JP5388979B2 - A fuel cell catalyst, a membrane electrode assembly using the fuel cell, a fuel cell and a method for producing the fuel cell catalyst. - Google Patents

A fuel cell catalyst, a membrane electrode assembly using the fuel cell, a fuel cell and a method for producing the fuel cell catalyst. Download PDF

Info

Publication number
JP5388979B2
JP5388979B2 JP2010215426A JP2010215426A JP5388979B2 JP 5388979 B2 JP5388979 B2 JP 5388979B2 JP 2010215426 A JP2010215426 A JP 2010215426A JP 2010215426 A JP2010215426 A JP 2010215426A JP 5388979 B2 JP5388979 B2 JP 5388979B2
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
metal
carbonitride
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010215426A
Other languages
Japanese (ja)
Other versions
JP2012066225A (en
Inventor
武 梅
義彦 中野
芳浩 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010215426A priority Critical patent/JP5388979B2/en
Publication of JP2012066225A publication Critical patent/JP2012066225A/en
Application granted granted Critical
Publication of JP5388979B2 publication Critical patent/JP5388979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明の実施形態は、触媒、膜電極複合体、燃料電池とこれらの製造方法に関する。   Embodiments described herein relate generally to a catalyst, a membrane electrode assembly, a fuel cell, and a method for producing the same.

燃料電池は、特に、固体高分子型燃料電池は、他の燃料電池に比べて小型軽量化が可能なため、最近では自動車やモバイル機器などの電源としても盛んに研究されている。燃料電池の電池反応は、アノードとカソードの間で生じる酸化還元反応である。いずれの触媒材料も白金族触媒を使っており、燃料電池の本格普及には触媒材料の低コストと高特性が求められている。近年、非白金系触媒としてカーボンアロイ、炭窒化物などが検討されており、白金並みの酸素還元反応の開始電位が報告された。材料の組成と合成プロセスの調整によりこれら材料の表面に高活性を持つ表面構造を形成したと考えられ、活性と活性点密度を更に向上すれば実用化が可能と思われる。炭窒化物についてはカーボン系触媒より高安定性を持つ可能性が高いが、触媒活性、導電性などがまだ不十分である。   In particular, since a polymer electrolyte fuel cell can be reduced in size and weight as compared with other fuel cells, the fuel cell has recently been actively studied as a power source for automobiles and mobile devices. The cell reaction of a fuel cell is a redox reaction that occurs between the anode and the cathode. All the catalyst materials use platinum group catalysts, and low cost and high characteristics of the catalyst materials are required for full-scale spread of fuel cells. In recent years, carbon alloys, carbonitrides, and the like have been studied as non-platinum catalysts, and the onset potential of oxygen reduction reaction similar to platinum has been reported. It is thought that surface structures with high activity were formed on the surface of these materials by adjusting the composition of the materials and the synthesis process, and it would be possible to put it to practical use if the activity and the density of active sites were further improved. Carbon nitrides are likely to have higher stability than carbon-based catalysts, but their catalytic activity, conductivity, etc. are still insufficient.

特開2007−257888号公報JP 2007-257888 A

活性と安定性の双方に優れる低コスト触媒、膜電極複合体及び燃料電池を提供することを目的とする。   An object of the present invention is to provide a low-cost catalyst, a membrane electrode composite, and a fuel cell that are excellent in both activity and stability.

本発明の実施形態にかかる燃料電池用触媒は、金属ワイヤー又は金属シートを担持体とし、担持体上に主触媒として担持された窒化物、炭化物又は炭窒化物とを有することを特徴とする。 A fuel cell catalyst according to an embodiment of the present invention is characterized in that a metal wire or a metal sheet is used as a carrier, and has a nitride, carbide or carbonitride supported as a main catalyst on the carrier .

実施形態に係る触媒の一例を示す概念図である。It is a conceptual diagram which shows an example of the catalyst which concerns on embodiment. 窒化物、炭化物又は炭窒化物が担持された実施形態の金属ワイヤー又は金属シートのTEM画像である。It is a TEM image of the metal wire or metal sheet of embodiment with which nitride, carbide, or carbonitride was carried. 実施形態に係る触媒の製造方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the manufacturing method of the catalyst which concerns on embodiment. 実施形態に係る膜電極複合体の一例を示す概念図である。It is a conceptual diagram which shows an example of the membrane electrode assembly which concerns on embodiment. 実施形態に係る燃料電池の一例を示す概念図である。It is a conceptual diagram which shows an example of the fuel cell which concerns on embodiment.

上記した目的を達成するために、触媒材料の活性度と安定性の向上について鋭意研究を重ねた結果成されたものである。
本発明の実施形態に係る触媒は、例えば、図1の概念図に示すような金属ワイヤー1又は金属シート2とその上に担持された窒化物3、炭化物4又は炭窒化物5を有することを特徴とする。窒化物3、炭化物4又は炭窒化物5は下地である金属ワイヤー1又は金属シート2の影響を受け、単体と異なる原子配置、表面電子状態が得られ、本発明の実施形態にかかる触媒の高耐久性と高活性をもたらしたと考えられる。
In order to achieve the above-mentioned object, it has been made as a result of earnest research on the improvement of the activity and stability of the catalyst material.
The catalyst according to the embodiment of the present invention has, for example, a metal wire 1 or a metal sheet 2 as shown in the conceptual diagram of FIG. 1 and a nitride 3, a carbide 4 or a carbonitride 5 supported thereon. Features. The nitride 3, carbide 4 or carbonitride 5 is affected by the metal wire 1 or the metal sheet 2 as a base, and an atomic arrangement and surface electronic state different from those of a simple substance can be obtained. It is thought that it brought durability and high activity.

まず、本発明の実施形態に係る触媒の材料について説明する。
(窒化物、炭化物又は炭窒化物)
本発明の実施形態に係る窒化物3、炭化物4又は炭窒化物5は主触媒である。これらの表面に触媒の活性点が存在する。窒化物3、炭化物4又は炭窒化物5の単体でも触媒活性を持つが、十分ではない。特に触媒の電極反応には電子の授受が必要であるが、窒化物3、炭化物4又は炭窒化物5の電気伝導性が不十分であるため、電極反応に十分に貢献できない活性サイトが多い。本発明の実施形態では炭化物4、窒化物3又は炭窒化物5の担持体として金属ワイヤー1又は金属シート2を導入する。そして、少なくとも一部の窒化物3、炭化物4又は炭窒化物5は、金属ワイヤー1又は金属シート2と直接接していることを特徴とする。これによって、窒化物3、炭化物4又は炭窒化物5の表面に特異な原子配置、電子状態を形成し、本発明の実施形態に係る触媒の高活性と高耐久性をもたらしたと考えている。
First, the material of the catalyst according to the embodiment of the present invention will be described.
(Nitride, carbide or carbonitride)
The nitride 3, carbide 4 or carbonitride 5 according to the embodiment of the present invention is a main catalyst. There are active sites of the catalyst on these surfaces. Even a simple substance of nitride 3, carbide 4 or carbonitride 5 has catalytic activity, but it is not sufficient. In particular, it is necessary to exchange electrons for the electrode reaction of the catalyst, but since the electrical conductivity of nitride 3, carbide 4 or carbonitride 5 is insufficient, there are many active sites that cannot sufficiently contribute to the electrode reaction. In the embodiment of the present invention, the metal wire 1 or the metal sheet 2 is introduced as a support of the carbide 4, nitride 3 or carbonitride 5. At least a part of the nitride 3, carbide 4 or carbonitride 5 is in direct contact with the metal wire 1 or the metal sheet 2. Thus, it is considered that a unique atomic arrangement and electronic state are formed on the surface of the nitride 3, carbide 4 or carbonitride 5, thereby bringing about high activity and high durability of the catalyst according to the embodiment of the present invention.

窒化物3、炭化物4又は炭窒化物5の粒径は0.2nm以上10nm以下であることが望ましい。粒径が10nmを超えると、活性低下が顕著になり、金属ワイヤー1又は金属シート2の影響を受けにくくなり、窒化物3、炭化物4又は炭窒化物5の表面に特異な原子配置、電子状態を形成しにくくなり、また、導電パスに存在する活性サイトの数が少なくなると思われる。粒径を0.2nm未満にすると、耐久性が低下する場合がある。これら粒径は、さらに好ましくは0.2nm以上5nm以下である。   The particle size of nitride 3, carbide 4 or carbonitride 5 is preferably 0.2 nm or more and 10 nm or less. When the particle diameter exceeds 10 nm, the activity decrease becomes remarkable, and it becomes difficult to be affected by the metal wire 1 or the metal sheet 2, and the specific atomic arrangement and electronic state on the surface of the nitride 3, carbide 4 or carbonitride 5. It is considered that the number of active sites existing in the conductive path is reduced. If the particle size is less than 0.2 nm, the durability may decrease. These particle sizes are more preferably 0.2 nm or more and 5 nm or less.

窒化物3、炭化物4又は炭窒化物5は、Ta,Nb,Zr,Ti,W,Mo,Ce,Hf, Sn,Al,Cu,Mn,La,Ba,Fe,Co及びNiよりなる群から選ばれる少なくとも一種の元素を含む化合物である。これら元素を含む窒化物3、炭化物4又は炭窒化物5は高い活性と安定性を有する。窒化物3、炭化物4又は炭窒化物5は、それぞれの炭素の含有量が10〜70原子%、窒素の含有量が2〜70原子%であることが望ましい。これら範囲から外れると、活性が低下する可能性が大きくなる。なお、本発明の実施形態に係る触媒はナノサイズであるため、大気中の酸素の吸着が避けられない。これら酸素は本発明の実施形態に係る触媒の窒化物3、炭化物4又は炭窒化物5の表面特異構造または表面電子状態に貢献したと考えている。窒化物3、炭化物4又は炭窒化物5は、0.5〜90原子%酸素を含むことを特徴とする。また、本発明の実施形態に係る触媒に酸化層が形成することを許容する。なお、窒化物3、炭化物4又は炭窒化物5は、金属ワイヤー1又は金属シート2の構成元素を5〜20原子%を含むことによって触媒特性が更に向上する場合はある。   The nitride 3, carbide 4 or carbonitride 5 is from the group consisting of Ta, Nb, Zr, Ti, W, Mo, Ce, Hf, Sn, Al, Cu, Mn, La, Ba, Fe, Co and Ni. It is a compound containing at least one element selected. Nitride 3, carbide 4 or carbonitride 5 containing these elements has high activity and stability. The nitride 3, carbide 4 or carbonitride 5 preferably has a carbon content of 10 to 70 atomic% and a nitrogen content of 2 to 70 atomic%. When it deviates from these ranges, the possibility that the activity decreases is increased. In addition, since the catalyst according to the embodiment of the present invention is nano-sized, adsorption of oxygen in the atmosphere is inevitable. It is believed that these oxygens contributed to the surface specific structure or surface electronic state of the nitride 3, carbide 4 or carbonitride 5 of the catalyst according to the embodiment of the present invention. The nitride 3, the carbide 4 or the carbonitride 5 contains 0.5 to 90 atomic% oxygen. In addition, an oxidation layer is allowed to be formed on the catalyst according to the embodiment of the present invention. Note that the nitride 3, the carbide 4 or the carbonitride 5 may further improve the catalyst characteristics by containing 5 to 20 atomic% of the constituent elements of the metal wire 1 or the metal sheet 2.

本発明の実施形態に係る触媒の窒化物3、炭化物4又は炭窒化物5はアモルファス構造を持つことが多いが、表面がアモルファス構造、内部が準結晶構造または結晶構造であるコアシェル構造を持つことも観測され、場合によって触媒特性が向上することもある。   The nitride 3, carbide 4 or carbonitride 5 of the catalyst according to the embodiment of the present invention often has an amorphous structure, but has a core-shell structure in which the surface is an amorphous structure and the inside is a quasicrystalline structure or a crystalline structure. Is observed, and in some cases, the catalytic properties may be improved.

(金属ワイヤー又は金属シート)
ナノサイズの金属ワイヤー1又は金属シート2には粒子と異なる原子配置、電子状態を形成しやすいと報告されている。本発明の実施形態では、炭化物4、窒化物3、炭窒化物5の担持体として金属ワイヤー1又は金属シート2を導入する。金属ワイヤー1又は金属シート2は、助触媒として本発明の実施形態に係る触媒の高活性と高耐久性をもたらしたと考えている。また、触媒の活性点が燃料電池の電極反応に貢献するには触媒層15の導電パスに存在することは必須であり、金属ワイヤー1又は金属シート2の導電性は、窒化物3、炭化物4又は炭窒化物5より高いため、金属ワイヤー1又は金属シート2である担持体の導入によって本発明の実施形態に係る触媒層担持基板の活性点密度が大幅向上し、高燃料電池特性を齎したと考えられる。
(Metal wire or metal sheet)
It has been reported that the nano-sized metal wire 1 or metal sheet 2 is likely to form an atomic arrangement or electronic state different from the particles. In the embodiment of the present invention, the metal wire 1 or the metal sheet 2 is introduced as a support for the carbide 4, the nitride 3, and the carbonitride 5. The metal wire 1 or the metal sheet 2 is considered to have brought about the high activity and high durability of the catalyst according to the embodiment of the present invention as a promoter. In order for the active site of the catalyst to contribute to the electrode reaction of the fuel cell, it is essential that it exists in the conductive path of the catalyst layer 15, and the conductivity of the metal wire 1 or the metal sheet 2 is nitride 3, carbide 4. Alternatively, since it is higher than carbonitride 5, the active point density of the catalyst layer-carrying substrate according to the embodiment of the present invention is greatly improved by introducing the carrier that is the metal wire 1 or the metal sheet 2, and the high fuel cell characteristics are improved. it is conceivable that.

本発明の実施形態に係る金属ワイヤー1のアスペクト比は、金属ワイヤー1の長さと金属ワイヤー1の平均直径との比で定義する。本発明の実施形態に係る金属シート2のアスペクト比は、金属シート2の長さと金属シート2の厚さとの比で定義する。それぞれのアスペクト比は2.5以上であることが望ましい。金属ワイヤー1のアスペクト比が2.5未満であると、触媒活性または耐久性が低下する恐れがあり、触媒層における導電パスのネットワークが不十分になる。金属ワイヤー1の平均直径または金属シート2の平均厚さが0.2nm以上10nm以下であることが望ましい。アスペクト比は、さらに好ましくは5以上である。
金属ワイヤー1の平均直径又は金属シート2の平均厚さが10nmを超えると、触媒活性が低くなる場合がある。また、金属ワイヤー1の平均直径または金属シート2の平均厚さが0.2nm未満であると、触媒耐久性が低下する場合がある。金属ワイヤー1の平均直径または金属シート2の平均厚さは、より好ましくは0.2nm以上5nm以下である。
本発明の実施形態に係る金属ワイヤー1又は金属シート2は、Au,Ru,Pt,Pd,W,Mo,Ta,Nb,Zr,Ti,Cr,Ni及びCoよりなる群から選ばれる少なくとも一種の元素を含むことが望ましい。これら元素を助触媒に用いることで、高い活性と安定性が得られる。
The aspect ratio of the metal wire 1 according to the embodiment of the present invention is defined by the ratio between the length of the metal wire 1 and the average diameter of the metal wire 1. The aspect ratio of the metal sheet 2 according to the embodiment of the present invention is defined by the ratio between the length of the metal sheet 2 and the thickness of the metal sheet 2. Each aspect ratio is preferably 2.5 or more. If the aspect ratio of the metal wire 1 is less than 2.5, the catalyst activity or durability may be lowered, and the network of conductive paths in the catalyst layer becomes insufficient. The average diameter of the metal wire 1 or the average thickness of the metal sheet 2 is preferably 0.2 nm or more and 10 nm or less. The aspect ratio is more preferably 5 or more.
When the average diameter of the metal wire 1 or the average thickness of the metal sheet 2 exceeds 10 nm, the catalytic activity may be lowered. Moreover, catalyst durability may fall that the average diameter of the metal wire 1 or the average thickness of the metal sheet 2 is less than 0.2 nm. The average diameter of the metal wire 1 or the average thickness of the metal sheet 2 is more preferably 0.2 nm or more and 5 nm or less.
The metal wire 1 or the metal sheet 2 according to the embodiment of the present invention is at least one selected from the group consisting of Au, Ru, Pt, Pd, W, Mo, Ta, Nb, Zr, Ti, Cr, Ni, and Co. It is desirable to include an element. By using these elements as promoters, high activity and stability can be obtained.

金属ワイヤー1又は金属シート2の構成元素の元素結合状態については貴金属の場合は金属結合がメインであり、ベースメタルの場合はベースメタルが酸化結合を持つことが多い。窒化物3、炭化物4又は炭窒化物5の炭素又は窒素の拡散によって金属ワイヤー1又は金属シート2の構成元素の一部が炭素又は窒素と結合することも観測された。   As for the element bonding state of the constituent elements of the metal wire 1 or the metal sheet 2, in the case of a noble metal, the metal bond is the main, and in the case of a base metal, the base metal often has an oxidative bond. It was also observed that some of the constituent elements of the metal wire 1 or the metal sheet 2 were bonded to carbon or nitrogen by the diffusion of carbon or nitrogen of the nitride 3, carbide 4 or carbonitride 5.

金属ワイヤー1又は金属シート2の構造については特に限定しないが、結晶構造を持つ場合は、耐久性が向上する場合がある。微結晶、アモルファスとの混合状態で存在する場合は耐久性が若干劣るが、活性は向上することもある。用途に応じて、耐久性と活性とのバランスを顧慮し、プロセス、組成によって金属ワイヤー1又は金属シート2の結合状態又は結晶状態を制御できる。   Although it does not specifically limit about the structure of the metal wire 1 or the metal sheet 2, When it has a crystal structure, durability may improve. When it exists in a mixed state with microcrystals and amorphous, the durability is slightly inferior, but the activity may be improved. Depending on the application, the balance between durability and activity can be taken into account, and the bonding state or crystal state of the metal wire 1 or the metal sheet 2 can be controlled by the process and composition.

金属ワイヤー1の平均直径とアスペクト比と、金属シート2の平均厚さとアスペクト比と、窒化物3、炭化物4又は炭窒化物5の粒径は、透過型電子顕微鏡(TEM)分析によって測定したもので、具体的には、本発明の実施形態にかかる触媒を含む触媒層の上部、中部、内部において、それぞれ3箇所の断面(合計9視野)をTEM観察(200万倍)し、各視野における全対象物の平均値を用いる。   Average diameter and aspect ratio of metal wire 1, average thickness and aspect ratio of metal sheet 2, and particle size of nitride 3, carbide 4 or carbonitride 5 were measured by transmission electron microscope (TEM) analysis. Specifically, in the upper, middle and inner portions of the catalyst layer containing the catalyst according to the embodiment of the present invention, three cross sections (total 9 fields) are observed by TEM (2 million times), The average value of all objects is used.

造孔材料層14の平均厚さは1層あたり5nm以上500nm以下とする。5nm未満では金属材料層12中の金属材料同士、触媒材料層13中の触媒材料同士の凝集が顕著になりやすく、触媒特性が低下するほか、造孔処理によって得られる空隙のサイズが小さくなり、燃料電池の燃料供給が困難になり、燃料電池特性が低下する。500nmを超える場合は更なる触媒凝集の抑制効果または空隙構造改善の効果が少ないうえに、製造プロセスのコスト上昇を招く可能性が高い。この造孔材料層14の平均厚さは1層あたり10nm以上350nm以下とすることが特に好ましい。造孔材料は、酸洗浄、アルカリ洗浄などの造孔工程によって、造孔材料の大部分が除去されるものであればよく、金属又は無機酸化物が挙げられるが限定されない。造孔材料に金属を用いる場合は、短時間で形成できる、除去できるなどプロセスのコストを考えると、Mn,Fe,Co,Ni,Zn,Sn,Al,Cuから選択される少なくとも一種の金属が望ましい。造孔材料に無機酸化物を用いる場合は、WO、ZrO等の酸化物が望ましい。
なお、本発明の実施形態にかかる触媒層15には、無機酸化物粒子の存在を許容する。それにより触媒粒子の凝集/成長の抑制が高く、触媒利用効率や耐久性を向上させることができる。無機酸化物粒子は造孔処理後に残存の造孔材料によって形成することもできる。また、本発明の実施形態にかかる触媒は他の触媒と混合して使用することも可能であり、混合による相乗効果を期待できる。
The average thickness of the pore-forming material layer 14 is 5 nm or more and 500 nm or less per layer. If the thickness is less than 5 nm, the aggregation of the metal materials in the metal material layer 12 and the catalyst materials in the catalyst material layer 13 are likely to be remarkable, the catalytic properties are deteriorated, and the size of the voids obtained by the pore forming process is reduced. The fuel supply of the fuel cell becomes difficult, and the fuel cell characteristics deteriorate. When it exceeds 500 nm, there is a high possibility that the effect of further suppressing the catalyst aggregation or the effect of improving the void structure is small and the cost of the production process is increased. The average thickness of the pore forming material layer 14 is particularly preferably 10 nm or more and 350 nm or less per layer. The pore forming material may be any material as long as most of the pore forming material is removed by a hole forming step such as acid cleaning or alkali cleaning, and examples thereof include, but are not limited to, metals and inorganic oxides. When a metal is used for the pore forming material, at least one kind of metal selected from Mn, Fe, Co, Ni, Zn, Sn, Al, and Cu is considered in consideration of process costs such as formation and removal in a short time. desirable. When an inorganic oxide is used for the pore forming material, an oxide such as WO 3 or ZrO 2 is desirable.
The catalyst layer 15 according to the embodiment of the present invention allows the presence of inorganic oxide particles. Thereby, the suppression of the aggregation / growth of the catalyst particles is high, and the catalyst utilization efficiency and durability can be improved. The inorganic oxide particles can also be formed from the remaining pore-forming material after the pore-forming treatment. In addition, the catalyst according to the embodiment of the present invention can be used by mixing with another catalyst, and a synergistic effect by mixing can be expected.

次に、本発明の実施形態にかかる触媒の製造方法について、図3の製造方法のプロセスの一例を示す概念図を用いて説明する。
この方法を本発明においては、スパッタ積層法と呼ぶ。
まず、基板11に金属ワイヤー1又は金属シート2の材料となる金属材料をスパッタもしくは蒸着し、金属材料層12を形成する(第1の工程)。次に、窒化物3、炭化物4又は炭窒化物5材料をスパッタ又は蒸着して、触媒材料層13を金属材料層12上に形成する(第2の工程)。その後、造孔材料をスパッタもしくは蒸着し、造孔材料層14を触媒材料層13上に形成する(第3の工程)(図3(A))。この第1から第3の3工程を順番に複数回繰り返して金属材料層12、触媒材料層13と造孔材料層14との積層体を形成する(積層工程)(図3(B)))。この後に、積層体を造孔処理し、金属材料層12、触媒材料層13と造孔材料層14の一部を溶解除去する(造孔処理工程)(図3(C))。金属材料層12と触媒材料層13に造孔処理工程が施されたものに、本発明の実施形態に係る触媒が含まれる。以下、造孔処理された積層体を触媒層15と記す。
Next, a catalyst manufacturing method according to an embodiment of the present invention will be described with reference to a conceptual diagram showing an example of a process of the manufacturing method of FIG.
In the present invention, this method is called a sputter lamination method.
First, the metal material used as the material of the metal wire 1 or the metal sheet 2 is sputtered or vapor-deposited on the substrate 11 to form the metal material layer 12 (first step). Next, the nitride 3, carbide 4 or carbonitride 5 material is sputtered or deposited to form the catalyst material layer 13 on the metal material layer 12 (second step). Thereafter, the pore-forming material is sputtered or vapor-deposited to form the pore-forming material layer 14 on the catalyst material layer 13 (third step) (FIG. 3A). The first to third steps are repeated a plurality of times in order to form a laminate of the metal material layer 12, the catalyst material layer 13 and the pore-forming material layer 14 (lamination step) (FIG. 3B)) . Thereafter, the laminate is subjected to pore forming treatment, and a part of the metal material layer 12, the catalyst material layer 13 and the pore forming material layer 14 is dissolved and removed (pore forming treatment step) (FIG. 3C). The catalyst according to the embodiment of the present invention is included in the metal material layer 12 and the catalyst material layer 13 that have been subjected to the pore forming process. Hereinafter, the laminated body that has been subjected to pore forming treatment is referred to as a catalyst layer 15.

基板11としては、触媒層をサポートできるものであれば、その材料および構成に特に制限されるものではない。例えば、炭素層を有するカーボンペーパー等を用いることができる。また、導電性を持たないもの、多孔質ではないものでもよい。本発明の実施形態に係る触媒が形成した触媒層を基板に形成してからプロトン伝導性膜に転写しても良い。   The substrate 11 is not particularly limited in its material and configuration as long as it can support the catalyst layer. For example, carbon paper having a carbon layer can be used. Moreover, the thing which does not have electroconductivity and the thing which is not porous may be used. The catalyst layer formed by the catalyst according to the embodiment of the present invention may be formed on the substrate and then transferred to the proton conductive membrane.

造孔処理は、具体的には酸洗浄による造孔処理が容易であり望ましい。造孔処理は酸洗浄に限定されるものではなく、本発明の実施形態を維持し、十分な空隙構造を作ることができれば、他のプロセスを採用しても良い。酸洗浄を行なう場合には、例えば、硝酸、塩酸、硫酸、またはこれらの混合液を用い、5分〜50時間程度の時間で行うことが出来る。このとき、50〜100℃程度に加熱して酸処理を行っても良い。また、場合によっては、触媒中の造孔材料の溶解を促進するためにバイアス電圧を加えたり、熱処理などの後処理を加えたりしても良い。酸洗浄以外の造孔処理は、例えばアルカリ溶液による洗浄造孔、または電解法による造孔でも良い。酸洗浄以外の造孔処理は、例えばアルカリ溶液による洗浄造孔、または電解法による造孔でも良い。アルカリの場合は例えばNaOH水溶液を用い、5分〜50時間程度の時間で行うことが出来る。   Specifically, the hole making treatment is desirable because the hole making treatment by acid cleaning is easy. The hole making treatment is not limited to acid cleaning, and other processes may be adopted as long as the embodiment of the present invention can be maintained and a sufficient void structure can be formed. When acid cleaning is performed, for example, nitric acid, hydrochloric acid, sulfuric acid, or a mixture thereof can be used in a time of about 5 minutes to 50 hours. At this time, the acid treatment may be performed by heating to about 50 to 100 ° C. In some cases, a bias voltage may be applied or post-treatment such as heat treatment may be applied in order to promote dissolution of the pore-forming material in the catalyst. The hole making treatment other than the acid washing may be, for example, a washing hole making with an alkaline solution or a hole making by an electrolytic method. The hole making treatment other than the acid washing may be, for example, a washing hole making with an alkaline solution or a hole making by an electrolytic method. In the case of an alkali, for example, a NaOH aqueous solution is used, and it can be performed in a time of about 5 minutes to 50 hours.

本発明の実施形態に係る触媒は、スパッタプロセス以外の他のプロセスでも可能である。例えば、溶液錯体法などによって金属ワイヤー1又は金属シート2を作製し、浸漬法によって金属酸化物を金属ワイヤー1又は金属シート2に担持させた後、炭素又は窒素を含む雰囲気において窒化物3、炭化物4又は炭窒化物5を生成する。   The catalyst according to the embodiment of the present invention can be a process other than the sputtering process. For example, the metal wire 1 or the metal sheet 2 is prepared by a solution complex method or the like, and a metal oxide is supported on the metal wire 1 or the metal sheet 2 by an immersion method, and then nitride 3 or carbide in an atmosphere containing carbon or nitrogen. 4 or carbonitride 5 is produced.

なお、本発明の実施形態に係る触媒は後処理によって触媒特性が向上する場合はある。後処理については、例えば、100℃〜1200℃の範囲内の温度で、0.05〜100時間、ガス雰囲気中において行なう。ガス雰囲気については水素(H)ガス、酸素(O)、アルゴンガス、アンモニア(NH)ガス、また、これらの混合ガスなど等を挙げることができる。後処理によって、窒化物3、炭化物4又は炭窒化物5粒子、金属ワイヤー1又は金属シート2の凝集と粗大化はある程度進行し、表面活性サイトの数が減るが活性点における触媒活性と耐久性が大幅向上し、燃料電池の特性が向上する場合はよくある。 In addition, the catalyst characteristics according to the embodiment of the present invention may improve the catalyst characteristics by post-treatment. The post-treatment is performed, for example, in a gas atmosphere at a temperature in the range of 100 ° C. to 1200 ° C. for 0.05 to 100 hours. Examples of the gas atmosphere include hydrogen (H 2 ) gas, oxygen (O 2 ), argon gas, ammonia (NH 3 ) gas, and mixed gas thereof. By the post-treatment, the aggregation and coarsening of the nitride 3, carbide 4 or carbonitride 5 particles, metal wire 1 or metal sheet 2 proceed to some extent, the number of surface active sites decreases, but the catalytic activity and durability at the active site. It is often the case that the fuel cell characteristics are greatly improved and the characteristics of the fuel cell are improved.

また、触媒材料の利用効率は、触媒材料のサイズのほかに、燃料‐触媒‐プロトン伝導体で形成される三相界面の密度に依存するため、三相界面ができるだけ多くなるよう触媒層15に空隙を導入すると好ましい。したがって、触媒層15の空隙率が20%以上であるものを使用することが好ましい。空隙率が20%未満では、触媒凝集と触媒成長を十分に抑制できず、触媒サイズが大きく、高い触媒利用効率が得られにくい。触媒層15の空隙率は40%以上90%以下となることが特に望ましい。90%以上の場合は更なる触媒凝集の抑制効果が少ないため、製造プロセスのコスト上昇を招く可能性が高い。   Further, the utilization efficiency of the catalyst material depends on the density of the three-phase interface formed by the fuel-catalyst-proton conductor in addition to the size of the catalyst material. It is preferable to introduce voids. Therefore, it is preferable to use a catalyst layer having a porosity of 20% or more. When the porosity is less than 20%, catalyst aggregation and catalyst growth cannot be sufficiently suppressed, the catalyst size is large, and high catalyst utilization efficiency is difficult to obtain. The porosity of the catalyst layer 15 is particularly preferably 40% or more and 90% or less. In the case of 90% or more, since the effect of further suppressing the catalyst aggregation is small, there is a high possibility that the cost of the production process is increased.

なお、上記にて空隙率を示したが、本明細書では以下のように空隙率を求める。
試料のTEM像のコントラストから触媒と空隙を区別できるため、本発明の実施形態にかかる触媒を含む触媒層内の上部、中部、下部においてそれぞれ3箇所の断面(合計9視野)をTEM観察(200万倍)し、各視野に含まれた空隙と触媒層の合計面積をそれぞれ計測し、空隙の合計面積/触媒層の合計面積を求め、9視野の平均値を空隙率として用いる。
In addition, although the porosity was shown above, in this specification, a porosity is calculated | required as follows.
Since the catalyst and the void can be distinguished from the contrast of the TEM image of the sample, three cross sections (total of 9 fields) are respectively observed in the upper, middle and lower portions of the catalyst layer containing the catalyst according to the embodiment of the present invention (200 views). The total area of the voids and the catalyst layer included in each visual field is measured, the total area of the voids / the total area of the catalyst layers is obtained, and the average value of nine visual fields is used as the porosity.

(膜電極複合体及び燃料電池)
膜電極複合体(MEA)は、図4の概念図に示すように、アノード触媒層21、カソード触媒層23、及び前記アノード触媒層21とカソード触媒層23の間に介挿されたプロトン伝導性膜22を有する膜電極複合体である。そして、前記アノード触媒又は前記カソード触媒のいずれか一方は本発明の実施形態に係るいずれかの触媒を具備する。
(Membrane electrode composite and fuel cell)
As shown in the conceptual diagram of FIG. 4, the membrane electrode assembly (MEA) includes an anode catalyst layer 21, a cathode catalyst layer 23, and proton conductivity interposed between the anode catalyst layer 21 and the cathode catalyst layer 23. A membrane electrode assembly having a membrane 22. And either one of the said anode catalyst or the said cathode catalyst comprises the catalyst which concerns on embodiment of this invention.

燃料電池は、前述したMEAと、アノードに燃料を供給する手段と、カソードに酸化剤を供給する手段とを含む。MEAに加えて、燃料電池流路板を備え、さらにこのMEAと燃料電池流路板との間に多孔質燃料拡散層を備えていてもよい。使用するMEAの数は1つでも、複数でもよい。MEAを複数使用することにより、より高い起電力を得ることができる。燃料電池の燃料としては、メタノール、エタノール、蟻酸、あるいはこれらから選ばれる1種類以上を含む水溶液等を使用することができる。   The fuel cell includes the above-mentioned MEA, means for supplying fuel to the anode, and means for supplying an oxidant to the cathode. In addition to the MEA, a fuel cell channel plate may be provided, and a porous fuel diffusion layer may be provided between the MEA and the fuel cell channel plate. One or more MEAs may be used. By using a plurality of MEAs, a higher electromotive force can be obtained. As fuel for the fuel cell, methanol, ethanol, formic acid, or an aqueous solution containing one or more selected from these can be used.

図5に、本発明の実施形態にかかる燃料電池の概念図を示す。
燃料電池30は、プロトン電導性膜31、およびその膜31を挟んで2つの電極、すなわち、燃料が供給される燃料極(アノード)32と酸素が供給される空気極(カソード)33が配置されたものを基本構成とした膜電極接合体(MEA)38を具備する。アノード32は、拡散層34と、その上に積層されたアノード触媒層35とを含む。カソード33は、拡散層36と、その上に積層されたカソード触媒層37とを含む。アノード32とカソード33は、プロトン電導性膜31を介して、アノード触媒層35とカソード触媒層37とが対向するように積層される。
FIG. 5 shows a conceptual diagram of a fuel cell according to an embodiment of the present invention.
The fuel cell 30 includes a proton conductive membrane 31 and two electrodes sandwiching the membrane 31, that is, a fuel electrode (anode) 32 to which fuel is supplied and an air electrode (cathode) 33 to which oxygen is supplied. And a membrane electrode assembly (MEA) 38 having a basic structure. The anode 32 includes a diffusion layer 34 and an anode catalyst layer 35 laminated thereon. The cathode 33 includes a diffusion layer 36 and a cathode catalyst layer 37 stacked thereon. The anode 32 and the cathode 33 are laminated so that the anode catalyst layer 35 and the cathode catalyst layer 37 face each other with the proton conductive film 31 interposed therebetween.

MEA38は図示しない空気(酸素)等の酸化剤を供給する供給機構から空気(酸素)をカソードへ供給するための酸化剤ガス供給溝39付きのカソードホルダー40と、燃料である水素等をアノードへ供給するための燃料供給溝41付きのアノードホルダー42との内部に組み込んで、図1に示すような単電池を構成して発電を行う。燃料電池30においては、燃料電池30が所望する電圧等を得られるように、カソードホルダー40およびアノードホルダー42を介してMEA38を複数積層して直列に繋いだスタック構造あるいは平面配置構造を形成してもよい。燃料電池30の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。   The MEA 38 has a cathode holder 40 with an oxidant gas supply groove 39 for supplying air (oxygen) to the cathode from a supply mechanism for supplying oxidant such as air (oxygen) (not shown), and hydrogen as fuel to the anode. A unit cell as shown in FIG. 1 is built into the anode holder 42 with the fuel supply groove 41 for supply to generate electric power. In the fuel cell 30, a stack structure or a planar arrangement structure in which a plurality of MEAs 38 are stacked and connected in series via the cathode holder 40 and the anode holder 42 so as to obtain a desired voltage or the like is formed. Also good. The shape of the fuel cell 30 is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.

本発明の実施形態の燃料電池は、上記では高分子電解質型燃料電池を例に挙げて説明したがこれに限定されず、ダイレクトメタノール燃料電池、リン酸型燃料電池に代表される酸型電解質の燃料電池など各種燃料電池に対して用いることができる。なかでも、高密度・高出力化が可能であるから、固体高分子型燃料電池に適用されるのが好ましい。
前記燃料電池は、定置用電源の他、搭載スペースが限定される自動車などの移動体用電源などとして有用である。なかでも、製造コストが低減され、かつ、発電性能に優れることから、自動車などの移動体用電源として用いられるのが特に好ましい。
The fuel cell of the embodiment of the present invention has been described above by taking a polymer electrolyte fuel cell as an example, but is not limited thereto, and is not limited to this, and is an acid electrolyte represented by a direct methanol fuel cell and a phosphoric acid fuel cell. It can be used for various fuel cells such as fuel cells. Especially, since it is possible to achieve high density and high output, it is preferably applied to a polymer electrolyte fuel cell.
The fuel cell is useful as a power source for a moving body such as an automobile having a limited mounting space in addition to a stationary power source. Among these, it is particularly preferable to use as a power source for a mobile body such as an automobile because the manufacturing cost is reduced and the power generation performance is excellent.

プロトン伝導性22に含まれるプロトン伝導性物質は、プロトンを伝達できる材料であれば特に制限されることなく使用することができる。プロトン伝導性物質としては、高分子物質、例えば、デュポン社製のナフィオン(登録商標)、旭硝子社製のフレミオン(登録商標)、旭化成ケミカルズ社製のアシブレック(登録商標)などのスルホン酸基を持つフッ素樹脂や、タングステン酸やリンタングステン酸などの無機物などが挙げられるが、これらに限定されるものではない。   The proton conductive substance contained in the proton conductivity 22 can be used without particular limitation as long as it is a material that can transmit protons. The proton conductive material has a sulfonic acid group such as a polymer material such as Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., and Acibreck (registered trademark) manufactured by Asahi Kasei Chemicals. Fluorine resin and inorganic substances such as tungstic acid and phosphotungstic acid can be used, but the invention is not limited to these.

なお、本発明の実施形態に係る触媒が形成した触媒層15をプロトン伝導性22に転写して膜電極複合体を作製することにも適用できる。
なお、本発明の実施形態に係る触媒は燃料電池のカソード触媒のほか、燃料電池のアノード触媒、光触媒、水分解触媒などとしても適用できる。
In addition, it is applicable also to producing the membrane electrode assembly by transferring the catalyst layer 15 formed by the catalyst according to the embodiment of the present invention to the proton conductivity 22.
The catalyst according to the embodiment of the present invention can be applied as an anode catalyst, a photocatalyst, a water splitting catalyst, etc. of a fuel cell in addition to a cathode catalyst of a fuel cell.

以下、スパッタ積層法によって積層体を形成する実施形態の実施例について説明する。本発明は以下の実施例に限定されるものではない。   Hereinafter, examples of the embodiment in which the laminated body is formed by the sputtering lamination method will be described. The present invention is not limited to the following examples.

(実施例1〜20)
表面に厚さが5〜50μmの炭素層を持つカーボンペーパー(商品名Toray060)を基板11とし、金属材料ターゲット(複合ターゲットを含む)、窒化物3、炭化物4又は炭窒化物5ターゲット、造孔材料ターゲットをそれぞれ用い、スパッタリングを行い、触媒ローディング量が0.1mg/cmの積層体を形成する。その後80℃において10重量%硫酸に積層体を入れ、2時間酸処理を行い、純水によって洗浄し、乾燥させ、触媒層担持基板を得る。表1に実施例1〜16の構成、金属材料層12と窒化物3、炭化物4又は炭窒化物5を形成した際の平面相当厚さ、触媒組成(金属部分のみ)を示す。なお、造孔材料層14の厚さは200nmの平面相当厚さにする。触媒のローディング量は金属ワイヤーまたはシートと窒化物、炭化物または炭窒化物の単位面積あたりの合計重量(酸洗浄後)である。
(Examples 1-20)
Carbon paper (trade name Toray060) having a carbon layer with a thickness of 5 to 50 μm on the surface is used as a substrate 11, metal material target (including composite target), nitride 3, carbide 4 or carbonitride 5 target, hole making Sputtering is performed using each material target to form a laminate with a catalyst loading of 0.1 mg / cm 2 . Thereafter, the laminate is put into 10% by weight sulfuric acid at 80 ° C., acid-treated for 2 hours, washed with pure water, and dried to obtain a catalyst layer-supporting substrate. Table 1 shows the structures of Examples 1 to 16, the thickness corresponding to the plane when the metal material layer 12 and the nitride 3, carbide 4 or carbonitride 5 were formed, and the catalyst composition (only the metal portion). The thickness of the pore forming material layer 14 is set to a plane equivalent thickness of 200 nm. The loading amount of the catalyst is the total weight (after acid cleaning) per unit area of the metal wire or sheet and the nitride, carbide or carbonitride.

(比較例1〜3)
金属材料層12、窒化物3、炭化物4又は炭窒化物5層の条件が実施例1〜20と異なる以外は、実施例と同様な方法によって触媒層担持基板を得る。表1に実施例1〜16の構成、金属材料層12と窒化物3、炭化物4又は炭窒化物5を形成した際の平面相当厚さ、触媒組成(金属部分のみ)を示す。なお、造孔材料層14の厚さは200nmの平面相当厚さにする。
(Comparative Examples 1-3)
A catalyst layer carrying substrate is obtained by the same method as in Examples except that the conditions of the metal material layer 12, nitride 3, carbide 4 or carbonitride 5 layer are different from those in Examples 1-20. Table 1 shows the structures of Examples 1 to 16, the thickness corresponding to the plane when the metal material layer 12 and the nitride 3, carbide 4 or carbonitride 5 were formed, and the catalyst composition (only the metal portion). The thickness of the pore forming material layer 14 is set to a plane equivalent thickness of 200 nm.

(比較例4)
スパッタ法によってカーボンブラックにTaCNを担持させ、TaCN触媒を作製した。溶液法によってAuワイヤーを作製し、実施例1と同様な触媒組成になるように上記TaCN触媒と混合し、混合触媒を作製する。
(Comparative Example 4)
TaCN was supported on carbon black by sputtering to prepare a TaCN catalyst. An Au wire is prepared by a solution method and mixed with the TaCN catalyst so as to have the same catalyst composition as in Example 1, thereby preparing a mixed catalyst.

(比較例5)
市販のAuナノ粒子(平均直径10nm)を用いて実施例1と同様な触媒組成になるようにAu粒子にスパッタ法によってTaCNを担持させる。
(Comparative Example 5)
Using commercially available Au nanoparticles (average diameter: 10 nm), TaCN is supported on the Au particles by sputtering so as to have the same catalyst composition as in Example 1.

(触媒の評価)
透過電子顕微鏡(TEM)によって各実施例と比較例の触媒層15を評価する。実施例1〜20、比較例1、3,4の各触媒には、金属ワイヤー1又は金属シート2が存在し、厚さが表1にまとめた値であることをTEM画像から確認した。また、比較例5のAuのアスペクト比が2.5より小さいことをTEM観察により確認した。実施例1〜20の各触媒窒化物3、炭化物4又は炭窒化物5は金属ワイヤー1又は金属シート2によって担持され、窒化物3、炭化物4又は炭窒化物5の少なくとも一部分は金属ワイヤー1又は金属シート2と直接接しており、窒化物3、炭化物4又は炭窒化物5のサイズが表1にまとめた値であることをTEM画像から確認した。図1、2は実施例4と実施例11の触媒層15横断TEM写真をそれぞれ示す。平均直径または平均厚さが0.2〜10nmである金属ワイヤー1と金属シート2をできる。また、各触媒の造孔処理後の組成を蛍光X線組成分析(XRF)によって分析し、その結果を表1にまとめた。造孔処理後の基板のX線回折分析(XRD)を行い、金属材料層12は殆ど結晶構造であり、窒化物3、炭化物4又は炭窒化物5は殆どアモルファス構造であることがわかった。
(Evaluation of catalyst)
The catalyst layer 15 of each example and comparative example is evaluated by a transmission electron microscope (TEM). It was confirmed from the TEM images that each of the catalysts of Examples 1 to 20 and Comparative Examples 1, 3 and 4 had the metal wire 1 or the metal sheet 2 and the thickness was a value summarized in Table 1. Further, it was confirmed by TEM observation that the aspect ratio of Au of Comparative Example 5 was smaller than 2.5. Each catalyst nitride 3, carbide 4 or carbonitride 5 of Examples 1 to 20 is supported by metal wire 1 or metal sheet 2, and at least part of nitride 3, carbide 4 or carbonitride 5 is metal wire 1 or The metal sheet 2 was in direct contact, and it was confirmed from the TEM image that the size of the nitride 3, carbide 4 or carbonitride 5 was the value summarized in Table 1. 1 and 2 show TEM photographs across the catalyst layer 15 of Example 4 and Example 11, respectively. A metal wire 1 and a metal sheet 2 having an average diameter or average thickness of 0.2 to 10 nm can be obtained. Further, the composition of each catalyst after the pore-forming treatment was analyzed by fluorescent X-ray composition analysis (XRF), and the results are summarized in Table 1. X-ray diffraction analysis (XRD) of the substrate after the hole forming treatment was performed, and it was found that the metal material layer 12 has almost a crystal structure, and the nitride 3, carbide 4 or carbonitride 5 has almost an amorphous structure.

また、燃料電池電極、膜電極複合体、単セルを以下に示す方法で作製し、評価を行った。   In addition, a fuel cell electrode, a membrane electrode assembly, and a single cell were prepared and evaluated by the following methods.

実施例1〜20、比較例1〜3の触媒層担持基板に0.5%重量のナフィオン(登録商標)含浸させ、乾燥し、金属触媒のローディング密度が0.1mg/cmのカソード電極を作成する。 The catalyst layer-supported substrates of Examples 1 to 20 and Comparative Examples 1 to 3 were impregnated with 0.5% by weight of Nafion (registered trademark) and dried to obtain a cathode electrode having a metal catalyst loading density of 0.1 mg / cm 2. create.

実施例1〜20、比較例1〜3の基板を使用したこれらのカソード電極と、標準アノード電極(カーボンブラック担持のPt触媒 田中貴金属社製)を使用し、膜電極複合体及び燃料電池を作成する。   Using these cathode electrodes using the substrates of Examples 1 to 20 and Comparative Examples 1 to 3, and a standard anode electrode (carbon black-supported Pt catalyst manufactured by Tanaka Kikinzoku Co., Ltd.), a membrane electrode composite and a fuel cell were prepared. To do.

比較例4,5の電極は、以下のように作成する。比較例4,5の触媒 0.5gと、純水5gと、20%ナフィオン(登録商標)溶液5gと、2−エトキシエタノール20gとを良く攪拌し、分散した後、スラリーを作製する。撥水処理した厚さ180μで東レ製のカーボンペーパーに上記のスラリーをコントロールコータで塗布し、乾燥させ、金属触媒のローディング密度が0.1mg/cmのカソード電極を作製する。 The electrodes of Comparative Examples 4 and 5 are prepared as follows. 0.5 g of the catalyst of Comparative Examples 4 and 5, 5 g of pure water, 5 g of 20% Nafion (registered trademark) solution and 20 g of 2-ethoxyethanol are thoroughly stirred and dispersed, and then a slurry is prepared. The slurry is applied to a carbon paper made by Toray with a water repellent thickness of 180 μm using a control coater and dried to produce a cathode electrode having a metal catalyst loading density of 0.1 mg / cm 2 .

標準カソード電極は、以下のように作成する。田中貴金属社製Pt触媒2gと、純水5gと、20%ナフィオン(登録商標)溶液5gと、2−エトキシエタノール20gとを良く攪拌し、分散した後、スラリーを作製する。撥水処理した厚さ180μで東レ製のカーボンペーパーに上記のスラリーをコントロールコータで塗布し、乾燥させ、貴金属触媒のローディング密度が0.1mg/cmのカソード電極を作製する。標準アノード電極は、撥水処理なしの厚さ180μで東レ製のカーボンペーパーを用いた以外は標準カソード電極と同様な方法にて作製する。
各電極を使用した膜電極複合体、燃料電池の製造方法の詳細は以下の通りである。
The standard cathode electrode is prepared as follows. 2 g of Pt catalyst manufactured by Tanaka Kikinzoku Co., 5 g of pure water, 5 g of 20% Nafion (registered trademark) solution and 20 g of 2-ethoxyethanol are thoroughly stirred and dispersed, and then a slurry is prepared. The slurry is applied to a carbon paper manufactured by Toray with a water repellent thickness of 180 μm using a control coater, and dried to prepare a cathode electrode having a noble metal catalyst loading density of 0.1 mg / cm 2 . The standard anode electrode is produced in the same manner as the standard cathode electrode except that Toray carbon paper with a thickness of 180 μ without water repellent treatment is used.
Details of the manufacturing method of the membrane electrode assembly and fuel cell using each electrode are as follows.

(膜電極複合体の作製)
カソード電極、アノード電極それぞれを電極面積が10cmになるよう、3.2×3.2cmの正方形に切り取り、カソード電極とアノード電極の間にプロトン伝導性固体高分子膜としてデュポン社製のナフィオン(登録商標)112を挟んで、125℃、10分、30kg/cmの圧力で熱圧着して、膜電極複合体を作製する。
(Production of membrane electrode composite)
The cathode electrode and the anode electrode are cut into a 3.2 × 3.2 cm square so that the electrode area is 10 cm 2. (Registered Trademark) 112 is sandwiched and thermocompression bonded at 125 ° C. for 10 minutes at a pressure of 30 kg / cm 2 to prepare a membrane electrode assembly.

この膜電極複合体と流路板とを用いて水素高分子電解質型燃料電池の単セルを作製する。この単セルに燃料としての水素、流量0.6ml/min.でアノード極に供給すると共に、カソード極に空気を500ml/分の流量で供給し、セルを65℃に維持した状態で200mA/cm電流密度を放電させ、100時間後のセル電圧を測定し、その結果を下記表1に併記する。耐久性としては2000時間発電後のセル電圧を測定し、100時間後のセル電圧と比較し、低下率が2%以内のものは耐久性◎として、2%より高く5%より低いものは耐久性○として、5%以上のものは耐久性△として、それぞれ表1にまとめた。 A single cell of a hydrogen polymer electrolyte fuel cell is manufactured using the membrane electrode assembly and the flow path plate. Hydrogen as a fuel in this single cell, flow rate 0.6 ml / min. In addition to supplying the cathode electrode with air at a flow rate of 500 ml / min, the cell was maintained at 65 ° C. and a current density of 200 mA / cm 2 was discharged, and the cell voltage after 100 hours was measured. The results are also shown in Table 1 below. As the durability, the cell voltage after 2000 hours of power generation was measured, and compared with the cell voltage after 100 hours, the rate of decrease is within 2%, the durability is ◎, the durability is higher than 2% and lower than 5% As for the property ◯, those with 5% or more are summarized in Table 1 as durability Δ.

表1の結果が示されるように、実施例1〜20と比較例1,2と比較すると、窒化物3、炭化物4又は炭窒化物5は金属ワイヤー1又は金属シート2に担持させることによって燃料電池単セル電圧と耐久性がいずれも向上したとわかる。実施例1〜20と比較例3,4と比較すると、実施例の触媒は金属ワイヤー1と炭窒化物5との混合物または球状金属によって担持された炭窒化物5より高い特性を持つことがわかる。また、実施例1と実施例17〜20と比較すると、高い燃料電池特性を達成するには金属ワイヤー1と金属シート2の厚さ、窒化物3、炭化物4又は炭窒化物5のサイズを制御する必要があるとわかる。また実施例1と比較例1、実施例10と比較例3とそれぞれ比較すると、本発明の触媒は同量の貴金属ワイヤーより単セル電圧が高いことがわかる。
なお、本実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。本実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。本実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
As shown in Table 1, when Examples 1 to 20 and Comparative Examples 1 and 2 are compared, nitride 3, carbide 4 or carbonitride 5 is fuel by being supported on metal wire 1 or metal sheet 2. It can be seen that both the battery single cell voltage and the durability were improved. Comparing Examples 1-20 with Comparative Examples 3 and 4, it can be seen that the catalyst of the example has higher properties than the mixture of metal wire 1 and carbonitride 5 or carbonitride 5 supported by a spherical metal. . Moreover, compared with Example 1 and Examples 17-20, in order to achieve a high fuel cell characteristic, the thickness of the metal wire 1 and the metal sheet 2, the size of the nitride 3, the carbide 4, or the carbonitride 5 is controlled. I know I need to do it. Moreover, when Example 1 and Comparative Example 1 are compared with Example 10 and Comparative Example 3, respectively, it can be seen that the single cell voltage of the catalyst of the present invention is higher than that of the same amount of noble metal wire.
This embodiment is presented as an example and is not intended to limit the scope of the invention. The present embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…金属ワイヤー、2…金属シート、3…窒化物、4…炭化物、5…炭窒化物、11…基板、12…金属材料層、13…触媒材料層、14…造孔材料層、21…アノード触媒層、22…プロトン伝導性膜、23…カソード触媒層、30…燃料電池、31…プロトン電導性膜、32…燃料極(アノード)、33…空気極(カソード)、34…拡散層、35…アノード触媒層、36…拡散層、37…カソード触媒層、38…MEA、39…酸化剤ガス供給溝、40…カソードホルダー、41…燃料供給溝、42…アノードホルダー DESCRIPTION OF SYMBOLS 1 ... Metal wire, 2 ... Metal sheet, 3 ... Nitride, 4 ... Carbide, 5 ... Carbonitride, 11 ... Substrate, 12 ... Metal material layer, 13 ... Catalyst material layer, 14 ... Porous material layer, 21 ... Anode catalyst layer, 22 ... proton conductive membrane, 23 ... cathode catalyst layer, 30 ... fuel cell, 31 ... proton conductive membrane, 32 ... fuel electrode (anode), 33 ... air electrode (cathode), 34 ... diffusion layer, 35 ... anode catalyst layer, 36 ... diffusion layer, 37 ... cathode catalyst layer, 38 ... MEA, 39 ... oxidant gas supply groove, 40 ... cathode holder, 41 ... fuel supply groove, 42 ... anode holder

Claims (11)

金属ワイヤー又は金属シートを担持体とし
前記担持体に主触媒として担持された窒化物、炭化物又は炭窒化物とを有することを特徴とする燃料電池用触媒。
With a metal wire or metal sheet as a carrier ,
A fuel cell catalyst comprising a nitride, carbide or carbonitride supported as a main catalyst on the support.
前記金属ワイヤーの長さと平均直径との比又は前記金属シートの長さと厚さとの比が、2.5以上であることを特徴とする請求項1に記載の燃料電池用触媒。   2. The fuel cell catalyst according to claim 1, wherein a ratio between the length of the metal wire and the average diameter or a ratio between the length and the thickness of the metal sheet is 2.5 or more. 前記窒化物、炭化物又は炭窒化物の粒径が、0.2nm以上10nm以下であることを特徴とする請求項1又は2に記載の燃料電池用触媒。   3. The fuel cell catalyst according to claim 1, wherein the nitride, carbide, or carbonitride has a particle size of 0.2 nm or more and 10 nm or less. 前記金属ワイヤー平均直径又は前記金属シートの厚さが、0.2nm以上10nm以下であることを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池用触媒。   4. The fuel cell catalyst according to claim 1, wherein an average diameter of the metal wire or a thickness of the metal sheet is 0.2 nm or more and 10 nm or less. 5. 前記金属ワイヤー又は前記金属シートは、Au,Ru,Pt,Pd,W,Mo,Ta,Nb,Zr,Ti,Cr,Ni及びCoよりなる群から選ばれる少なくとも一種の元素を含むことを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池用触媒。   The metal wire or the metal sheet contains at least one element selected from the group consisting of Au, Ru, Pt, Pd, W, Mo, Ta, Nb, Zr, Ti, Cr, Ni, and Co. The fuel cell catalyst according to any one of claims 1 to 4. 前記窒化物、炭化物又は炭窒化物は、Ta,Nb,Zr,Ti,W,Mo,Ce,Hf, Sn,Al,Cu,Mn,La,Ba,Fe,Co及びNiよりなる群から選ばれる少なくとも一種の元素を含むことを特徴とする請求項1乃至5のいずれか1項に記載の燃料電池用触媒。   The nitride, carbide or carbonitride is selected from the group consisting of Ta, Nb, Zr, Ti, W, Mo, Ce, Hf, Sn, Al, Cu, Mn, La, Ba, Fe, Co and Ni. The fuel cell catalyst according to any one of claims 1 to 5, comprising at least one element. 前記窒化物、炭化物又は炭窒化物の少なくとも一部は、前記金属ワイヤー又は金属シートと直接接していることを特徴とする請求項1乃至6のいずれかに記載の燃料電池用触媒。   7. The fuel cell catalyst according to claim 1, wherein at least a part of the nitride, carbide or carbonitride is in direct contact with the metal wire or metal sheet. アノード触媒層、カソード触媒層と、前記アノード触媒層とカソード触媒層の間に介挿されたプロトン伝導性膜を有し、
前記アノード触媒層又はカソード触媒層は請求項1乃至7のいずれかに記載の燃料電池用触媒を具備することを特徴とする膜電極複合体。
An anode catalyst layer, a cathode catalyst layer, and a proton conductive membrane interposed between the anode catalyst layer and the cathode catalyst layer,
A membrane electrode assembly, wherein the anode catalyst layer or the cathode catalyst layer comprises the fuel cell catalyst according to any one of claims 1 to 7.
請求項8に記載の膜電極複合体を具備することを特徴とする燃料電池。   A fuel cell comprising the membrane electrode assembly according to claim 8. 基板に金属をスパッタ又は蒸着し、金属材料層を形成する第1の工程と、
窒化物、炭化物又は炭窒化物材料をスパッタ又は蒸着し、触媒材料層を前記金属材料層上に形成する第2の工程と、
造孔材料をスパッタ又は蒸着し、造孔材料層を前記触媒材料層上に形成する第3の工程と、
前記第1から第3の工程を順番に複数回繰り返して前記金属材料層、前記触媒材料層と前記造孔材料層との積層体を形成する積層工程と、
前記積層工程の後に、前記積層体を造孔処理する造孔処理工程と、を具備することを特徴とする燃料電池用触媒の製造方法。
A first step of sputtering or vapor-depositing a metal on a substrate to form a metal material layer;
A second step of sputtering or evaporating a nitride, carbide or carbonitride material to form a catalyst material layer on the metal material layer;
A third step of sputtering or vapor-depositing a pore-forming material and forming a pore-forming material layer on the catalyst material layer;
A laminating step in which the metal material layer, the catalyst material layer and the pore-forming material layer are formed by repeating the first to third steps in order several times;
A method for producing a catalyst for a fuel cell, comprising: a hole making process step of forming a hole in the laminate after the layering process.
前記造孔処理は、酸洗浄、アルカリ洗浄又は電解法のいずれかであることを特徴とする請求項10に記載の燃料電池用触媒の製造方法。   The method for producing a fuel cell catalyst according to claim 10, wherein the pore forming treatment is any one of acid cleaning, alkali cleaning, and electrolysis.
JP2010215426A 2010-09-27 2010-09-27 A fuel cell catalyst, a membrane electrode assembly using the fuel cell, a fuel cell and a method for producing the fuel cell catalyst. Active JP5388979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215426A JP5388979B2 (en) 2010-09-27 2010-09-27 A fuel cell catalyst, a membrane electrode assembly using the fuel cell, a fuel cell and a method for producing the fuel cell catalyst.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215426A JP5388979B2 (en) 2010-09-27 2010-09-27 A fuel cell catalyst, a membrane electrode assembly using the fuel cell, a fuel cell and a method for producing the fuel cell catalyst.

Publications (2)

Publication Number Publication Date
JP2012066225A JP2012066225A (en) 2012-04-05
JP5388979B2 true JP5388979B2 (en) 2014-01-15

Family

ID=46164126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215426A Active JP5388979B2 (en) 2010-09-27 2010-09-27 A fuel cell catalyst, a membrane electrode assembly using the fuel cell, a fuel cell and a method for producing the fuel cell catalyst.

Country Status (1)

Country Link
JP (1) JP5388979B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743945B2 (en) 2012-03-30 2015-07-01 株式会社東芝 Electrochemical cell using oxygen reduction catalyst and oxygen reduction catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332900B1 (en) * 1999-02-08 2001-12-25 Wilson Greatbatch Ltd. Physical vapor deposited electrode component and method of manufacture
AU2005331265B2 (en) * 2004-09-17 2010-03-04 Nanosys, Inc. Nanostructured thin films and their uses
AU2006318658B2 (en) * 2005-11-21 2011-07-28 Nanosys, Inc. Nanowire structures comprising carbon
JP4998984B2 (en) * 2006-10-26 2012-08-15 国立大学法人横浜国立大学 Electrode active material and positive electrode oxygen reduction electrode using the same
JP4740179B2 (en) * 2007-03-20 2011-08-03 株式会社東芝 Catalyst layer-supporting substrate manufacturing method, membrane electrode composite manufacturing method, and fuel cell manufacturing method

Also Published As

Publication number Publication date
JP2012066225A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5342824B2 (en) Method for producing catalyst layer-carrying substrate, catalyst layer-carrying substrate, membrane electrode assembly, and fuel cell
JP4861445B2 (en) Method for producing catalyst layer-carrying substrate, catalyst layer-carrying substrate and fuel cell
KR101350865B1 (en) Supported catalyst for fuel cell, method for preparing the same, electrode for fuel cell comprising the same, membrane electrode assembly comprising the electrode and fuel cell comprising the membrane electrode assembly
JP5676334B2 (en) Layered catalyst layer, membrane electrode assembly, and electrochemical cell
US8128986B2 (en) Method for producing catalyst-layer-supporting substrate, method for producing membrane-electrode assembly and method for producing fuel cell
US8361924B2 (en) Fine particles of core-shell structure and functional device incorporated therewith
JP5482095B2 (en) Electrode containing platinum-containing catalyst, method for producing the same, and electrochemical device
JP6047380B2 (en) Noble metal catalyst layer for fuel cell or electrolysis, membrane electrode assembly and fuel cell or electrolysis cell
KR100754379B1 (en) Electrode catalyst containing two or more metal components, preparation method of the same and the fuel cell employing the electrode catalyst
JP5314910B2 (en) Methanol oxidation catalyst and method for producing the same
CN107785588B (en) Fuel cell redox reaction catalyst
JP5032250B2 (en) Methanol oxidation catalyst and method for producing the same
JP2007123043A (en) Solid-polymer fuel cell, catalyst layer thereof, manufacturing method thereof
JP5728452B2 (en) Catalyst layer for electrochemical cell, membrane electrode assembly, and electrochemical cell
JP6328114B2 (en) Method for preparing a catalyst material
KR20170031790A (en) Ternary platinum alloy catalyst
WO2006137302A1 (en) Fuel cell, catalyst thereof, and electrode thereof
JP5032251B2 (en) Methanol oxidation catalyst and method for producing the same
JP5898759B2 (en) Layered catalyst layer, membrane electrode assembly, and electrochemical cell
CN109314253B (en) Method for preparing supported catalyst material for fuel cell
JP5388979B2 (en) A fuel cell catalyst, a membrane electrode assembly using the fuel cell, a fuel cell and a method for producing the fuel cell catalyst.
JP2019160444A (en) Electrode catalyst layer/gas diffusion layer integration type electrode structure, method for manufacturing the same, membrane-electrode assembly and solid polymer fuel cell
JP5217236B2 (en) Fuel cell catalyst containing RuTe2 and N element, fuel cell electrode material and fuel cell using the fuel cell catalyst
JP2012178360A (en) Catalyst layer of polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2009252411A (en) CATALYST FOR RuTe2-CONTAINING DMFC TYPE FUEL CELL, ELECTRODE MATERIAL FOR FUEL CELL USING THE CATALYST FOR FUEL CELL, AND FUEL CELL

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R151 Written notification of patent or utility model registration

Ref document number: 5388979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151