaker than that of alkali metals and are not soluble in acidic solutions.
[0024] ここで、アルカリ土類金属元素にはベリリウム(Be) ,マグネシウム(Mg),カルシウム [0024] Here, the alkaline earth metal elements include beryllium (Be), magnesium (Mg), and calcium.
(Ca) ,ストロンチウム(Sr),バリウム(Ba)がある。 (Ca), strontium (Sr), and barium (Ba).
[0025] しかし、 Baは、常温で表面に酸化膜が形成されず空気中の水蒸気と反応して水酸 化物を形成しやすいため、取り扱うことができなレ、。一方、 Sr, Ca, Mg, Beは常温で 表面に酸化膜が形成されるため、取り扱うことができる。 [0025] However, since Ba does not form an oxide film on the surface at room temperature and reacts with water vapor in the air and easily forms a hydroxide, it cannot be handled. On the other hand, Sr, Ca, Mg, and Be can be handled because an oxide film is formed on the surface at room temperature.
[0026] そして、燃料電池の放電初期における負極での水素還元雰囲気で、 Sr, Ca, Mg[0026] Then, in the hydrogen reduction atmosphere at the negative electrode in the initial discharge of the fuel cell, Sr, Ca, Mg
, Beの酸化膜は、すぐに水素と反応して水蒸気に変化して除外される。そのため、放
電中は金属粒子として存在する。 , Be oxide is immediately removed by reacting with hydrogen to change into water vapor. Therefore, release It exists as metal particles in the electricity.
[0027] 酸化膜の厚みは Be >Mg >Ca > Srとなっており、 Srに形成される酸化膜が最も薄 ぐ最も早く酸化膜が除外されて金属に戻ると考えられるため、 Srが最も有望な材料 であると考えられる。 [0027] The thickness of the oxide film is Be> Mg> Ca> Sr, and the oxide film formed on Sr is the thinnest, and it is considered that the oxide film is excluded and returned to the metal first. It is considered a promising material.
[0028] また、 Sr, Ca, Mg, Beはメタノールなどの液体燃料の改質で発生する一酸化炭素 で被毒することもない。 [0028] Sr, Ca, Mg, and Be are not poisoned by carbon monoxide generated by reforming liquid fuel such as methanol.
[0029] 次に、触媒活性を持つ元素の方は、 d軌道を持つ金属なら全て可能性はあるが、 周期表の VIII族が最も可能性が高ぐ次は VI族、 VII族の可能性が高い。 [0029] Next, elements with catalytic activity are all possible if they have metals with d orbitals, but group VIII of the periodic table is most likely next, group VI and group VII. Is expensive.
[0030] そこで、 Sr, Ca, Mg, Beと遷移金属の化合物 A B (材料 Aは Sr, Ca, Mg, Be l-X X Therefore, Sr, Ca, Mg, Be and transition metal compound A B (Material A is Sr, Ca, Mg, Be l-X X
のうちの何れかの金属、材料 Bは周期表の VIII族又は VI族また VII族の遷移金属)に 注目した結果、以下の実施の形態で説明するように、化合物 A B (材料 Aは Sr, C l-X X As a result of paying attention to any of these metals, material B is a transition metal of group VIII or VI or VII of the periodic table, compound AB (material A is Sr, as described in the following embodiment) C lX X
a, Mg, Beのうちの何れかの金属、材料 Bは、 d軌道を有する金属、特に白金(Pt) , ルテニウム(Ru) ,モリブデン(Mo) ,ニッケル(Ni) ,コバルト(Co) ,パラジウム(Pd) , ロジウム(Rh) ,イリジウム(Ir) ,ォスニゥム(Os) ,レニウム(Re) ,テクネチウム(Tc) , チタン (Ti) ,鉄(Fe) ,バナジウム(V) ,クロム(Cr) ,マンガン(Mn) ,銅(Cu) ,亜鉛( Zn) )という触媒を発見できた。 Any of a, Mg and Be, material B is a metal having d orbital, especially platinum (Pt), ruthenium (Ru), molybdenum (Mo), nickel (Ni), cobalt (Co), palladium (Pd), rhodium (Rh), iridium (Ir), osmium (Os), rhenium (Re), technetium (Tc), titanium (Ti), iron (Fe), vanadium (V), chromium (Cr), manganese Catalysts (Mn), copper (Cu), and zinc (Zn)) were discovered.
[0031] これらの触媒は、燃料電池の電池寿命を長くするだけでなぐ放電初期の電流ー電 圧特性が良くなり、出力が向上することも発見した。 [0031] It has also been found that these catalysts improve the current-voltage characteristics at the initial stage of discharge and improve the output by simply extending the battery life of the fuel cell.
[0032] また、材料 Bは、 d軌道を有する金属であれば、触媒活性を有しない場合において も、材料 Aとバイメタルを構成することで化合物 A Bは触媒活性を有することもわか [0032] In addition, if the material B is a metal having a d orbital, the compound A B has catalytic activity by forming a bimetal with the material A even when it does not have catalytic activity.
1-X X 1-X X
つた。 I got it.
[0033] < B.構成 > [0033] <B. Configuration>
次に、本実施の形態 1に係る固体高分子型燃料電池の構成について説明する。図 Next, the configuration of the polymer electrolyte fuel cell according to Embodiment 1 will be described. Figure
1は、本実施の形態 1に係る固体高分子型燃料電池の構成を示す断面図である。 1 is a cross-sectional view showing a configuration of a polymer electrolyte fuel cell according to Embodiment 1. FIG.
[0034] 電解質膜 1の一方の主面に正極反応層 2が形成されている。そして、電解質膜 1の 他方の主面に負極反応層 3が形成されている。正極反応層 2上には正極 4が形成さ れている。そして、正極 4上には、正極セパレータ 6が形成され、正極セパレータ 6上 には正極集電板 8が形成されてレ、る。
[0035] 負極反応層 3上には負極 5が形成されている。そして負極 5上には負極セパレータ 7が形成されている。そして、負極セパレータ 7上には負極集電板 9が形成されている A positive electrode reaction layer 2 is formed on one main surface of the electrolyte membrane 1. The negative electrode reaction layer 3 is formed on the other main surface of the electrolyte membrane 1. A positive electrode 4 is formed on the positive electrode reaction layer 2. A positive electrode separator 6 is formed on the positive electrode 4, and a positive electrode current collector plate 8 is formed on the positive electrode separator 6. A negative electrode 5 is formed on the negative electrode reaction layer 3. A negative electrode separator 7 is formed on the negative electrode 5. A negative electrode current collector plate 9 is formed on the negative electrode separator 7.
[0036] 正極セパレータ 6には、酸素含有ガスを流すための流路溝 10が形成されている。そ して、負極セパレータ 7には、燃料ガスを流すための流路溝 11が形成されている。 [0036] The positive electrode separator 6 is formed with a flow channel 10 for flowing an oxygen-containing gas. The negative electrode separator 7 is formed with a channel groove 11 for flowing fuel gas.
[0037] 正極反応層 2は、薄膜担持体であるカーボンペーパーとそれに担持された白金 (P t)触媒で構成されている。そして、負極反応層 3は、薄膜担持体であるカーボンぺー パーと、カーボンペーパーに担持された触媒で構成されている。触媒は、材料 A及 び材料 Bからなる化合物 A B (0. 2≤X≤0. 8)である。なお、薄膜担持体は、触 The positive electrode reaction layer 2 is composed of carbon paper as a thin film carrier and a platinum (Pt) catalyst carried thereon. The negative electrode reaction layer 3 is composed of carbon paper as a thin film carrier and a catalyst supported on carbon paper. The catalyst is Compound A B (0.2 ≤ X ≤ 0.8) consisting of Material A and Material B. The thin film carrier is
1-X X 1-X X
媒を担持できるものであればよぐカーボンペーパー以外のものであってもよい。 Any material other than carbon paper may be used as long as it can carry a medium.
[0038] ここで、本実施の形態 1では、材料 Aは、 Sr, Ca, Mg, Beのうちの何れかの金属で あり、材料 Bは、 Pt, Ru, Mo, Ni, Coのうちの何れかの d軌道を有する金属である。 [0038] Here, in the first embodiment, the material A is any metal of Sr, Ca, Mg, and Be, and the material B is selected from Pt, Ru, Mo, Ni, and Co. Any metal with d orbitals.
[0039] 具体的には、 Sr Pt , Sr Ru , Sr Mo , Sr Ni , Sr Co , Ca Pt , Mg [0039] Specifically, Sr Pt, Sr Ru, Sr Mo, Sr Ni, Sr Co, Ca Pt, Mg
l-X X 1-X X 1-X X 1-X X 1-X X 1-X X 1- l-X X 1-X X 1-X X 1-X X 1-X X 1-X X 1-
Pt , Be Ptのうちの何れかの化合物を触媒として使用している。 Any compound of Pt and Be Pt is used as a catalyst.
X X 1-X X X X 1-X X
[0040] また、 Srが Pt, Ru, Mo, Ni, Coのうちの何れかと固溶するために、組成比 Xは、 0 [0040] Further, since Sr is solid-solved with any of Pt, Ru, Mo, Ni, and Co, the composition ratio X is 0.
. 2≤X≤0. 8の範囲に制限される。 Limited to the range 2≤X≤0.
[0041] さらに、 Ca, Mg, Beのうちの何れ力と Pt, Ru, Mo, Ni, Coのうち何れかとが固溶 するために、組成比 Xは、 0. 2≤X≤0. 8の範囲に制限される。 [0041] Furthermore, since any one of Ca, Mg, and Be and one of Pt, Ru, Mo, Ni, and Co are dissolved, the composition ratio X is 0.2≤X≤0.8. Limited to the range of
[0042] < C.固体高分子型燃料電池の製造方法 > [0042] <C. Method for producing polymer electrolyte fuel cell>
次に、本実施の形態 1に係る固体高分子型燃料電池の製造方法について説明す る。 Next, a method for manufacturing the polymer electrolyte fuel cell according to Embodiment 1 will be described.
[0043] まず、負極反応層 3の触媒として用いられる化合物 A Bを後述する製造方法によ [0043] First, the compound AB used as a catalyst for the negative electrode reaction layer 3 is produced by a production method described later.
1-X X 1-X X
り製造する。 Manufactured.
[0044] そして、触媒を得た後、従来の白金触媒と同じ体積比率でカーボンペーパーに担 持させることで負極反応層 3を製造する。 [0044] Then, after obtaining the catalyst, the negative electrode reaction layer 3 is manufactured by supporting the carbon paper at the same volume ratio as the conventional platinum catalyst.
[0045] 続レ、て、電解質膜 1等の燃料電池を構成する各層を準備し、それらを所定の順に 重ねて接合することで図 1に示す燃料電池を得ることができる。 [0045] The fuel cell shown in FIG. 1 can be obtained by preparing each layer constituting the fuel cell, such as the electrolyte membrane 1, and stacking and joining them in a predetermined order.
[0046] < C 1.化合物 Sr Ptの製造方法 >
以下、本実施の形態 1に係る固体高分子型燃料電池の負極反応層 3に用レ、られる 触媒の製造方法について説明する。 [0046] <C 1. Method for Producing Compound Sr Pt> Hereinafter, a method for producing a catalyst used for the negative electrode reaction layer 3 of the polymer electrolyte fuel cell according to Embodiment 1 will be described.
[0047] 最初に化合物 Sr Ptの製造方法について説明する。 [0047] First, a method for producing the compound Sr Pt will be described.
1-X X 1-X X
[0048] ステンレス製ボールミルにより、ストロンチウム粉と白金粉を所定の割合(1 _X: X) で粉砕'混合する。 [0048] Using a stainless steel ball mill, strontium powder and platinum powder are pulverized and mixed at a predetermined ratio (1_X: X).
[0049] 続いて、ストロンチウム粉と白金粉からなる混合物を、タングステン坩堝に入れる。 [0049] Subsequently, a mixture of strontium powder and platinum powder is put into a tungsten crucible.
[0050] そして、東海高熱工業 (株)社製真空置換式高温炉により、アルゴン雰囲気下で 18[0050] Then, using a vacuum substitution type high-temperature furnace manufactured by Tokai Koetsu Kogyo Co., Ltd. under an argon atmosphere.
50°Cまで加熱し、混合物を溶融して合金化する。 Heat to 50 ° C to melt and alloy the mixture.
[0051] 合金化した混合物を冷却した後、粉砕して、化合物 Sr Pt (0. 2≤X≤0. 8)を製 [0051] The alloyed mixture is cooled and then crushed to produce the compound Sr Pt (0.2 ≤ X ≤ 0.8).
1-X X 1-X X
造する。 Build.
[0052] ここで、ストロンチウム粉は堺ィ匕学工業 (株)の製品名 KST (純度 99· 95%)を用い た。 白金粉は、田中貴金属(株)の純度 5Nup品を用いた。 [0052] Here, the product name KST (purity: 99. 95%) of 堺 匕 学 工業 Co., Ltd. was used as the strontium powder. Platinum powder used was Tanaka Kikinzoku Co., Ltd., with a purity of 5 Nup.
[0053] < C 2.化合物 Sr Ruの製造方法 > <0053> <C 2. Method for Producing Compound Sr Ru>
1-X X 1-X X
次に、負極反応層 3の化合物 Sr Ruの製造方法について説明する。 Next, a method for producing the compound Sr Ru of the negative electrode reaction layer 3 will be described.
1-X X 1-X X
[0054] まず、ステンレス製ボールミルにより、ストロンチウム粉とルテニウム粉を所定の割合 [0054] First, a strontium powder and a ruthenium powder are mixed at a predetermined ratio using a stainless steel ball mill.
(1 x:x)で粉碎'混合する。 Mix (1 x: x).
[0055] 次に、ストロンチウム粉とルテニウム粉からなる混合物を、タングステン坩堝に入れる [0055] Next, a mixture of strontium powder and ruthenium powder is placed in a tungsten crucible.
[0056] そして、東海高熱工業 (株)社製真空置換式高温炉により、アルゴン雰囲気下で 23[0056] Then, using a vacuum substitution type high temperature furnace manufactured by Tokai Koetsu Kogyo Co., Ltd.
50°Cまで加熱し、混合物を溶融して合金化する。 Heat to 50 ° C to melt and alloy the mixture.
[0057] 合金化した混合物を冷却した後、粉砕して、化合物 Sr Ru (0. 2≤X≤0. 8)を [0057] The alloyed mixture is cooled and then crushed to give the compound Sr Ru (0.2≤X≤0.8).
1-X X 1-X X
製造する。 To manufacture.
[0058] ここで、ストロンチウム粉は堺ィ匕学工業 (株)の製品名 KST (純度 99. 95%)を用い た。ルテニウム粉は、田中貴金属(株)の純度 5Nup品を用いた。 [0058] Here, the product name KST (purity 99. 95%) of 堺 匕 学 工業 Co., Ltd. was used as the strontium powder. The ruthenium powder used was Tanaka Kikinzoku Co., Ltd. with a purity of 5 Nup.
[0059] < C- 3.化合物 Sr Moの製造方法 > [0059] <C-3. Method for producing compound Sr Mo>
1-X X 1-X X
次に、化合物 Sr Mo の製造方法について説明する。 Next, a method for producing the compound Sr Mo will be described.
1-X X 1-X X
[0060] まず、ステンレス製ボールミルにより、ストロンチウム粉とモリブデン粉を所定の割合 [0060] First, a strontium powder and a molybdenum powder are mixed at a predetermined ratio using a stainless steel ball mill.
(1 x:x)で粉碎'混合する。
[0061] 次に、ストロンチウム粉とモリブデン粉からなる混合物を、タングステン坩堝に入れる Mix (1 x: x). [0061] Next, a mixture of strontium powder and molybdenum powder is placed in a tungsten crucible.
[0062] そして、アルゴン雰囲気下で 2650°Cまで加熱し、混合物を溶融して合金化する。 [0062] Then, the mixture is heated to 2650 ° C under an argon atmosphere, and the mixture is melted to be alloyed.
合金化した混合物を冷却した後、粉砕して、化合物 Sr Mo (0. 2≤X≤0. 8)を製 The alloyed mixture is cooled and then crushed to produce the compound Sr Mo (0.2 ≤ X ≤ 0.8).
1-X X 1-X X
造する。 Build.
[0063] ここで、ストロンチウム粉は、堺化学工業 (株)の製品名 KSTを用いた。モリブデン 粉は、東芝マテリアル (株)の商品名 M12を用いた。 Here, the product name KST of Sakai Chemical Industry Co., Ltd. was used as the strontium powder. The product name M12 of Toshiba Material Co., Ltd. was used for the molybdenum powder.
[0064] < C-4.化合物 Sr Niの製造方法 > [0064] <C-4. Method for Producing Compound Sr Ni>
1-X X 1-X X
次に、化合物 Sr Niの製造方法について説明する。 Next, a method for producing the compound Sr Ni will be described.
1-X X 1-X X
[0065] まず、ステンレス製ボールミルにより、ストロンチウム粉とニッケノレ粉を所定の割合(1 x:x)で粉碎*混合する。 [0065] First, strontium powder and Nikkenole powder are mixed in a predetermined ratio (1 x: x) with a stainless ball mill.
[0066] 次に、ストロンチウム粉とエッケノレ粉からなる混合物を、タングステン坩堝に入れる。 [0066] Next, a mixture of strontium powder and Eckenole powder is placed in a tungsten crucible.
[0067] そして、アルゴン雰囲気下で 2000°Cまで加熱し、混合物を溶融して合金化する。 [0067] Then, the mixture is heated to 2000 ° C under an argon atmosphere, and the mixture is melted to be alloyed.
合金化した混合物を冷却した後、粉碎して、化合物 Sr Ni (0. 2≤X≤0. 8)を製 After cooling the alloyed mixture, it is ground to produce the compound Sr Ni (0.2 ≤ X ≤ 0.8).
1-X X 1-X X
造する。 Build.
[0068] ここで、ストロンチウム粉は、堺化学工業 (株)の製品名 KSTを用いた。ニッケル粉 は、 日本重化学工業 (株)の純度 4 5N品を用いた。 [0068] Here, the product name KST of Sakai Chemical Industry Co., Ltd. was used as the strontium powder. The nickel powder used was a 45N purity product from Nippon Heavy Chemical Industry Co., Ltd.
[0069] < C- 5.化合物 Sr Co の製造方法 > [0069] <Method for producing C-5 compound Sr Co>
1-X X 1-X X
次に、化合物 Sr Co の製造方法について説明する。 Next, a method for producing the compound Sr Co will be described.
1-X X 1-X X
[0070] まず、ステンレス製ボールミルにより、ストロンチウム粉とコバルト粉を所定の割合(1 [0070] First, a strontium powder and a cobalt powder were mixed at a predetermined ratio (1
_x:x)で粉砕 '混合する。 _x: x)
[0071] 次に、ストロンチウム粉とコバルト粉からなる混合物を、タングステン坩堝に入れる。 [0071] Next, a mixture of strontium powder and cobalt powder is placed in a tungsten crucible.
[0072] そして、アルゴン雰囲気下で 2000°Cまで加熱し、混合物を溶融して合金化する。 [0072] Then, the mixture is heated to 2000 ° C under an argon atmosphere, and the mixture is melted to be alloyed.
合金化した混合物を冷却した後、粉砕して、化合物 Sr Ni (0. 2≤X≤0. 8)を製 The alloyed mixture is cooled and then crushed to produce the compound Sr Ni (0.2 ≤ X ≤ 0.8).
1-X X 1-X X
造する。 Build.
[0073] ここで、ストロンチウム粉は、堺化学工業 (株)の製品名 KSTを用いた。コバルト粉は Here, the product name KST of Sakai Chemical Industry Co., Ltd. was used as the strontium powder. Cobalt powder
、 日本重化学工業 (株)の純度 4一 5N品を用いた。 , Nippon Heavy Chemical Industry Co., Ltd. Purity 4-5N products were used.
[0074] なお、材料 Aをストロンチウムに代えて、カルシウム、マグネシウム、ベリリウムとした
化合物も製造し、それを負極反応層 3の触媒に用いて燃料電池を作成した。製造方 法は、ストロンチウムを用いた場合と同様であるので、詳細な説明は省略する。 [0074] The material A was replaced with strontium, and calcium, magnesium, and beryllium were used. A compound was also produced, and a fuel cell was prepared using it as a catalyst for the negative electrode reaction layer 3. Since the manufacturing method is the same as that when strontium is used, detailed description is omitted.
[0075] < D.効果 > [0075] <D. Effect>
< D- 1.固体高分子型燃料電池の電流一電圧特性 > <D- 1. Current-voltage characteristics of polymer electrolyte fuel cells>
図 2は、本実施の形態 1に係る固体高分子型燃料電池の電流一電圧特性を示す 図である。図 2は、 80°Cでの燃料電池の初期特性を図示している。 FIG. 2 is a graph showing the current-voltage characteristics of the polymer electrolyte fuel cell according to the first embodiment. Figure 2 illustrates the initial characteristics of the fuel cell at 80 ° C.
[0076] また、図 2には、化合物 A B (ここで、 A = Sr、 B = Pt, Ru, Mo, Ni, Co)のうち、 [0076] Further, in FIG. 2, among the compounds A B (where A = Sr, B = Pt, Ru, Mo, Ni, Co),
l-X X l-X X
0. 2≤X≤0. 8の範囲で、最も燃料電池の特性が良かった X=0. 4の特性を図示し ている。そして、従来の Pt, Pt-Ru, Pdを触媒として用いた場合の燃料電池の特性 とあわせて図 2に図示している。 The characteristics of X = 0.4, which showed the best fuel cell characteristics in the range of 0.2≤X≤0.8, are shown. Fig. 2 shows the characteristics of the fuel cell when conventional Pt, Pt-Ru, and Pd are used as the catalyst.
[0077] さらに、図 2には、 A = Ca, Mg, Beのうちの何れかの材料と、 B = Ptからなる化合 物において、 0. 2≤X≤0. 8の範囲で、最も特性の良かった X=0. 4の特性も図示 している。 [0077] Furthermore, FIG. 2 shows the most characteristic in the range of 0.2≤X≤0.8 for any material of A = Ca, Mg, Be and a compound consisting of B = Pt. The characteristics of X = 0.4, which was good, are also shown.
[0078] 図 2から、これらの化合物からなる触媒力 従来の Pt, Pt-Ru, Pd等の触媒よりも [0078] From FIG. 2, the catalytic power of these compounds is higher than that of conventional catalysts such as Pt, Pt-Ru, and Pd.
、電流一電圧特性が良ぐ高出力になっていることがわかる。 It can be seen that the current-voltage characteristic is good and the output is high.
[0079] 化合物 A B力 なる触媒が、白金族の触媒よりも触媒活性が大きくなる理由は、 [0079] The reason why the catalyst having the compound A B power has higher catalytic activity than the platinum group catalyst is
1-X X 1-X X
Ptや Ruでは、 Pt (111)や Ru (0001)などの VIII族、 VI族、 VII族遷移金属単体の表 面が触媒活性表面となるのに対し、化合物 A B力 なる触媒では、それらと Sr, Ca In Pt and Ru, the surface of the group VIII, VI, and VII transition metals such as Pt (111) and Ru (0001) is the catalytically active surface, whereas in the catalyst with the compound AB, they are combined with Sr. , Ca
1-X X 1-X X
, Mg, Beのバイメタル表面が触媒活性表面になったためと考えられる。 This is probably because the bimetal surface of Mg and Be has become a catalytically active surface.
[0080] また、詳細は定かではないが、次のような理由も考えられる。 [0080] Although the details are not clear, the following reasons may be considered.
[0081] Pt, Pt-Ru, Pdは、表面水素分子吸着/解離能力はあるが、水素吸収能力がな いため、触媒内部で触媒反応が生じない。 [0081] Pt, Pt-Ru, and Pd have surface hydrogen molecule adsorption / dissociation ability, but do not have hydrogen absorption ability, and therefore no catalytic reaction occurs inside the catalyst.
[0082] これに対し、化合物 A B (A = Sr, Ca, Mg, Be、 B = Pt, Ru, Mo, Ni, Co)は、 In contrast, the compound A B (A = Sr, Ca, Mg, Be, B = Pt, Ru, Mo, Ni, Co)
1-X X 1-X X
Sr, Ca, Mg, Beが表面水素分子吸着/解離能力のみならず水素吸収能力を持つ ており、そのため水素が触媒内部まで入りこんで触媒反応を起こす。 Sr, Ca, Mg, and Be have not only surface hydrogen molecule adsorption / dissociation ability but also hydrogen absorption ability, so that hydrogen penetrates into the catalyst and causes catalytic reaction.
[0083] そして、触媒反応によって水素から離脱した電子は、化合物 A B内部から表面 [0083] Then, the electrons released from the hydrogen by the catalytic reaction are transferred from the inside of the compound A B to the surface.
1-X X 1-X X
へ移動する。以上のように触媒内部で触媒反応が起こる結果、電流一電圧特性が向 上すると考えられる。
[0084] < D- 2.固体高分子型燃料電池の電池寿命 > Move to. As described above, it is considered that the current-voltage characteristic is improved as a result of the catalytic reaction inside the catalyst. [0084] <D- 2. Battery life of polymer electrolyte fuel cells>
次に、図 3を参照して、本実施の形態 1に係る固体高分子型燃料電池の電池寿命 について説明する。図 3は、本実施の形態 1に係る固体高分子型燃料電池を 1万時 間運転した後の電流一電圧特性を示す図である。 Next, the battery life of the polymer electrolyte fuel cell according to Embodiment 1 will be described with reference to FIG. FIG. 3 is a graph showing current-voltage characteristics after the polymer electrolyte fuel cell according to Embodiment 1 has been operated for 10,000 hours.
[0085] 図 3から、従来の白金族の触媒を用いた固体高分子型燃料電池は、電圧が 40% 低下しているのに対し、本実施の形態 1に係る固体高分子形燃料電池は、全く低下 していないことがわかる。 [0085] From FIG. 3, the polymer electrolyte fuel cell using the conventional platinum group catalyst has a voltage drop of 40%, whereas the polymer electrolyte fuel cell according to Embodiment 1 is It can be seen that there is no decline at all.
[0086] これは、従来の負極反応層 3に用いられた触媒は、長期運転でシンタリングし凝集 しているのに対し、本発明の触媒がシンタリングせず、凝集しないためである。 [0086] This is because the catalyst used in the conventional negative electrode reaction layer 3 is sintered and agglomerated in a long-term operation, whereas the catalyst of the present invention does not sinter and agglomerate.
[0087] また、金属 Bを Pd, Rh, Ir,〇s, Re, Tc, Ti, Fe, V, Cr, Mn, Cu, Znとして、ィ匕 合物 A Bを製造した。 [0087] Also, a compound B was produced using the metal B as Pd, Rh, Ir, Os, Re, Tc, Ti, Fe, V, Cr, Mn, Cu, and Zn.
1-X X 1-X X
[0088] これらの触媒を、従来の白金などの触媒と同じ体積比率でカーボンペーパーに担 持させて燃料電池を製造した。そして、燃料電池の初期と 1万時間後の電流 電圧 特性を測定した。電流-電圧特性は、初期と 1万時間後の何れも、 Pt, Ru, Mo, Ni , Coよりも悪かった力 従来の白金などの触媒よりも、良くなつていることがわ力 た。 [0088] A fuel cell was manufactured by supporting these catalysts on carbon paper at the same volume ratio as a conventional catalyst such as platinum. Then, we measured the current-voltage characteristics at the beginning and after 10,000 hours of the fuel cell. The current-voltage characteristics were worse than those of Pt, Ru, Mo, Ni, and Co, both at the beginning and after 10,000 hours.
[0089] 以上説明したように、本実施の形態 1に係る固体高分子型燃料電池は、負極反応 層 3の触媒として化合物 A Bを用いているので、従来の Pt, Pt— Ru, Pd触媒の場 [0089] As described above, since the polymer electrolyte fuel cell according to Embodiment 1 uses the compound AB as the catalyst of the negative electrode reaction layer 3, the conventional Pt, Pt-Ru, Pd catalyst Place
1-X X 1-X X
合と異なりシンタリングによる凝集が抑制される。 Unlike the case, aggregation due to sintering is suppressed.
[0090] そのため、触媒となる化合物の総表面積が初期とほぼ同じになるので電流密度が 落ちない。 [0090] Therefore, since the total surface area of the compound serving as the catalyst is almost the same as the initial value, the current density does not decrease.
[0091] その結果、燃料電池の電池寿命を従来の Pt, Pt-Ru, Pdからなる触媒の場合より 長くできる。 As a result, the battery life of the fuel cell can be made longer than that of the conventional catalyst made of Pt, Pt-Ru, Pd.
[0092] ここで、 d軌道を有する材料 Bは、触媒活性を有しない金属を含んでいる。そのため 、材料 A及び材料 Bがともに触媒活性を有さない場合もある。しかし、このような場合 であっても、材料 Bが d軌道を有する金属であれば、化合物 A Bは触媒活性を有 Here, the material B having the d orbital contains a metal having no catalytic activity. Therefore, both material A and material B may not have catalytic activity. However, even in such a case, if the material B is a metal having d orbitals, the compound A B has catalytic activity.
1-X X 1-X X
することを確言忍してレ、る。 I will endure that I will do it.
[0093] また、本実施の形態 1に係る固体高分子型燃料電池は、化合物 A Bを触媒とし [0093] Further, the polymer electrolyte fuel cell according to Embodiment 1 uses Compound A B as a catalyst.
1-X X 1-X X
て用いているので、従来の Pt, Pt-Ru, Pd触媒を用いた固体高分子型燃料電池に
比べて、電流—電圧特性が初期において向上し、高電圧、高電流が取り出せ、より 出力を向上できる。 As a solid polymer fuel cell using conventional Pt, Pt-Ru, Pd catalysts In comparison, the current-voltage characteristics are improved in the initial stage, high voltage and high current can be extracted, and the output can be further improved.
[0094] さらに、本実施の形態 1に係る固体高分子型燃料電池の触媒は、 Pt, Pt-Ru, Pd 力 なる触媒より材料費が安価なため、燃料電池の製造コストを下げることができる。 [0094] Furthermore, the solid polymer fuel cell catalyst according to the first embodiment has a lower material cost than the catalyst having Pt, Pt-Ru, Pd force, and therefore can reduce the manufacturing cost of the fuel cell. .
[0095] 本実施の形態 1に係る固体高分子型燃料電池では、材料 Aとして Srを選ぶことで、 出力を大きくすることができる。 In the polymer electrolyte fuel cell according to Embodiment 1, the output can be increased by selecting Sr as the material A.
[0096] 本実施の形態 1に係る固体高分子型燃料電池では、材料 Bとして、 Pt, Ru, Mo, Ni, Co, Pd, Ti, Fe, V, Cr, Mn, Cu, Znのうちの何れ力の金属を用いてレヽる。 [0096] In the polymer electrolyte fuel cell according to the first embodiment, as the material B, Pt, Ru, Mo, Ni, Co, Pd, Ti, Fe, V, Cr, Mn, Cu, Zn Raise using any power metal.
[0097] これらの金属は触媒活性を有しているので、材料 Bとして触媒活性を有しないもの を使用する場合に比べて、さらに燃料電池の出力を向上することができる。 [0097] Since these metals have catalytic activity, the output of the fuel cell can be further improved as compared with the case where the material B does not have catalytic activity.
[0098] なお、材料 Aとして、 Sr, Ca, Mg, Beのうちの何れかの金属の錯体を用い、材料 B として Pt, Ru, Mo, Ni, Co, Pd, Rh, Ir, Os, Re, Tc, Ti, Fe, V, Cr, Mn, Cu, Znのうちの何れかの金属の錯体を用いて化合物 A Bを形成し、それを負極反応 [0098] Note that as the material A, a metal complex of any one of Sr, Ca, Mg, and Be is used, and as the material B, Pt, Ru, Mo, Ni, Co, Pd, Rh, Ir, Os, Re , Tc, Ti, Fe, V, Cr, Mn, Cu, Zn using a metal complex to form compound AB and react with it as a negative electrode
1-X X 1-X X
層 3の触媒として用いた燃料電池も形成した。 A fuel cell used as the catalyst for layer 3 was also formed.
[0099] 材料 A、 Bとして、錯体を用いることで、化合物 A B の構造安定性が向上し、燃料 [0099] By using complexes as the materials A and B, the structural stability of the compound A B is improved, and the fuel
1-X X 1-X X
電池の出力が若干向上することがわかった。 It turned out that the output of a battery improves a little.
[0100] < E.化合物 A Bの他の製造方法 > [0100] <E. Other production method of compound A B>
1-X X 1-X X
本実施の形態 1に係る固体高分子型燃料電池では、溶融合金化法により触媒を形 成したが、以下に説明する加熱分解法で製造しても良い。 In the polymer electrolyte fuel cell according to the first embodiment, the catalyst is formed by the melt alloying method, but may be manufactured by the thermal decomposition method described below.
[0101] 加熱分解法では、材料 A, Bを含む AC1と BC1または BC1または BC1をカロ熱により [0101] In the pyrolysis method, AC1 and BC1 or BC1 or BC1 containing materials A and B are
2 2 3 4 2 2 3 4
溶融 '分解により、材料 A, Bを得る。その後、冷却して化合物 A Bを得ることができ By melting 'decomposition, materials A and B are obtained. Then it can be cooled to obtain compound A B
1-X X 1-X X
る。 The
[0102] Sr Bなど化合物触媒は、例えば、 Bが Ptの場合、へキサクロ口白金ストロンチウ [0102] The compound catalyst such as Sr B, for example, when B is Pt,
1-X X 1-X X
ムを真空中、 500°Cで分解、塩素ガスを飛ばして作成できる。 It can be created by decomposing at 500 ° C in a vacuum and blowing off chlorine gas.
[0103] 以上説明した加熱分解法又は溶融合金化法を用いて触媒を製造することで、容易 に化合物 A Bを形成すること力できる。 [0103] Compound AB can be easily formed by producing a catalyst using the thermal decomposition method or the melt alloying method described above.
1-X X 1-X X
[0104] (実施の形態 2) [Embodiment 2]
<A.構成 >
本実施の形態 2に係る固体高分子型燃料電池では、負極反応層 3の触媒である化 合物 Sr Ptとして Sr粒子に Ptがコーティングされたものを用いている。 <A. Configuration> In the polymer electrolyte fuel cell according to Embodiment 2, the Sr particles coated with Pt are used as the compound Sr Pt that is the catalyst of the negative electrode reaction layer 3.
1-X X 1-X X
[0105] ここで、 Sr粒子表面は、 Ptにより完全に被覆されているのではなぐ燃料ガスが Pt 間を通って Sr粒子表面と反応できるように、 Pt間に適度な隙間をもって Sr粒子表面 は被覆されている。 [0105] Here, the surface of the Sr particle is not completely covered with Pt, but the Sr particle surface has an appropriate gap between Pt so that the fuel gas can react with the Sr particle surface through Pt. It is covered.
[0106] その他の構成は、実施の形態 1と同一であり、実施の形態 1と同一の構成には同一 の符号を付し、重複する説明は省略する。 [0106] Other configurations are the same as those of the first embodiment, and the same configurations as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
[0107] < B.製造方法 > [0107] <B. Manufacturing method>
次に、本実施の形態 2に係る触媒の製造方法について説明する。 Sr粒子の Ptによ るコーティングは、下記の方法で実施した。 Next, a method for producing a catalyst according to the second embodiment will be described. The coating of Sr particles with Pt was performed by the following method.
[0108] 高純度化学工業 (株)の無電解白金メッキ PTM01L B溶液中に、所定比の Sr粉 を投入'攪拌し、 Srに Ptを無電解メツキ (分散メツキ又は混合メツキともいう)した後、ろ 過し乾燥させることにより作成した。 [0108] After adding a predetermined ratio of Sr powder to the electroless platinum plating PTM01L B solution of High Purity Chemical Industry Co., Ltd. and stirring, Pt was electrolyzed (also referred to as dispersion or mixed plating) to Sr. It was prepared by filtering and drying.
[0109] こうして得られた触媒を従来の白金などの触媒と同じ体積比率でカーボンペーパー に担持させ、燃料電池を製作した。 [0109] The catalyst thus obtained was supported on carbon paper at the same volume ratio as that of a conventional catalyst such as platinum to produce a fuel cell.
[0110] 一般的に、材料 A又は Bのニトロ錯塩又はニトロアンミン錯塩を、還元剤ヒドラジンと 安定化剤ヒドロキシノレアミン塩溶液中で材料 A又は Bと無電解酸化還元反応させ、溶 液を除去することで化合物 A Bを得ること力できる。 [0110] In general, the nitro complex or nitroammine complex of material A or B is subjected to electroless oxidation-reduction reaction with material A or B in a reducing agent hydrazine and a stabilizer hydroxy noreamine salt solution to remove the solution. By doing so, it is possible to obtain compound AB.
1-X X 1-X X
[0111] <c.効果 > [0111] <c.Effect>
燃料ガスが水素ガスでな メタノーノレ,エタノールなど液体燃料での直接改質の 場合、化合物 Pt触媒中の Srの部分と液体が反応する。 In the case of direct reforming with liquid fuel such as methanol or ethanol where the fuel gas is not hydrogen gas, the liquid reacts with the Sr portion in the compound Pt catalyst.
1-X X 1-X X
[0112] この反応を防止するため、本実施の形態 2に係る固体高分子型燃料電池は、 Srの 粒子表面を Ptからなる高密度ポリマー皮膜で薄くコーティングしている。 [0112] In order to prevent this reaction, the polymer electrolyte fuel cell according to Embodiment 2 is thinly coated with a high-density polymer film made of Pt on the Sr particle surface.
[0113] その結果、皮膜は高密度なため、 Srと液体の反応を防止できる。また、コーティング 膜は薄ぐ Pt間には隙間があるため、化合物 Sr Ptの触媒活性を失わず、かつ、 [0113] As a result, since the film has a high density, the reaction between Sr and liquid can be prevented. In addition, since the coating film is thin and there is a gap between Pt, the catalytic activity of the compound Sr Pt is not lost, and
1-X X 1-X X
燃料である水素ガス分子は大きさが小さいため、この皮膜を透過できるので、化学反 応が減速されることはない。 Since hydrogen gas molecules, which are fuel, are small in size, they can permeate this film, so the chemical reaction is not slowed down.
[0114] なお、材料 Aが Sr, Ca, Mg, Beのうちの何れかの金属であり、材料 Bが Ru, Mo,
Ni, Co, Pd, Rh, Ir, Os, Re, Fe, V, Cr, Mn, Cu, Znのうちの何れかの金属であ る化合物 A Bも同様に無電解メツキで製造した。 [0114] Note that the material A is any metal of Sr, Ca, Mg, and Be, and the material B is Ru, Mo, Compound AB, which is any metal among Ni, Co, Pd, Rh, Ir, Os, Re, Fe, V, Cr, Mn, Cu, and Zn, was also produced by electroless plating.
1-X X 1-X X
[0115] そして、この場合も同様に、液体と材料 Aの反応を防止できることがわかった。 [0115] And in this case as well, it was found that the reaction between the liquid and the material A can be prevented.
[0116] また、本実施の形態 2では、材料 Aである Sr粒子表面を材料 Bである Ptによりコー ティングしたが、 Pt粒子表面を Srによりコーティングするようにしても良い。 [0116] In the second embodiment, the surface of Sr particles as material A is coated with Pt as material B. However, the surface of Pt particles may be coated with Sr.
[0117] 即ち、材料 A及び材料 Bの一方力 他方によりコーティングされていれば良い。 [0117] That is, it is sufficient that the material A and the material B are coated with one force and the other.
[0118] < D.触媒の他の製造方法 > [0118] <D. Other production method of catalyst>
本実施の形態 2に係る固体高分子型燃料電池では、無電界メツキ法により触媒を 形成したが、以下に説明する製造方法で製造しても良い。 In the polymer electrolyte fuel cell according to Embodiment 2, the catalyst is formed by the electroless plating method, but may be manufactured by the manufacturing method described below.
[0119] < D— 1.電解メツキ法 > [0119] <D— 1. Electrolytic plating method>
まず、電解メツキ法について説明する。 First, the electrolytic plating method will be described.
[0120] Srコートした電極をテトラシァノ白金酸ストロンチウムを溶力 たアルカリシアン溶液 中、 25°C、ペーハー 12 (PH12)、 0. 5A/dm2で電解メツキした後、 Sr Ptをけず [0120] The Sr-coated electrode was electrolyzed at 25 ° C, pH 12 (PH12), 0.5 A / dm2 in alkaline cyanate solution with strontium tetracianoplatinate, and then Sr Pt was removed.
1-X X り、水素ガスで還元した後、粉砕して作成する。その後、錯体にしても良い。 After reducing with hydrogen gas, pulverize. Thereafter, a complex may be formed.
[0121] < D- 2. CVD法 > [0121] <D-2. CVD method>
次に、 CVD法について説明する。 Next, the CVD method will be described.
[0122] CVD法で Si基板上に、液体原料ビス(ェチルシクロペンタジェニル)ストロンチウム とェチルシクロペンタジェニル(トリメチル)白金を所定の比で流し、 Sr Ptを析出さ [0122] The liquid raw materials bis (ethylcyclopentagenyl) strontium and ethylcyclopentagenyl (trimethyl) platinum were flown on the Si substrate at a predetermined ratio by the CVD method to deposit Sr Pt.
1-X X せる。そして、冷却後基板からけずり、粉砕して微粉にすることで化合物 Sr Ptのコ 1-X X Then, after cooling, it is scraped from the substrate, pulverized into a fine powder, and then the compound Sr Pt
1-X X 一ティング粉体を得ることができる。その後、錯体にしても良い。 1-X X One powder can be obtained. Thereafter, a complex may be formed.
[0123] く D— 3.スパッタ法 > [0123] Ku D— 3. Sputtering>
次に、スパッタ法について説明する。 Next, the sputtering method will be described.
[0124] スパッタ法では、 10— 2Torr〜10— 5TorrArの真空度で直流方式、高周波方式又は マグネトロン方式で、材料 A又は材料 Bを蒸発させる。そして、基板上で材料 A又は 材料 Bを凝縮させる。その後、凝縮生成したものをそぎ落として粉砕することで、化合 物 A Bのコーティング粉体を得ることができる。 In the 0124] sputtering, 10- 2 Torr~10- 5 TorrAr DC method at a vacuum degree of a high-frequency method or magnetron system, evaporating the material A or material B. Then, the material A or the material B is condensed on the substrate. Then, the condensed powder is scraped off and pulverized to obtain a coating powder of Compound AB.
1-X X 1-X X
[0125] < D-4.真空蒸着法 > [0125] <D-4. Vacuum evaporation method>
真空蒸着法では、まず、 10— 6Τοιτ (10— 4Pa)以上の真空度で材料 Aを加熱蒸発さ
せ、材料 Bからなる基板上で凝縮させる。 The vacuum vapor deposition method, first, a material A heating evaporation of at 10- 6 Τοιτ (10- 4 Pa) or more vacuum And condensing on a substrate made of material B.
[0126] 次に、凝縮生成したものをそぎ落とし、粉砕して化合物 A Bのコーティング粉体を [0126] Next, the condensed product is scraped off and pulverized to obtain a coating powder of Compound A B.
1-X X 1-X X
得た。 Obtained.
[0127] < D- 5.溶射法 > [0127] <D- 5. Thermal spray method>
コーティング材料 Aを、加熱により溶融若しくは軟化させることで微粒子状にする。 そしてコーティング材料 Aを加速し、被覆対象材料 B表面に衝突させて、扁平に潰れ た粒子を基板上に凝固'堆積させる。その後、堆積物をそぎ落とし、粉砕して、化合 物 A Bのコーティング粉体を得た。 The coating material A is made into fine particles by melting or softening by heating. Then, the coating material A is accelerated and collided with the surface of the coating target material B to solidify and deposit the flattened particles on the substrate. Thereafter, the deposit was scraped and pulverized to obtain a coating powder of the compound A B.
1-X X 1-X X
[0128] < D— 6·イオンプレーティング法 > [0128] <D—6 · Ion plating method>
材料 Aの蒸発源と材料 Bからなる基板の間にプラズマ放電部を置き、材料 Aが基板 に到達する前に、 IKeV以下 lOOeVのプラズマで励起させた。 A plasma discharge part was placed between the evaporation source of material A and the substrate made of material B, and before material A reached the substrate, it was excited by plasma of IKeV or less lOOeV.
[0129] PVD (Physical Vapor Deposition)の一種で、高真空中で材料 Aを蒸発させ、 蒸発流をイオン化させた。 [0129] It is a kind of PVD (Physical Vapor Deposition), and material A was evaporated in a high vacuum, and the evaporation flow was ionized.
[0130] このイオンィ匕した蒸発流は、負の電圧が印加され表面が金属 Bからなる基板へ向か つて加速され、高レ、運動エネルギーを持って基板へ衝突する。 [0130] The ionized evaporative flow is accelerated toward a substrate made of metal B with a negative voltage applied, and collides with the substrate with a high level of kinetic energy.
[0131] この時、生成した化合物 A Bの膜をそぎ落とし、粉碎して化合物 A Bからなる [0131] At this time, the film of the compound A B produced is scraped off and powdered to form the compound A B.
1-X X 1-X X コーティング粉体を得た。 1-X X 1-X X coating powder was obtained.
[0132] < D- 7.キヤタラィザーァクセレーター法 > [0132] <D-7.
材料 A又は材料 Bと材料 B+イオン又は材料 A+イオンの混合により材料 B+イオン又 は材料 A+イオンのコロイド液とし、これに材料 A又は材料 Bからなる基板を浸せきし、 次に塩酸溶液に浸せきして化学メツキの反応を促進することにより、材料 Aを材料 B によりコーティングした。 A mixture of material A or material B and material B + ions or material A + ions forms a colloidal solution of material B + ions or material A + ions, which is then immersed in a substrate made of material A or material B, and then immersed in a hydrochloric acid solution. Material A was then coated with Material B by promoting the chemical plating reaction.
[0133] 次に、コーティングさせたものをそぎ落とし粉砕することで、化合物 A Bのコーティ [0133] Next, the coated material of compound A B is scraped off and pulverized.
1-X X ング粉体を得ることができる。 1-X X powder can be obtained.
[0134] < D-8.プラズマ法 > [0134] <D-8.Plasma method>
プラズマ法としては、以下のプラズマイオン注入法とプラズマ CVD法を行った。 As the plasma method, the following plasma ion implantation method and plasma CVD method were performed.
[0135] < D- 8- l .プラズマイオン注入法 > [0135] <D- 8- l. Plasma ion implantation method>
プラズマイオン注入とは、材料 Aを正プラズマにし、プラズマ中に浸した金属 Bから
なる基板に、負のパルス高電圧を印可することにより、材料 Bにイオン注入し、コーテ イングを行った。その後、コーティングさせたものをそぎ落として粉砕することで、化合 物 A B力 なるコーティング粉体を得ることができる。 Plasma ion implantation means that material A is made into positive plasma and metal B immersed in the plasma is used. A negative pulse high voltage was applied to the resulting substrate, and ions were implanted into material B and coated. Thereafter, the coated powder is scraped off and pulverized to obtain a coating powder having a compound AB force.
1-X X 1-X X
[0136] < D- 8- 2.プラズマ CVD法 > [0136] <D- 8- 2. Plasma CVD method>
次に、プラズマ CVD法では、材料 Aの原料ガスと材料 Bの原料ガスを適当な希釈 ガスとともに放電 ·分解 '反応させて、基板上に析出させる。そして、析出した金属を そぎ落とし、粉砕することで化合物 A Bを得ること力できる。 Next, in the plasma CVD method, the raw material gas of material A and the raw material gas of material B are discharged and decomposed together with an appropriate diluent gas to be deposited on the substrate. The compound A B can be obtained by scraping and crushing the deposited metal.
1-X X 1-X X
[0137] プラズマの励起法としては直流、高周波、 ECRどれでも良いが、本実施の形態 1で は高周波を使用した。 [0137] As the plasma excitation method, any of direct current, high frequency, and ECR may be used, but in the first embodiment, high frequency is used.
[0138] < D- 9.凝集法〉 [0138] <D-9. Aggregation method>
真空中で、メツキ使用とする材料 Bを加熱蒸発させ、材料 Aの表面に凝集させた。 凝集させたものをそぎ落として粉砕することで、化合物 A B力 なるコーティング粉 In a vacuum, the material B to be used for the heat was evaporated by heating and agglomerated on the surface of the material A. Coating powder with compound A B power by scraping off the agglomerated material and crushing
1-X X 1-X X
体を得ることができる。 You can get a body.
[0139] < D- 10. レーザアブレーシヨン法 > [0139] <D- 10. Laser Ablation Method>
レーザーを材料 A又は材料 Bのターゲットに照射し、昇華(アブレーシヨン)させる。 そして、前記ターゲットに対抗して配置された材料 B又は材料 Aの基板上で再結晶化 させる。 The target of material A or material B is irradiated with a laser and sublimated. And it recrystallizes on the board | substrate of the material B or the material A arrange | positioned facing the said target.
[0140] 次に、結晶化した膜をそぎ落とし、粉砕することで化合物 A B力 なるコーティン [0140] Next, the crystallized film is scraped off and pulverized to produce a compound A B coating.
1-X X 1-X X
グ粉体を得ることができる。 Powder can be obtained.
[0141] 以上の製造方法により触媒を製造することで、材料 Aと材料 Bの一方が他方により コーティングされた化合物 A Bの粉体であるコーティング粉体を容易に形成できる [0141] By producing the catalyst by the above production method, a coating powder that is a powder of compound A B in which one of material A and material B is coated with the other can be easily formed.
1-X X 1-X X
[0142] (実施の形態 3) [0142] (Embodiment 3)
<A.構成 > <A. Configuration>
図 4は、本実施の形態 3に係る固体高分子型燃料電池の構成を示す断面図である 。図 4に示すように、本実施の形態 3に係る固体高分子型燃料電池は、巻き形の形状 になっている。そして、固体高分子型燃料電池は、筐体 14の内部に配置されている
[0143] 図 4において、正極側層 12は、正極反応層 2及び正極 4 (図 1参照)をまとめたもの である。即ち、正極側層 12は、内側が正極反応層 2で外側が正極 4である層を示して レ、る。同様に、負極側層 13は、内側が負極反応層 3で外側が負極 5である層を示し ている。 FIG. 4 is a cross-sectional view showing the configuration of the polymer electrolyte fuel cell according to the third embodiment. As shown in FIG. 4, the polymer electrolyte fuel cell according to Embodiment 3 has a wound shape. The polymer electrolyte fuel cell is disposed inside the housing 14. In FIG. 4, the positive electrode side layer 12 is a collection of the positive electrode reaction layer 2 and the positive electrode 4 (see FIG. 1). That is, the positive electrode side layer 12 indicates a layer in which the inner side is the positive electrode reaction layer 2 and the outer side is the positive electrode 4. Similarly, the negative electrode side layer 13 is a layer in which the inner side is the negative electrode reaction layer 3 and the outer side is the negative electrode 5.
[0144] また、正極 4及び負極 5にそれぞれ接続されたリード線(図示せず)が、電流を外部 に取り出すために、筐体 14に設けられた穴(図示せず)から外部に引き出されている 。なお、筐体 14の穴とリード線間に生じる隙間は、樹脂などによって封止されている。 [0144] Also, lead wires (not shown) connected to the positive electrode 4 and the negative electrode 5, respectively, are drawn out from holes (not shown) provided in the housing 14 in order to extract the current to the outside. ing . Note that a gap generated between the hole of the housing 14 and the lead wire is sealed with resin or the like.
[0145] その他の構成は、実施の形態 1と同様であり、実施の形態 1と同一の構成には同一 の符号を付し、重複する説明は省略する。 [0145] Other configurations are the same as those in the first embodiment, and the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
[0146] < B.製造方法 > [0146] <B. Manufacturing method>
アルカリ土類金属 Sr, Ca, Mg, Beは白金族金属 Pt, Pd, Pt— Ruと異なりかなり 延性が大きいので、本発明の化合物 A Bもかなり延性が大きい。 Unlike the platinum group metals Pt, Pd, and Pt—Ru, the alkaline earth metals Sr, Ca, Mg, and Be are quite ductile. Therefore, the compound AB of the present invention is also quite ductile.
1-X X 1-X X
[0147] このため、図 1で示した単一セル構造で、負極反応層 3のカーボンペーパーは白金 族触媒を担持した場合は堅くて曲がりにくいが、本発明の触媒を担持した場合は柔 軟で曲がりやすい。 [0147] For this reason, in the single cell structure shown in Fig. 1, the carbon paper of the negative electrode reaction layer 3 is firm and difficult to bend when a platinum group catalyst is supported, but is flexible when the catalyst of the present invention is supported. Easy to bend at.
[0148] そこで、まず、電解質膜 1、正極反応層 2、負極反応層 3、正極 4、負極 5、正極セパ レータ 6、負極セパレータ 7、正極集電板 8及び負極集電板 9を所定の順に積層して 接合する。 [0148] Therefore, first, the electrolyte membrane 1, the positive electrode reaction layer 2, the negative electrode reaction layer 3, the positive electrode 4, the negative electrode 5, the positive electrode separator 6, the negative electrode separator 7, the positive electrode current collector plate 8, and the negative electrode current collector plate 9 are predetermined. Laminate and join in order.
[0149] そして、夫々の層を接合した後に、コンパクトに曲げることで、図 4に示す卷き形の 固体高分子型燃料電池を製造することができる。 [0149] Then, after joining the respective layers, the cell-shaped solid polymer fuel cell shown in Fig. 4 can be produced by bending it compactly.
[0150] < C.効果 > [0150] <C. Effect>
従来の固体高分子型燃料電池では、出力を高くするには、複数のセルを直列に積 層(スタック)する必要があった。そして電極リードを積層数だけ取り出して接続しなけ ればならなかった。 In the conventional polymer electrolyte fuel cell, it was necessary to stack a plurality of cells in series in order to increase the output. And we had to take out and connect the electrode leads by the number of layers.
[0151] 本実施の形態 3に係る固体高分子型燃料電池は、卷き形の形状なので電極リード を 2個引き出すだけで良ぐそのぶん構造も簡単で占有体積も少なくできる。 [0151] Since the polymer electrolyte fuel cell according to Embodiment 3 has a spiral shape, the structure can be simplified and the occupied volume can be reduced by simply pulling out two electrode leads.
[0152] その結果、 1個の燃料電池の大きさを小型化できる。 [0152] As a result, the size of one fuel cell can be reduced.
[0153] また、電極製造装置は電極幅が一定なので、機器電源電圧から設定される一定の
電圧に対して、積層型だと積層枚数が一定になるため燃料電池の高さ、長さが決ま つてしまう。 ところが、本実施の形態 3に係る燃料電池は、卷き形なので一定電圧に するのに直列に接続した際、卷き数を自由に変化できるので高さ、長さを自由に変 更できる。このため形状も自由に変更できる。 [0153] In addition, since the electrode width is constant in the electrode manufacturing apparatus, the constant is set from the device power supply voltage. With respect to voltage, the number of stacked layers is constant in the stacked type, so the height and length of the fuel cell are determined. However, since the fuel cell according to the third embodiment is a whirling type, when it is connected in series to make a constant voltage, the number of whistling can be freely changed, so that the height and length can be freely changed. For this reason, a shape can also be changed freely.
[0154] (実施の形態 4) [Embodiment 4]
<A.構成 > <A. Configuration>
本実施の形態 4に係る固体高分子型燃料電池は、複数個の巻き形燃料電池 40を 機器に要求される出力に応じて直列又は並列又は直並列に電気的に接続したもの である。 The polymer electrolyte fuel cell according to Embodiment 4 is obtained by electrically connecting a plurality of wound fuel cells 40 in series, in parallel, or in series-parallel according to the output required for the device.
[0155] 図 5から図 7は、以上のように電気的に接続された固体高分子型燃料電池の回路 図である。 [0155] Figs. 5 to 7 are circuit diagrams of the polymer electrolyte fuel cells electrically connected as described above.
[0156] 図 5は、 2個の卷き形燃料電池 40を直列に接続した燃料電池の回路図である。図 6 は、 2個の卷き形燃料電池 40を並列に接続した燃料電池の回路図である。そして、 図 7は卷き形燃料電池 40を複数個直並列に接続した燃料電池の回路図である。 [0156] FIG. 5 is a circuit diagram of a fuel cell in which two cell-shaped fuel cells 40 are connected in series. FIG. 6 is a circuit diagram of a fuel cell in which two fired fuel cells 40 are connected in parallel. FIG. 7 is a circuit diagram of a fuel cell in which a plurality of fired fuel cells 40 are connected in series and parallel.
[0157] 図 7では、複数個の卷き形燃料電池 40が直列に接続され、直列接続された卷き形 燃料電池 40の複数個の組がそれぞれ並列接続されている。 [0157] In Fig. 7, a plurality of fired fuel cells 40 are connected in series, and a plurality of sets of fired fuel cells 40 connected in series are connected in parallel.
[0158] そして、端子 71には基準電位 Vが与えられている。そして端子 72、端子 74から所 [0158] Then, the reference potential V is applied to the terminal 71. And from terminals 72 and 74
0 0
定の電圧を外部に出力するように構成されている。 A constant voltage is output to the outside.
[0159] また、図 7からわかるように、端子 72から出力される電圧は、端子 74から出力される 電圧より低い。即ち、本実施の形態 4に係る固体高分子型燃料電池は、機器に要求 される出力に応じて、複数の電圧を外部に出力できるように構成されてレ、る。 Further, as can be seen from FIG. 7, the voltage output from the terminal 72 is lower than the voltage output from the terminal 74. That is, the polymer electrolyte fuel cell according to Embodiment 4 is configured to output a plurality of voltages to the outside in accordance with the output required for the device.
[0160] なお、個々の卷き形燃料電池 40は、他の卷き形燃料電池 40から取りはずすことが できるように接続され、例えば古くなつた卷き形燃料電池 40を新しいものに自由に取 り替えることができるように構成されてレ、る。 [0160] Each individual fuel cell 40 is connected so that it can be removed from the other fuel cell 40. For example, the old fuel cell 40 can be freely replaced with a new one. It is structured so that it can be replaced.
[0161] < B.効果 > [0161] <B. Effect>
以上のように接続することで、高電圧、大電流を取り出す、即ち高出力の固体高分 子型燃料電池を組み立てることができる。 By connecting as described above, a high voltage and large current can be extracted, that is, a high output solid polymer fuel cell can be assembled.
[0162] 積層型燃料電池を複数個並列接続して図 7に示す回路を構成した場合、積層型
燃料電池を構成する燃料電池のうちの 1つの特性が悪くなると積層型燃料電池全体 が使用不能になるため、積層型燃料電池全体を取り替える必要がある。 [0162] When the circuit shown in Fig. 7 is configured by connecting a plurality of stacked fuel cells in parallel, If the characteristics of one of the fuel cells that make up the fuel cell deteriorate, the entire stacked fuel cell becomes unusable, and the entire stacked fuel cell must be replaced.
[0163] しかし、本実施の形態 4に係る固体高分子型燃料電池では、複数個の巻き形燃料 電池 40を用いて構成している。そのため、 1つの卷き形燃料電池 40の特性が悪くな つても、それのみを新しいものに交換できるので、容易かつ安価に修理できる。 However, the polymer electrolyte fuel cell according to Embodiment 4 is configured using a plurality of wound fuel cells 40. Therefore, even if the characteristics of a single fuel cell 40 deteriorate, only it can be replaced with a new one, so that it can be repaired easily and inexpensively.
[0164] また、実施の形態 3で説明したように、卷き形にすることで 1個の燃料電池の大きさ を小型化できるので、複数個の卷き形燃料電池 40を直並列にして一体型にした燃 料電池も小型化できる。
[0164] Further, as described in the third embodiment, the size of one fuel cell can be reduced by making it so that a plurality of fuel cells 40 are connected in series. An integrated fuel cell can also be miniaturized.
Claims
[1] 電解質膜(1)と、 [1] electrolyte membrane (1),
前記電解質膜(1)の一方の主面に形成された正極反応層(2)と、 A positive electrode reaction layer (2) formed on one main surface of the electrolyte membrane (1);
前記電解質膜(1)の他方の主面に形成された負極反応層(3)と、 A negative electrode reaction layer (3) formed on the other main surface of the electrolyte membrane (1);
を備える固体高分子型燃料電池であって、 A polymer electrolyte fuel cell comprising:
前記負極反応層(3)は、 The negative electrode reaction layer (3)
薄膜担持体と、 A thin film carrier;
前記薄膜担持体に担持され、材料 A及び材料 Bからなる化合物 A B (0. 2 Compound A B (0.2), which is supported on the thin film carrier and made of Material A and Material B
1 -X X 1 -X X
≤X≤0. 8)である触媒と、 A catalyst with ≤X≤0.8.8)
を有し、 Have
前記材料 Aは、 Sr, Ca, Mg, Beのうちの何れかの金属であり、前記材料 Bは、 d軌 道を有する金属であることを特徴とする固体高分子型燃料電池。 The material A is a metal selected from the group consisting of Sr, Ca, Mg, and Be, and the material B is a metal having a d path.
[2] 前記材料 Aは、 Srであることを特徴とする請求項 1に記載の固体高分子型燃料電 池。 [2] The polymer electrolyte fuel cell according to claim 1, wherein the material A is Sr.
[3] 前記材料 Bは、 Pt, Ru, Mo, Ni, Co, Pd, Rh, Ir,〇s, Re, Tc, Ti, Fe, V, Cr, [3] The material B includes Pt, Ru, Mo, Ni, Co, Pd, Rh, Ir, Os, Re, Tc, Ti, Fe, V, Cr,
Mn, Cu, Znのうちの何れかの金属であることを特徴とする請求項 1又は 2に記載の 固体高分子型燃料電池。 3. The polymer electrolyte fuel cell according to claim 1, wherein the solid polymer fuel cell is one of Mn, Cu, and Zn.
[4] 前記材料 Bは、 Pt, Ru, Mo, Ni, Co, Pd, Ti, Fe, V, Cr, Mn, Cu, Znのうちの 何れかの金属であることを特徴とする請求項 3に記載の固体高分子型燃料電池。 [4] The material B is any one of Pt, Ru, Mo, Ni, Co, Pd, Ti, Fe, V, Cr, Mn, Cu, and Zn. 2. A polymer electrolyte fuel cell according to 1.
[5] 前記材料 A及び前記材料 Bの一方は、他方によりコーティングされていることを特徴 とする請求項 1から 4の何れかに記載の固体高分子型燃料電池。 5. The polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein one of the material A and the material B is coated with the other.
[6] 前記材料 A及び前記材料 Bは、前記金属の錯体であることを特徴とする請求項 1か ら 5の何れかに記載の固体高分子型燃料電池。 6. The polymer electrolyte fuel cell according to any one of claims 1 to 5, wherein the material A and the material B are a complex of the metal.
[7] 前記化合物 A B は、溶融合金化法又は加熱分解法により製造されることを特徴 [7] The compound A B is produced by a melt alloying method or a thermal decomposition method.
1 -X X 1 -X X
とする請求項 1から 4の何れかに記載の固体高分子型燃料電池。 The polymer electrolyte fuel cell according to any one of claims 1 to 4.
[8] 前記化合物 A B は、メツキ法、 CVD法、スパッタ法、真空蒸着法、溶射法、ィォ [8] The compound A B is formed by a plating method, a CVD method, a sputtering method, a vacuum deposition method, a thermal spraying method,
1 -X X 1 -X X
ンプレーティング法、キヤタライザ一ァクセレーター法、プラズマ法、凝集法、レーザ アブレーシヨン法のうちの何れかの製造方法により製造されることを特徴とする請求
項 5に記載の固体高分子型燃料電池。 Manufactured by any one of a plating method, a catalyzer and an accelerator method, a plasma method, an agglomeration method, and a laser ablation method. Item 6. The polymer electrolyte fuel cell according to Item 5.
[9] 前記固体高分子型燃料電池の形状は、巻き形であることを特徴とする請求項 1から[9] The polymer electrolyte fuel cell according to claim 1, wherein the shape of the polymer electrolyte fuel cell is a wound shape.
8の何れかに記載の固体高分子型燃料電池。 9. The polymer electrolyte fuel cell according to any one of 8.
[10] 請求項 9に記載の前記固体高分子型燃料電池 (40)を複数個備え、 [10] A plurality of the polymer electrolyte fuel cells (40) according to claim 9,
複数個の前記固体高分子型燃料電池 (40)は、互いに直列又は並列若しくは直並 列に接続されていることを特徴とする固体高分子型燃料電池。
A plurality of the polymer electrolyte fuel cells (40) are connected to each other in series, parallel or in series.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/301419 WO2007086139A1 (en) | 2006-01-30 | 2006-01-30 | Solid polymer electrolyte fuel cell |
JP2007555834A JPWO2007086139A1 (en) | 2006-01-30 | 2006-01-30 | Polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/301419 WO2007086139A1 (en) | 2006-01-30 | 2006-01-30 | Solid polymer electrolyte fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007086139A1 true WO2007086139A1 (en) | 2007-08-02 |
Family
ID=38308950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/301419 WO2007086139A1 (en) | 2006-01-30 | 2006-01-30 | Solid polymer electrolyte fuel cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2007086139A1 (en) |
WO (1) | WO2007086139A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881917A (en) * | 2012-10-22 | 2013-01-16 | 上海电力学院 | PdMg/C nano-catalyst and preparation method thereof |
CN103143354A (en) * | 2013-03-26 | 2013-06-12 | 上海电力学院 | PdW/C binary alloy nano-catalyst and preparation method thereof |
US20150295249A1 (en) * | 2012-11-21 | 2015-10-15 | Danmarks Tekniske Universitet | Platinum and palladium alloys suitable as fuel cell electrodes |
CN105932307A (en) * | 2016-06-16 | 2016-09-07 | 宁波唐能生物科技有限公司 | Enzyme fuel cell capable of being charged instantaneously |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS637842A (en) * | 1986-06-30 | 1988-01-13 | Mitsubishi Heavy Ind Ltd | Catalyst for reforming methanol |
JPH05159785A (en) * | 1991-12-02 | 1993-06-25 | Hitachi Ltd | Electrode and manufacture thereof for fuel cell |
JPH05317721A (en) * | 1992-05-20 | 1993-12-03 | Mazda Motor Corp | Catalyst for purification of exhaust gas |
JPH10255831A (en) * | 1997-03-12 | 1998-09-25 | Asahi Glass Co Ltd | Methanol fuel cell |
JP2003080077A (en) * | 2001-06-29 | 2003-03-18 | Denso Corp | Catalyst particle and method for manufacturing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004342435A (en) * | 2003-05-15 | 2004-12-02 | Seiko Instruments Inc | Fuel cell |
-
2006
- 2006-01-30 WO PCT/JP2006/301419 patent/WO2007086139A1/en active Application Filing
- 2006-01-30 JP JP2007555834A patent/JPWO2007086139A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS637842A (en) * | 1986-06-30 | 1988-01-13 | Mitsubishi Heavy Ind Ltd | Catalyst for reforming methanol |
JPH05159785A (en) * | 1991-12-02 | 1993-06-25 | Hitachi Ltd | Electrode and manufacture thereof for fuel cell |
JPH05317721A (en) * | 1992-05-20 | 1993-12-03 | Mazda Motor Corp | Catalyst for purification of exhaust gas |
JPH10255831A (en) * | 1997-03-12 | 1998-09-25 | Asahi Glass Co Ltd | Methanol fuel cell |
JP2003080077A (en) * | 2001-06-29 | 2003-03-18 | Denso Corp | Catalyst particle and method for manufacturing the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881917A (en) * | 2012-10-22 | 2013-01-16 | 上海电力学院 | PdMg/C nano-catalyst and preparation method thereof |
US20150295249A1 (en) * | 2012-11-21 | 2015-10-15 | Danmarks Tekniske Universitet | Platinum and palladium alloys suitable as fuel cell electrodes |
CN103143354A (en) * | 2013-03-26 | 2013-06-12 | 上海电力学院 | PdW/C binary alloy nano-catalyst and preparation method thereof |
CN105932307A (en) * | 2016-06-16 | 2016-09-07 | 宁波唐能生物科技有限公司 | Enzyme fuel cell capable of being charged instantaneously |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007086139A1 (en) | 2009-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2596433C (en) | Palladium-cobalt particles as oxygen-reduction electrocatalysts | |
KR101350865B1 (en) | Supported catalyst for fuel cell, method for preparing the same, electrode for fuel cell comprising the same, membrane electrode assembly comprising the electrode and fuel cell comprising the membrane electrode assembly | |
JP5017007B2 (en) | Catalyst, catalyst manufacturing method, membrane electrode assembly, and fuel cell | |
JP5314910B2 (en) | Methanol oxidation catalyst and method for producing the same | |
JP5305699B2 (en) | Catalyst, catalyst manufacturing method, membrane electrode assembly, and fuel cell | |
US9761884B2 (en) | Synthesis of alloy nanoparticles as a stable core for core-shell electrocatalysts | |
JP4519871B2 (en) | Anode-supported catalyst, method for producing anode-supported catalyst, anode catalyst, method for producing anode catalyst, membrane electrode assembly, and fuel cell | |
JP2007223891A (en) | Manufacturing method of carbon nanotube, supported catalyst containing carbon nanotube, and fuel cell using supported catalyst | |
US11682772B2 (en) | Electrocatalysts, the preparation thereof, and using the same for fuel cells | |
JP5032250B2 (en) | Methanol oxidation catalyst and method for producing the same | |
JP5032251B2 (en) | Methanol oxidation catalyst and method for producing the same | |
JP2013073940A (en) | Electrode catalyst for fuel cell, method of preparing the same, membrane electrode assembly including the electrode catalyst, and fuel cell | |
EP2413407B1 (en) | Electrode catalyst and method of preparing electrode catalyst for fuel cell, and membrane electrode assembly and fuel cell including same | |
JP4374036B2 (en) | Polymer solid oxide fuel cell catalyst, membrane electrode assembly and fuel cell | |
WO2007086139A1 (en) | Solid polymer electrolyte fuel cell | |
US9466842B2 (en) | Fuel cell electrode catalyst including a core containing platinum, a transition metal, and a nonmetal element and a shell containing platinum and the nonmetal element electrode including the same, and method for preparing the same | |
US20140193730A1 (en) | Bimetallic Non-PGM Alloys for the Electrooxidation of Gas Fuels in Alkaline Media | |
US20120196207A1 (en) | Electrode catalyst for fuel cell, method of preparing the same, membrane electrode assembly and fuel cell including the same | |
KR20140074099A (en) | Electrode catalyst for fuel cell, method for preparing the same, membrane electrode assembly and fuel cell including the same | |
JP5217236B2 (en) | Fuel cell catalyst containing RuTe2 and N element, fuel cell electrode material and fuel cell using the fuel cell catalyst | |
JP2009252411A (en) | CATALYST FOR RuTe2-CONTAINING DMFC TYPE FUEL CELL, ELECTRODE MATERIAL FOR FUEL CELL USING THE CATALYST FOR FUEL CELL, AND FUEL CELL | |
JP5388979B2 (en) | A fuel cell catalyst, a membrane electrode assembly using the fuel cell, a fuel cell and a method for producing the fuel cell catalyst. | |
JP2009252412A (en) | CATALYST FOR DMFC TYPE FUEL CELL FOR PORTABLE ELECTRIC APPLIANCE CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING THE CATALYST FOR FUEL CELL, AND FUEL CELL | |
JP5217235B2 (en) | Fuel cell catalyst containing RuTe2, electrode material for fuel cell and fuel cell using the fuel cell catalyst | |
JP2006127980A (en) | Electrode catalyst for fuel cell and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007555834 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06712562 Country of ref document: EP Kind code of ref document: A1 |