JP2004342435A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2004342435A
JP2004342435A JP2003136905A JP2003136905A JP2004342435A JP 2004342435 A JP2004342435 A JP 2004342435A JP 2003136905 A JP2003136905 A JP 2003136905A JP 2003136905 A JP2003136905 A JP 2003136905A JP 2004342435 A JP2004342435 A JP 2004342435A
Authority
JP
Japan
Prior art keywords
group
catalyst
negative electrode
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003136905A
Other languages
Japanese (ja)
Inventor
Takamasa Yanase
考応 柳瀬
Fumiharu Iwasaki
文晴 岩崎
Tsuneaki Tamachi
恒昭 玉地
Takashi Sarada
孝史 皿田
Kazuyoshi Furuta
一吉 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003136905A priority Critical patent/JP2004342435A/en
Publication of JP2004342435A publication Critical patent/JP2004342435A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct fuel type solid polymer fuel cell capable of restraining hydrogen gas generated in liquid fuel and precipitation of a reaction product, improving a handling property of the liquid fuel, and capable of operating with a high output. <P>SOLUTION: A negative electrode catalyst of the solid polymer fuel cell prevents generation of gas in the liquid fuel and the precipitation of the reaction product by a structure having functions of decomposing the fuel and taking out cation, and oxidizing hydrogen generated by a side reaction into water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、負極で燃料である水素化した金属錯化合物から構成される燃料を直接、かつ電気化学的に酸化する、燃料直接型の固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
現在、電気自動車に搭載されている燃料電池は、電解質に固体高分子電解質膜を用いる固体高分子型燃料電池(PEFC)が主流であり、そのほとんどが、燃料に純水素を用いるものである。しかし、純水素は、ボンベや水素吸蔵合金により貯蔵されるが、車内の限られたスペースや重量制限を考えると実用化には問題がある。そこで、重量的、体積的にもエネルギー密度が高い、水素化した金属錯化合物などのケミカルハイドライドを燃料として用いることが注目されている。
【0003】
このケミカルハイドライドを燃料として用いるには、ケミカルハイドライドから水素を取り出し、その水素を燃料電池に送り込み電気化学的に反応させる間接型と、ケミカルハイドライドの水溶液をそのまま燃料電池に送り込み電気化学的に反応させる直接型とがある。直接型は、間接型に比べて装置が単純化できるため、電気自動車搭載用や、携帯機器用の燃料電池として適している。
【0004】
直接型の燃料電池は、図1に示すように、正極2と負極3、およびそれらの間に挟まれる電解質1からなる。電解質1には、硫酸水溶液などの酸性電解液を用いるもの、水酸化カリウムなどのアルカリ性電解液を用いるもの、さらには固体高分子電解質膜を用いたものがある。正極2の触媒としてはPtを担持したカーボン粉体が用いられ、負極3の触媒としてはPt又はPt−Ruを担持したカーボン粉体や、水素吸蔵合金、Ni、Pd等が用いられている。
【0005】
直接型の燃料電池では、正極2で空気中の酸素還元が、負極3で燃料の酸化が電気化学的に行われる。一例として、燃料として水素化した金属錯化合物であるホウ素化水素を用いた反応式を下記に示す。
【0006】
正極2:2O+4HO+8e→8OH
負極3:BH +8OH→BO +6HO+8e
総反応:BH +2O→2HO+BO
このように、KBH4やNaBH4の水素化した金属錯化合物から構成される水溶液を燃料源とし、これを酸化して酸化ホウ素化合物とすると同時に、電流を発生させ、この発生電流を利用した電解電池が知られている(例えば、特許文献1参照)。
【0007】
【特許文献1】
米国特許第5,804,329号明細書(第6−9頁、第1図)
【0008】
【発明が解決しようとする課題】
しかしながら、この直接型燃料電池は、前記の電池反応とは別に、負極3の触媒により、燃料である水素化した金属錯化合物の分解が起こる。その反応式を下記に示す。
【0009】
BH +2HO→BO +4H
この反応により、負極3上で水素ガスの発生を伴い、燃料中の水を消費し、反応生成物であるメタホウ酸塩が負極3上で析出し、電池反応を阻害してしまうという問題を抱えている。
【0010】
この液体燃料中に発生する水素ガスと、反応生成物の析出は、燃料の交換、循環、送液を行うときに、扱いづらいものである。また、この反応生成物であるメタホウ酸塩は、負極3上で生成されるので、負極3上で析出した場合、燃料電池反応を阻害する。これにより、燃料電池の高出力時などには、負極3上に反応生成物であるメタホウ酸塩が電極を覆ってしまい、出力が取れないことが問題となっている。
【0011】
そこで本発明は、燃料直接型の燃料電池において、液体燃料中に発生する水素ガスと、反応生成物の析出を抑え、燃料液体の扱い時における、ハンドリング性の向上を可能とし、同時に、高出力の運転が可能な燃料電池を得ることを目的とする。
【0012】
【課題を解決するための手段】
上述した課題を解決する為に、本発明の燃料電池は、選択的に酸素を電気化学的に還元する機能を有する触媒を付帯する正極と、水素化した金属錯化合物から構成される燃料を電気化学的に酸化する触媒を付帯する負極と、正極と負極を隔てる固体高分子電解質膜を備え、負極の触媒は燃料を分解してカチオンを取り出す機能と副反応的に生成した水素ガスを水に酸化する機能を併せ持っている。これにより、燃料電池の運転時に、液体燃料中にガスとして生成する水素を抑えることが出来る。また、水を生成する機能を併せ持つことから、化学反応により燃料中で消費される水を生成し、補充することが可能となり、反応生成物であるメタホウ酸塩の析出を抑制することが可能となる。従って、液体燃料の扱い時におけるハンドリング性が向上し、高出力運転が可能となる。
【0013】
さらに、負極の触媒には、Ni,Pd,Ptからなる群の少なくとも1種、またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンを用いることした。あるいは、負極の触媒を、Co,水素吸蔵合金からなる群の少なくとも1種と、Ni,Pd,Ptからなる群の少なくとも1種、または、Ni,Pd,Ptからなる群の少なくとも1種とを担持したカーボンで構成することとした。
【0014】
また、負極が、燃料を分解してカチオンを取り出す機能を有する部分と副反応的に生成した水素ガスを水に酸化する機能を有する部分と、それらの材料を保持する支持体と、それらの材料を結着するバインダーとを備えることとし、このバインダーを、固体高分子電解質膜の材料と同じ材料、または、固体高分子電解質膜の材料と同じ材料を主成分とした。さらに、負極の触媒は、Co,水素吸蔵合金からなる群の少なくとも1種を担持したカーボンと、Ni,Pd,Ptからなる群の少なくとも1種またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンとが区分けされ、触媒層を形成することとした。あるいは、負極の触媒は、Co,水素吸蔵合金からなる群の少なくとも1種を担持したカーボンと、Ni,Pd,Ptからなる群の少なくとも1種またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンとが混合され、触媒層を形成していることとした。あるいは、負極の触媒は、Co,水素吸蔵合金からなる群の少なくとも1種と、Ni,Pd,Ptからなる群の少なくとも1種またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンが高分子固体電解質膜に対して層状になるように構成した。
【0015】
また、負極の触媒における、触媒中のNi,Pd,Ptからなる群の少なくとも1種の重量の比率が1〜50wt%であることとした。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1に本発明の燃料電池の断面を模式的に表す。図示するように、本発明の燃料電池には、イオン伝導性とガス分離機能を有する固体高分子電解質膜1が設けられている。固体高分子電解質膜1は、プロトンを透過しうるものであればよく、たとえばNafion(商標)のようなものが用いられる。固体高分子電解質膜1を挟持するようにして一対の電極である正極2と負極3が配置されている。正極2には、電解質膜1に接する面にPt等の触媒を含有した反応触媒層が形成されている。また、正極2には、Pt等の触媒を保持するために支持体としてカーボンなどが使われる。負極3には、電解質膜1に接する面、あるいは、負極全体に反応触媒層が形成される。この反応触媒層には、水素化した金属錯化合物から構成される燃料を酸化しうる触媒が用いられる。更に、負極3には、負極3上で発生する水素を用い、水素ガスを水に酸化する触媒機能を有する物質が形成されている。これらの固体高分子電解質膜1、正極2、負極3とから単電池が構成される。これにより、燃料中にガスとなって発生する水素を抑制することができる。また、燃料中で化学反応により消費される水を補充することができ、反応生成物であるメタホウ酸塩の析出を抑制する効果がある。負極の燃料は、NaBH4、NaAlH4、LiBH4、LiAlH4、KBH4、KAlH4、Mg(BH4)2、Ca(BH4)2、Ba(BH4)2、Sr(BH4)2、及びFe(BH4)2からなる群より選択される少なくとも一種から構成されていることが望ましい。
【0017】
また、負極の触媒は、Ni,Pd,Ptからなる群の少なくとも1種、またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンからなることを特徴としている。これにより、水素化した金属錯化合物から構成される燃料の分解で生成する水素と燃料中のOHからH2Oを生成することが可能となる。あるいは、負極の触媒は、Co,水素吸蔵合金からなる群の少なくとも1種と、Ni,Pd,Ptからなる群の少なくとも1種またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンからなることを特徴としている。水素吸蔵合金としては、たとえば、Mg2Ni系合金、Mg2NiとMgとの共晶合金、ZrNi2系合金、TiNi2系合金などのAB2型ラーベス相合金や、TiFe系合金などのAB型合金や、LaNi5系合金などのAB5型合金や、TiV2系合金などのBCC型合金で水素吸蔵能力があるもの中から任意に選ぶことができる。これにより、水素化した金属錯化合物から構成される燃料から電子を取り出し、燃料電池を構成することが可能となる。さらに、水素化した金属錯化合物から構成される燃料の分解で生成する水素と燃料中のOHから、H2Oを生成することが可能となり、燃料中の水を補い、反応生成物の析出を防ぐ効果がある。
【0018】
また、負極は、燃料を分解してカチオンを取り出す機能を有する部分と副反応的に生成した水素ガスを水に酸化する機能を有する部分と、それらの材料を保持する支持体と、それらの材料を結着するバインダーとを備えている。このバインダーは、固体高分子電解質膜の材料と同じ材料、或いは、固体高分子電解質膜の材料と同じ材料を主成分とする材料で形成されている。これにより、触媒上で起こる電子とイオンの受け渡しと、電極と固体高分子電解質膜間とのイオン導電性の障壁を小さくし、電極間の膜抵抗を低く抑える効果がある。支持体は、カーボンナノチューブやカーボンナノホーンを含むカーボン粉末、カーボンシート、カーボンクロス、カーボンフェルト、発泡金属(金属フォーム)、及び、金属メッシュからなる群より選択される少なくとも一種以上で構成されることが望ましい。負極の燃料を分解してカチオンを取り出す機能を有する触媒部と、副反応的に生成した水素ガスを水に酸化する機能を有する触媒部の配置方法に関しては、本発明の燃料電池の使用目的に合わせ、電極の触媒部の配置方法を選択できる。
【0019】
負極の触媒には、Co,水素吸蔵合金からなる群の少なくとも1種、Ni,Pd,Ptからなる群の少なくとも1種またはNi,Pd,Ptからなる群の少なくとも1種のいずれかを担持したカーボンを混合し、電極を形成しても良い。さらに、図2に示すように、負極の触媒は、Co,水素吸蔵合金からなる群の少なくとも1種からなり、燃料を分解してカチオンを取り出す機能を有する第一の触媒部21と、Ni,Pd,Ptからなる群の少なくとも1種またはNi,Pd,Ptからなる群の少なくとも1種のいずれかからなる水素ガスを水に酸化する機能を有する第二の触媒部22を物理的に隔離して、電極を構成しても良い。例えば、本発明の燃料電池を定置設置型で使用する際には、電極触媒部は層状であるものを用いるのが望ましい。このような負極の触媒においては、触媒中におけるNi,Pd,Ptからなる群の少なくとも1種の重量の比率が、1〜50wt%である。触媒、担体の有無によっても異なるが、触媒中におけるNi,Pd,Ptからなる群の少なくとも1種の重量の比率が、10〜40wt%程度とすることがより好ましい。触媒含有量が少なすぎると、負極3はNaBH4等の水素化した金属錯化合物から構成される燃料を十分に酸化できず、電池出力が低下する場合がある。一方、触媒含有量が多すぎると、触媒のコストが上がる。
【0020】
【実施例】
次に、実施例により本発明をさらに詳細に説明する。
【0021】
(実施例1)
固体高分子電解質膜として陽イオン交換膜(デュポン社製、製品名「Nafion・NE−117」)からなる固体高分子電解質膜を用い、正極としてカーボンに白金が16wt%担持された白金担持カーボン電極(エレクトロケム社製)を用いた。負極には水素吸蔵合金MmNi0.35Mn0.4Al0.3Co0.75粉末と白金を50wt%担持したカーボン(田中貴金属)を用いた。水素吸蔵合金粉末に対して白金担持カーボン量が30wt%となるように計量し、バインダーとしてNafion溶液を前記負極3の材料に対し10wt%使用して、カーボンペーパー(東レ社製、TGP−H−060・厚み190μm)上に形成し、図1に示す構造の燃料電池を作成した。ついで、20wt%濃度のNaOH水溶液中に、10wt%濃度で水素化した金属錯化合物であるNaBH4を溶解して調整した溶液を、電解液及び燃料供給源として負極に供給し、かつ空気を正極に同時に供給して、室温にて正極と負極間の電流―電圧特性を測定した。この結果をグラフとして図3に実線で示した。
【0022】
(実施例2)
本実施例では、実施例1の負極3を作成する際に用いる材料を、水素吸蔵合金MmNi0.35Mn0.4Al0.3Co0.75粉末のみを用いた以外は全て同様に作成した。燃料も同様に、20wt%濃度のNaOH水溶液中に10wt%濃度で水素化した金属錯化合物であるNaBH4を溶解して調整した溶液を、電解液及び燃料供給源として負極に供給し、かつ空気を正極に同時に供給して、室温にて正極と負極間の電流―電圧特性を測定した。この結果をグラフとして図3に波線で示した。
【0023】
図3を見てわかるように、高出力側での出力の向上がみられた。これは、実施例2では、高出力時に大量に生成する反応生成物であるメタホウ酸塩が触媒上に析出し、燃料電池反応を妨げるのに対し、実施例1では、水が生成され、メタホウ酸塩が析出しないだけの十分な水分量があることから、燃料電池反応が阻害されず、出力の向上につながったものと思われる。
【0024】
(実施例3)
本実施例では、実施例1で作成した燃料電池と、実施例2で作成した燃料電池に対して、同一環境下において、燃料を互いに10ml供給し、常に電圧が0.5Vに保たれるように負荷をかけ、互いの燃料電池を運転した。表1に運転後の燃料の体積を比較したものを示す。
【0025】
【表1】

Figure 2004342435
【0026】
【発明の効果】
本発明によれば、負極で発生する水素から、水を生成する構成にしたので、燃料中の水分が減少することがない。これによって反応生成物の析出が抑制され、液体状燃料の扱い時における、ハンドリング性が向上するという効果がある。さらに、触媒上に反応生成物であるメタホウ酸塩の析出が抑制される為、高出力での運転が可能となった。
【図面の簡単な説明】
【図1】従来の燃料直接型の燃料電池を示す側面断面図である。
【図2】本発明の負極の模式図
【図3】本発明の実施例及び比較例の電流−電圧特性曲線。
【符号の説明】
1 高分子電解質膜
2 正極
3 負極
21 第一の触媒部
22 第二の触媒部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell of a direct fuel type, in which a fuel composed of a hydrogenated metal complex compound as a fuel at a negative electrode is directly and electrochemically oxidized.
[0002]
[Prior art]
At present, fuel cells mounted on electric vehicles are mainly polymer electrolyte fuel cells (PEFC) using a solid polymer electrolyte membrane as an electrolyte, and most of them use pure hydrogen as a fuel. However, although pure hydrogen is stored in a cylinder or a hydrogen storage alloy, there is a problem in practical use in view of the limited space in the vehicle and weight restrictions. Therefore, attention has been paid to using a chemical hydride such as a hydrogenated metal complex compound having a high energy density in terms of weight and volume as a fuel.
[0003]
In order to use this chemical hydride as a fuel, hydrogen is taken out of the chemical hydride, and the hydrogen is sent to the fuel cell and electrochemically reacted, and the aqueous solution of the chemical hydride is sent directly to the fuel cell and electrochemically reacted. There is a direct type. The direct type can be used as a fuel cell for mounting on an electric vehicle or for a portable device because the device can be simplified as compared with the indirect type.
[0004]
As shown in FIG. 1, a direct fuel cell includes a positive electrode 2 and a negative electrode 3, and an electrolyte 1 interposed therebetween. The electrolyte 1 includes one using an acidic electrolyte such as an aqueous sulfuric acid solution, one using an alkaline electrolyte such as potassium hydroxide, and one using a solid polymer electrolyte membrane. As the catalyst for the positive electrode 2, carbon powder supporting Pt is used, and as the catalyst for the negative electrode 3, carbon powder supporting Pt or Pt-Ru, a hydrogen storage alloy, Ni, Pd, or the like is used.
[0005]
In a direct fuel cell, oxygen reduction in the air is performed at the positive electrode 2 and fuel oxidation is performed electrochemically at the negative electrode 3. As an example, a reaction formula using hydrogenated borohydride as a hydrogenated metal complex compound as a fuel is shown below.
[0006]
Positive electrode 2: 2O 2 + 4H 2 O + 8e → 8OH
Negative electrode 3: BH 4 + 8OH → BO 2 + 6H 2 O + 8e
Total reaction: BH 4 + 2O 2 → 2H 2 O + BO 2
As described above, an aqueous solution composed of a hydrogenated metal complex compound of KBH4 or NaBH4 is used as a fuel source, which is oxidized into a boron oxide compound, and at the same time, an electric current is generated. It is known (for example, see Patent Document 1).
[0007]
[Patent Document 1]
U.S. Pat. No. 5,804,329 (pages 6-9, FIG. 1)
[0008]
[Problems to be solved by the invention]
However, in this direct fuel cell, apart from the above-described cell reaction, the catalyst of the negative electrode 3 causes decomposition of the hydrogenated metal complex compound as the fuel. The reaction formula is shown below.
[0009]
BH 4 + 2H 2 O → BO 2 + 4H 2
Due to this reaction, hydrogen gas is generated on the negative electrode 3, water in the fuel is consumed, and a metaborate, which is a reaction product, precipitates on the negative electrode 3, thus hindering the battery reaction. ing.
[0010]
The precipitation of the hydrogen gas and the reaction products generated in the liquid fuel is difficult to handle when the fuel is exchanged, circulated, or fed. In addition, since the metaborate, which is a reaction product, is generated on the negative electrode 3, when deposited on the negative electrode 3, the reaction product inhibits the fuel cell reaction. As a result, when the output of the fuel cell is high or the like, the reaction product metaborate covers the electrode on the negative electrode 3 and there is a problem that the output cannot be obtained.
[0011]
Accordingly, the present invention provides a direct fuel cell fuel cell that suppresses the deposition of hydrogen gas and reaction products generated in liquid fuel, improves handling when handling fuel liquid, and at the same time, achieves high output. It is an object of the present invention to obtain a fuel cell that can be operated.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the fuel cell of the present invention is a fuel cell comprising a positive electrode provided with a catalyst having a function of selectively reducing oxygen electrochemically, and a fuel comprising a hydrogenated metal complex compound. It has a negative electrode with a catalyst that chemically oxidizes it, and a solid polymer electrolyte membrane that separates the positive electrode and the negative electrode.The negative electrode catalyst has the function of decomposing fuel to extract cations and the hydrogen gas produced as a side reaction into water. It also has an oxidizing function. As a result, during operation of the fuel cell, hydrogen generated as gas in the liquid fuel can be suppressed. In addition, since it also has the function of generating water, it is possible to generate and replenish water consumed in fuel by a chemical reaction, and it is possible to suppress the precipitation of metaborate, which is a reaction product. Become. Therefore, the handling performance when handling the liquid fuel is improved, and high-power operation is possible.
[0013]
Further, as the catalyst for the negative electrode, carbon carrying at least one member of the group consisting of Ni, Pd and Pt, or at least one member of the group consisting of Ni, Pd and Pt was used. Alternatively, the catalyst of the negative electrode is composed of at least one member selected from the group consisting of Co and hydrogen storage alloy and at least one member selected from the group consisting of Ni, Pd and Pt, or at least one member selected from the group consisting of Ni, Pd and Pt. It was decided to be composed of supported carbon.
[0014]
Further, the negative electrode has a portion having a function of decomposing fuel to extract cations, a portion having a function of oxidizing hydrogen gas generated as a by-product to water, a support holding those materials, and a material having these materials. And the binder is mainly composed of the same material as the material of the solid polymer electrolyte membrane or the same material as the material of the solid polymer electrolyte membrane. Further, the catalyst of the negative electrode includes carbon supporting at least one member selected from the group consisting of Co and a hydrogen storage alloy, and at least one member selected from the group consisting of Ni, Pd and Pt or at least one member selected from the group consisting of Ni, Pd and Pt. Is separated from the carbon carrying the catalyst to form a catalyst layer. Alternatively, the catalyst of the negative electrode may include carbon carrying at least one member selected from the group consisting of Co and a hydrogen storage alloy, and at least one member selected from the group consisting of Ni, Pd and Pt or at least one member selected from the group consisting of Ni, Pd and Pt. Is mixed with carbon carrying the compound to form a catalyst layer. Alternatively, the catalyst of the negative electrode is a carbon that carries at least one member of the group consisting of Co and a hydrogen storage alloy and at least one member of the group consisting of Ni, Pd and Pt or at least one member of the group consisting of Ni, Pd and Pt. Was configured to be layered with respect to the polymer solid electrolyte membrane.
[0015]
Further, in the catalyst of the negative electrode, the weight ratio of at least one of the group consisting of Ni, Pd, and Pt in the catalyst was 1 to 50 wt%.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a cross section of the fuel cell of the present invention. As shown, the fuel cell of the present invention is provided with a solid polymer electrolyte membrane 1 having ion conductivity and gas separation function. The solid polymer electrolyte membrane 1 only needs to be able to transmit protons, and for example, a material such as Nafion (trademark) is used. A pair of electrodes, a positive electrode 2 and a negative electrode 3, are arranged so as to sandwich the solid polymer electrolyte membrane 1 therebetween. In the positive electrode 2, a reaction catalyst layer containing a catalyst such as Pt is formed on a surface in contact with the electrolyte membrane 1. The positive electrode 2 is made of carbon or the like as a support for holding a catalyst such as Pt. The reaction catalyst layer is formed on the surface of the negative electrode 3 that is in contact with the electrolyte membrane 1 or on the entire negative electrode. For this reaction catalyst layer, a catalyst capable of oxidizing a fuel composed of a hydrogenated metal complex compound is used. Further, a substance having a catalytic function of oxidizing hydrogen gas to water is formed on the negative electrode 3 using hydrogen generated on the negative electrode 3. The solid polymer electrolyte membrane 1, the positive electrode 2, and the negative electrode 3 constitute a unit cell. Thereby, hydrogen generated as a gas in the fuel can be suppressed. Further, water consumed by the chemical reaction in the fuel can be replenished, which has an effect of suppressing the deposition of metaborate, which is a reaction product. The anode fuel is a group consisting of NaBH4, NaAlH4, LiBH4, LiAlH4, KBH4, KAlH4, Mg (BH4) 2, Ca (BH4) 2, Ba (BH4) 2, Sr (BH4) 2, and Fe (BH4) 2. Desirably, it is composed of at least one selected from the following.
[0017]
The catalyst of the negative electrode is characterized by being made of carbon carrying at least one member of the group consisting of Ni, Pd and Pt or at least one member of the group consisting of Ni, Pd and Pt. This makes it possible to generate H2O from hydrogen generated by decomposition of the fuel composed of the hydrogenated metal complex compound and OH in the fuel. Alternatively, the catalyst of the negative electrode is a carbon that carries at least one member of the group consisting of Co and a hydrogen storage alloy and at least one member of the group consisting of Ni, Pd and Pt or at least one member of the group consisting of Ni, Pd and Pt. It is characterized by consisting of. Examples of the hydrogen storage alloy include AB2 type Laves phase alloy such as Mg2Ni alloy, eutectic alloy of Mg2Ni and Mg, ZrNi2 alloy, TiNi2 alloy, AB type alloy such as TiFe alloy, and LaNi5 alloy. , And a BCC type alloy such as a TiV2-based alloy having a hydrogen storage capacity can be arbitrarily selected. This makes it possible to construct a fuel cell by extracting electrons from the fuel composed of the hydrogenated metal complex compound. Furthermore, H2O can be generated from hydrogen generated by the decomposition of the fuel composed of the hydrogenated metal complex and OH in the fuel, thereby supplementing the water in the fuel and preventing the deposition of reaction products. effective.
[0018]
Further, the negative electrode has a portion having a function of decomposing fuel to extract cations, a portion having a function of oxidizing hydrogen gas produced as a by-product into water, a support holding those materials, and a material having these materials. And a binder for binding. The binder is formed of the same material as the material of the solid polymer electrolyte membrane, or a material mainly composed of the same material as the material of the solid polymer electrolyte membrane. This has the effect of transferring electrons and ions occurring on the catalyst, reducing the ionic conductivity barrier between the electrodes and the solid polymer electrolyte membrane, and reducing the membrane resistance between the electrodes. The support may be composed of at least one selected from the group consisting of carbon powder including carbon nanotubes and carbon nanohorns, carbon sheet, carbon cloth, carbon felt, foamed metal (metal foam), and metal mesh. desirable. Regarding the method of arranging the catalyst unit having a function of extracting the cation by decomposing the fuel of the negative electrode and the catalyst unit having the function of oxidizing hydrogen gas produced as a by-product into water, the use of the fuel cell of the present invention is In addition, the method of arranging the catalyst portion of the electrode can be selected.
[0019]
The negative electrode catalyst carried at least one of a group consisting of Co and a hydrogen storage alloy, at least one kind of a group consisting of Ni, Pd and Pt, or at least one kind of a group consisting of Ni, Pd and Pt. The electrodes may be formed by mixing carbon. Further, as shown in FIG. 2, the catalyst of the negative electrode is made of at least one member of the group consisting of Co and a hydrogen storage alloy, and has a first catalyst portion 21 having a function of decomposing a fuel and extracting cations; The second catalyst unit 22 having a function of oxidizing hydrogen gas, which is composed of at least one of the group consisting of Pd and Pt or at least one of the group consisting of Ni, Pd and Pt, into water is physically isolated. Thus, an electrode may be configured. For example, when the fuel cell of the present invention is used in a stationary installation type, it is desirable to use a layered electrode catalyst part. In such a negative electrode catalyst, the weight ratio of at least one of the group consisting of Ni, Pd, and Pt in the catalyst is 1 to 50 wt%. The ratio of the weight of at least one of the group consisting of Ni, Pd, and Pt in the catalyst is more preferably about 10 to 40 wt%, although it depends on the presence or absence of the catalyst and the carrier. If the catalyst content is too small, the anode 3 cannot sufficiently oxidize a fuel composed of a hydrogenated metal complex compound such as NaBH4, and the battery output may decrease. On the other hand, if the catalyst content is too large, the cost of the catalyst increases.
[0020]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0021]
(Example 1)
A platinum-supported carbon electrode in which 16 wt% of platinum is supported on carbon as a positive electrode using a solid polymer electrolyte membrane composed of a cation exchange membrane (manufactured by DuPont, product name "Nafion NE-117") as a solid polymer electrolyte membrane (Manufactured by Electrochem) was used. As the negative electrode, a hydrogen storage alloy MmNi0.35Mn0.4Al0.3Co0.75 powder and carbon (50% by weight of platinum) carrying platinum (Tanaka Kikinzoku) were used. The amount of platinum-supported carbon was measured to be 30 wt% with respect to the hydrogen storage alloy powder, and a Nafion solution was used as a binder at 10 wt% with respect to the material of the negative electrode 3, and carbon paper (manufactured by Toray, TGP-H-) was used. 060 and a thickness of 190 μm) to produce a fuel cell having the structure shown in FIG. Then, a solution prepared by dissolving NaBH4, which is a metal complex compound hydrogenated at a concentration of 10 wt% in an aqueous solution of NaOH having a concentration of 20 wt%, is supplied to the negative electrode as an electrolyte and a fuel supply source, and air is supplied to the positive electrode. At the same time, the current-voltage characteristics between the positive electrode and the negative electrode were measured at room temperature. The result is shown by a solid line in FIG. 3 as a graph.
[0022]
(Example 2)
In this example, all materials were prepared in the same manner except that only the hydrogen storage alloy MmNi0.35Mn0.4Al0.3Co0.75 powder was used as the material for producing the negative electrode 3 of Example 1. Similarly, for the fuel, a solution prepared by dissolving NaBH4, which is a metal complex compound hydrogenated at a concentration of 10 wt% in an aqueous NaOH solution having a concentration of 20 wt%, is supplied to the negative electrode as an electrolyte and a fuel supply source, and air is supplied. The voltage was simultaneously supplied to the positive electrode, and the current-voltage characteristics between the positive electrode and the negative electrode were measured at room temperature. This result is shown as a graph in FIG.
[0023]
As can be seen from FIG. 3, the output on the high output side was improved. This is because in Example 2, metaborate, which is a reaction product produced in large quantities at high output, precipitates on the catalyst and hinders the fuel cell reaction, whereas in Example 1, water is generated and metaborate is generated. It is considered that the fuel cell reaction was not hindered because the amount of water was sufficient to prevent the precipitation of the acid salt, leading to an improvement in output.
[0024]
(Example 3)
In the present embodiment, 10 ml of fuel are supplied to the fuel cell prepared in Example 1 and the fuel cell prepared in Example 2 under the same environment, so that the voltage is always maintained at 0.5 V. , And each fuel cell was operated. Table 1 shows a comparison of the fuel volume after operation.
[0025]
[Table 1]
Figure 2004342435
[0026]
【The invention's effect】
According to the present invention, since water is generated from hydrogen generated at the negative electrode, the water content in the fuel does not decrease. This has the effect of suppressing the deposition of reaction products and improving the handling properties when handling liquid fuel. Furthermore, since the precipitation of metaborate, which is a reaction product, on the catalyst is suppressed, high-power operation has become possible.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a conventional direct fuel cell fuel cell.
FIG. 2 is a schematic diagram of a negative electrode of the present invention. FIG. 3 is a current-voltage characteristic curve of an example of the present invention and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2 Positive electrode 3 Negative electrode 21 First catalyst part 22 Second catalyst part

Claims (8)

選択的に酸素を電気化学的に還元する機能を有する触媒を付帯する正極と、水素化した金属錯化合物から構成される燃料を電気化学的に酸化する触媒を付帯する負極と、前記正極と前記負極を隔てる固体高分子電解質膜とを備え、前記負極の触媒は、燃料を分解してカチオンを取り出す機能と副反応的に生成した水素ガスを水に酸化する機能を有することを特徴とする燃料電池。A positive electrode having a catalyst having a function of selectively electrochemically reducing oxygen, a negative electrode having a catalyst for electrochemically oxidizing a fuel composed of a hydrogenated metal complex, and the positive electrode and the positive electrode; A solid polymer electrolyte membrane separating the negative electrode, wherein the catalyst of the negative electrode has a function of decomposing fuel to extract cations and a function of oxidizing hydrogen gas produced as a by-product to water. battery. 前記負極の触媒は、Ni,Pd,Ptからなる群の少なくとも1種、またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンからなることを特徴とする請求項1に記載の燃料電池。2. The fuel according to claim 1, wherein the anode catalyst is made of carbon carrying at least one member of a group consisting of Ni, Pd, and Pt, or at least one member of a group consisting of Ni, Pd, and Pt. 3. battery. 前記負極の触媒は、Co,水素吸蔵合金からなる群の少なくとも1種と、Ni,Pd,Ptからなる群の少なくとも1種、または、Ni,Pd,Ptからなる群の少なくとも1種とを担持したカーボンからなることを特徴とする請求項1に記載の燃料電池。The negative electrode catalyst supports at least one member of the group consisting of Co and a hydrogen storage alloy and at least one member of the group consisting of Ni, Pd and Pt, or at least one member of the group consisting of Ni, Pd and Pt. The fuel cell according to claim 1, wherein the fuel cell is made of carbon. 前記負極は、燃料を分解してカチオンを取り出す機能を有する部分と副反応的に生成した水素ガスを水に酸化する機能を有する部分と、それらの材料を保持する支持体と、それらの材料を結着するバインダーとを備え、前記バインダーは、前記固体高分子電解質膜の材料と同じ材料、または、前記固体高分子電解質膜の材料と同じ材料を主成分とすることを特徴とする請求項1〜3のいずれか一項に記載の燃料電池。The negative electrode has a portion having a function of taking out cations by decomposing fuel, a portion having a function of oxidizing hydrogen gas generated as a by-product into water, a support holding those materials, and a material having these materials. 2. A binder for binding, wherein the binder is mainly composed of the same material as the material of the solid polymer electrolyte membrane or the same material as the material of the solid polymer electrolyte membrane. The fuel cell according to any one of claims 1 to 3. 前記負極の触媒は、Co,水素吸蔵合金からなる群の少なくとも1種を担持したカーボンと、Ni,Pd,Ptからなる群の少なくとも1種またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンとが区分けされ、触媒層を形成することを特徴とする請求項3または4に記載の燃料電池。The catalyst of the negative electrode includes carbon supporting at least one member selected from the group consisting of Co and a hydrogen storage alloy, and at least one member selected from the group consisting of Ni, Pd and Pt or at least one member selected from the group consisting of Ni, Pd and Pt. 5. The fuel cell according to claim 3, wherein the carried carbon is separated to form a catalyst layer. 前記負極の触媒は、Co,水素吸蔵合金からなる群の少なくとも1種を担持したカーボンと、Ni,Pd,Ptからなる群の少なくとも1種またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンとが混合され、触媒層を形成していることを特徴とする請求項3または4に記載の燃料電池。The catalyst of the negative electrode includes carbon supporting at least one member selected from the group consisting of Co and a hydrogen storage alloy, and at least one member selected from the group consisting of Ni, Pd and Pt or at least one member selected from the group consisting of Ni, Pd and Pt. The fuel cell according to claim 3, wherein the supported carbon is mixed to form a catalyst layer. 前記負極の触媒は、Co,水素吸蔵合金からなる群の少なくとも1種と、Ni,Pd,Ptからなる群の少なくとも1種またはNi,Pd,Ptからなる群の少なくとも1種を担持したカーボンが前記高分子固体電解質膜に対して層状であることを特徴とする請求項3または4に記載の燃料電池。The catalyst for the negative electrode includes a carbon carrying at least one member selected from the group consisting of Co and hydrogen storage alloy and at least one member selected from the group consisting of Ni, Pd and Pt or at least one member selected from the group consisting of Ni, Pd and Pt. The fuel cell according to claim 3, wherein the fuel cell is layered with respect to the polymer solid electrolyte membrane. 前記負極の触媒における、触媒中のNi,Pd,Ptからなる群の少なくとも1種の重量の比率が1〜50wt%であることを特徴とする請求項1〜7のいずれか一項に記載の燃料電池。The ratio of the weight of at least one of the group consisting of Ni, Pd, and Pt in the catalyst of the negative electrode catalyst is 1 to 50 wt%. Fuel cell.
JP2003136905A 2003-05-15 2003-05-15 Fuel cell Pending JP2004342435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136905A JP2004342435A (en) 2003-05-15 2003-05-15 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136905A JP2004342435A (en) 2003-05-15 2003-05-15 Fuel cell

Publications (1)

Publication Number Publication Date
JP2004342435A true JP2004342435A (en) 2004-12-02

Family

ID=33526694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136905A Pending JP2004342435A (en) 2003-05-15 2003-05-15 Fuel cell

Country Status (1)

Country Link
JP (1) JP2004342435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007086139A1 (en) * 2006-01-30 2009-06-18 三菱電機株式会社 Polymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007086139A1 (en) * 2006-01-30 2009-06-18 三菱電機株式会社 Polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
Abdelkareem et al. Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress
Choudhury et al. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant
TW522602B (en) Catalytic hydrogen storage composite material and fuel cell employing same
JP4083721B2 (en) High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same
US8361924B2 (en) Fine particles of core-shell structure and functional device incorporated therewith
RU2393942C2 (en) Method of producing metal-coated particles of palladium or palladium alloy
US6613471B2 (en) Active material for fuel cell anodes incorporating an additive for precharging/activation thereof
Liu et al. Hydrogen storage alloys as the anode materials of the direct borohydride fuel cell
KR100754379B1 (en) Electrode catalyst containing two or more metal components, preparation method of the same and the fuel cell employing the electrode catalyst
MXPA02008909A (en) Finely divided metal catalyst and method for making same.
JP2007509480A (en) Electrode, its manufacturing method, metal / air fuel cell and metal hydride cell
JP2004253385A (en) Catalyst for cathode of fuel battery
JP2006019302A (en) Hydrogen storage-based rechargeable fuel cell system and method
JP2004523072A (en) New fuel cell cathode and fuel cell using the same
Cheng et al. Investigation of Ti mesh-supported anodes for direct borohydride fuel cells
KR20110001004A (en) Catalyst for fuel cell and low-humidified mea
US20060204830A1 (en) Molten carbonate fuel cell
US6790551B2 (en) Modified redox couple fuel cell cathodes and fuel cells employing same
KR100551035B1 (en) Catalist for fuel cell, preparation method thereof, and fuel cell system comprising the same
US6703156B2 (en) Fuel cell cathode utilizing multiple redox couples
US6783891B2 (en) Fuel cell cathode with redox couple
Ma et al. Direct borohydride fuel cells—current status, issues, and future directions
US20060078764A1 (en) Dissolved fuel alkaline fuel cell
JP3746047B2 (en) Liquid fuel cell and power generator using the same
JP2004342435A (en) Fuel cell