WO2006137302A1 - Fuel cell, catalyst thereof, and electrode thereof - Google Patents

Fuel cell, catalyst thereof, and electrode thereof Download PDF

Info

Publication number
WO2006137302A1
WO2006137302A1 PCT/JP2006/311908 JP2006311908W WO2006137302A1 WO 2006137302 A1 WO2006137302 A1 WO 2006137302A1 JP 2006311908 W JP2006311908 W JP 2006311908W WO 2006137302 A1 WO2006137302 A1 WO 2006137302A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
catalyst
electrode
catalyst according
substrate
Prior art date
Application number
PCT/JP2006/311908
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Itagaki
Yoshinori Hara
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to JP2007522247A priority Critical patent/JP5217434B2/en
Publication of WO2006137302A1 publication Critical patent/WO2006137302A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell catalyst, a method for producing the same, a fuel cell electrode and a fuel cell using the fuel cell catalyst.
  • a fuel cell is a power generator that supplies fuel to an anode and oxidant to a power sword, takes out the potential difference between the anode and cathode as a voltage, and supplies it to a load. Hydrogen is used as the anode fuel. In general, oxygen in the air is used as the oxidizing agent.
  • a fuel cell is composed of an anode electrode, a force sword electrode, and an electrolyte sandwiched between them. In a polymer electrolyte fuel cell, an ion exchange membrane is used as an electrolyte.
  • an electrolyte membrane / electrode assembly in which a catalyst layer is formed on both surfaces of an ion exchange membrane as an electrolyte, and an anode gas diffusion layer and a force sword gas diffusion layer are integrally formed on the outside of the catalyst layer.
  • a unit cell consisting of a barrier plate, an electrolyte membrane Z electrode assembly, and a barrier plate laminate is formed by stacking tens to hundreds of cells so that a desired voltage can be obtained according to the application. Has been.
  • both a power sword and an anode are mainly made of a noble metal such as platinum, which is expensive and has a problem in terms of resources. It is considerably larger than the amount of platinum used in exhaust gas purification catalysts for gasoline cars that generate the same power.
  • the following document 1 describes that an alloy composed of platinum element and an additive element such as tellurium element is used as a catalyst for a fuel cell.
  • Group VIII elements are limited to Pt, and ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) are not disclosed at all.
  • Reference 4 does not disclose the specific values of x and y that RuxTey discloses. Since the synthesis method is the same as in Non-Patent Document 1, only Ru Te has been studied.
  • References 5 and 6 disclose Mo Ru Te, Mo Rh Te, and Mo Os Te forces S. Force
  • the abundance ratio of transition metals (Ru, Rh, Os) other than Te element and Mo is in a specific region.
  • the present invention provides a fuel cell catalyst that exhibits an excellent catalytic action that is inexpensive and can be substituted for a noble metal catalyst such as platinum, and a fuel cell electrode and a fuel cell using the fuel cell catalyst.
  • a noble metal catalyst such as platinum
  • the purpose is to provide.
  • the fuel cell catalyst of the first aspect is selected from the group consisting of tellurium (Te), ruthenium (Ru), rhodium h), palladium (Pd), osmium (Os), and iridium (Ir).
  • Te tellurium
  • Ru ruthenium
  • Ru rhodium h
  • Pd palladium
  • Os osmium
  • Ir iridium
  • the fuel cell catalyst of the second aspect is selected from the group consisting of tellurium (Te), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir).
  • Te tellurium
  • Ru ruthenium
  • Rh rhodium
  • Pd palladium
  • Os osmium
  • Ir iridium
  • the fuel cell of the fifth aspect has the electrode of the fourth aspect.
  • the present inventors have replaced a noble metal catalyst such as platinum with high catalytic activity by using an alloy or compound composed of a Group VIII element such as ruthenium and ternore. It has been found that a fuel cell catalyst having practical utility can be obtained. Further, it has been found that by attaching this to a substrate, a fuel cell catalyst can be obtained that is practical and can be substituted for a noble metal catalyst such as platinum, which is cheaper and has higher catalytic activity.
  • the present invention has been completed based on such knowledge, and the gist thereof is as follows.
  • Ru ruthenium
  • Rh rhodium
  • Pd palladium
  • Os osmium
  • Ir iridium
  • L Ru Te the fuel is characterized by 0.2 and X, and 0 ⁇ Y ⁇ 10
  • a fuel cell electrode material comprising an ion exchange membrane and a fuel cell catalyst layer according to [1] formed on the ion exchange membrane.
  • a fuel cell electrode material comprising an ion exchange membrane and a fuel cell catalyst layer according to [5] formed on the ion exchange membrane.
  • a fuel cell electrode material having an electrode gas diffusion layer and a fuel cell catalyst layer according to [1] formed on the electrode gas diffusion layer.
  • An electrode material for a fuel cell comprising an electrode gas diffusion layer, and a fuel cell catalyst layer according to [5] formed on the electrode gas diffusion layer.
  • An electrode material for a fuel cell comprising a transfer film and a fuel cell catalyst layer according to [1] formed on the transfer film.
  • An electrode material for a fuel cell comprising: a transfer film; and a fuel cell catalyst layer according to [5] formed on the transfer film.
  • a fuel cell electrode comprising the fuel cell catalyst according to [1].
  • a fuel cell electrode comprising the fuel cell catalyst according to [5].
  • a method for producing a fuel cell catalyst comprising:
  • a fuel cell system including the fuel cell stack according to [32].
  • a fuel cell system including the fuel cell stack according to [33].
  • a noble metal catalyst such as platinum, which is expensive and problematic in terms of resources, has a good catalytic action, and can be synthesized inexpensively and safely.
  • a fuel cell catalyst a fuel cell electrode and a fuel cell using the fuel cell catalyst.
  • the fuel cell catalyst according to the first aspect of the present invention contains tellurium (Te), and further comprises ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir).
  • Te tellurium
  • Ru ruthenium
  • Rh rhodium
  • Pd palladium
  • Os osmium
  • Ir iridium
  • Te and element M may be collectively referred to as an active ingredient.
  • the fuel cell catalyst according to the second aspect of the present invention includes tellurium (Te), ruthenium (Ru), and optionally contained rhodium (Rh), palladium (Pd), osmium (Os), And one or more elements selected from the group consisting of iridium (I r) and the value of X when expressed as L Ru Te
  • Te, Ru, and element L may be collectively referred to as an active component.
  • the fuel cell catalyst of the present invention comprises only an active component.
  • other transition metals may be included.
  • the active ingredient may be applied to the substrate.
  • one or more elements selected from the group consisting of elements represented by M namely ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) are used.
  • the above elements are sometimes referred to as “Group VIII metals”.
  • One or more elements L selected from the group consisting of rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) may be referred to as “Group VIII metals other than Ru”.
  • a catalyst for a fuel cell in which the active component is not deposited on the substrate and is substantially composed only of the active component is referred to as "essential catalyst", and the active component is deposited on the substrate.
  • essential catalyst a catalyst for a fuel cell in which the active component is not deposited on the substrate and is substantially composed only of the active component.
  • the deposited fuel cell catalyst is sometimes referred to as an “adhered catalyst”.
  • M Te is the ratio of the total number of group VIII metal elements M to the number of tellurium elements Te
  • X is 20, preferably X is 15, more preferably X is 10, more preferably X is 5, and particularly preferably X is 3. If the abundance ratio of tellurium is below this range, the activity will be low, and even if it exceeds this range, it will be difficult to achieve activity.
  • Y is 0 ⁇ Y ⁇ 10, preferably 0 ⁇ 5, more preferably 0 ⁇ 3.
  • Two or more Group VIII metal elements (L) other than Ru may be used.
  • L Ru Te is a group VIII gold other than Ru
  • the abundance ratio of each element in the catalyst is determined according to a conventional method.
  • the catalyst is weighed and then decomposed by alkali melting, and the volume is adjusted after adding the acid. It can be quantified by inductively coupled plasma optical emission spectrometry.
  • the tellurium content in the active ingredient is usually 5% or more, more preferably 6% or more, still more preferably 10% or more, usually 9% by weight relative to the whole active ingredient. It is 6% or less, preferably 95% or less, more preferably 93% or less, still more preferably 90% or less, and most preferably 87% or less. If the tellurium content in the active ingredient is below this range, the activity will be low, and even if it exceeds this range immediately, it will be difficult to produce the activity.
  • the total content of Group VIII metals in the active ingredient is usually 1 ° / ⁇ with respect to the whole active ingredient Above, preferably 5. / 0 or more, more preferably 7. / 0 or more, more preferably 10% or more, more preferably 13. / 0 or more, usually 95% or less, preferably 90% or less, more preferably 88% or less, and still more preferably 85% or less. If the content of the Group VIII metal in the active ingredient is below this range, the activity will be low, and even if it exceeds this range, it will be difficult to produce the activity.
  • the active ingredient may contain one kind of Group VIII metal alone, or may contain two or more kinds.
  • the active ingredient preferably contains ruthenium or oral dimethyl as the group VIII metal, particularly preferably ruthenium as the group VIII metal.
  • the active ingredient can also contain ingredients other than tellurium elements and Group VIII metals in a range that does not impair the effects of the present invention.
  • tellurium may be Te element TeO
  • Oxides such as TeO, oxo acids such as H TeO and H TeO, chlorides such as TeCl and TeBr, etc.
  • Group VIII metals can also be combined with organic compounds as well as inorganic compounds such as metal elements, oxides, and chlorides.
  • ruthenium may be Ru element such as RuO, RuO
  • the tellurium component and the group VIII metal component constituting the active component may be present without any bond, or may be present with a bond. These exist with bonds In the case where the elements are directly bonded to each other, the active component may be one having a so-called alloy form.
  • active ingredients having an alloy form include RuTe, RuTe, RuTe, OsTe, RhTe, RhTe, RhTe, RhTe, RhTe, IrTe, IrTe, PdTe, PdTe , PdTe , PdTe , Pd
  • RuTe, RuTe, Ru Te are particularly preferred.
  • Force S is preferred. It may be in the form of an alloy in which tellurium and two or more elements of the vm group metal are combined.
  • the existence form 0 of the element in the active ingredient can be specified by X-ray diffraction (XRD). That is, for example, the presence form of an element can be specified by irradiating an active ingredient deposited on a substrate described later with X-rays (Cu_K filaments) and observing the diffraction spectrum thereof.
  • XRD X-ray diffraction
  • Examples of the measurement apparatus and measurement conditions include, but are not limited to, the following.
  • RuTe has a peak of 2 ⁇ ( ⁇ 0.3 °) of X-ray diffraction as 21.808 °, 27.
  • the average particle size of the particulate pure catalyst is usually 100 zm or less, preferably lOOOnm or less, more preferably 500 nm or less, particularly 300 nm or less, usually 0.5 nm or more, preferably 1. Onm or more, more preferably 2. Above Onm. If the particle size of the pure catalyst is less than this range, it becomes unstable and becomes deactivated, and if it exceeds this range, it becomes difficult to obtain high activity.
  • the average particle diameter of the pure catalyst is determined by unifying the direction in which the length of the particle diameter is measured with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The length is measured and shown as an average value.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the deposition catalyst has a substrate and an active component deposited and held on the substrate.
  • the substrate preferably has high conductivity.
  • the substrate is preferably a carbon-based substrate having high conductivity.
  • the carbon-based substrate is not particularly limited, and may be, for example, carbon black, carbon nanotube, carbon nanohorn, carbon nanocluster, fullerene, pyrolytic carbon, activated carbon or the like.
  • the carbon-based substrate may be vapor grown carbon fiber (Vapor Grown Carbon Fiber: hereafter may be abbreviated as “VGCF”), especially by heat treatment to increase electrical conductivity.
  • VGCF has suitable elasticity and is suitable.
  • carbon black is industrially advantageous in terms of conductivity, availability, and cost.
  • examples of carbon black include channel black, furnace black, thermal black, acetylene black, oil furnace black, and gas furnace black.
  • These carbon-based substrates can be used alone Can be used in combination of two or more.
  • the specific surface area of the substrate is not particularly limited, but is usually 5 m 2 / g or more, preferably 100 m 2 / g or more, more preferably 150 m 2 / g or more, usually 5000 m 2 / g or less, preferably Is preferably 2000 m 2 / g or less. If this specific surface area is too small, the effective area for depositing the active ingredient will be reduced, and the catalytic field will not be sufficiently obtained as the reaction field is reduced. In addition, when the specific surface area is excessively large, the pore diameter of the substrate may be small, and even if an active component is deposited in the small pores, sufficient catalytic activity cannot be obtained.
  • the specific surface area of the substrate is measured by the BET method.
  • the form of the substrate is not particularly limited, but the most commonly used is a powder form.
  • the state in which the active ingredient is adhered to the substrate refers to a state in which both are in contact with each other so as to obtain electrical conductivity between the active component and the substrate. Accordingly, the active ingredient can be applied to the substrate simply by mixing the active ingredient and the base. However, as described later, after mixing the active ingredient supply compound and the substrate, the mixture is calcined. It is preferable to deposit. Alternatively, the substrate and the active component may be mixed and then fired. Hereinafter, the state in which the active ingredient supply compound or the active ingredient is mixed with the substrate and then fired and the active ingredient is deposited is referred to as “supporting”.
  • the shape of the active ingredient attached to the substrate is not particularly limited, but the most common is a particulate form.
  • the particulate active ingredient has an average particle size of usually 100 / m or less, preferably 1000 or less, more preferably 500 or less, and most preferably 300 or less, usually 0.5 nm or more, preferably 1. Onm Above, more preferably 2. Onm or more is desirable. If the particle size of the active ingredient is below this range, it becomes unstable and becomes inactive, and if it exceeds this range, it becomes difficult to obtain high activity.
  • the average particle diameter of the active ingredient deposited on the substrate is standardized in the direction in which the particle length is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). Then, the particle length in the direction is measured, and the average value is shown.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the weight ratio of the active ingredient shows the deposition ratio to the substrate of the active ingredient Z (active ingredient + substrate), such is limited to a particular record, but usually 10_ 5 or more, preferably 0.001 or more More preferably, it is 0.01 or more, particularly 0.05 or more, usually 0.95 or less, preferably 0.4 or less, and more preferably 0.3 or less. If the deposition ratio of the active ingredient is less than this range, the desired activity cannot be obtained, and if it exceeds this range, the activity improvement effect due to deposition is less likely to occur.
  • a transition metal may be further deposited on the substrate as long as the effects of the present invention are not impaired.
  • This transition metal (hereinafter sometimes referred to as “other catalyst component”) is an element belonging to the fourth to sixth periods of groups IIIA to VIIA, VIII, and IB of the periodic table.
  • the standard electrode potential E ° (25 ° C) in the aqueous solution is positive. This is because elution due to oxidation is difficult to occur as a natural property of metals, and there is little deterioration of the catalyst due to it.
  • Specific examples of such transition metals include gold and silver.
  • Platinum can be used in combination as a transition metal. Platinum is expensive, so it is desirable to add a small amount.
  • the weight ratio of the total Z active component of the platinum component is usually 0.001 or more, preferably 0.01 or more, and more preferably 0.00. It is 05 or more, usually 0.4 or less, preferably 0.3 or less, and more preferably 0.2 or less.
  • transition metals as other catalyst components may be used alone or in combination of two or more.
  • transition metal and the active component are used in combination include the following i) V).
  • the active component supported on the substrate is mixed with other catalyst components.
  • the weight ratio of the total Z active components of the transition metals is usually 0.001 or more, preferably 0.01 or more. In particular, it is 0.05 or more, usually 0.5 or less, preferably 0.4 or less, and more preferably 0.3 or less. If this weight ratio is less than this range, it is difficult to obtain the desired activity.
  • the transition metal is preferably in the form of powder.
  • the average particle size of this powder is usually lOOOnm or less, preferably 500 nm or less, more preferably 300 nm or less, and usually 0.5 nm or more. If the average particle size is below this range, the catalyst becomes unstable and the catalyst becomes inactive, and if it exceeds this range, it is difficult to obtain high activity.
  • a catalyst containing an active component and a transition metal in particular, a catalyst having an active component and a transition metal supported on a substrate has high catalytic activity. This is presumably because the transition metal functions as a co-catalyst for the active ingredient and the activity is improved.
  • the method for synthesizing the pure catalyst according to the first embodiment composed only of the active component not deposited on the substrate can be carried out by any known method without particular limitation.
  • an element supply compound serving as an active ingredient that is, a precursor of the active ingredient, is dissolved or dispersed in a solvent such as water at a predetermined molar ratio, and after filtration or evaporation of the solvent, as necessary. And a step of activating the precursor (for example, reduction treatment).
  • the precursor of each element is not particularly limited as long as it can be thermally decomposed.
  • Tellurium precursors include tellurium powder (Te), halides such as TeCl, TeBr, TeCl,
  • Inorganic salts such as oxides such as TeO and TeO and oxoacids such as H TeO and H TeO
  • precursors of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) include halides, oxides, inorganic salts, and organic acid salts thereof.
  • ruthenium compounds include RuCl ⁇ ⁇ 0, halides such as RuBr, Ru (SO), Ru (N ⁇ ) (NO) K RuO ⁇
  • Inorganic salts such as HO, organic acid salts such as Ru (OCH CO), ruthenium acetyl acetylate
  • Rhodium compounds include RhCl ⁇ ⁇ , Halides such as RhBr, inorganic salts such as KRh (SO) ⁇ 12 ⁇ O, Rh (NO) ⁇ 2 ⁇ O, R
  • Halides such as PdF, PdCl, K PdCl, K PdCl, Pd (NO), etc.
  • Organic salts such as organic salt and Pd ( ⁇ CH CO).
  • Osminium compounds include Os
  • Halides such as C1, K 2 OsCl, and oxides such as ⁇ s ⁇ .
  • Iridium compounds such as C1, K 2 OsCl, and oxides such as ⁇ s ⁇ .
  • halides such as IrCl and IrBr
  • oxides such as IrO
  • inorganic salts such as Ir (SO)
  • RuCl or Ru (acac) and H TeO are desired.
  • X 3 3 6 6 molar ratio (H TeO molar ratio relative to RuCl, Ru (acac) etc. is usually 0.2 or more, preferably
  • a predetermined time usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less.
  • a predetermined temperature usually 60 ° C or higher, preferably 100 ° C or higher, usually 300 ° C or lower, preferably 200 ° C or lower
  • a predetermined time usually 10 minutes or longer, (Preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less)
  • Heat or reflux and then obtain a precipitate with an evaporator.
  • This is air-dried at room temperature, and then in an inert gas atmosphere such as nitrogen or argon for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), a predetermined temperature (usually 100 ° C or higher, preferably 200 ° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower).
  • a predetermined time usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less
  • a predetermined temperature usually 100 ° C or higher, preferably 200 ° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower.
  • a predetermined temperature usually 100 ° C or more, preferably 200 ° C or more, more preferably 300
  • the hydrogen concentration in an inert gas that can be mixed with an inert gas such as nitrogen or Ar under a flow of hydrogen (° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower) 1% or more, preferably 10% or more, 100% or less, or 80./o or less).
  • a passivation treatment may be performed to form a passive film by treatment at a predetermined temperature (usually around room temperature) usually for 10 hours or less, particularly 5 hours or less.
  • the deposition catalyst of the second embodiment is produced by depositing an active component on a substrate.
  • the active component may be applied to the substrate by, for example, a loading method in which the active component or a precursor of the active component is mixed and baked with the substrate, a mixing method in which the active component and the substrate are simply mixed, and other impregnations. It can carry out by well-known methods, such as a method, a precipitation method, an adsorption method.
  • the precursor of each element is dissolved or dispersed in a solvent such as an aqueous solution at a desired molar ratio, and the substrate is impregnated with the substrate, or the substrate is immersed in the solution. Thereafter, the precursor is deposited on the substrate by filtering or distilling off the solvent, and if necessary, a step of activating the precursor of the active component (for example, reduction treatment) is performed.
  • the active component precursor the same compounds as those used in the production of the pure catalyst can be used.
  • the ruthenium precursor is RuCl ⁇ ⁇ 0 ac) Ru (NO) (NO)
  • H TeO is preferred.
  • the molar ratio of H TeO to 3 6 6 3 3 etc. is usually 0.2 or more, preferably 1 or more, usually 10 or less, preferably
  • a predetermined amount of a substrate such as carbon black is mixed with this, and a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less). )put.
  • a predetermined time usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less.
  • ultrasonic treatment may be performed when left unattended.
  • the temperature is usually 60 ° C or higher, preferably 100 ° C or higher, usually 300 ° C or lower, preferably 200 ° C or lower, for a predetermined time (usually 10 minutes or longer, preferably 30 ° C).
  • Min. Usually 50 hours or less, preferably 30 hours or less). Heat or reflux.
  • the precipitate is obtained by filtration or evaporator.
  • a predetermined temperature usually 100 ° C or more, preferably After drying at 200 ° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower, and then for a predetermined time (usually 10 minutes or longer, preferably 30 minutes or longer, usually 50 hours or shorter, preferably 30 hours or shorter)
  • a constant temperature usually 100 ° C or higher, preferably 200 ° C or higher, more preferably 300 ° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower
  • hydrogen such as nitrogen or Ar
  • the passivation treatment can be performed to form a passive film by treatment at a predetermined temperature (usually around room temperature) usually for 10 hours or less, particularly 5 hours or less.
  • the active ingredient can be applied to the substrate by preparing the active ingredient in advance by the above-mentioned known method, mixing it with a substrate, and kneading the mixture in a mortar or the like. This mixing may be dry or wet, but is preferably wet mixed using a medium such as water and then dried at about 100 to 200 ° C.
  • a support method in which a carbon-based substrate and an active component and a precursor selected from active component precursors are mixed and then calcined is preferable.
  • This calcination can improve the activity of the resulting catalyst.
  • the reason why the activity can be improved by firing in this way is not necessarily clear, but since the active component is deposited on the carbon-based substrate, sintering of the active component is suppressed during firing. It is presumed that the activity is enhanced.
  • the transition metal When the above-mentioned transition metal is applied to the substrate together with the active component, the transition metal may be added before or after the active component deposition step, which may be performed simultaneously with the active component deposition step. It may be deposited.
  • the “active component deposition step” includes the entire process from the addition of the active component precursor to the provision of the active component, that is, the process for depositing the active component.
  • transition metal precursor for depositing the transition metal on the substrate examples include oxides, inorganic acid salts such as nitrates, sulfates, and carbonates, organic acid salts such as acetates, and halides. Hydrides, carbonyl compounds, ammine compounds, olefin coordination compounds, phosphine coordination compounds or phosphite coordination compounds. These can be used alone or in combination. You may use the above together.
  • the transition metal together with the active component on the substrate for example, the transition of chloride or the like to the catalyst in which the active component containing Ru and Te synthesized by the above-described method is supported on the substrate.
  • the solution in which the metal compound is dissolved is added and allowed to stand for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), and then the solvent is distilled off with an evaporator. In this case, ultrasonic treatment may be performed.
  • the hydrogen concentration in the inert gas that can be mixed with an inert gas such as nitrogen or Ar is not particularly limited, but it is 1% or more, preferably 10% or more, 100% % Or less or 80% or less) at a predetermined temperature (usually 100 ° C or higher, preferably 150 ° C or higher, usually 800 ° C or lower, preferably 500 ° C or lower) for a predetermined time (usually 10 minutes) (Above, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less).
  • a deposited catalyst in which an active component containing Ru and Te and a transition metal are both supported on a substrate.
  • the passivation treatment can be performed to form a passive film by treatment at a predetermined temperature (usually around room temperature) usually for 10 hours or less, particularly 5 hours or less.
  • the transition metal as described above may be used as it is by mixing it with the substrate on which the active component is applied, or may be used by mixing the active component with the substrate on which the transition metal is applied. good.
  • the fuel cell electrode of the present invention contains the above-described fuel cell catalyst of the present invention.
  • the fuel cell of the present invention uses such a fuel cell electrode of the present invention.
  • the fuel is supplied to the anode, the oxidant is supplied to the power sword, the potential difference between the anode and the power sword is taken out as a voltage, and the power is supplied to the load.
  • This power generation device includes an anode electrode, a force sword electrode, and an electrolyte sandwiched therebetween.
  • an ion exchange membrane is used as an electrolyte.
  • Solid polymer fuel cells include both PEFC fuel cells that use hydrogen as the fuel and direct methanol fuel cells (DMFC) that use methanol and water.
  • a partition plate is disposed on the diffusion layer side, and a plurality of unit cells including the partition plate, the electrolyte membrane Z electrode assembly, and the partition plate are stacked until a desired voltage corresponding to the application is obtained.
  • a fuel cell stack Normally, several tens of cells and several hundred cells are stacked to form a fuel cell stack.
  • the catalyst for forming the catalyst layer of the electrolyte membrane / electrode assembly the fuel cell catalyst described in the first and second embodiments described above is used.
  • An ion exchange membrane as an electrolyte is only required to have a cation exchange capacity, but it is practically desired to withstand an oxidation-reduction atmosphere at a temperature of about 80 to 100 ° C, which is the operating temperature of the fuel cell. Therefore, perfluoroalkylsulfonic acid resins are exclusively used. Specific examples include perfluoroalkyl sulfonic acid resin membranes such as Nafion (registered trademark manufactured by DuPont), Flemion (registered trademark manufactured by Asahi Glass Co., Ltd.), Aciplex (registered trademark manufactured by Asahi Kasei Co., Ltd.), and the like.
  • the ion exchange membrane preferably has a thickness of about 10 ⁇ or more and about several hundreds ⁇ or less. In order to reduce the electric resistance, it is desirable to make the ion exchange membrane thinner. Taking naphtho ions as an example, a force that often uses naphthion 115 with a thickness of about 120 / im is being developed. Electrolyte membranes with a thickness of 30 to 50 zm are being developed. I can do it.
  • the diffusion layer of the PEFC type fuel cell supplies hydrogen at the anode and air at the power sword, and also has a function as a current collector for taking out the generated voltage. Therefore, the diffusion layer is preferably made of a material that is an excellent electronic conductor and that allows both hydrogen and air gases to flow and withstand the working atmosphere.
  • a carbon porous body such as carbon paper or carbon cloth having a thickness of usually about 100 to 500 zm, preferably about 100 to 200 zm is used.
  • the material of the methanol aqueous solution current collector of the fuel cell is selected so that the methanol aqueous solution circulates and can withstand the use atmosphere, and the thickness is usually about 100 to 500 ⁇ , preferably about 100 to 200 ⁇ m.
  • Carbon porous materials such as carbon paper and carbon cloth are used.
  • a partition plate made of a material such as carbon, or in some cases, stainless steel or titanium is usually used so that hydrogen and air do not mix behind it.
  • a partition plate in which grooves for the purpose of uniform and stable supply of hydrogen and air are formed.
  • the method for producing the electrolyte membrane / electrode assembly of the fuel cell of the present invention is not particularly limited, and examples thereof include the following methods.
  • the fuel cell catalyst of the first or second embodiment is put in a suitable container, and a Nafion solution (concentration 5 wt%, manufactured by Aldrich) in which NaPoion (registered trademark) of DuPont is dissolved, alcohol, water, etc.
  • a catalyst slurry is prepared by dispersing in a medium. In this case, it is more preferable to apply ultrasonic vibration in order to promote the dispersion well.
  • concentration of the fuel cell catalyst of the present invention in this catalyst slurry is preferably about 1 to 50 g / L in order to obtain the desired dispersibility.
  • a binder such as polytetrafluoroethylene (PTFE) can be added to the slurry in the range of 3 to 30% by weight for the purpose of providing water repellency or preventing the catalyst layer from peeling off.
  • the alcohol has 2 to 5 carbon atoms such as ethanol or isopropyl alcohol, preferably a lower alcohol having about 2 to 4 carbon atoms, or 2 to 5 carbon atoms such as ethylene glycol, preferably A polyhydric alcohol having about 2 to 4 carbon atoms can be added to the water so as to have a ratio of 0.25 to 1.0, and can be aggregated.
  • the catalyst slurry thus obtained is deposited on an ion exchange membrane, a gas diffusion electrode material or a transfer film, and then dried to form a force sword side catalyst layer and an anode side catalyst layer.
  • the force sword side catalyst layer and the anode side catalyst layer are respectively formed on the ion exchange membrane or the gas diffusion electrode material by one of the following methods a) to d). a) Spray the catalyst slurry on the ion exchange membrane to be used and dry it.
  • a gas diffusion electrode material such as carbon paper and dry.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the amount of active ingredient attached is usually 0. OlmgZcm 2 or more, preferably 0.1 lmg / cm 2 or more, usually lg / cm. It is 2 or less, preferably 20 mg / cm 2 or less, and most preferably 10 mg / cm 2 or less. If the amount of the active component attached is less than this range, sufficient catalytic activity cannot be obtained, and if it is more than this range, it is difficult to form an electrolyte membrane / electrode assembly.
  • the catalyst layer that may be laminated with the anode gas diffusion layer material or the force sword gas diffusion layer material is formed on the anode gas diffusion layer material or the force sword gas diffusion layer material. After forming, it may be laminated with an ion exchange membrane. The laminate is preliminarily pressure-molded and then pressure-heat-molded with a press to obtain an electrolyte membrane / electrode assembly.
  • the above-described force sword-side catalyst layer is formed on one surface of the ion-exchange membrane
  • the anode-side catalyst layer is formed on the opposite surface of the ion-exchange membrane
  • the gas diffusion layers constituting the anode and the force sword are laminated on the outside.
  • the temperature and pressure it is preferable to set the temperature and pressure to be lower than the conditions of the main molding within a range in which the collapse of the catalyst layer is prevented. This is because the catalyst particles and the porous body for the gas diffusion layer do not cause compressive fracture.
  • the fuel cell system for PEFC of the present invention includes a fuel cell stack that obtains an electromotive force by an electrochemical reaction, a compressor that supplies compressed air as an oxygen-containing gas, and hydrogen as a fuel gas at a high pressure. It has a hydrogen cylinder to store in a compressed state. Other catalyst that burns exhaust hydrogen and exhaust air that was not used for power generation in the fuel cell stack A combustor may be provided as needed. Also, hydrogen may be supplied by reforming reaction such as methanol, natural gas or methane.
  • the fuel cell system uses a methanol tank, a natural gas or methane tank, a water tank, a methanol / water mixer, an evaporator for evaporating methanol aqueous solution, etc., and a reforming reaction instead of a hydrogen cylinder. Equipped with a reformer to perform. Furthermore, a carbon monoxide reduction device may be provided in order to prevent poisoning of the fuel cell due to carbon monoxide contained in the hydrogen gas after the reforming reaction.
  • the DMFC fuel cell system of the present invention includes a fuel cell stack that obtains an electromotive force by an electrochemical reaction, a compressor that supplies compressed air as an oxygen-containing gas, and a methanol aqueous solution container that is a fuel.
  • a fuel cell stack that obtains an electromotive force by an electrochemical reaction
  • a compressor that supplies compressed air as an oxygen-containing gas
  • a methanol aqueous solution container that is a fuel.
  • the aqueous methanol solution is sent to the anode electrode of the fuel cell stack by a feed pump.
  • the aqueous methanol solution may be heated and vaporized by an evaporator in advance and then supplied to the anode electrode.
  • methanol aqueous solution that was not used for power generation in the fuel cell stack can be recovered and returned to the methanol aqueous solution container.
  • the methanol aqueous solution may be collected using a gas-liquid separator when necessary.
  • the performance (catalytic activity) of the produced force sword electrode was measured by the following cyclic voltammetry (CV) measurement.
  • Cyclic voltammetry (CV) measurement was performed under conditions where oxygen was not rate-controlled while using a plug that could maintain the sealing property of the electrolytic cell, publishing nitrogen or air in the electrolyte.
  • the measurement conditions are as follows.
  • Electrolyte 1. OM H SO aqueous solution
  • the oxygen reduction current due to Measure the current value flowing at 400mV (SHE standard) when scanning in the base direction, and convert the measured current value into the current value per unit weight (lg) of the active ingredient contained in the catalyst. Evaluated.
  • the electrode is prepared by diluting the electrode so that the ratio of the active component in the substrate-coated catalyst is small.
  • the preferred range of the active ingredient ratio and the amount of active ingredient supported on the electrode for actual electrode production are as described above.
  • Ru (acac) that is, ruthenium acetylase, so that the molar ratio of Ru and Te is 1:10.
  • XC-72R manufactured by Cabot, specific surface area (BET) 254 mVg)
  • BET specific surface area
  • 0.8 g was physically mixed in a mortar to obtain a mixture.
  • This mixture was heated from room temperature to 300 ° C for 20 minutes at a flow rate of 3 L / hr of hydrogen, The temperature was raised from 300 ° C to 500 ° C over 3 hours. Thereafter, it was kept at 500 ° C. for 2 hours and then cooled to room temperature. Finally, the catalyst was produced by leaving it in a nitrogen atmosphere containing 1% oxygen for 2 hours to passivate it.
  • This catalyst was analyzed by XRD analysis using RuTe (value of 2 ⁇ , 21.
  • N XC — 72R (manufactured by Cabot, specific surface area (BET) 254 m 2 / g)) was mixed in a mortar.
  • the total content of Ru and Te in this mixture is 0.01778 weight 0 /. Met.
  • the total amount of Ru and Te deposited with microsyringe (calculated assuming that Ru and Te elements are not volatilized. Calculated below.
  • the same was applied to the glassy carbon electrode, which is the working electrode, so that it was 72.41 ng / cm 2 .
  • a 5% Nafion (registered trademark) solution alcohol solution, manufactured by Aldrich Chemical Co., Ltd.
  • Te / Ru ratios of Examples 1, 7, 10 and Comparative Examples 1, 2 were determined according to a conventional method by weighing the catalyst and then decomposing it by melting with alkali, adding the acid, and then adjusting the volume. It was determined by inductively coupled plasma optical emission spectrometry.
  • a force sword electrode was prepared so as to be 2.15 ngZcm 2 and evaluated in the same manner, and the results are shown in Table 2.
  • This compound was confirmed to contain RuTe by XRD analysis (the value of 2 ⁇ was 21.
  • RuTe-containing catalyst ZCB Except for the obtained RuTe-containing catalyst ZCB, Ru and T were prepared in the same manner as in Comparative Example 1.
  • a force sword electrode was prepared so that the total adhesion amount of e was 19 ngZcm 2 , the same evaluation was performed, and the results are shown in Table 2.
  • This compound was confirmed to contain RuTe by XRD analysis (the value of 2 ⁇ was 21.
  • RuTe-containing catalyst ZCB Except for the obtained RuTe-containing catalyst ZCB, Ru and T were prepared in the same manner as in Comparative Example 1.
  • a force sword electrode was prepared so that the total adhesion amount of e was 19 ngZcm 2 , the same evaluation was performed, and the results are shown in Table 2.
  • a catalyst was synthesized in the same manner as in Example 2 except that the RuTe synthetic heat treatment temperature was 500 ° C. [0119] That is, Ru (acac), 0.7 in Comparative Example 1 was adjusted so that the charged molar ratio of Ru and Te was 1: 2.
  • a force sword electrode was prepared in the same manner as in Comparative Example 1 except that the obtained RuTe-containing catalyst / CB was used so that the total adhesion amount of Ru and Te was 95 ng / cm 2, and evaluation was performed in the same manner. The results are shown in Table 2.
  • a catalyst was synthesized in the same manner as in Example 2 except that the RuTe synthetic heat treatment temperature was 350 ° C.
  • This compound was confirmed to contain RuTe by XRD analysis (the value of 2 ⁇ was 27.
  • a force sword electrode was prepared by the same method as in Comparative Example 1 except that the obtained RuTe-containing catalyst / CB was used, so that the total adhesion amount of Ru and Te was 19 ngZcm 2. The results are shown in Table 2.
  • a catalyst was synthesized in the same manner as in Example 2 except that the RuTe synthetic heat treatment temperature was 650 ° C.
  • the temperature was raised from room temperature to 300 ° C for 20 minutes at a flow rate of 3 L / hr of hydrogen, from 300 ° C to 650 ° C for 3 hours. After that, it was kept at 650 ° C. for 2 hours and then cooled to room temperature. Finally, it was passivated by leaving it in a nitrogen atmosphere containing 1% oxygen for 2 hours.
  • a force sword electrode was prepared so that the total amount of adhesion was 19 ng / cm 2 and evaluated in the same manner. The results are shown in Table 2.
  • Comparative Example 1 Except that the amount of telluric acid (manufactured by Sanwa Kagaku) in Comparative Example 1 was changed from 4.545 g to 0.4545 g so that the molar ratio of Ru and Te was 1: 1, it was exactly the same as Comparative Example 1.
  • the catalyst was prepared by the method. This compound was analyzed by XRD analysis using RuTe (value of 2 ⁇ , 21.901 °, 27.945 °, 31.
  • a catalyst was prepared in the same manner as in Example 8, except that the amount of telluric acid was changed to 0.227 g in Example 8 so that the charged molar ratio of Ru and Te was 1: 0.5.
  • This compound was analyzed by XRD analysis with RuTe (value of 2 ⁇ , 21.846 °, 26.107 °, 27.907 °, 31.300., 32.745
  • a force sword electrode was prepared so that the total adhesion amount of Te was 12 ng / cm 2, and evaluation was performed in the same manner. The results are shown in Table 2.
  • a force sword electrode was prepared so that the total adhesion amount of Te was 6.66 ngZcm 2, and evaluation was performed in the same manner. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Disclosed is a low-cost catalyst for fuel cells which exhibits excellent catalytic activity and could be an alternative for noble metal catalysts such as platinum catalysts. Also disclosed are an electrode for fuel cells which uses such a catalyst for fuel cells, and a fuel cell. Specifically disclosed is a catalyst for fuel cells containing one or more elements selected from the group consisting of tellurium (Te), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os) and iridium (Ir) as active ingredients. Also specifically disclosed is a catalyst for fuel cells obtained by causing the active ingredients to adhere a carbonaceous base. Further specifically disclosed are an electrode for fuel cells containing such a catalyst for fuel cells, and a fuel cell using such an electrode for fuel cells.

Description

明 細 書  Specification
燃料電池、その触媒及びその電極  Fuel cell, its catalyst and its electrode
発明の分野  Field of Invention
[0001] 本発明は、燃料電池用触媒及びその製造方法と、この燃料電池用触媒を用いた燃 料電池用電極及び燃料電池に関する。  TECHNICAL FIELD [0001] The present invention relates to a fuel cell catalyst, a method for producing the same, a fuel cell electrode and a fuel cell using the fuel cell catalyst.
発明の背景  Background of the Invention
[0002] 近年、エネルギーのより一層の効率化と環境問題の解決のために、燃料電池を自 動車の動力源とすることにより排気ガスをクリーンにすることが試みられており、その 普及に大きな関心が寄せられている。特に、燃料自動車 (FCHV)用燃料電池として 固体高分子型燃料電池(PEFC : Polymer Electrolyte Fuel Cell)の実用化に向け た開発が急速に進んでレ、る。  [0002] In recent years, in order to further improve energy efficiency and solve environmental problems, attempts have been made to clean exhaust gas by using a fuel cell as a power source for an automobile. There is interest. In particular, the development of a polymer electrolyte fuel cell (PEFC) as a fuel cell for fuel vehicles (FCHV) is rapidly progressing.
[0003] 燃料電池は、アノードに燃料、力ソードに酸化剤をそれぞれ供給し、アノードとカソ ード間の電位差を電圧として取り出し、負荷に供給する発電装置であり、アノード燃 料としては水素が、酸化剤としては一般的には空気中の酸素が用いられる。燃料電 池は、アノード極と力ソード極とその間に挟まれた電解質で構成されており、固体高 分子型燃料電池においては、電解質としてイオン交換膜が用いられている。具体的 には、電解質としてのイオン交換膜の両面に触媒層が形成され、該触媒層の外側に それぞれアノードガス拡散層及び力ソードガス拡散層が一体に形成されてなる電解 質膜/電極接合体が、隔壁板、電解質膜 Z電極接合体及び隔壁板の積層体よりな る単位セルとして、用途に応じた所望の電圧が得られるように数十セルから数百セル 積層されて燃料電池が構成されている。  [0003] A fuel cell is a power generator that supplies fuel to an anode and oxidant to a power sword, takes out the potential difference between the anode and cathode as a voltage, and supplies it to a load. Hydrogen is used as the anode fuel. In general, oxygen in the air is used as the oxidizing agent. A fuel cell is composed of an anode electrode, a force sword electrode, and an electrolyte sandwiched between them. In a polymer electrolyte fuel cell, an ion exchange membrane is used as an electrolyte. Specifically, an electrolyte membrane / electrode assembly in which a catalyst layer is formed on both surfaces of an ion exchange membrane as an electrolyte, and an anode gas diffusion layer and a force sword gas diffusion layer are integrally formed on the outside of the catalyst layer. However, a unit cell consisting of a barrier plate, an electrolyte membrane Z electrode assembly, and a barrier plate laminate is formed by stacking tens to hundreds of cells so that a desired voltage can be obtained according to the application. Has been.
[0004] このような燃料電池では、アノード触媒層に水素が到達すると電気化学的反応過程 によりプロトンと電子が生ずる。ここで生成したプロトンは順次電解質中を移動して力 ソードに達する。一方、電子は、外部負荷を経由して力ソードに送られる。力ソード触 媒層では、外部負荷を経由して送られてきた電子と、酸化剤としての空気中の酸素と 、電解質中を移動してきたプロトンとが電気化学的反応過程により結合して水を生成 する。 [0005] 従来、このような燃料電池の触媒としては、力ソード、アノードとも、高価で資源的に も問題がある白金等の貴金属を主体にした触媒が使用されており、その使用量は、 同じ動力を発生するガソリン車の排気ガス浄化用触媒に使用される白金の量よりも相 当に多量となっている。 In such a fuel cell, when hydrogen reaches the anode catalyst layer, protons and electrons are generated by an electrochemical reaction process. Protons generated here move sequentially in the electrolyte and reach the force sword. On the other hand, the electrons are sent to the force sword via an external load. In the force sword catalyst layer, electrons sent via an external load, oxygen in the air as an oxidant, and protons that have moved through the electrolyte are combined by an electrochemical reaction process to bind water. Generate. [0005] Conventionally, as a catalyst for such a fuel cell, both a power sword and an anode are mainly made of a noble metal such as platinum, which is expensive and has a problem in terms of resources. It is considerably larger than the amount of platinum used in exhaust gas purification catalysts for gasoline cars that generate the same power.
[0006] 従って、燃料電池を商業的に実用化するためには、価格的にも資源的にも問題の ある白金等の貴金属を主体とした触媒に代わる、安価で実用に供しうる燃料電池用 触媒の開発が必須の課題の一つとなる。  [0006] Therefore, in order to commercialize a fuel cell, it can be used at low cost and practically, instead of a catalyst mainly composed of noble metals such as platinum, which is problematic in terms of price and resources. The development of the catalyst is one of the essential issues.
[0007] 下記文献 1には、白金元素とテルル元素等の添加元素とからなる合金を燃料電池 用触媒に用いることがその特許請求の範囲に記載され、実施例 4において PtTeが  [0007] The following document 1 describes that an alloy composed of platinum element and an additive element such as tellurium element is used as a catalyst for a fuel cell.
2 検討されている。しかし当該文献では VIII族元素は Ptに限定されており、ルテニウム( Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(〇s)、イリジウム(Ir)については一 切開示されていない。  2 Considered. However, in this document, Group VIII elements are limited to Pt, and ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) are not disclosed at all.
また、文献 2と 3にはルテニウム元素とテルノレ元素とからなる触媒について記載され ているが、ルテニウム元素とテルル元素の存在比が、 Ru/Te= l/0.055の触媒につ いてのみ開示されており、テルル元素の存在比力 .055を超える触媒については、一 切開示されておらず、かつ何らの示唆も示されていない。  References 2 and 3 describe a catalyst composed of ruthenium element and tellurene element, but only the catalyst having a ruthenium element and tellurium element ratio of Ru / Te = l / 0.055 is disclosed. Thus, catalysts with a tellurium element ratio greater than 0.055 are not disclosed at all, and no suggestions are given.
文献 4には、 RuxTeyが開示されている力 具体的な xと yの値が開示されていない 。合成方法は非特許文献 1と同様であることから、 Ru Te のみが検討されているも  Reference 4 does not disclose the specific values of x and y that RuxTey discloses. Since the synthesis method is the same as in Non-Patent Document 1, only Ru Te has been studied.
1 0.055  1 0.055
のと推測される。  It is speculated that.
また、文献 5と 6には Mo Ru Te , Mo Rh Te , Mo Os Te力 S開示されてレヽる。し力し  References 5 and 6 disclose Mo Ru Te, Mo Rh Te, and Mo Os Te forces S. Force
4 2 8 5 1 8 5.4 0.6 8  4 2 8 5 1 8 5.4 0.6 8
Te元素と Mo以外の遷移金属 (Ru, Rh, Os)の存在比が特定の領域であるのが望まし レ、等の記載は一切開示されてレ、なレ、。  Desirably, the abundance ratio of transition metals (Ru, Rh, Os) other than Te element and Mo is in a specific region.
文献 1 特開平 10— 92441号公報  Reference 1 Japanese Patent Laid-Open No. 10-92441
文献 2 Electrochimica Acta 47, 2002, 3807-3814  Reference 2 Electrochimica Acta 47, 2002, 3807-3814
文献 3 Journal of Physical Chemistry B 106(7), 2002, 1670-1676 文献 4 Nuclear Instruments & Methods in Physics Research, Section A: A ccelerators, Spectrometers, Detectors, and Associated Equipment, 448(1-2), Reference 3 Journal of Physical Chemistry B 106 (7), 2002, 1670-1676 Reference 4 Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 448 (1-2),
2000, 323-326. 文献 5 Journal of Applied Electrochemistry 25(11), 1995, 1004-1008 文献 6 J Chim Phys Phys Chim Biol 93(4), 1996, 702-710 2000, 323-326. Reference 5 Journal of Applied Electrochemistry 25 (11), 1995, 1004-1008 Reference 6 J Chim Phys Phys Chim Biol 93 (4), 1996, 702-710
上記文献 1に記載されるように、白金とテルルの合金を燃料電池用触媒として用い 得ることは知られているが、この燃料電池用触媒では、高価で資源的にも問題がある 白金を用いる必要があり、白金等の貴金属を主体とした触媒に代わる、安価で実用 に供しうる燃料電池用触媒の開発という課題は解決し得ない。  Although it is known that platinum and tellurium alloys can be used as fuel cell catalysts, as described in the above document 1, this fuel cell catalyst is expensive and has problems in terms of resources. Therefore, it is impossible to solve the problem of developing a catalyst for a fuel cell that can be used practically at low cost instead of a catalyst mainly composed of noble metals such as platinum.
発明の概要  Summary of the Invention
[0008] 本発明は、安価で、白金等の貴金属触媒に代替しうる、優れた触媒作用を発揮す る燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極及び燃料電池 を提供することを目的とする。  [0008] The present invention provides a fuel cell catalyst that exhibits an excellent catalytic action that is inexpensive and can be substituted for a noble metal catalyst such as platinum, and a fuel cell electrode and a fuel cell using the fuel cell catalyst. The purpose is to provide.
[0009] 第 1アスペクトの燃料電池用触媒は、テルル (Te)と、ルテニウム(Ru)、ロジウム h)、パラジウム(Pd)、オスミウム(〇s)、及びイリジウム (Ir)よりなる群から選ばれる少 なくとも 1種の元素 Mとを含み、組成を M Te と表した際、 0· 2 < Χ< 4であることを特  [0009] The fuel cell catalyst of the first aspect is selected from the group consisting of tellurium (Te), ruthenium (Ru), rhodium h), palladium (Pd), osmium (Os), and iridium (Ir). When at least one element M is included and the composition is expressed as M Te, 0 · 2 <Χ <4.
1 X  1 X
徴とするものである。  It is a sign.
[0010] 第 2アスペクトの燃料電池用触媒は、テルル (Te)と、ルテニウム(Ru)と、ロジウム( Rh)、パラジウム(Pd)、オスミウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる 少なくとも 1種の元素 Lとを含み、組成を L Ru Te と表した際、 0. 2く Xであり、 0 <Y  [0010] The fuel cell catalyst of the second aspect is selected from the group consisting of tellurium (Te), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir). When at least one element L is included and the composition is expressed as L Ru Te, 0.2 and X, and 0 <Y
Υ 1 X  Υ 1 X
≤ 10であることを特徴とするものである。  It is characterized by ≤ 10.
[0011] 第 3アスペクトの燃料電池用電極材料及び第 4アスペクトの燃料電池用電極は、第 [0011] The fuel cell electrode material of the third aspect and the fuel cell electrode of the fourth aspect
1又は第 2アスペクトの触媒を有する。  It has a catalyst of 1 or 2nd aspect.
[0012] 第 5アスペクトの燃料電池は、第 4アスペクトの電極を有する。 [0012] The fuel cell of the fifth aspect has the electrode of the fourth aspect.
詳細な説明  Detailed description
[0013] 本発明者等は、上記状況に鑑み鋭意検討した結果、ルテニウム等の VIII族元素と テルノレとからなる合金ないし化合物を用いることにより、触媒活性が高ぐ白金等の貴 金属触媒に代替しうる実用性を有する燃料電池用触媒が得られることを見出した。ま た、これを基体に被着させることにより、安価で、より一層触媒活性が高ぐ白金等の 貴金属触媒に代替しうる実用性を有する燃料電池用触媒が得られることを見出した。 本発明は、このような知見をもとに完成されたものであり、以下を要旨とする。 [I] テルル (Te)と、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム( Os)、及びイリジウム(Ir)よりなる群から選ばれる少なくとも 1種の元素 Mとを含み、組 成を M Te と表した際、 0. 2 <X< 4であることを特徴とする燃料電池用触媒。 [0013] As a result of diligent investigations in view of the above situation, the present inventors have replaced a noble metal catalyst such as platinum with high catalytic activity by using an alloy or compound composed of a Group VIII element such as ruthenium and ternore. It has been found that a fuel cell catalyst having practical utility can be obtained. Further, it has been found that by attaching this to a substrate, a fuel cell catalyst can be obtained that is practical and can be substituted for a noble metal catalyst such as platinum, which is cheaper and has higher catalytic activity. The present invention has been completed based on such knowledge, and the gist thereof is as follows. [I] tellurium (Te) and at least one element M selected from the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir), A fuel cell catalyst characterized by 0.2 <X <4 when the composition is expressed as MTe.
1 X  1 X
[2] [1]において、 1 <Xであることを特徴とする燃料電池用触媒。  [2] The fuel cell catalyst according to [1], wherein 1 <X.
[3] [1]において、実質的に Teと Ruよりなることを特徴とする燃料電池用触媒。  [3] A fuel cell catalyst according to [1], substantially consisting of Te and Ru.
[4] [1]において、 RuTeを含むことを特徴とする燃料電池用触媒。  [4] A fuel cell catalyst according to [1], which contains RuTe.
2  2
[5] テルル (Te)と、ルテニウム(Ru)と、ロジウム(Rh)、パラジウム(Pd)、オスミウム (Os)、及びイリジウム(Ir)よりなる群から選ばれる少なくとも 1種の元素 Lとを含み、組 成を L Ru Te と表した際、 0. 2く Xであり、 0<Y≤ 10であることを特徴とする燃料 [5] including tellurium (Te), ruthenium (Ru), and at least one element L selected from the group consisting of rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) When the composition is expressed as L Ru Te, the fuel is characterized by 0.2 and X, and 0 <Y≤10
Υ 1 X Υ 1 X
電池用触媒。 Battery catalyst.
[6] [1]において、さらに、 Te及び元素 Μが被着された基体を含むことを特徴とす る燃料電池用触媒。  [6] The fuel cell catalyst according to [1], further comprising a substrate on which Te and elemental metal are deposited.
[7] [5]において、さらに、 Te、 Ru及び元素 Lが被着された基体を含むことを特徴と する燃料電池用触媒。  [7] A fuel cell catalyst according to [5], further comprising a substrate on which Te, Ru and element L are deposited.
[8] [6]において、基体は炭素系基体であることを特徴とする燃料電池用触媒。  [8] The fuel cell catalyst according to [6], wherein the substrate is a carbon-based substrate.
[9] [7]において、基体は炭素系基体であることを特徴とする燃料電池用触媒。 [9] The fuel cell catalyst according to [7], wherein the substrate is a carbon-based substrate.
[10] [1]において、燃料電池が固体高分子型燃料電池であることを特徴とする燃 料電池用触媒。 [10] A fuel cell catalyst according to [1], wherein the fuel cell is a solid polymer fuel cell.
[I I] [5]において、燃料電池が固体高分子型燃料電池であることを特徴とする燃 料電池用触媒。  [I I] A fuel cell catalyst according to [5], wherein the fuel cell is a polymer electrolyte fuel cell.
[12] イオン交換膜と、該イオン交換膜上に形成された [1]の燃料電池用触媒の層 とを有する燃料電池用電極材料。  [12] A fuel cell electrode material comprising an ion exchange membrane and a fuel cell catalyst layer according to [1] formed on the ion exchange membrane.
[13] イオン交換膜と、該イオン交換膜上に形成された [5]の燃料電池用触媒の層 とを有する燃料電池用電極材料。  [13] A fuel cell electrode material comprising an ion exchange membrane and a fuel cell catalyst layer according to [5] formed on the ion exchange membrane.
[14] 電極ガス拡散層と、該電極ガス拡散層上に形成された [1]の燃料電池用触媒 の層とを有する燃料電池用電極材料。  [14] A fuel cell electrode material having an electrode gas diffusion layer and a fuel cell catalyst layer according to [1] formed on the electrode gas diffusion layer.
[15] 電極ガス拡散層と、該電極ガス拡散層上に形成された [5]の燃料電池用触媒 の層とを有する燃料電池用電極材料。 [16] 転写用フィルムと、該転写用フィルム上に形成された [1]の燃料電池用触媒 の層とを有する燃料電池用電極材料。 [15] An electrode material for a fuel cell, comprising an electrode gas diffusion layer, and a fuel cell catalyst layer according to [5] formed on the electrode gas diffusion layer. [16] An electrode material for a fuel cell comprising a transfer film and a fuel cell catalyst layer according to [1] formed on the transfer film.
[17] 転写用フィルムと、該転写用フィルム上に形成された [5]の燃料電池用触媒 の層とを有する燃料電池用電極材料。  [17] An electrode material for a fuel cell, comprising: a transfer film; and a fuel cell catalyst layer according to [5] formed on the transfer film.
[18] [1]に記載の燃料電池用触媒を含有することを特徴とする燃料電池用電極。  [18] A fuel cell electrode comprising the fuel cell catalyst according to [1].
[19] [5]に記載の燃料電池用触媒を含有することを特徴とする燃料電池用電極。 [19] A fuel cell electrode comprising the fuel cell catalyst according to [5].
[20] [18]に記載の燃料電池用電極を用いた燃料電池。 [20] A fuel cell using the fuel cell electrode according to [18].
[21] [19]に記載の燃料電池用電極を用レ、た燃料電池。 [21] A fuel cell using the fuel cell electrode according to [19].
[22] [20]におレ、て、燃料電池は固体高分子型燃料電池であることを特徴とする 燃料電池。  [22] A fuel cell according to [20], wherein the fuel cell is a polymer electrolyte fuel cell.
[23] [21]において、燃料電池は固体高分子型燃料電池であることを特徴とする 燃料電池。  [23] The fuel cell according to [21], wherein the fuel cell is a polymer electrolyte fuel cell.
[24] [8]に記載の燃料電池用触媒を製造する方法であって、炭素系基体、 Teの 前駆体及び元素 Mの前駆体を混合する工程と、該前駆体を活性にする工程とを有 することを特徴とする燃料電池用触媒の製造方法。  [24] A method for producing a fuel cell catalyst according to [8], comprising: mixing a carbon-based substrate, a Te precursor and an element M precursor; and activating the precursor. A method for producing a fuel cell catalyst, comprising:
[25] [9]に記載の燃料電池用触媒を製造する方法であって、炭素系基体、 Teの 前駆体、 Ruの前駆体及び元素 Lの前駆体を混合する工程と、該前駆体を活性にす る工程とを有することを特徴とする燃料電池用触媒の製造方法。  [25] A method for producing a fuel cell catalyst according to [9], comprising: mixing a carbon-based substrate, a Te precursor, a Ru precursor, and an element L precursor; and And a step of activating the fuel cell catalyst.
[26] [8]に記載の燃料電池用触媒を製造する方法であって、炭素系基体と [1]に 記載の燃料電池用触媒とを混合する工程を有することを特徴とする燃料電池用触媒 の製造方法。 [26] A method for producing a fuel cell catalyst according to [8], comprising a step of mixing a carbon-based substrate and the fuel cell catalyst according to [1]. A method for producing a catalyst.
[27] [9]に記載の燃料電池用触媒を製造する方法であって、炭素系基体と [5]に 記載の燃料電池用触媒とを混合する工程を有することを特徴とする燃料電池用触媒 の製造方法。  [27] A method for producing a fuel cell catalyst according to [9], comprising a step of mixing a carbon-based substrate and the fuel cell catalyst according to [5]. A method for producing a catalyst.
[28] [24]において、更に遷移金属を炭素系基体に被着させる工程を有することを 特徴とする燃料電池用触媒の製造方法。  [28] The method for producing a fuel cell catalyst according to [24], further comprising a step of depositing a transition metal on a carbon-based substrate.
[29] [25]において、更に遷移金属を炭素系基体に被着させる工程を有することを 特徴とする燃料電池用触媒の製造方法。 [30] [26]において、更に遷移金属を炭素系基体に被着させる工程を有することを 特徴とする燃料電池用触媒の製造方法。 [29] The method for producing a fuel cell catalyst according to [25], further comprising the step of depositing a transition metal on a carbon-based substrate. [30] The method for producing a fuel cell catalyst according to [26], further comprising the step of depositing a transition metal on the carbon-based substrate.
[31] [27]において、更に遷移金属を炭素系基体に被着させる工程を有することを 特徴とする燃料電池用触媒の製造方法。  [31] The method for producing a fuel cell catalyst according to [27], further comprising a step of depositing a transition metal on a carbon-based substrate.
[32] [1]に記載の燃料電池用触媒を含有する燃料電池スタック。  [32] A fuel cell stack containing the fuel cell catalyst according to [1].
[33] [5]に記載の燃料電池用触媒を含有する燃料電池スタック。  [33] A fuel cell stack containing the fuel cell catalyst according to [5].
[34] [32]に記載の燃料電池スタックを含む燃料電池システム。  [34] A fuel cell system including the fuel cell stack according to [32].
[35] [33]に記載の燃料電池スタックを含む燃料電池システム。  [35] A fuel cell system including the fuel cell stack according to [33].
[0015] 本発明によれば、高価で資源的にも問題のある白金等の貴金属触媒に代替し得る 、良好な触媒作用を示し、安価にかつ安全に合成することが可能な、実用的な燃料 電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極及び燃料電池が提供 される。 [0015] According to the present invention, it can be replaced with a noble metal catalyst such as platinum, which is expensive and problematic in terms of resources, has a good catalytic action, and can be synthesized inexpensively and safely. Provided are a fuel cell catalyst, a fuel cell electrode and a fuel cell using the fuel cell catalyst.
[0016] 本発明によれば、安価な燃料電池用触媒を用いた燃料電池が提供されるため、燃 料自動車、固定式コジェネレーションシステム等への燃料電池の用途の拡大と実用 化が促進される。  [0016] According to the present invention, since a fuel cell using an inexpensive fuel cell catalyst is provided, expansion and practical application of the fuel cell to a fuel vehicle, a fixed cogeneration system, etc. are promoted. The
[0017] 以下、本発明についてさらに詳細に説明する力 S、本発明は以下の実施の形態に限 定されるものではなぐその要旨の範囲内で種々変形して実施することができる。  Hereinafter, the force S for explaining the present invention in more detail, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist thereof.
[0018] [燃料電池用触媒]  [0018] [Catalyst for fuel cell]
本発明の第 1態様の燃料電池用触媒は、テルル (Te)を含み、さらにルテニウム (R u)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、及びイリジウム(Ir)よりなる群 から選ばれる 1種以上の元素 Mを含み、 M Te と表した際の Xの値力 0. 2<X<4  The fuel cell catalyst according to the first aspect of the present invention contains tellurium (Te), and further comprises ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir). The value of X when expressed as M Te, including one or more elements M selected from 0.2 <X <4
1 X  1 X
である。第 1態様の説明において、 Teと元素 Mとを併せて活性成分ということがある。  It is. In the description of the first embodiment, Te and element M may be collectively referred to as an active ingredient.
[0019] 本発明の第 2態様の燃料電池用触媒は、テルル (Te)と、ルテニウム (Ru)と、必要 に応じて含まれるロジウム(Rh)、パラジウム(Pd)、オスミウム(〇s)、及びイリジウム(I r)よりなる群から選ばれる 1種以上の元素 Lとを含み、 L Ru Teと表した際の Xの値 [0019] The fuel cell catalyst according to the second aspect of the present invention includes tellurium (Te), ruthenium (Ru), and optionally contained rhodium (Rh), palladium (Pd), osmium (Os), And one or more elements selected from the group consisting of iridium (I r) and the value of X when expressed as L Ru Te
Y 1 X  Y 1 X
が、 X>0. 2であり、 Yの値が 0<y≤10である。第 2態様の説明において、 Teと、 Ru と、元素 Lとを併せて活性成分ということがある。  However, X> 0.2 and the value of Y is 0 <y≤10. In the description of the second embodiment, Te, Ru, and element L may be collectively referred to as an active component.
[0020] いずれの態様においても、本発明の燃料電池用触媒は、活性成分のみからなるも のであっても良ぐさらに他の遷移金属を含んでも良い。活性成分は基体に被着され ても良い。 [0020] In any of the embodiments, the fuel cell catalyst of the present invention comprises only an active component. In addition, other transition metals may be included. The active ingredient may be applied to the substrate.
[0021] なお、以下において、 Mで表される元素すなわちルテニウム(Ru)、ロジウム(Rh)、 パラジウム(Pd)、オスミウム(〇s)、及びイリジウム(Ir)よりなる群から選ばれる 1種以 上の元素を「VIII族金属」と称す場合がある。また、ロジウム(Rh)、パラジウム(Pd)、 オスミウム(〇s)、及びイリジウム(Ir)よりなる群から選ばれる 1種以上の元素 Lを「Ru 以外の VIII族金属」と称す場合がある。  [0021] In the following, one or more elements selected from the group consisting of elements represented by M, namely ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) are used. The above elements are sometimes referred to as “Group VIII metals”. One or more elements L selected from the group consisting of rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) may be referred to as “Group VIII metals other than Ru”.
[0022] また、活性成分が基体に被着されておらず、実質的に活性成分のみから構成され る燃料電池用触媒を「純触媒 (essential catalyst)」と称し、活性成分を基体に被着さ せた燃料電池用触媒を「被着触媒 (adhered catalyst)」と称す場合がある。  [0022] In addition, a catalyst for a fuel cell in which the active component is not deposited on the substrate and is substantially composed only of the active component is referred to as "essential catalyst", and the active component is deposited on the substrate. The deposited fuel cell catalyst is sometimes referred to as an “adhered catalyst”.
[0023] 〈活性成分〉  [0023] <Active ingredient>
第 1態様の燃料電池用触媒の活性成分におけるテルル (Te)元素と、 VIII族金属元 素(M)の存在比率を次に説明する。活性成分の組成を M Teと記載した場合、 X>  Next, the abundance ratio of tellurium (Te) element and group VIII metal element (M) in the active component of the fuel cell catalyst of the first embodiment will be described. When the composition of the active ingredient is described as M Te, X>
1 X  1 X
0. 2であり、特に好ましくは X> 1であり、 Xく 4、好ましくは Xく 3、より好ましくは Xく 2 . 5である。テルノレ元素の存在比率 X力 S、この範囲を下回ると活性が低くなりやすぐ この範囲を超えても活性が出にくくなる。 VIII族金属元素(M)は 2種以上用いてもよ レ、。 M Teは、 VIII族金属元素 Mの合計の元素数と、テルル元素 Teの元素数の比 0.2, particularly preferably X> 1, X <4, preferably X <3, more preferably X <2.5. Ternore element abundance ratio X force S, below this range, the activity becomes low, and even if it exceeds this range, it becomes difficult to achieve activity. Two or more Group VIII metal elements (M) may be used. M Te is the ratio of the total number of group VIII metal elements M to the number of tellurium elements Te
1 X 1 X
率を表す。  Represents a rate.
[0024] 第 2態様の燃料電池用触媒の活性成分におけるテルル (Te)元素と、ルテニウム( Ru)元素と、 Ru以外の VIII族金属(L)の存在比率を次に説明する。第 2態様の活性 成分の組成を L Ru Teと記載した場合、 Xは、 X>0. 2であり、好ましくは X> 1であ  [0024] The abundance ratio of tellurium (Te) element, ruthenium (Ru) element, and Group VIII metal (L) other than Ru in the active component of the fuel cell catalyst of the second embodiment will be described below. When the composition of the active ingredient of the second aspect is described as L Ru Te, X is X> 0.2, preferably X> 1.
Y 1 X  Y 1 X
り、通常 Xく 20、好ましくは Xく 15、より好ましくは Xく 10、より好ましくは Xく 5、特に 好ましくは Xく 3である。テルル元素の存在比率が、この範囲を下回ると活性が低くな りやすぐこの範囲を超えても活性が出にくくなる。  In general, X is 20, preferably X is 15, more preferably X is 10, more preferably X is 5, and particularly preferably X is 3. If the abundance ratio of tellurium is below this range, the activity will be low, and even if it exceeds this range, it will be difficult to achieve activity.
[0025] Yは 0<Y≤10であり、好ましくは 0<Υ≤5、より好ましくは 0< Υ≤ 3である。 Ru以 外の VIII族金属元素(L)は 2種以上用いてもよレ、。 L Ru Teは、 Ru以外の VIII族金 [0025] Y is 0 <Y≤10, preferably 0 <Υ≤5, more preferably 0 <Υ≤3. Two or more Group VIII metal elements (L) other than Ru may be used. L Ru Te is a group VIII gold other than Ru
Y 1 X  Y 1 X
属元素 Lの合計の元素数と、ルテニウム元素(Ru)の元素数と、テルル元素(Te)の 元素数の比率を表す。 [0026] 第 1及び第 2のいずれの態様においても、触媒中の各元素の存在比は、常法に従 レ、、触媒を秤量後アルカリ溶融して分解し、酸を添加後定容して誘導結合プラズマ 発光分光分析法により定量することができる。 It represents the ratio of the total number of elements of the genus element L, the number of ruthenium elements (Ru), and the number of tellurium elements (Te). [0026] In both the first and second embodiments, the abundance ratio of each element in the catalyst is determined according to a conventional method. The catalyst is weighed and then decomposed by alkali melting, and the volume is adjusted after adding the acid. It can be quantified by inductively coupled plasma optical emission spectrometry.
[0027] いずれの態様の場合も、活性成分中のテルルの含有量は、活性成分全体に対して 、重量として通常 5%以上、より好ましくは 6%以上、更に好ましくは 10%以上、通常 9 6%以下、好ましくは 95%以下、より好ましくは 93%以下、更に好ましくは 90%以下 、更に最も好ましくは 87%以下である。活性成分中のテルルの含有量がこの範囲を 下回ると活性が低くなりやすぐこの範囲を超えても活性が出にくくなる。  [0027] In any embodiment, the tellurium content in the active ingredient is usually 5% or more, more preferably 6% or more, still more preferably 10% or more, usually 9% by weight relative to the whole active ingredient. It is 6% or less, preferably 95% or less, more preferably 93% or less, still more preferably 90% or less, and most preferably 87% or less. If the tellurium content in the active ingredient is below this range, the activity will be low, and even if it exceeds this range immediately, it will be difficult to produce the activity.
[0028] 第 1及び第 2態様において、活性成分中の VIII族金属、即ち、ルテニウム、ロジウム 、パラジウム、オスミウム、及びイリジウムの合計の含有量は、活性成分全体に対して 、通常 1 °/ο以上、好ましくは 5。/0以上、より好ましくは 7。/0以上、更に好ましくは 10%以 上、より好ましくは 13。/0以上、通常 95%以下、好ましくは 90%以下、より好ましくは 8 8%以下、更に好ましくは 85%以下である。活性成分中の VIII族金属の含有量がこ の範囲を下回ると活性が低くなりやすぐこの範囲を超えても活性が出にくくなる。 [0028] In the first and second embodiments, the total content of Group VIII metals in the active ingredient, that is, ruthenium, rhodium, palladium, osmium, and iridium, is usually 1 ° / ο with respect to the whole active ingredient Above, preferably 5. / 0 or more, more preferably 7. / 0 or more, more preferably 10% or more, more preferably 13. / 0 or more, usually 95% or less, preferably 90% or less, more preferably 88% or less, and still more preferably 85% or less. If the content of the Group VIII metal in the active ingredient is below this range, the activity will be low, and even if it exceeds this range, it will be difficult to produce the activity.
[0029] 第 1及び第 2態様において、活性成分は、 VIII族金属の 1種を単独で含んでいても 良ぐ 2種以上を含んでいても良レ、。活性成分は、 VIII族金属としてルテニウム又は口 ジゥムを含むことが好ましぐ特に VIII族金属としてルテニウムを含むことが好ましい。  [0029] In the first and second embodiments, the active ingredient may contain one kind of Group VIII metal alone, or may contain two or more kinds. The active ingredient preferably contains ruthenium or oral dimethyl as the group VIII metal, particularly preferably ruthenium as the group VIII metal.
[0030] なお、活性成分は、テルル元素と VIII族金属以外の成分を、本発明の効果を損な わなレ、範囲で含むことも可能である。  [0030] It should be noted that the active ingredient can also contain ingredients other than tellurium elements and Group VIII metals in a range that does not impair the effects of the present invention.
[0031] 第 1及び第 2態様の活性成分において、テルルは、 Te元素であってもよぐ TeO ,  [0031] In the active ingredients of the first and second embodiments, tellurium may be Te element TeO,
2 2
TeO等の酸化物、 H TeO, H TeO等のォキソ酸、 TeCl, TeBr等の塩化物などOxides such as TeO, oxo acids such as H TeO and H TeO, chlorides such as TeCl and TeBr, etc.
3 2 3 6 6 2 2 3 2 3 6 6 2 2
の無機化合物、及びテル口フェン等の有機化合物の形態をとつていても良い。 VIII族 金属も、金属元素、酸化物、塩化物等の無機化合物の他、有機化合物と結合する形 態をとることができる。例えばルテニウムは、 Ru元素であってもよぐ RuO, RuO等の  These inorganic compounds and organic compounds such as teropen fene may be used. Group VIII metals can also be combined with organic compounds as well as inorganic compounds such as metal elements, oxides, and chlorides. For example, ruthenium may be Ru element such as RuO, RuO
2 酸化物、 RuCl ·χΗ Ο等の塩化物や Ru(N〇)(NO )等の無機化合物、 Ru(acac)及び  2 Oxides, chlorides such as RuCl · χΗ や, inorganic compounds such as Ru (N〇) (NO), Ru (acac) and
3 2 3 3 3 3 2 3 3 3
Ru (CO) 等の有機化合物と結合する形態をとつていても良い。 You may take the form couple | bonded with organic compounds, such as Ru (CO).
3 12  3 12
[0032] 活性成分を構成するこれらテルル成分及び VIII族金属成分は、それぞれ結合を有 さずに存在しても良いし、結合を有して存在しても良レ、。これらが結合を有して存在し ている場合で、元素同士が直接結合している場合は、活性成分としてはいわゆる合 金の形態を有するものが挙げられる。 [0032] The tellurium component and the group VIII metal component constituting the active component may be present without any bond, or may be present with a bond. These exist with bonds In the case where the elements are directly bonded to each other, the active component may be one having a so-called alloy form.
[0033] 合金の形態を有する活性成分としては、具体的には、 RuTe , RuTe, Ru Te,OsT e, RhTe, RhTe, Rh Te, Rh Te, Rh Te, IrTe, Ir Te, PdTe, Pd Te, Pd[0033] Specific examples of active ingredients having an alloy form include RuTe, RuTe, RuTe, OsTe, RhTe, RhTe, RhTe, RhTe, RhTe, IrTe, IrTe, PdTe, PdTe , Pd
Te, Pd Te, Pd Te, Pd Te, Pd Te, Pd Te, Pd Te, Pd Te , Pd Te , Pd T e, Pd Te等が挙げられ、中でも RuTe、 RuTe, Ru Teが好ましぐ特に RuTe力 S 好ましい。テルルと、 vm族金属のうちの 2つ以上の元素とが結合した合金の形態で あっても い。 Te, Pd Te, Pd Te, Pd Te, Pd Te, Pd Te, Pd Te, Pd Te, Pd Te, Pd Te, Pd Te, etc. Among them, RuTe, RuTe, Ru Te are particularly preferred. Force S is preferred. It may be in the form of an alloy in which tellurium and two or more elements of the vm group metal are combined.
[0034] 活性成分中の元素の存在形態 0は、 X線回折 (XRD)で特定することができる。即 ち、例えば、後述の基体に被着された活性成分に対して X線 (Cu_Kひ線)を照射し 、その回折スペクトルを観察することによって元素の存在形態を特定することができる  [0034] The existence form 0 of the element in the active ingredient can be specified by X-ray diffraction (XRD). That is, for example, the presence form of an element can be specified by irradiating an active ingredient deposited on a substrate described later with X-rays (Cu_K filaments) and observing the diffraction spectrum thereof.
[0035] その測定装置及び測定条件としては、例えば以下のものが挙げられるが、それらに 限定されるものではない。 [0035] Examples of the measurement apparatus and measurement conditions include, but are not limited to, the following.
[0036] 測定装置 [0036] Measuring apparatus
粉末 X線解析装置/ PANalytical PW1700  Powder X-ray analyzer / PANalytical PW1700
測定条件  Measurement condition
X線出力(Cu— Κ α ) : 40kV, 30mA  X-ray output (Cu—Κα): 40kV, 30mA
走査軸: Θ /2 Θ  Scanning axis: Θ / 2 Θ
測定範囲 (2 Θ ) : 3. 0° 〜90. 0。  Measurement range (2 Θ): 3. 0 ° to 90.0.
測疋モート: Continuous  Measuring Mote: Continuous
読込幅: 0. 05°  Reading width: 0.05 °
走查速度: 3. 0° /min  Strike speed: 3.0 ° / min
DS, SS, RS : 1° ,1° ,0. 20mm  DS, SS, RS: 1 °, 1 °, 0.20mm
[0037] 具体白勺には、 RuTeは、 X線回折の 2 Θ ( ± 0. 3° )のピークとして、 21. 808°、 27. [0037] Specifically, RuTe has a peak of 2 Θ (± 0.3 °) of X-ray diffraction as 21.808 °, 27.
920°、 31. 287°、 32. 716°、 43. 369°、 45. 203°、 48. 322°、 51. 509°、 53. 981°、 56. 910°、 68. 565°等の特徴的ピークを与えるものや、 21. 767°、 26. 18 9°、 27. 877°、 31. 249°、 32. 658° 33. 847°、 36. 719°、 39. 822°、 43. 30 8°、 44. 377°、 45. 177°、 45. 801°、 48. 244°、 50. 117°、 50. 661°、 51. 42 6°等の特徴的ピークを与えるものや、 27. 857°、 31. 271°、 34. 344°、 39. 873° 、 47. 123°、 49. 353°、 51. 532°、 53. 614°、 57. 636°、 65. 236°、 67. 032° 、 68. 881°、 72. 414°、 77. 547°、 80. 922°、 82. 608°、 85. 948°等の特徴的 ピークを与えるものが挙げられる。 920 °, 31. 287 °, 32. 716 °, 43. 369 °, 45. 203 °, 48. 322 °, 51. 509 °, 53. 981 °, 56. 910 °, 68. 565 °, etc. 21.767 °, 26. 18 9 °, 27. 877 °, 31. 249 °, 32. 658 ° 33. 847 °, 36. 719 °, 39. 822 °, 43. 30 Those giving characteristic peaks such as 8 °, 44. 377 °, 45. 177 °, 45. 801 °, 48. 244 °, 50. 117 °, 50. 661 °, 51. 42 6 °, etc. 857 °, 31. 271 °, 34. 344 °, 39. 873 °, 47. 123 °, 49. 353 °, 51. 532 °, 53. 614 °, 57. 636 °, 65. 236 °, 67. Those giving characteristic peaks such as 032 °, 68.881 °, 72.414 °, 77.547 °, 80.922 °, 82.608 °, 85.948 °, etc.
[0038] 〈純触媒の形状〉 <Pure catalyst shape>
基体に被着されていない活性成分よりなる純触媒の形状は特に制限はないが、最 も一般的には粒子状である。粒子状の純触媒の平均粒径は、通常 100 z m以下、好 ましくは lOOOnm以下、より好ましくは 500nm以下、中でも 300nm以下で、通常 0. 5nm以上、好ましくは 1. Onm以上、より好ましくは 2. Onm以上である。純触媒の粒 径がこの範囲を下回ると不安定となって、失活しゃすくなり、この範囲を超えると高い 活性を得にくくなる。  There is no particular limitation on the shape of the pure catalyst made of the active component not deposited on the substrate, but it is most generally particulate. The average particle size of the particulate pure catalyst is usually 100 zm or less, preferably lOOOnm or less, more preferably 500 nm or less, particularly 300 nm or less, usually 0.5 nm or more, preferably 1. Onm or more, more preferably 2. Above Onm. If the particle size of the pure catalyst is less than this range, it becomes unstable and becomes deactivated, and if it exceeds this range, it becomes difficult to obtain high activity.
[0039] なお、純触媒の平均粒径は、走査型電子顕微鏡(SEM)或いは透過型電子顕微 鏡 (TEM)により、粒径の長さを測定する方向を統一して、その方向での粒子長さを 測定し、これを平均した値で示される。  [0039] The average particle diameter of the pure catalyst is determined by unifying the direction in which the length of the particle diameter is measured with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The length is measured and shown as an average value.
[0040] 〈基体〉  [0040] <Substrate>
被着触媒は、基体と、該基体に被着されて保持された活性成分とを有する。活性成 分を電気的に導通させるために、基体は、高い導電性を有することが好ましい。  The deposition catalyst has a substrate and an active component deposited and held on the substrate. In order to electrically connect the active component, the substrate preferably has high conductivity.
[0041] 基体は、高い導電性を有する炭素系基体が好適である。 [0041] The substrate is preferably a carbon-based substrate having high conductivity.
[0042] 炭素系基体は、特に制限はないが、例えば、カーボンブラック、カーボンナノチュー ブ、カーボンナノホーン、カーボンナノクラスター、フラーレン、熱分解炭素、活性炭 素等であってもよい。炭素系基体は、気相法による気相成長炭素繊維 (Vapor Gro wn Carbon Fiber :以下「VGCF」と略すこともある。)であってもよぐ特に、熱処 理して電気伝導性を高めた VGCFは適度な弾性を持ち、好適である。  [0042] The carbon-based substrate is not particularly limited, and may be, for example, carbon black, carbon nanotube, carbon nanohorn, carbon nanocluster, fullerene, pyrolytic carbon, activated carbon or the like. The carbon-based substrate may be vapor grown carbon fiber (Vapor Grown Carbon Fiber: hereafter may be abbreviated as “VGCF”), especially by heat treatment to increase electrical conductivity. VGCF has suitable elasticity and is suitable.
[0043] これらの炭素系基体の中でも、導電性、入手容易性、価格、の点で総合的に、カー ボンブラックが工業的に有利である。カーボンブラックとしては、チャンネルブラック、 ファーネスブラック、サーマルブラック、アセチレンブラック、オイルファーネスブラック 、ガスファーネスブラック等が挙げられる。これらの炭素系基体は 1種を単独であるい は 2種以上を組み合わせて使用することができる。 [0043] Among these carbon-based substrates, carbon black is industrially advantageous in terms of conductivity, availability, and cost. Examples of carbon black include channel black, furnace black, thermal black, acetylene black, oil furnace black, and gas furnace black. These carbon-based substrates can be used alone Can be used in combination of two or more.
[0044] 基体の比表面積は、特に制限が無レ、が、通常 5m2/g以上、好ましくは 100m2/g 以上、更に好ましくは 150m2/g以上で、通常 5000m2/g以下、好ましくは 2000m2 /g以下であることが好ましい。この比表面積が小さ過ぎると活性成分の被着有効面 積が少なくなることにより、反応場が少なくなつて触媒活性が十分に得られなくなる。 また比表面積が過度に大きいものは基体の細孔径が小さい場合があり、その小さな 細孔内に活性成分が被着しても触媒活性が十分に得られなくなる。なお基体の比表 面積は BET法で測定される。 [0044] The specific surface area of the substrate is not particularly limited, but is usually 5 m 2 / g or more, preferably 100 m 2 / g or more, more preferably 150 m 2 / g or more, usually 5000 m 2 / g or less, preferably Is preferably 2000 m 2 / g or less. If this specific surface area is too small, the effective area for depositing the active ingredient will be reduced, and the catalytic field will not be sufficiently obtained as the reaction field is reduced. In addition, when the specific surface area is excessively large, the pore diameter of the substrate may be small, and even if an active component is deposited in the small pores, sufficient catalytic activity cannot be obtained. The specific surface area of the substrate is measured by the BET method.
[0045] また基体の形態についても特に制限はないが、最も一般的に用いられるのは、粉 体状のものである。  [0045] The form of the substrate is not particularly limited, but the most commonly used is a powder form.
[0046] 〈基体への活性成分の被着〉  <Adhesion of active ingredient to substrate>
本発明において、基体に活性成分が被着されている状態とは、活性成分と基体と の間の導電性がとれるように両者が接触している状態を指す。従って、活性成分と基 体とを単に混合するのみでも活性成分を基体に被着させることができるが、後述のよ うに、活性成分の供給化合物と基体を混合した後、この混合物を焼成して被着させる ことが好ましい。また、基体と活性成分とを混合した後焼成しても良い。なお、以下に ぉレ、て、基体に活性成分の供給化合物又は活性成分を混合後焼成して活性成分を 被着させた状態を「担持」と称す。  In the present invention, the state in which the active ingredient is adhered to the substrate refers to a state in which both are in contact with each other so as to obtain electrical conductivity between the active component and the substrate. Accordingly, the active ingredient can be applied to the substrate simply by mixing the active ingredient and the base. However, as described later, after mixing the active ingredient supply compound and the substrate, the mixture is calcined. It is preferable to deposit. Alternatively, the substrate and the active component may be mixed and then fired. Hereinafter, the state in which the active ingredient supply compound or the active ingredient is mixed with the substrate and then fired and the active ingredient is deposited is referred to as “supporting”.
[0047] 基体に被着された活性成分の形状としては特に制限はないが、最も一般的なのは 粒子状である。粒子状の活性成分は、その平均粒径が通常 100 / m以下、好ましく は 1000應以下、より好ましくは 500應以下、中でも 300應以下であり、通常 0. 5n m以上、好ましくは 1. Onm以上、より好ましくは 2. Onm以上であることが望ましい。 活性成分の粒径がこの範囲を下回ると不安定となって、失活しゃすくなり、この範囲 を超えると高い活性を得にくくなる。  [0047] The shape of the active ingredient attached to the substrate is not particularly limited, but the most common is a particulate form. The particulate active ingredient has an average particle size of usually 100 / m or less, preferably 1000 or less, more preferably 500 or less, and most preferably 300 or less, usually 0.5 nm or more, preferably 1. Onm Above, more preferably 2. Onm or more is desirable. If the particle size of the active ingredient is below this range, it becomes unstable and becomes inactive, and if it exceeds this range, it becomes difficult to obtain high activity.
[0048] なお、基体に被着された活性成分の平均粒径は、走查型電子顕微鏡(SEM)或い は透過型電子顕微鏡 (TEM)により、粒子の長さを測定する方向を統一して、その方 向での粒子長さを測定し、これを平均した値で示される。  [0048] The average particle diameter of the active ingredient deposited on the substrate is standardized in the direction in which the particle length is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). Then, the particle length in the direction is measured, and the average value is shown.
[0049] このような小さめの平均粒径の活性成分を基体に被着させるには、後述の如ぐそ の製造方法を工夫すれば良い。中でも、基体と活性成分とを混合した後の焼成温度 を低めとし、焼成時間を短めにすることによって、結晶成長の状態を制御することが 好ましい。 [0049] In order to deposit an active ingredient having such a small average particle diameter on a substrate, the following What is necessary is just to devise the manufacturing method. In particular, it is preferable to control the crystal growth state by lowering the firing temperature after mixing the substrate and the active component and shortening the firing time.
[0050] 活性成分の基体への被着比率を示す活性成分 Z (活性成分 +基体)の重量比は 、特に限定されるものではなレ、が、通常 10_5以上、好ましくは 0. 001以上、より好ま しくは 0. 01以上、中でも 0. 05以上で、通常 0. 95以下、好ましくは 0. 4以下、中で も 0. 3以下であることが望ましい。活性成分の被着比率がこの範囲を下回ると所望の 活性が得られず、この範囲を超えると被着による活性の向上効果が出にくくなる。 [0050] The weight ratio of the active ingredient shows the deposition ratio to the substrate of the active ingredient Z (active ingredient + substrate), such is limited to a particular record, but usually 10_ 5 or more, preferably 0.001 or more More preferably, it is 0.01 or more, particularly 0.05 or more, usually 0.95 or less, preferably 0.4 or less, and more preferably 0.3 or less. If the deposition ratio of the active ingredient is less than this range, the desired activity cannot be obtained, and if it exceeds this range, the activity improvement effect due to deposition is less likely to occur.
[0051] 〈その他の触媒成分〉  [0051] <Other catalyst components>
本発明においては、本発明の効果を損なわない限り、基体にさらに遷移金属が被 着されてもよい。  In the present invention, a transition metal may be further deposited on the substrate as long as the effects of the present invention are not impaired.
[0052] この遷移金属(以下「他の触媒成分」と称す場合がある)は、周期律表の IIIA〜VIIA 族、 VIII族、及び IB族の第 4周期から第 6周期に属する元素であり、チタン (Ti)、バナ ジゥム (V)、クロム (Cr)、マンガン (Mn)、鉄(Fe)、 コノくルト (Co)、ニッケル(Ni)、銅 (Cu)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ランタン (La)、ユウ口ピウム(Eu)、金(Au)、セリウム(Ce)、タンタノレ (Ta)、タングステン (W) 、レニウム(Re)、プラセォジゥム(Pr)、ネオジム(Nd)が例示される。遷移金属は、下 記電気化学平衡式  [0052] This transition metal (hereinafter sometimes referred to as “other catalyst component”) is an element belonging to the fourth to sixth periods of groups IIIA to VIIA, VIII, and IB of the periodic table. , Titanium (Ti), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Konolt (Co), Nickel (Ni), Copper (Cu), Yttrium (Y), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo), Lanthanum (La), Palladium (Eu), Gold (Au), Cerium (Ce), Tantanole (Ta), Tungsten (W), Rhenium (Re) , Praseodymium (Pr), neodymium (Nd). Transition metals have the following electrochemical equilibrium formula
酸化体 + ne— =還元体  Oxidized body + ne— = reduced form
で示される、水溶液中での標準電極電位 E° (25°C)の値がプラスであるものが望まし レ、。これは、金属本来の性質として酸化による溶出が起こり難ぐそれに起因する触 媒の劣化が少ないからである。このような遷移金属としては、具体的には、金、銀等が 挙げられる。  It is desirable that the standard electrode potential E ° (25 ° C) in the aqueous solution is positive. This is because elution due to oxidation is difficult to occur as a natural property of metals, and there is little deterioration of the catalyst due to it. Specific examples of such transition metals include gold and silver.
[0053] ただし、より工業的に有利な触媒とするには、上記の中で高価な触媒成分をなるベ く少なくする方が良い。  [0053] However, in order to make the catalyst more industrially advantageous, it is better to reduce the number of expensive catalyst components in the above.
[0054] 遷移金属として白金 (Pt)を併用することも可能である力 白金は高価であるため、 添加量は少量であることが望ましい。 白金を添加する場合、具体的には、白金成分 の合計 Z活性成分の重量比は、通常 0. 001以上、好ましくは 0. 01以上、中でも 0. 05以上で、通常 0. 4以下、好ましくは 0. 3以下、中でも 0. 2以下が好ましい。 [0054] Platinum (Pt) can be used in combination as a transition metal. Platinum is expensive, so it is desirable to add a small amount. In the case of adding platinum, specifically, the weight ratio of the total Z active component of the platinum component is usually 0.001 or more, preferably 0.01 or more, and more preferably 0.00. It is 05 or more, usually 0.4 or less, preferably 0.3 or less, and more preferably 0.2 or less.
[0055] なお、以下に主な遷移金属の電気化学平衡式と標準電極電位 E° (25°C)を示す [0055] The following shows the electrochemical equilibrium equation of main transition metals and the standard electrode potential E ° (25 ° C).
[0056] [表 1] [0056] [Table 1]
Figure imgf000014_0001
Figure imgf000014_0001
[0057] これらの他の触媒成分としての遷移金属は 1種を単独で用いても良ぐ 2種以上を 併用しても良い。 [0057] These transition metals as other catalyst components may be used alone or in combination of two or more.
[0058] 遷移金属と活性成分とを併用する具体例としては、次の i) V)が挙げられる。  [0058] Specific examples in which the transition metal and the active component are used in combination include the following i) V).
i) 活性成分と共に他の触媒成分を基体に混合する。  i) The active ingredient is mixed with other catalyst components to the substrate.
ii) 活性成分と共に他の触媒成分を基体に担持する。  ii) Other catalyst components are supported on the substrate together with the active components.
iii) 基体に担持した活性成分を、他の触媒成分と混合する。  iii) The active component supported on the substrate is mixed with other catalyst components.
iv) 他の基体に担持した他の触媒成分を、活性成分と混合する。  iv) The other catalyst component supported on the other substrate is mixed with the active component.
V) 他の基体に担持した他の触媒成分を、基体に担持した活性成分と混合する。  V) The other catalyst component supported on the other substrate is mixed with the active component supported on the substrate.
[0059] 遷移金属の合計 Z活性成分の重量比は、通常 0. 001以上、好ましくは 0. 01以上 、中でも 0. 05以上であり、通常 0. 5以下、好ましくは 0. 4以下、中でも 0. 3以下が好 ましレ、。この重量比がこの範囲を下回ると所望の活性が得られにくぐこの範囲を超え ると活性の向上効果が出にくくなる。 [0059] The weight ratio of the total Z active components of the transition metals is usually 0.001 or more, preferably 0.01 or more. In particular, it is 0.05 or more, usually 0.5 or less, preferably 0.4 or less, and more preferably 0.3 or less. If this weight ratio is less than this range, it is difficult to obtain the desired activity.
[0060] 遷移金属は粉体状であることが好ましレ、。この粉体の平均粒径は、通常 lOOOnm 以下、好ましくは 500nm以下、中でも 300nm以下であり、通常 0. 5nm以上であるこ とが好ましい。平均粒径がこの範囲を下回ると触媒が不安定となって失活しゃすくな り、この範囲を超えると高い活性を得にくくなる。 [0060] The transition metal is preferably in the form of powder. The average particle size of this powder is usually lOOOnm or less, preferably 500 nm or less, more preferably 300 nm or less, and usually 0.5 nm or more. If the average particle size is below this range, the catalyst becomes unstable and the catalyst becomes inactive, and if it exceeds this range, it is difficult to obtain high activity.
[0061] なお、本発明の燃料電池用触媒においては、上記遷移金属元素以外の金属成分が[0061] Note that, in the fuel cell catalyst of the present invention, a metal component other than the transition metal element is present.
、活性成分の重量を基準に数重量%以下の量で含まれてレ、てもよレ、。 Included in amounts of several weight percent or less based on the weight of the active ingredient.
[0062] 活性成分と遷移金属とを含んだ触媒、とりわけ、活性成分及び遷移金属が基体に 担持された触媒は、触媒活性が高い。これは、遷移金属が活性成分の助触媒として 機能し、活性が向上するためであると推定される。 [0062] A catalyst containing an active component and a transition metal, in particular, a catalyst having an active component and a transition metal supported on a substrate has high catalytic activity. This is presumably because the transition metal functions as a co-catalyst for the active ingredient and the activity is improved.
[0063] 〈純触媒の製造〉 <Manufacture of pure catalyst>
基体に被着されていない活性成分のみで構成される第 1態様の純触媒の合成方 法については特に制限はなぐ公知の任意の方法によって行うことができる。  The method for synthesizing the pure catalyst according to the first embodiment composed only of the active component not deposited on the substrate can be carried out by any known method without particular limitation.
[0064] 例えば、活性成分となる元素の供給化合物、即ち活性成分の前駆体を所定のモル 比で、水等の溶媒に溶解或いは分散させ、濾過或いは溶媒を留去した後、必要に応 じて前駆体を活性化する工程 (例えば還元処理)を施して調製される。 [0064] For example, an element supply compound serving as an active ingredient, that is, a precursor of the active ingredient, is dissolved or dispersed in a solvent such as water at a predetermined molar ratio, and after filtration or evaporation of the solvent, as necessary. And a step of activating the precursor (for example, reduction treatment).
[0065] 各元素の前駆体としては加熱分解可能なものであれば特に制限はなレ、。テルル前 駆体としては、テルルパウダー(Te)の他、 TeCl , TeBr , TeCl等のハロゲン化物、[0065] The precursor of each element is not particularly limited as long as it can be thermally decomposed. Tellurium precursors include tellurium powder (Te), halides such as TeCl, TeBr, TeCl,
TeO , TeO等の酸化物、 H TeO , H TeO等のォキソ酸等の無機塩が挙げられる Inorganic salts such as oxides such as TeO and TeO and oxoacids such as H TeO and H TeO
[0066] また、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジゥ ム (Ir)の前駆体としては、これらのハロゲン化物、酸化物、無機塩、有機酸塩等の他 、有機化合物と結合する化合物等が挙げられる。ルテニウム化合物としては、具体的 には RuCl ·χΗ 0, RuBr等のハロゲン化物, Ru (SO ) , Ru(N〇)(NO ) K RuO ·[0066] In addition, precursors of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) include halides, oxides, inorganic salts, and organic acid salts thereof. In addition to the above, a compound that binds to an organic compound, and the like can be given. Specific examples of ruthenium compounds include RuCl · χΗ 0, halides such as RuBr, Ru (SO), Ru (N〇) (NO) K RuO ·
H〇等の無機塩, Ru (OCH CO) 等の有機酸塩、ルテニウムァセチルァセトネートInorganic salts such as HO, organic acid salts such as Ru (OCH CO), ruthenium acetyl acetylate
2 2 3 4 2 2 3 4
(Ru(acac) )等の有機化合物が挙げられる。ロジウム化合物としては、 RhCl ·χΗ〇, RhBr等のハロゲン化物, KRh (SO ) · 12Η O, Rh (NO ) · 2Η O等の無機塩, RAnd organic compounds such as (Ru (acac)). Rhodium compounds include RhCl · χΗ〇, Halides such as RhBr, inorganic salts such as KRh (SO) · 12Η O, Rh (NO) · 2Η O, R
3 4 2 2 3 3 2 3 4 2 2 3 3 2
h (〇CH CO)等の有機酸塩が挙げられる。パラジウム化合物としては、 PdCl , PdC  Organic salts such as h (○ CH CO) are listed. PdCl, PdC as palladium compounds
3 3 2  3 3 2
1 · 2Η〇, PdF, PdCl, K PdCl, K PdCl等のハロゲン化物, Pd (NO )等の無 1 · 2Η〇, Halides such as PdF, PdCl, K PdCl, K PdCl, Pd (NO), etc.
2 2 2 4 2 4 2 6 3 2 機塩, Pd (〇CH CO)等の有機酸塩が挙げられる。ォスミニゥム化合物としては、 Os 2 2 2 4 2 4 2 6 3 2 Organic salts such as organic salt and Pd (〇CH CO). Osminium compounds include Os
3 2  3 2
C1, K OsCl等のハロゲン化物,〇s〇等の酸化物が挙げられる。イリジウム化合物 Halides such as C1, K 2 OsCl, and oxides such as ○ s ○. Iridium compounds
3 2 6 2 3 2 6 2
としては、 IrCl, IrBr等のハロゲン化物, IrO等の酸化物, Ir (SO )等の無機塩等  For example, halides such as IrCl and IrBr, oxides such as IrO, and inorganic salts such as Ir (SO)
3 3 2 4 2  3 3 2 4 2
が挙げられる。  Is mentioned.
[0067] これらの前駆体は 1種を単独で用いても良ぐ 2種以上を混合して用いても良い。  [0067] These precursors may be used singly or in combination of two or more.
[0068] RuTe純触媒を製造するには、例えば、 RuCl又は Ru (acac) と H TeOを所望 [0068] To produce a pure RuTe catalyst, for example, RuCl or Ru (acac) and H TeO are desired.
X 3 3 6 6 のモル比(RuCl、 Ru (acac) 等に対する H TeOのモル比は、通常 0. 2以上、好ま  X 3 3 6 6 molar ratio (H TeO molar ratio relative to RuCl, Ru (acac) etc. is usually 0.2 or more, preferably
3 3 6 6  3 3 6 6
しくは 1以上、通常 10以下、好ましくは 4以下)に応じた配合比で水に溶解させ、所定 の時間(通常 10分以上、好ましくは 30分以上、通常 50時間以下、好ましくは 30時間 以下)放置した後、必要であれば所定の温度(通常 60°C以上、好ましくは 100°C以 上、通常 300°C以下、好ましくは 200°C以下)で所定の時間(通常 10分以上、好まし くは 30分以上、通常 50時間以下、好ましくは 30時間以下)加熱或いは還流し、その 後、エバポレーターにより沈殿物を取得する。これを室温で風乾後、窒素、アルゴン 等の不活性ガス雰囲気下所定の時間(通常 10分以上、好ましくは 30分以上、通常 5 0時間以下、好ましくは 30時間以下)、所定の温度(通常 100°C以上、好ましくは 200 °C以上、通常 1000°C以下、好ましくは 800°C以下)で乾燥処理する。次いで、所定 の時間(通常 10分以上、好ましくは 30分以上、通常 50時間以下、好ましくは 30時間 以下)、所定の温度(通常 100°C以上、好ましくは 200°C以上、更に好ましくは 300°C 以上、通常 1000°C以下、好ましくは 800°C以下)で水素を含む気流下(窒素或いは Ar等の不活性ガスを混合しても良ぐ不活性ガス中の水素濃度としては特に制限は ないが、 1%以上、好ましくは 10%以上、 100%以下、或いは 80。/o以下)で加熱する 。これにより、 Ru及び Teを含有する活性成分、即ち純触媒を得ることができる。  1 or more, usually 10 or less, preferably 4 or less) and dissolved in water for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less). ) After standing, if necessary, at a predetermined temperature (usually 60 ° C or higher, preferably 100 ° C or higher, usually 300 ° C or lower, preferably 200 ° C or lower) for a predetermined time (usually 10 minutes or longer, (Preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less) Heat or reflux, and then obtain a precipitate with an evaporator. This is air-dried at room temperature, and then in an inert gas atmosphere such as nitrogen or argon for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), a predetermined temperature (usually 100 ° C or higher, preferably 200 ° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower). Then, for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), a predetermined temperature (usually 100 ° C or more, preferably 200 ° C or more, more preferably 300 The hydrogen concentration in an inert gas that can be mixed with an inert gas such as nitrogen or Ar under a flow of hydrogen (° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower) 1% or more, preferably 10% or more, 100% or less, or 80./o or less). Thereby, an active component containing Ru and Te, that is, a pure catalyst can be obtained.
[0069] RuTe以外の純触媒も同様にして製造することができる。 [0069] Pure catalysts other than RuTe can be produced in the same manner.
X  X
[0070] この後、更に、低酸素濃度 (例えば、 5重量%以下、中でも 2重量%以下程度の酸 素濃度)の不活性ガス雰囲気中で、所定時間(通常数 10分以上、好ましくは 30分以 上、通常 10時間以下、中でも 5時間以下)で、所定の温度(通常は、室温付近)で処 理することにより不動態膜を形成させる不動態化処理を行っても良い。 [0070] Thereafter, in an inert gas atmosphere having a low oxygen concentration (for example, an oxygen concentration of about 5 wt% or less, especially about 2 wt% or less) for a predetermined time (usually several tens of minutes or more, preferably 30 Minutes or less In addition, a passivation treatment may be performed to form a passive film by treatment at a predetermined temperature (usually around room temperature) usually for 10 hours or less, particularly 5 hours or less.
[0071] 〈被着触媒の製造〉  <Manufacture of a coated catalyst>
第 2態様の被着触媒は、活性成分を基体に被着することにより製造される。ここで、 基体への活性成分の被着は、例えば、活性成分或いは活性成分の前駆体を基体と 混合して焼成する担持法のほか、活性成分と基体とを単に混合する混合法、その他 含浸法、沈殿法、吸着法等の公知の手法によって行うことができる。  The deposition catalyst of the second embodiment is produced by depositing an active component on a substrate. Here, the active component may be applied to the substrate by, for example, a loading method in which the active component or a precursor of the active component is mixed and baked with the substrate, a mixing method in which the active component and the substrate are simply mixed, and other impregnations. It can carry out by well-known methods, such as a method, a precipitation method, an adsorption method.
[0072] 例えば、被着触媒は、各元素の前駆体を所望のモル比で、水溶液等の溶媒に溶 解或いは分散させ、この液を基体に含浸させるか、この液中に基体を浸漬させた後、 濾過或いは溶媒を留去することにより基体上に前駆体を被着させ、必要に応じて活 性成分の前駆体を活性化する工程 (例えば還元処理)を施して調製される。尚、活性 成分の前駆体は、純触媒の製造に用いられる化合物と同様の化合物を用いることが できる。中でもルテニウム前駆体としては RuCl ·χΗ 0 ac) Ru(NO)(NO )  [0072] For example, in the deposited catalyst, the precursor of each element is dissolved or dispersed in a solvent such as an aqueous solution at a desired molar ratio, and the substrate is impregnated with the substrate, or the substrate is immersed in the solution. Thereafter, the precursor is deposited on the substrate by filtering or distilling off the solvent, and if necessary, a step of activating the precursor of the active component (for example, reduction treatment) is performed. As the active component precursor, the same compounds as those used in the production of the pure catalyst can be used. Among them, the ruthenium precursor is RuCl · χΗ 0 ac) Ru (NO) (NO)
3 2 、 Ru (ac  3 2, Ru (ac
3、 3 3 が好ましぐテルノレ前駆体としては H TeOが好ましい。  As a ternole precursor with 3 and 3 3 being preferred, H TeO is preferred.
6 6  6 6
[0073] 活性成分として Ruと Teを含む被着触媒の製造法の一例を次に説明する。 RuCl  [0073] An example of a method for producing a deposition catalyst containing Ru and Te as active components will be described below. RuCl
3 又は Ru (acac) と H TeOを所望とするモル比に応じた配合比(RuCl、 Ru (acac)  3 or the mixing ratio of Ru (acac) and H TeO depending on the desired molar ratio (RuCl, Ru (acac)
3 6 6 3 3 等に対する H TeOのモル比は、通常 0. 2以上、好ましくは 1以上、通常 10以下、好  The molar ratio of H TeO to 3 6 6 3 3 etc. is usually 0.2 or more, preferably 1 or more, usually 10 or less, preferably
6 6  6 6
ましくは 4以下)で水に溶解させ、これにカーボンブラック等の基体を所定量混合し、 所定の時間(通常 10分以上、好ましくは 30分以上、通常 50時間以下、好ましくは 30 時間以下)放置する。尚、この放置の際、超音波処理を行っても良レ、。次に必要であ れば所定の温度(通常 60°C以上、好ましくは 100°C以上、通常 300°C以下、好ましく は 200°C以下)で所定の時間(通常 10分以上、好ましくは 30分以上、通常 50時間 以下、好ましくは 30時間以下)加熱或いは還流する。その後、濾過或いはエバポレ 一ターにより沈殿物を取得する。これを室温で風乾する。次いで、窒素、アルゴン等 の不活性ガス雰囲気下所定の時間(通常 10分以上、好ましくは 30分以上、通常 50 時間以下、好ましくは 30時間以下)、所定の温度(通常 100°C以上、好ましくは 200 °C以上、通常 1000°C以下、好ましくは 800°C以下)で乾燥処理後、所定の時間(通 常 10分以上、好ましくは 30分以上、通常 50時間以下、好ましくは 30時間以下)、所 定の温度(通常 100°C以上、好ましくは 200°C以上、更に好ましくは 300°C以上、通 常 1000°C以下、好ましくは 800°C以下)で水素を含む気流下(窒素或いは Ar等の 不活性ガスを混合しても良ぐ不活性ガス中の水素濃度としては特に制限はないが、 1%以上、好ましくは 10%以上、 100%以下、或いは 80%以下)で加熱する。これに より、 Ru及び Teを含有する活性成分が基体に担持された被着触媒が得られる。 It is preferably dissolved in water at 4 or less), and a predetermined amount of a substrate such as carbon black is mixed with this, and a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less). )put. It should be noted that ultrasonic treatment may be performed when left unattended. Next, if necessary, the temperature is usually 60 ° C or higher, preferably 100 ° C or higher, usually 300 ° C or lower, preferably 200 ° C or lower, for a predetermined time (usually 10 minutes or longer, preferably 30 ° C). Min., Usually 50 hours or less, preferably 30 hours or less). Heat or reflux. Then, the precipitate is obtained by filtration or evaporator. This is air dried at room temperature. Next, under an inert gas atmosphere such as nitrogen or argon for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), a predetermined temperature (usually 100 ° C or more, preferably After drying at 200 ° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower, and then for a predetermined time (usually 10 minutes or longer, preferably 30 minutes or longer, usually 50 hours or shorter, preferably 30 hours or shorter) ) At a constant temperature (usually 100 ° C or higher, preferably 200 ° C or higher, more preferably 300 ° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower) under an air stream containing hydrogen (such as nitrogen or Ar) There is no particular limitation on the hydrogen concentration in the inert gas that can be mixed with the above inert gas, but it is heated at 1% or more, preferably 10% or more, 100% or less, or 80% or less. As a result, an adherent catalyst in which an active component containing Ru and Te is supported on a substrate is obtained.
[0074] その後、更に、低酸素濃度 (例えば、 5重量%以下、中でも 2重量%以下程度の酸 素濃度)の不活性ガス雰囲気中で、所定時間(通常数 10分以上、好ましくは 30分以 上、通常 10時間以下、中でも 5時間以下)で、所定の温度(通常は、室温付近)で処 理することにより不動態膜を形成させる不動態化処理を行うこともできる。  [0074] After that, in an inert gas atmosphere with a low oxygen concentration (for example, an oxygen concentration of about 5 wt% or less, especially about 2 wt% or less) for a predetermined time (usually several tens of minutes, preferably 30 minutes). The passivation treatment can be performed to form a passive film by treatment at a predetermined temperature (usually around room temperature) usually for 10 hours or less, particularly 5 hours or less.
[0075] また、活性成分を、前記した公知の方法により予め調製し、これを基体と混合し、乳 鉢等で混練することにより、活性成分を基体に被着させることもできる。この混合は、 乾式でも湿式でも良いが、好ましくは水等の媒体を用いて湿式混合し、その後 100 〜200°C程度で乾燥することが好ましい。  [0075] Further, the active ingredient can be applied to the substrate by preparing the active ingredient in advance by the above-mentioned known method, mixing it with a substrate, and kneading the mixture in a mortar or the like. This mixing may be dry or wet, but is preferably wet mixed using a medium such as water and then dried at about 100 to 200 ° C.
[0076] 上記した触媒の製造方法の中でも、炭素系基体と、活性成分及び活性成分の前駆 体から選ばれるものとを混合した後に、焼成する担持法が好ましい。この焼成は、得 られる触媒の活性を向上させることができる。このように焼成を行うことにより活性を向 上させることができる理由については必ずしも明らかではなレ、が、炭素系基体に活性 成分が被着しているので、焼成時に活性成分のシンタリングが押さえられ、活性が向 上することによるちのと推定される。  [0076] Among the above-described catalyst production methods, a support method in which a carbon-based substrate and an active component and a precursor selected from active component precursors are mixed and then calcined is preferable. This calcination can improve the activity of the resulting catalyst. The reason why the activity can be improved by firing in this way is not necessarily clear, but since the active component is deposited on the carbon-based substrate, sintering of the active component is suppressed during firing. It is presumed that the activity is enhanced.
[0077] 活性成分と共に前述の遷移金属を基体に被着させる場合、活性成分の被着工程 において同時に遷移金属を被着させても良ぐ活性成分の被着工程の前、又は後に 遷移金属を被着させても良い。なお、ここで、「活性成分の被着工程」とは、活性成分 を被着させるための処理過程、即ち、活性成分前駆体の添加から活性成分を与える 迄の過程全体を包含する。  [0077] When the above-mentioned transition metal is applied to the substrate together with the active component, the transition metal may be added before or after the active component deposition step, which may be performed simultaneously with the active component deposition step. It may be deposited. Here, the “active component deposition step” includes the entire process from the addition of the active component precursor to the provision of the active component, that is, the process for depositing the active component.
[0078] 基体に遷移金属を被着するための遷移金属の前駆体としては、酸化物の他、硝酸 塩、硫酸塩、炭酸塩等の無機酸塩、酢酸塩等の有機酸塩、ハロゲン化物、水素化物 、カルボニル化合物、ァミン化合物、ォレフィン配位化合物、ホスフィン配位化合物又 はホスファイト配位化合物等が挙げられる。これらは 1種を単独で用いても良ぐ 2種 以上を併用しても良い。 [0078] Examples of the transition metal precursor for depositing the transition metal on the substrate include oxides, inorganic acid salts such as nitrates, sulfates, and carbonates, organic acid salts such as acetates, and halides. Hydrides, carbonyl compounds, ammine compounds, olefin coordination compounds, phosphine coordination compounds or phosphite coordination compounds. These can be used alone or in combination. You may use the above together.
[0079] 活性成分と共に遷移金属を基体に被着させるには、例えば、先に記載した方法で 合成した Ru及び Teを含有する活性成分を基体に担持させた触媒に、塩化物等の遷 移金属化合物を溶解した溶液を加えて所定の時間(通常 10分以上、好ましくは 30 分以上、通常 50時間以下、好ましくは 30時間以下)放置した後、溶媒をエバポレー ターにより留去する。尚、この放置の際、超音波処理を行っても良い。次に、水素を 含む気流下(窒素或いは Ar等の不活性ガスを混合しても良ぐ不活性ガス中の水素 濃度としては特に制限はないが、 1%以上、好ましくは 10%以上、 100%以下、或い は 80%以下)、所定の温度(通常 100°C以上、好ましくは 150°C以上、通常 800°C以 下、好ましくは 500°C以下)で所定の時間(通常 10分以上、好ましくは 30分以上、通 常 50時間以下、好ましくは 30時間以下)加熱する。これにより、 Ru及び Teを含有す る活性成分と遷移金属が共に基体に担持された被着触媒が得られる。  [0079] In order to deposit the transition metal together with the active component on the substrate, for example, the transition of chloride or the like to the catalyst in which the active component containing Ru and Te synthesized by the above-described method is supported on the substrate. The solution in which the metal compound is dissolved is added and allowed to stand for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), and then the solvent is distilled off with an evaporator. In this case, ultrasonic treatment may be performed. Next, the hydrogen concentration in the inert gas that can be mixed with an inert gas such as nitrogen or Ar is not particularly limited, but it is 1% or more, preferably 10% or more, 100% % Or less or 80% or less) at a predetermined temperature (usually 100 ° C or higher, preferably 150 ° C or higher, usually 800 ° C or lower, preferably 500 ° C or lower) for a predetermined time (usually 10 minutes) (Above, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less). As a result, it is possible to obtain a deposited catalyst in which an active component containing Ru and Te and a transition metal are both supported on a substrate.
[0080] その後、更に、低酸素濃度(例えば、 5重量%以下、中でも 2重量%以下程度の酸 素濃度)の不活性ガス雰囲気中で、所定時間(通常数 10分以上、好ましくは 30分以 上、通常 10時間以下、中でも 5時間以下)で、所定の温度(通常は、室温付近)で処 理することにより不動態膜を形成させる不動態化処理を行うこともできる。  [0080] Thereafter, in an inert gas atmosphere having a low oxygen concentration (for example, an oxygen concentration of about 5 wt% or less, especially about 2 wt% or less) for a predetermined time (usually several tens of minutes, preferably 30 minutes). The passivation treatment can be performed to form a passive film by treatment at a predetermined temperature (usually around room temperature) usually for 10 hours or less, particularly 5 hours or less.
[0081] なお、前述の如ぐ遷移金属は、そのまま活性成分を被着した基体と混合して用い ても良く、また、遷移金属を被着した基体に、活性成分を混合して用いても良い。  [0081] The transition metal as described above may be used as it is by mixing it with the substrate on which the active component is applied, or may be used by mixing the active component with the substrate on which the transition metal is applied. good.
[0082] [燃料電池用電極及び燃料電池]  [Electrode for fuel cell and fuel cell]
本発明の燃料電池用電極は、上記した本発明の燃料電池用触媒を含有する。また 、本発明の燃料電池は、このような本発明の燃料電池用電極を用いる。  The fuel cell electrode of the present invention contains the above-described fuel cell catalyst of the present invention. The fuel cell of the present invention uses such a fuel cell electrode of the present invention.
[0083] 本発明に係る燃料電池は、前述の如くアノードに燃料、力ソードに酸化剤を供給し アノードと力ソード間の電位差を電圧として取り出し、負荷に電力を供給する。この発 電装置は、アノード極と、力ソード極と、その間に挟まれた電解質とを有する。固体高 分子型燃料電池においては、電解質としてイオン交換膜が用いられる。固体高分子 型燃料電池は、燃料として水素を用いる PEFC型燃料電池、及びメタノールと水を用 いる直接メタノール型燃料電池 (DMFC, Direct Methanol Fuel Cell)の双方を 含む。 [0084] 電解質としてのイオン交換膜の両面に触媒層が形成され、該触媒層の外側にそれ ぞれガス拡散層が形成された PEFC型燃料電池の場合、アノードガス拡散層及び力 ソードガス拡散層が一体に形成されてなる電解質膜/電極接合体が用いられる。 D MFC型燃料電池の場合、メタノール水溶液集電体及び力ソードガス拡散層が一体 に形成されてなる電解質膜/電極接合体が用いられる。電解質膜 Z電極接合体は その拡散層側に隔壁板が配置され、この隔壁板、電解質膜 Z電極接合体及び隔壁 板からなる単位セルが、用途に応じた所望の電圧になるまで複数積層して燃料電池 スタックを形成する。通常、単位セルが数十セル力 数百セル積層されて、燃料電池 スタックを形成する。 In the fuel cell according to the present invention, as described above, the fuel is supplied to the anode, the oxidant is supplied to the power sword, the potential difference between the anode and the power sword is taken out as a voltage, and the power is supplied to the load. This power generation device includes an anode electrode, a force sword electrode, and an electrolyte sandwiched therebetween. In a polymer electrolyte fuel cell, an ion exchange membrane is used as an electrolyte. Solid polymer fuel cells include both PEFC fuel cells that use hydrogen as the fuel and direct methanol fuel cells (DMFC) that use methanol and water. [0084] In the case of a PEFC type fuel cell in which a catalyst layer is formed on both surfaces of an ion exchange membrane as an electrolyte and a gas diffusion layer is formed outside the catalyst layer, an anode gas diffusion layer and a force sword gas diffusion layer An electrolyte membrane / electrode assembly in which is integrally formed is used. In the case of a D MFC type fuel cell, an electrolyte membrane / electrode assembly in which a methanol aqueous solution current collector and a force sword gas diffusion layer are integrally formed is used. In the electrolyte membrane Z electrode assembly, a partition plate is disposed on the diffusion layer side, and a plurality of unit cells including the partition plate, the electrolyte membrane Z electrode assembly, and the partition plate are stacked until a desired voltage corresponding to the application is obtained. To form a fuel cell stack. Normally, several tens of cells and several hundred cells are stacked to form a fuel cell stack.
[0085] この電解質膜/電極接合体の触媒層を形成する触媒として、前述の第 1及び第 2 態様のレ、ずれかの燃料電池用触媒が用レ、られる。  [0085] As the catalyst for forming the catalyst layer of the electrolyte membrane / electrode assembly, the fuel cell catalyst described in the first and second embodiments described above is used.
[0086] 電解質としてのイオン交換膜は、カチオン交換能があれば良いが、実用上、燃料電 池の使用温度である 80〜100°C程度での酸化還元雰囲気に長期に耐えることが望 まれることから、パーフルォロアルキルスルホン酸樹脂がもっぱら用いられている。具 体的には、ナフイオン (デュポン社製登録商標)、フレミオン (旭硝子社製登録商標)、 Aciplex (旭化成社製登録商標)等のパーフルォロアルキルスルホン酸樹脂膜が挙 げられる。  [0086] An ion exchange membrane as an electrolyte is only required to have a cation exchange capacity, but it is practically desired to withstand an oxidation-reduction atmosphere at a temperature of about 80 to 100 ° C, which is the operating temperature of the fuel cell. Therefore, perfluoroalkylsulfonic acid resins are exclusively used. Specific examples include perfluoroalkyl sulfonic acid resin membranes such as Nafion (registered trademark manufactured by DuPont), Flemion (registered trademark manufactured by Asahi Glass Co., Ltd.), Aciplex (registered trademark manufactured by Asahi Kasei Co., Ltd.), and the like.
[0087] イオン交換膜は、好ましくは、 10 μ ΐη程度以上、数 100 μ ΐη程度以下の厚さを有す る力 電気抵抗を下げるためにはより薄くすることが望ましい。ナフイオンを例に取ると 、厚み 120 /i m程度のナフイオン 115がよく使用される力 補強材を入れた 30〜50 z mの厚さの電解質膜が開発され始めており、これらのものも同様に用いることがで きる。  [0087] The ion exchange membrane preferably has a thickness of about 10 μΐη or more and about several hundreds μ。η or less. In order to reduce the electric resistance, it is desirable to make the ion exchange membrane thinner. Taking naphtho ions as an example, a force that often uses naphthion 115 with a thickness of about 120 / im is being developed. Electrolyte membranes with a thickness of 30 to 50 zm are being developed. I can do it.
[0088] PEFC型燃料電池の拡散層は、アノードでは水素、力ソードでは、空気を供給する と共に、発生した電圧を取り出すための集電体としての機能も併せ持つ。従って、拡 散層は好ましくは優れた電子伝導体でかつ水素、空気の両ガスが通流し、かつ使用 雰囲気に耐える材料で構成される。アノードガス拡散層及び力ソードガス拡散層を構 成する材料としては、厚みが、通常 100〜500 z m、好ましくは 100〜200 z m程度 の、カーボンペーパー、カーボンクロス等のカーボン多孔体が用いられる。 DMFC型 燃料電池のメタノール水溶液集電体の材料についても同様に、メタノール水溶液が 流通し、かつ使用雰囲気に耐える材料が選択され、厚みが、通常 100〜500 μ ΐη、 好ましくは 100〜200 μ m程度の、カーボンペーパー、カーボンクロス等のカーボン 多孔体が用いられる。 [0088] The diffusion layer of the PEFC type fuel cell supplies hydrogen at the anode and air at the power sword, and also has a function as a current collector for taking out the generated voltage. Therefore, the diffusion layer is preferably made of a material that is an excellent electronic conductor and that allows both hydrogen and air gases to flow and withstand the working atmosphere. As a material constituting the anode gas diffusion layer and the force sword gas diffusion layer, a carbon porous body such as carbon paper or carbon cloth having a thickness of usually about 100 to 500 zm, preferably about 100 to 200 zm is used. DMFC type Similarly, the material of the methanol aqueous solution current collector of the fuel cell is selected so that the methanol aqueous solution circulates and can withstand the use atmosphere, and the thickness is usually about 100 to 500 μΐη, preferably about 100 to 200 μm. Carbon porous materials such as carbon paper and carbon cloth are used.
[0089] 電解質膜/電極接合体を燃料電池に用いる際には、その背後に水素と空気が混 合しないように、通常、カーボン、場合によってはステンレス、チタン等の材料ででき た隔壁板が配置されるが、この隔壁板には、水素と空気の均一かつ安定供給を目的 とした溝を形成したものを用いることが一般的である。  [0089] When the electrolyte membrane / electrode assembly is used in a fuel cell, a partition plate made of a material such as carbon, or in some cases, stainless steel or titanium is usually used so that hydrogen and air do not mix behind it. However, it is common to use a partition plate in which grooves for the purpose of uniform and stable supply of hydrogen and air are formed.
[0090] 本発明の燃料電池の電解質膜/電極接合体を作製する方法としては特に制限は ないが、例えば次のような方法が挙げられる。  [0090] The method for producing the electrolyte membrane / electrode assembly of the fuel cell of the present invention is not particularly limited, and examples thereof include the following methods.
[0091] 力ソード側触媒層及びアノード側触媒層をイオン交換膜上に形成する方法の一例 について次に説明する。まず第 1又は第 2態様の燃料電池用触媒を、適当な容器に 入れ、 DuPont社の Nafion (登録商標)を溶解した Nafionの溶液(濃度 5重量%,ァ ルドリッチ製)及びアルコール、水等の媒体に分散させ触媒スラリーを調製する。この 際に分散を良好に進行させるために、超音波振動をかける方がより好ましい。この触 媒スラリー中の本発明の燃料電池用触媒の濃度は、所望の分散性を得るために、 1 〜50g/L程度であるのが好ましい。また、撥水性を持たせたり、触媒層の剥がれを 防ぐ等の目的でポリテトラフルォロエチレン(PTFE)等のバインダーをスラリー中に 3 〜30重量%程度の範囲でカ卩えることは勿論可能である。また、内容物を凝集させて 、ペースト化したい場合、エタノール、イソプロピルアルコールといった炭素数 2〜5、 好ましくは炭素数 2〜4程度の低級アルコール、或いはエチレングリコール等の炭素 数 2〜5、好ましくは炭素数 2〜4程度の多価アルコールを、水に対して 0. 25〜: 1. 0 の比になるように加えて凝集させることもできる。  Next, an example of a method for forming the force sword side catalyst layer and the anode side catalyst layer on the ion exchange membrane will be described. First, the fuel cell catalyst of the first or second embodiment is put in a suitable container, and a Nafion solution (concentration 5 wt%, manufactured by Aldrich) in which NaPoion (registered trademark) of DuPont is dissolved, alcohol, water, etc. A catalyst slurry is prepared by dispersing in a medium. In this case, it is more preferable to apply ultrasonic vibration in order to promote the dispersion well. The concentration of the fuel cell catalyst of the present invention in this catalyst slurry is preferably about 1 to 50 g / L in order to obtain the desired dispersibility. Of course, a binder such as polytetrafluoroethylene (PTFE) can be added to the slurry in the range of 3 to 30% by weight for the purpose of providing water repellency or preventing the catalyst layer from peeling off. Is possible. In addition, when the contents are agglomerated to make a paste, the alcohol has 2 to 5 carbon atoms such as ethanol or isopropyl alcohol, preferably a lower alcohol having about 2 to 4 carbon atoms, or 2 to 5 carbon atoms such as ethylene glycol, preferably A polyhydric alcohol having about 2 to 4 carbon atoms can be added to the water so as to have a ratio of 0.25 to 1.0, and can be aggregated.
[0092] このようにして得られる触媒スラリーをイオン交換膜、ガス拡散電極材又は転写用フ イルムの上に付着させた後、乾燥して力ソード側触媒層及びアノード側触媒層を形成 する。  [0092] The catalyst slurry thus obtained is deposited on an ion exchange membrane, a gas diffusion electrode material or a transfer film, and then dried to form a force sword side catalyst layer and an anode side catalyst layer.
[0093] 力ソード側触媒層及びアノード側触媒層は具体的には、それぞれ次の a) _d)のい ずれかの方法でイオン交換膜上、又は、ガス拡散電極材上に形成される。 a) 用いるイオン交換膜に触媒スラリーを吹き付けて乾燥する。 [0093] Specifically, the force sword side catalyst layer and the anode side catalyst layer are respectively formed on the ion exchange membrane or the gas diffusion electrode material by one of the following methods a) to d). a) Spray the catalyst slurry on the ion exchange membrane to be used and dry it.
b) カーボンペーパー等のガス拡散電極材に触媒スラリーを吹き付けて乾燥する。 c) テトラフルォロエチレン一へキサフルォロプロピレン共重合体(FEP)フィル ム等の転写用フィルム材上に触媒スラリーを吹き付けて (展開処理)乾燥し、転写用 フィルム面と反対側の面をナフイオン等の所望のイオン交換膜上に適宜圧接して触 媒層を転写する。  b) Spray the catalyst slurry on a gas diffusion electrode material such as carbon paper and dry. c) Spray catalyst slurry onto a transfer film material such as tetrafluoroethylene-hexafluoropropylene copolymer (FEP) film (development treatment) and dry it. The catalyst layer is transferred by appropriately pressing the surface onto a desired ion exchange membrane such as naphthion.
d) c)と同様に、 FEPフィルム上に触媒スラリーを展開処理した後、スラリー上に力 一ボンペーパー等のガス拡散電極材を被せて乾燥する。  d) As in c), after spreading the catalyst slurry on the FEP film, cover the slurry with a gas diffusion electrode material such as bonbon paper and dry.
[0094] 力ソード側触媒層及びアノード側触媒層のいずれにおいても、活性成分付着量(目 付量)は、通常 0. OlmgZcm2以上、好ましくは 0. lmg/cm2以上、通常 lg/cm2 以下、好ましくは 20mg/cm2以下、最も好ましくは 10mg/cm2以下程度である。こ の活性成分付着量がこの範囲よりも少ないと充分な触媒活性を得ることができず、こ の範囲よりも多いと電解質膜/電極接合体が形成し難くなる。 [0094] In both the force sword-side catalyst layer and the anode-side catalyst layer, the amount of active ingredient attached (amount per unit area) is usually 0. OlmgZcm 2 or more, preferably 0.1 lmg / cm 2 or more, usually lg / cm. It is 2 or less, preferably 20 mg / cm 2 or less, and most preferably 10 mg / cm 2 or less. If the amount of the active component attached is less than this range, sufficient catalytic activity cannot be obtained, and if it is more than this range, it is difficult to form an electrolyte membrane / electrode assembly.
[0095] 触媒層をイオン交換膜上に形成してからアノードガス拡散層材または力ソードガス 拡散層材と積層してもよぐ触媒層をアノードガス拡散層材上または力ソードガス拡散 層材上に形成してからイオン交換膜と積層してもよい。この積層体を予備的に加圧 成形した後、プレス機によって加圧加熱成形することにより電解質膜/電極接合体 が得られる。この接合体においては、イオン交換膜の片側の面に上記した力ソード側 触媒層が形成され、該イオン交換膜の反対側の面に、アノード側触媒層が形成され 、更に、両触媒層の外側にそれぞれアノード及び力ソードを構成するガス拡散層が 積層されている。  [0095] After the catalyst layer is formed on the ion exchange membrane, the catalyst layer that may be laminated with the anode gas diffusion layer material or the force sword gas diffusion layer material is formed on the anode gas diffusion layer material or the force sword gas diffusion layer material. After forming, it may be laminated with an ion exchange membrane. The laminate is preliminarily pressure-molded and then pressure-heat-molded with a press to obtain an electrolyte membrane / electrode assembly. In this joined body, the above-described force sword-side catalyst layer is formed on one surface of the ion-exchange membrane, the anode-side catalyst layer is formed on the opposite surface of the ion-exchange membrane, The gas diffusion layers constituting the anode and the force sword are laminated on the outside.
[0096] なお、積層体を予備的に加圧成形する場合は、触媒層の崩壊が防止される範囲で 、本成形の条件より温度、圧力は低ぐ時間は短く設定するのが好ましい。それは、 触媒粒子、ガス拡散層用多孔体の圧縮破壊を起こさないためである。  [0096] When the laminate is preliminarily pressure-molded, it is preferable to set the temperature and pressure to be lower than the conditions of the main molding within a range in which the collapse of the catalyst layer is prevented. This is because the catalyst particles and the porous body for the gas diffusion layer do not cause compressive fracture.
[0097] 本願発明の PEFC用燃料電池システムは、電気化学反応により起電力を得る上述 の燃料電池スタックと、酸素含有ガスとして圧縮空気を供給するコンプレッサの他、燃 料ガスである水素を高圧に圧縮した状態で貯蔵する水素ボンべを有する。他に燃料 電池スタックにおいて発電に利用されなかった排水素および排空気を燃焼する触媒 燃焼器を必要に応じて備えてもよい。また、メタノール、天然ガスまたはメタン等の改 質反応により水素を供給してもよレ、。その場合燃料電池システムは水素ボンベの代 わりに、メタノーノレ、天然ガスまたはメタン等のタンク、水タンク、及び、メタノーノレ等と 水の混合器、メタノール水溶液等を蒸発させるための蒸発器、改質反応を行う改質 器を備える。更に、改質反応後の水素ガス中に含まれる一酸化炭素による燃料電池 の被毒を防ぐために、一酸化炭素低減装置を備えてもよい。 [0097] The fuel cell system for PEFC of the present invention includes a fuel cell stack that obtains an electromotive force by an electrochemical reaction, a compressor that supplies compressed air as an oxygen-containing gas, and hydrogen as a fuel gas at a high pressure. It has a hydrogen cylinder to store in a compressed state. Other catalyst that burns exhaust hydrogen and exhaust air that was not used for power generation in the fuel cell stack A combustor may be provided as needed. Also, hydrogen may be supplied by reforming reaction such as methanol, natural gas or methane. In this case, the fuel cell system uses a methanol tank, a natural gas or methane tank, a water tank, a methanol / water mixer, an evaporator for evaporating methanol aqueous solution, etc., and a reforming reaction instead of a hydrogen cylinder. Equipped with a reformer to perform. Furthermore, a carbon monoxide reduction device may be provided in order to prevent poisoning of the fuel cell due to carbon monoxide contained in the hydrogen gas after the reforming reaction.
[0098] また、本願発明の DMFC用燃料電池システムは、電気化学反応により起電力を得 る燃料電池スタックと、酸素含有ガスとして圧縮空気を供給するコンプレッサの他、燃 料であるメタノール水溶液容器を備える。メタノール水溶液は送液ポンプにより燃料 電池スタックのアノード極に送られる。また、メタノール水溶液は予め蒸発器により昇 温-気化させてからアノード極に供給しても良い。他に燃料電池スタックにおいて発 電に利用されなかったメタノール水溶液は回収し、メタノール水溶液容器に戻しても 良レ、。メタノール水溶液の回収は必要時には気液分離器を用いて行っても良い。 実施例  In addition, the DMFC fuel cell system of the present invention includes a fuel cell stack that obtains an electromotive force by an electrochemical reaction, a compressor that supplies compressed air as an oxygen-containing gas, and a methanol aqueous solution container that is a fuel. Prepare. The aqueous methanol solution is sent to the anode electrode of the fuel cell stack by a feed pump. Further, the aqueous methanol solution may be heated and vaporized by an evaporator in advance and then supplied to the anode electrode. In addition, methanol aqueous solution that was not used for power generation in the fuel cell stack can be recovered and returned to the methanol aqueous solution container. The methanol aqueous solution may be collected using a gas-liquid separator when necessary. Example
[0099] 次に実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、 以下の実施例によって限定されるものではない。  Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[0100] 以下の実施例及び比較例において、作製した触媒の XRD分析は、下記の条件で 行った。 [0100] In the following Examples and Comparative Examples, XRD analysis of the prepared catalysts was performed under the following conditions.
[粉末 XRD分析]  [Powder XRD analysis]
測定装置  measuring device
粉末 X線解析装置/ PANalytical PW1700  Powder X-ray analyzer / PANalytical PW1700
測定条件  Measurement condition
X線出力(Cu_Kひ): 40kV, 30mA  X-ray output (Cu_K): 40kV, 30mA
走查軸: Θ /2 Θ  Stroke axis: Θ / 2 Θ
測定範囲 (2 Θ ) : 3. 0° 〜90. 0。  Measurement range (2 Θ): 3. 0 ° to 90.0.
測疋モート: Continuous  Measuring Mote: Continuous
読込幅: 0. 05°  Reading width: 0.05 °
走査速度: 3. 0° /min DS, SS, RS : 1° ,1° ,0· 20mm Scanning speed: 3.0 ° / min DS, SS, RS: 1 °, 1 °, 0 · 20mm
[0101] 以下の実施例及び比較例において、作製した力ソード電極の性能 (触媒活性)は、 下記のサイクリックボルタンメトリー (CV)測定により行った。 [0101] In the following examples and comparative examples, the performance (catalytic activity) of the produced force sword electrode was measured by the following cyclic voltammetry (CV) measurement.
[0102] [CV測定] [0102] [CV measurement]
サイクリックボルタンメトリー(CV)測定は、電解槽に密封性を保ち得る栓を用レ、、電 解液中に窒素又は空気をパブリングしつつ、酸素は供給律速になっていない条件で 行った。測定条件は以下の通りである。  Cyclic voltammetry (CV) measurement was performed under conditions where oxygen was not rate-controlled while using a plug that could maintain the sealing property of the electrolytic cell, publishing nitrogen or air in the electrolyte. The measurement conditions are as follows.
電解液: 1. OM H SO水溶液  Electrolyte: 1. OM H SO aqueous solution
2 4  twenty four
走查速度: 5mVZ秒  Strike speed: 5mVZ seconds
走查範囲: 100〜700mV  Strike range: 100-700mV
カウンター電極: Pt  Counter electrode: Pt
比較電極:標準水素電極(SHE)  Reference electrode: Standard hydrogen electrode (SHE)
[0103] 電極の電位を標準水素電極に対して 700mV程度力 lOOmVの方向に走査にす ると作用電極と Pt対極の間に [0103] When the electrode potential is scanned in the direction of force lOOmV with respect to the standard hydrogen electrode, it is between the working electrode and the Pt counter electrode.
4H+ + 0 +4e—→2H〇 4H + + 0 + 4e— → 2H〇
による酸素の還元電流が流れるのが認められる。卑の方向に走査した時に 400mV ( SHE基準)の時に流れる電流値を測定し、測定された電流値を触媒に含まれる活性 成分の単位重量(lg)当たりの電流値に換算したもので触媒活性を評価した。  It can be seen that the oxygen reduction current due to. Measure the current value flowing at 400mV (SHE standard) when scanning in the base direction, and convert the measured current value into the current value per unit weight (lg) of the active ingredient contained in the catalyst. Evaluated.
[0104] なお、以下の実施例では、触媒活性が大きすぎると測定できなレ、ために、測定の便 宜上、基体被着触媒中の活性成分の割合が小さくなるように希釈して電極を作成し たが、実際の電極作成のための好適な活性成分割合及び電極への活性成分担持 量の好適範囲は前述の通りである。  [0104] In the following examples, measurement cannot be performed if the catalyst activity is too high. Therefore, for convenience of measurement, the electrode is prepared by diluting the electrode so that the ratio of the active component in the substrate-coated catalyst is small. However, the preferred range of the active ingredient ratio and the amount of active ingredient supported on the electrode for actual electrode production are as described above.
[0105] [比較例 1]  [0105] [Comparative Example 1]
(RuTe (X=4.77)触媒の合成〉  (Synthesis of RuTe (X = 4.77) catalyst)
X  X
Ruと Teの仕込みモル比が 1: 10となるように、 Ru(acac)即ちルテニウムァセチルァセ  Ru (acac), that is, ruthenium acetylase, so that the molar ratio of Ru and Te is 1:10.
3  Three
トネート 0.7888g及びテルル酸(三ッ和化学製) 4.545gをカーボンブラック(VULCAN 0.788 g of tonate and 4.545 g of telluric acid (manufactured by Sanwa Chemical Co., Ltd.) in carbon black (VULCAN
XC- 72R (Cabot社製、比表面積(BET) 254mVg) ) 0.8gと共に乳鉢で物理混 合して混合物を得た。この混合物を水素 3L/hrの流量で室温から 300°Cまで 20分、 300°Cから 500°Cまで 3時間かけて昇温した。その後 500°Cで2時間保持したのち、 室温まで冷却した。最後に 1 %酸素を含む窒素雰囲気下に 2時間放置して不動態化 することにより、触媒を製造した。この触媒は、 XRD分析により、 RuTe (2 Θの値、 21. XC-72R (manufactured by Cabot, specific surface area (BET) 254 mVg)) 0.8 g was physically mixed in a mortar to obtain a mixture. This mixture was heated from room temperature to 300 ° C for 20 minutes at a flow rate of 3 L / hr of hydrogen, The temperature was raised from 300 ° C to 500 ° C over 3 hours. Thereafter, it was kept at 500 ° C. for 2 hours and then cooled to room temperature. Finally, the catalyst was produced by leaving it in a nitrogen atmosphere containing 1% oxygen for 2 hours to passivate it. This catalyst was analyzed by XRD analysis using RuTe (value of 2Θ, 21.
2  2
757。 , 26.202° , 27.901° , 31.294° , 32.677° , 33.897。 , 36.791° , 39.858。 , 4 3.352° , 44.444° , 45.209° , 45.900° , 48.304° , 51.491° , 53.912° , 56.906° , 59.005° , 59.902° , 68.508。 , 72.957° , 78.340° , 80.853。 , 82.115° , 85.902 。 にピークを与えた)と Te (2 Θの値、 23.037° , 27.556° , 38.261° , 40.451° , 49.6 09° , 62.808° , 63.709° にピークを与えた)を含有していることが確認された。  757. , 26.202 °, 27.901 °, 31.294 °, 32.677 °, 33.897. , 36.791 °, 39.858. , 4 3.352 °, 44.444 °, 45.209 °, 45.900 °, 48.304 °, 51.491 °, 53.912 °, 56.906 °, 59.005 °, 59.902 °, 68.508. , 72.957 °, 78.340 °, 80.853. , 82.115 °, 85.902. And Te (values of 2Θ, peaks at 23.037 °, 27.556 °, 38.261 °, 40.451 °, 49.6 09 °, 62.808 °, 63.709 °). It was.
[0106] 〈力ソード電極の作成〉 <Creation of force sword electrode>
得られた RuTe、 Te及び CB含有触媒と、別途用意したカーボンブラック (VULCA  The resulting RuTe, Te and CB-containing catalyst and separately prepared carbon black (VULCA
2  2
N XC_ 72R (Cabot社製、比表面積(BET) 254m2/g) )を乳鉢で混合した。この 混合物中の Ruと Teの合計の含有率は 0. 01778重量0 /。であった。この混合物の 28 . 27mgをエタノール 5mLと混合し、超音波洗浄器で充分撹拌した後、マイクロシリン ジで Ruと Teの総付着量 (Ru及び Te元素が揮発していないとして計算。以下の実施 例及び比較例においても同様)が 72. 41ng/cm2となるように作用電極であるグラッ シーカーボン電極に滴下し、放置により乾燥した。次に、 5%ナフイオン (登録商標) 溶液(アルコール溶液、アルドリッチ'ケミカル社製)を滴下し、放置により乾燥し、そ の後更に真空下で乾燥することにより力ソード電極とした。 N XC — 72R (manufactured by Cabot, specific surface area (BET) 254 m 2 / g)) was mixed in a mortar. The total content of Ru and Te in this mixture is 0.01778 weight 0 /. Met. After mixing 28.27 mg of this mixture with 5 mL of ethanol and thoroughly stirring with an ultrasonic cleaner, the total amount of Ru and Te deposited with microsyringe (calculated assuming that Ru and Te elements are not volatilized. Calculated below. The same was applied to the glassy carbon electrode, which is the working electrode, so that it was 72.41 ng / cm 2 . Next, a 5% Nafion (registered trademark) solution (alcohol solution, manufactured by Aldrich Chemical Co., Ltd.) was dropped, dried by standing, and further dried under vacuum to obtain a force sword electrode.
[0107] この力ソード電極について CV測定を行い、触媒活性の評価結果を表 2に示した。  [0107] The force sword electrode was subjected to CV measurement, and the evaluation results of the catalyst activity are shown in Table 2.
なお、活性種は Ru Teであるのか、 Teとの相互作用を有する Ru自体なのか不明の  It is unknown whether the active species is Ru Te or Ru itself that interacts with Te.
1 X  1 X
ため、 Ruと Teの合計の単位重量当たりの活性と、 Ru単位重量当りの活性の双方を 記載した。  Therefore, both the total activity per unit weight of Ru and Te and the activity per unit weight of Ru are described.
[0108] また、実施例 1 , 7, 10及び比較例 1, 2の Te/Ruの比は、常法に従い、触媒を秤 量後アルカリ溶融して分解し、酸を添加後定容して誘導結合プラズマ発光分光分析 法により求めた。  [0108] The Te / Ru ratios of Examples 1, 7, 10 and Comparative Examples 1, 2 were determined according to a conventional method by weighing the catalyst and then decomposing it by melting with alkali, adding the acid, and then adjusting the volume. It was determined by inductively coupled plasma optical emission spectrometry.
[0109] 実施例 2〜6, 8, 9及び比較例 3の場合、水素流通下での昇温過熱処理の際、 Ru 及び Te元素が揮発し吹き流されていないものとして、電極中の Ruと Teの総担持量、 電極中の Ru担持量、触媒活性を算出した。 [0110] [実施例 1] [0109] In Examples 2 to 6, 8, 9 and Comparative Example 3, it was assumed that Ru and Te elements were volatilized and were not blown off during the heating overheat treatment under hydrogen flow, and Ru in the electrode The total supported amount of Te and Te, the supported amount of Ru in the electrode, and the catalytic activity were calculated. [0110] [Example 1]
(RuTe (X= 2)触媒の合成〉  (Synthesis of RuTe (X = 2) catalyst)
X  X
Ruと Teの仕込みモル比が 1 : 4となるように、比較例 1におけるテルル酸(三ッ和化 学製)の量を 4.545gから 1.818gに変えた他は比較例 1と全く同様の方法で触媒を調 製した。この化合物は XRD分析により、 RuTe (2 Θの値、 21.788° , 26.203° , 27.90  Except that the amount of telluric acid (manufactured by Sanwa Chemical) in Comparative Example 1 was changed from 4.545 g to 1.818 g so that the molar ratio of Ru and Te was 1: 4, it was exactly the same as Comparative Example 1. The catalyst was prepared by this method. This compound was analyzed by XRD analysis using RuTe (value of 2Θ, 21.788 °, 26.203 °, 27.90
2  2
2° , 31.293° , 32.694° , 33.892° , 39.850° , 43.350° , 44.412° , 45.207° , 45. 2 °, 31.293 °, 32.694 °, 33.892 °, 39.850 °, 43.350 °, 44.412 °, 45.207 °, 45.
842。 , 48.300° , 51.459° , 53.949° , 56.906° , 58.999。 , 59.814° , 60.295° , 6842. , 48.300 °, 51.459 °, 53.949 °, 56.906 °, 58.999. , 59.814 °, 60.295 °, 6
8.500。 , 72.995° , 73.543° , 76.072° , 78.303° , 80.849° , 82.402° , 85.404°8.500. , 72.995 °, 73.543 °, 76.072 °, 78.303 °, 80.849 °, 82.402 °, 85.404 °
, 85.901° にピークを与えた)を含有していることを確認した。 , 85.901 ° peak).
[0111] 〈力ソード電極の作成〉 [0111] <Creation of force sword electrode>
得られた触媒を用いたほかは、比較例 1と同様の方法により Ruと Teの総付着量力 ¾ Except that the obtained catalyst was used, the total adhesion amount of Ru and Te was reduced in the same manner as in Comparative Example 1.
2.15ngZcm2となるように力ソード電極を作成し、同様に評価を行って結果を表 2に 示した。 A force sword electrode was prepared so as to be 2.15 ngZcm 2 and evaluated in the same manner, and the results are shown in Table 2.
[0112] [実施例 2] [0112] [Example 2]
〈塩化 Ruを用いた RuTe (X = 2)触媒の合成〉  <Synthesis of RuTe (X = 2) catalyst using Ru chloride>
X  X
Ruと Teの仕込みモル比が 1 : 2となるように、比較例 1における Ru(acac), 0.7888gと  Ru (acac), 0.7888g in Comparative Example 1 so that the charged molar ratio of Ru and Te is 1: 2.
3  Three
テルル酸(三ッ和化学製) 4.545gの替わりに、塩化ルテニウム(含水品、ルテニウム含 量 42重量%、 NEケムキャット製) 0· 476gとテルル酸(三ッ和化学製) 0· 909gを用 いて、それらを 50mlの水に溶解させた。その中に 1 11/(1 11+〇8) = 20重量%となる ように、カーボンブラック(VULCAN XC- 72) 0. 8gを入れ室温で一時間超音波 処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をアルゴン気 流下、 300°Cで、 3時間乾燥した。その後、室温まで冷却し、水素 3LZhrの流量で 室温力、ら 300°Cまで 20分、 300。C力、ら 800。Cまで 33寺間力、けて昇温した。その後 800 °Cで 2時間保持したのち、室温まで冷却した。最後に 1 %酸素を含む窒素雰囲気下 に 2時間放置して不動態化した。  Telluric acid (manufactured by Sanwa Chemical Co., Ltd.) Instead of 4.545 g, use ruthenium chloride (water-containing product, ruthenium content 42% by weight, NE Chemcat) 0 · 476g and telluric acid (manufactured by Sanwa Chemical Co., Ltd.) 0 · 909g They were dissolved in 50 ml of water. Carbon black (VULCAN XC-72) 0.8g was added so that 1 11 / (1 11 + 〇8) = 20% by weight, and sonicated for 1 hour at room temperature. Thereafter, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours under an argon stream. Then, cool to room temperature, hydrogen at a flow rate of 3LZhr at room temperature, etc. to 300 ° C for 20 minutes, 300. C force, et al. 800. The temperature increased to 33 C. Thereafter, it was kept at 800 ° C. for 2 hours and then cooled to room temperature. Finally, it was left to passivate in a nitrogen atmosphere containing 1% oxygen for 2 hours.
[0113] この化合物は XRD分析により、 RuTeを含有していることを確認した(2 Θの値は 21. [0113] This compound was confirmed to contain RuTe by XRD analysis (the value of 2Θ was 21.
2  2
991。 , 26.258° , 28.044° , 31.396。 , 32.757° , 34.449° , 39.996° , 43.546° , 4 5.441° , 47.248° , 48.448° , 51.603° , 53.703° , 57.095° , 60.344° , 65.341° , 66.506° , 68.697° , 73.156° , 78.402° , 81.098° , 82.696。 , 86.052° にピーク を与えた)。 991. , 26.258 °, 28.044 °, 31.396. , 32.757 °, 34.449 °, 39.996 °, 43.546 °, 4 5.441 °, 47.248 °, 48.448 °, 51.603 °, 53.703 °, 57.095 °, 60.344 °, 65.341 ° , 66.506 °, 68.697 °, 73.156 °, 78.402 °, 81.098 °, 82.696. , Gave a peak at 86.052 °).
[0114] 〈力ソード電極の作成〉 [0114] <Creation of force sword electrode>
得られた RuTe含有触媒 ZCBを用いた他は、比較例 1と同様の方法により Ruと T  Except for the obtained RuTe-containing catalyst ZCB, Ru and T were prepared in the same manner as in Comparative Example 1.
2  2
eの総付着量が 19ngZcm2となるように力ソード電極を作成し、同様に評価を行って 結果を表 2に示した。 A force sword electrode was prepared so that the total adhesion amount of e was 19 ngZcm 2 , the same evaluation was performed, and the results are shown in Table 2.
[0115] [実施例 3] [0115] [Example 3]
〈硝酸系 Ruを用いた RuTe (χ= 2)触媒の合成〉  <Synthesis of RuTe (χ = 2) catalyst using nitric acid-based Ru>
X  X
Ruと Teの仕込みモル比が 1 : 2となるように、比較例 1における Ru(acac) , 0.7888gの  Comparative example 1 of Ru (acac), 0.7888 g
3  Three
替わりに 3.72%の Ru(N〇)(NO )水溶液を 5.37gとテルル酸(三ッ和化学製) 0. 909gを  Instead of 3.72% Ru (N ○) (NO) aqueous solution 5.37g and telluric acid (manufactured by Sanwa Chemical Co., Ltd.) 0.909g
3 3  3 3
用いて、それらを 50mlの水に溶解させた。その中に 1^7 11 +〇8) = 20重量%と なるように、カーボンブラック(VULCAN XC- 72) 0. 8gを入れ室温で一時間超音 波処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をアルゴン 気流下、 300°Cで、 3時間乾燥した。その後、室温まで冷却し、水素 3L/hrの流量 で室温から 300°Cまで 20分、 300°C力 650°Cまで 3時間力けて昇温した。その後 6 50°Cで 2時間保持したのち、室温まで冷却した。最後に 1 %酸素を含む窒素雰囲気 下に 2時間放置して不動態化した。  Used to dissolve them in 50 ml of water. Carbon black (VULCAN XC-72) 0.8g was put in it so that 1 ^ 7 11 + 〇8) = 20% by weight, and ultrasonic treatment was performed for 1 hour at room temperature. Thereafter, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours under an argon stream. After cooling to room temperature, the temperature was increased from room temperature to 300 ° C for 20 minutes at a flow rate of 3 L / hr of hydrogen, 300 ° C force to 650 ° C for 3 hours. Thereafter, it was kept at 650 ° C. for 2 hours, and then cooled to room temperature. Finally, it was left to passivate in a nitrogen atmosphere containing 1% oxygen for 2 hours.
[0116] この化合物は XRD分析により、 RuTeを含有していることを確認した(2 Θの値は 21. [0116] This compound was confirmed to contain RuTe by XRD analysis (the value of 2Θ was 21.
2  2
755。 , 27.893° , 31.250° , 32.694° , 34.342° , 39.850° , 43.351° , 45.251° , 4 7.108。 , 48.260° , 51.499° , 53.643° , 56.949° , 57.611。 , 65.204° , 67.049° , 68.804° , 77.549° , 80.907° , 82.558° , 85.950° にピークを与えた)。  755. 27.893 °, 31.250 °, 32.694 °, 34.342 °, 39.850 °, 43.351 °, 45.251 °, 4 7.108. , 48.260 °, 51.499 °, 53.643 °, 56.949 °, 57.611. , 65.204 °, 67.049 °, 68.804 °, 77.549 °, 80.907 °, 82.558 °, 85.950 °).
[0117] 〈力ソード電極の作成〉 [0117] <Creation of force sword electrode>
得られた RuTe含有触媒 ZCBを用いた他は、比較例 1と同様の方法により Ruと T  Except for the obtained RuTe-containing catalyst ZCB, Ru and T were prepared in the same manner as in Comparative Example 1.
2  2
eの総付着量が 19ngZcm2となるように力ソード電極を作成し、同様に評価を行って 結果を表 2に示した。 A force sword electrode was prepared so that the total adhesion amount of e was 19 ngZcm 2 , the same evaluation was performed, and the results are shown in Table 2.
[0118] [実施例 4] [0118] [Example 4]
〈実施例 2において熱処理温度を 500°Cとした例〉  <Example of heat treatment temperature of 500 ° C in Example 2>
RuTe合成熱処理温度を 500°Cとした他は実施例 2と同様にして触媒を合成した。 [0119] 即ち、 Ruと Teの仕込みモル比が 1 : 2となるように、比較例 1における Ru(acac) , 0.7 A catalyst was synthesized in the same manner as in Example 2 except that the RuTe synthetic heat treatment temperature was 500 ° C. [0119] That is, Ru (acac), 0.7 in Comparative Example 1 was adjusted so that the charged molar ratio of Ru and Te was 1: 2.
3 Three
888gとテルル酸(三ッ和化学製) 4.545gの替わりに、塩化ルテニウム(含水品、ルテニ ゥム含量 42重量%、 NEケムキャット製) 0· 476gとテルル酸(三ッ和化学製) 0· 909 gを用いて、それらを 50mlの水に溶解させた。その中に1 1/ 1 +〇8) = 20重量% となるように、カーボンブラック(VULCAN XC- 72) 0. 8gを入れ室温で一時間超 音波処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をァルゴ ン気流下、 300°Cで、 3時間乾燥した。その後、室温まで冷却し、水素 3LZhrの流 量で室温から 300°Cまで 20分、 300°Cカゝら 500°Cまで 3時間カゝけて昇温した。その 後 500°Cで 2時間保持したのち、室温まで冷却した。最後に 1 %酸素を含む窒素雰 囲気下に 2時間放置して不動態化した。 Instead of 888g and telluric acid (manufactured by Sanwa Chemical) 4.545g, ruthenium chloride (water-containing product, ruthenium content 42% by weight, NE Chemcat) 0 · 476g and telluric acid (manufactured by Sanwa Chemical) 0 · Using 909 g, they were dissolved in 50 ml of water. Carbon black (VULCAN XC-72) 0.8 g was added so that 1 1/1 + 〇8) = 20% by weight, and sonicated for 1 hour at room temperature. Thereafter, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours in an argon stream. Then, it was cooled to room temperature, heated at a flow rate of 3 LZhr of hydrogen from room temperature to 300 ° C for 20 minutes, and heated from 300 ° C to 500 ° C for 3 hours. Thereafter, it was kept at 500 ° C. for 2 hours and then cooled to room temperature. Finally, it was passivated by leaving it in a nitrogen atmosphere containing 1% oxygen for 2 hours.
[0120] この化合物は XRD分析により、 RuTeを含有していることを確認した(2 Θの値は 21. [0120] This compound was confirmed to contain RuTe by XRD analysis (the value of 2Θ was 21.
695。 , 27.855° , 31.302。 , 32.741° , 39.905° , 43.448° , 45.889° , 48.300° , 5 1.457° , 53.998° , 57.199° , 58.848° , 65.247° , 68.357。 , 73.096° , 78.150° , 82.486° , 85.749° , 85.954。 にピークを与えた)。  695. , 27.855 °, 31.302. 32.741 °, 39.905 °, 43.448 °, 45.889 °, 48.300 °, 51.457 °, 53.998 °, 57.199 °, 58.848 °, 65.247 °, 68.357. , 73.096 °, 78.150 °, 82.486 °, 85.749 °, 85.954. Gave a peak).
[0121] 〈力ソード電極の作成〉 [0121] <Creation of force sword electrode>
得られた RuTe含有触媒/ CBを用いた他は、比較例 1と同様の方法により Ruと Te の総付着量が 95ng/cm2となるように力ソード電極を作成し、同様に評価を行って結 果を表 2に示した。 A force sword electrode was prepared in the same manner as in Comparative Example 1 except that the obtained RuTe-containing catalyst / CB was used so that the total adhesion amount of Ru and Te was 95 ng / cm 2, and evaluation was performed in the same manner. The results are shown in Table 2.
[0122] [実施例 5] [0122] [Example 5]
〈実施例 2におレ、て熱処理温度を 350°Cとした例〉  <Example in which the heat treatment temperature is 350 ° C in Example 2>
RuTe合成熱処理温度を 350°Cとした他は実施例 2と同様にして触媒を合成した。  A catalyst was synthesized in the same manner as in Example 2 except that the RuTe synthetic heat treatment temperature was 350 ° C.
2  2
[0123] 即ち、 Ruと Teの仕込みモル比が 1 : 2となるように、比較例 1における Ru(acac), 0.7  [0123] That is, Ru (acac), 0.7 in Comparative Example 1 was adjusted so that the charged molar ratio of Ru and Te was 1: 2.
3 Three
888gとテルル酸(三ッ和化学製) 4.545gの替わりに、塩化ルテニウム(含水品、ルテニ ゥム含量 42重量%、 NEケムキャット製) 0. 476gとテルル酸(三ッ和化学製) 0. 909 gを用いて、それらを 50mlの水に溶解させた。その中に1 1/ 1 +〇8) = 20重量% となるように、カーボンブラック(VULCAN XC- 72) 0. 8gを入れ室温で一時間超 音波処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をァルゴ ン気流下、 300°Cで、 3時間乾燥した。その後、室温まで冷却し、水素 3LZhrの流 量で室温から 300°Cまで 20分、 300°C力 350°Cまで 3時間力けて昇温した。その 後 350°Cで 2時間保持したのち、室温まで冷却した。最後に 1 %酸素を含む窒素雰 囲気下に 2時間放置して不動態化した。 Instead of 888 g and telluric acid (manufactured by Sanwa Chemical Co., Ltd.) 4.545 g, ruthenium chloride (water-containing product, ruthenium content 42% by weight, NE Chemcat Co., Ltd.) 0.476 g and telluric acid (manufactured by Sanwa Chemical Co., Ltd.) 0. Using 909 g, they were dissolved in 50 ml of water. Carbon black (VULCAN XC-72) 0.8 g was added so that 1 1/1 + 〇8) = 20% by weight, and sonicated for 1 hour at room temperature. Thereafter, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours in an argon stream. Then, cool to room temperature and flow of hydrogen 3LZhr. The temperature was raised from room temperature to 300 ° C for 20 minutes and 300 ° C force to 350 ° C for 3 hours. Thereafter, it was kept at 350 ° C. for 2 hours and then cooled to room temperature. Finally, it was passivated by leaving it in a nitrogen atmosphere containing 1% oxygen for 2 hours.
[0124] この化合物は XRD分析により、 RuTeを含有していることを確認した(2 Θの値は 27. [0124] This compound was confirmed to contain RuTe by XRD analysis (the value of 2Θ was 27.
850。 , 28.155° , 31.447° , 32.449° , 39.763° , 43.700° , 48.254° , 57.108° に ピークを与えた)。  850. , 28.155 °, 31.447 °, 32.449 °, 39.763 °, 43.700 °, 48.254 °, 57.108 °).
[0125] 〈力ソード電極の作成〉 [0125] <Creation of force sword electrode>
得られた RuTe含有触媒/ CBを用いた他は、比較例 1と同様の方法により Ruと Te の総付着量が 19ngZcm2となるように力ソード電極を作成し、同様に評価を行って結 果を表 2に示した。 A force sword electrode was prepared by the same method as in Comparative Example 1 except that the obtained RuTe-containing catalyst / CB was used, so that the total adhesion amount of Ru and Te was 19 ngZcm 2. The results are shown in Table 2.
[0126] [実施例 6] [0126] [Example 6]
〈実施例 2において熱処理温度を 650°Cとした例〉  <Example of heat treatment temperature of 650 ° C in Example 2>
(RuTe /カーボンブラック(CB)触媒の合成〉  (Synthesis of RuTe / carbon black (CB) catalyst)
RuTe合成熱処理温度を 650°Cとした他は実施例 2と同様にして触媒を合成した。  A catalyst was synthesized in the same manner as in Example 2 except that the RuTe synthetic heat treatment temperature was 650 ° C.
2  2
[0127] 即ち、 Ruと Teの仕込みモル比が 1 : 2となるように、比較例 1における Ru(acac), 0.7 [0127] That is, Ru (acac), 0.7 in Comparative Example 1 was adjusted so that the charged molar ratio of Ru and Te was 1: 2.
888gとテルル酸(三ッ和化学製) 4.545gの替わりに、塩化ルテニウム(含水品、ルテニ ゥム含量 42重量%、 NEケムキャット製) 0· 476gとテルル酸(三ッ和化学製) 0· 909 gを用いて、それらを 50mlの水に溶解させた。その中に1¾1/(1 11 +〇8) = 20重量% となるように、カーボンブラック(VULCAN XC - 72R) 0. 8gを入れ室温で一時間 超音波処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をアル ゴン気流下、 300°Cで、 3時間乾燥した。その後、室温まで冷却し、水素 3L/hrの流 量で室温から 300°Cまで 20分、 300°Cカゝら 650°Cまで 3時間カゝけて昇温した。その 後 650°Cで 2時間保持したのち、室温まで冷却した。最後に 1 %酸素を含む窒素雰 囲気下に 2時間放置して不動態化した。 Instead of 888g and telluric acid (manufactured by Sanwa Chemical) 4.545g, ruthenium chloride (water-containing product, ruthenium content 42% by weight, NE Chemcat) 0 · 476g and telluric acid (manufactured by Sanwa Chemical) 0 · Using 909 g, they were dissolved in 50 ml of water. Carbon black (VULCAN XC-72R) 0.8 g was added so that 1¾1 / (1 11 +0 8) = 20% by weight, and sonicated for 1 hour at room temperature. Thereafter, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours under an argon stream. After cooling to room temperature, the temperature was raised from room temperature to 300 ° C for 20 minutes at a flow rate of 3 L / hr of hydrogen, from 300 ° C to 650 ° C for 3 hours. After that, it was kept at 650 ° C. for 2 hours and then cooled to room temperature. Finally, it was passivated by leaving it in a nitrogen atmosphere containing 1% oxygen for 2 hours.
[0128] この化合物は XRD分析により、 RuTeを含有していることを確認した(2 Θの値は 21. [0128] This compound was confirmed to contain RuTe by XRD analysis (the value of 2Θ was 21.
899。 , 26.355° , 27.951° , 31.304° , 32.753° , 34.350° , 39.949° , 43.403° , 4 5.300。 , 47.220° , 48.307° , 51.595。 , 53.702° , 56.909° , 59.946° , 65.347° , 68.598° , 73.103° , 78.302° , 82.505° , 85.996° にピークを与えた)。 [0129] 〈力ソード電極の作成〉 899. , 26.355 °, 27.951 °, 31.304 °, 32.753 °, 34.350 °, 39.949 °, 43.403 °, 4 5.300. , 47.220 °, 48.307 °, 51.595. , 53.702 °, 56.909 °, 59.946 °, 65.347 °, 68.598 °, 73.103 °, 78.302 °, 82.505 °, and 85.996 °). <Creation of force sword electrode>
得られた RuTe含有触媒/ CBを用いた他は、比較例 1と同様の方法により Ruと Te  Other than using the obtained RuTe-containing catalyst / CB, Ru and Te were prepared in the same manner as in Comparative Example 1.
2  2
の総付着量が 19ng/cm2となるように力ソード電極を作成し、同様に評価を行って結 果を表 2に示した。 A force sword electrode was prepared so that the total amount of adhesion was 19 ng / cm 2 and evaluated in the same manner. The results are shown in Table 2.
この力ソード電極にっレ、て CV測定を行レ、、触媒活性の評価結果を表 2に示した。  This force sword electrode was used for CV measurement, and the evaluation results of catalyst activity are shown in Table 2.
[0130] [実施例 7] [0130] [Example 7]
(RuTe (X= 2. 11)触媒の合成〉  (Synthesis of RuTe (X = 2. 11) catalyst>
X  X
Ruと Teの仕込みモル比が 1 : 2となるように、比較例 1におけるテルル酸(三ッ和化学 製)の量を 4.545gから 0. 909gに変えた以外は比較例 1と全く同様の方法で触媒を調 製した。この化合物は XRD分析により、 RuTe (2 Θの値、 21.507° , 27.805° , 31.30  Except that the amount of telluric acid (manufactured by Sanwa Chemical) in Comparative Example 1 was changed from 4.545 g to 0.909 g so that the molar ratio of Ru and Te was 1: 2, it was exactly the same as Comparative Example 1. The catalyst was prepared by this method. This compound was analyzed by XRD analysis using RuTe (value of 2Θ, 21.507 °, 27.805 °, 31.30
2  2
0。 , 32.743° , 40.041° , 43.498° , 45.356° , 48.246° , 51.441° , 54.002° , 57. 057。 , 59.850° , 65.306° , 68.306。 , 73.347° , 82.394° , 85.753° , 86.095° に ピークを与えた)を含有していることを確認した。  0. , 32.743 °, 40.041 °, 43.498 °, 45.356 °, 48.246 °, 51.441 °, 54.002 °, 57.057. , 59.850 °, 65.306 °, 68.306. , 73.347 °, 82.394 °, 85.753 °, and 86.095 °).
[0131] 〈力ソード電極の作成〉 [0131] <Creation of force sword electrode>
得られた触媒を用いたほかは、比較例 1と同様の方法により Ruと Teの総付着量力 9ng/cm2となるように力ソード電極を作成し、同様に評価を行って結果を表 2に示し た。 Obtained are except that using the catalyst, Comparative Example 1. Table of results performed to create a force cathode electrode so that the total adhesion amount force 9 ng / cm 2 of Ru and Te, evaluated as the same manner as 2 It was shown to.
[0132] [実施例 8]  [0132] [Example 8]
(RuTe (X= l)触媒の合成〉  (Synthesis of RuTe (X = l) catalyst)
X  X
Ruと Teの仕込みモル比が 1: 1となるように、比較例 1におけるテルル酸(三ッ和化 学製)の量を 4.545gから 0.4545gに変えた以外は比較例 1と全く同様の方法で触媒を 調製した。この化合物は XRD分析により、 RuTe (2 Θの値、 21.901° , 27.945° , 31.  Except that the amount of telluric acid (manufactured by Sanwa Kagaku) in Comparative Example 1 was changed from 4.545 g to 0.4545 g so that the molar ratio of Ru and Te was 1: 1, it was exactly the same as Comparative Example 1. The catalyst was prepared by the method. This compound was analyzed by XRD analysis using RuTe (value of 2Θ, 21.901 °, 27.945 °, 31.
2  2
300。 , 32.655° , 40.047° , 48.153° , 51.594° , 53.695。 , 65.170。 , 73.212° , 8 2.447° にピークを与えた)と Ru (2 Θの値、 38.449° , 43.550° , 57.199° , 68.542° , 78.451° , 85.997° にピークを与えた)を含有していることを確認した。  300. , 32.655 °, 40.047 °, 48.153 °, 51.594 °, 53.695. , 65.170. , 73.212 °, 8 2.447 °) and Ru (values of 2Θ, 38.449 °, 43.550 °, 57.199 °, 68.542 °, 78.451 °, 85.997 °) It was confirmed.
[0133] 〈力ソード電極の作成〉 <Creation of force sword electrode>
得られた触媒を用いたほかは、比較例 1と同様の方法により Ruと Teの総付着量力 S1 2.02ngZcm2となるように力ソード電極を作成し、同様に評価を行って結果を表 2に 示した。 Obtained are except that using the catalyst, Comparative Example 1. Table of results performed to create a force cathode electrode so that the total adhesion amount force S1 2.02NgZcm 2 of Ru and Te, evaluated as the same manner as 2 In Indicated.
[0134] [実施例 9]  [Example 9]
(RuTe (X=0. 5)触媒の合成〉  (Synthesis of RuTe (X = 0.5) catalyst)
x  x
Ruと Teの仕込みモル比が 1 : 0.5となるように、実施例 8においてテルル酸の量を 0. 2 27gに変更した以外、実施例 8と全く同様の方法で触媒を調製した。この化合物は X RD分析により、 RuTe (2 Θの値、 21.846° , 26.107° , 27.907° , 31.300。 , 32.745  A catalyst was prepared in the same manner as in Example 8, except that the amount of telluric acid was changed to 0.227 g in Example 8 so that the charged molar ratio of Ru and Te was 1: 0.5. This compound was analyzed by XRD analysis with RuTe (value of 2Θ, 21.846 °, 26.107 °, 27.907 °, 31.300., 32.745
2  2
。 , 34.047° , 39.897° , 43.501° , 45.244° , 48.304° , 51.590° , 53.572° , 54.0 03° , 57.041° , 68.555。 , 72.953° , 82.364° にピークを与えた)と Ru (2 Θの値、 3 8.705° , 44.025° , 78.394° , 85.950° にピークを与えた)を含有していることを確 認した。  . , 34.047 °, 39.897 °, 43.501 °, 45.244 °, 48.304 °, 51.590 °, 53.572 °, 54.0 03 °, 57.041 °, 68.555. , 72.953 ° and 82.364 °) and Ru (2 Θ, 3 8.705 °, 44.025 °, 78.394 ° and 85.950 °).
[0135] 〈力ソード電極の作成〉  <Creation of force sword electrode>
得られた RuTe含有触媒 ZCBを用いたほかは、実施例 8と同様の方法により Ruと  Except that the obtained RuTe-containing catalyst ZCB was used, Ru and
2  2
Teの総付着量が 12ng/cm2となるように力ソード電極を作成し、同様に評価を行つ て結果を表 2に示した。 A force sword electrode was prepared so that the total adhesion amount of Te was 12 ng / cm 2, and evaluation was performed in the same manner. The results are shown in Table 2.
[0136] [実施例 10] [Example 10]
(RuTe (X=0. 24)触媒の合成〉  (Synthesis of RuTe (X = 0.24) catalyst>
X  X
Ruと Teの仕込みモル比が 1 : 0.2となるように、比較例 1におけるテルル酸(三ッ和 化学製)の量を 4.545gから 0. 0909gに変えた他は、比較例 1と全く同様の方法で触 媒を調製した。この化合物は XRD分析により、 RuTe (2 Θの値、 27.920° , 31.298  Except that the amount of telluric acid (manufactured by Sanwa Chemical) in Comparative Example 1 was changed from 4.545 g to 0.0909 g so that the molar ratio of Ru and Te was 1: 0.2, it was exactly the same as Comparative Example 1. The catalyst was prepared by this method. This compound was analyzed by XRD analysis using RuTe (value of 2Θ, 27.920 °, 31.298
2  2
。 , 32.512。 にピークを与えた)と Ru (2 Θの値、 38.440° , 42.205° , 43.999° , 69. 351° , 78.497° , 84.630° にピークを与えた)を含有していることを確認した。  . , 32.512. And Ru (values of 2Θ, which gave peaks at 38.440 °, 42.205 °, 43.999 °, 69.351 °, 78.497 °, 84.630 °).
[0137] 〈力ソード電極の作成〉 [0137] <Creation of force sword electrode>
得られた RuTe含有触媒/ CBを用いたほかは、比較例 1と同様の方法により Ruと  Except for using the obtained RuTe-containing catalyst / CB, Ru and
2  2
Teの総付着量が 6.66ngZcm2となるように力ソード電極を作成し、同様に評価を行つ て結果を表 2に示した。 A force sword electrode was prepared so that the total adhesion amount of Te was 6.66 ngZcm 2, and evaluation was performed in the same manner. The results are shown in Table 2.
[0138] [比較例 2] [Comparative Example 2]
(RuTe (X=0. 12)触媒の合成〉  (Synthesis of RuTe (X = 0.12) catalyst>
X  X
Ruと Teの仕込みモル比が 1 : 0.055となるように、比較例 1におけるテルル酸(三ッ 和化学製)の量を 4.545gから 0. 0250gに変えた他は、比較例 1と全く同様の方法で 触媒を調製した。 Telluric acid (comparable with tritium) in Comparative Example 1 was adjusted so that the molar ratio of Ru and Te was 1: 0.055. The catalyst was prepared in exactly the same manner as in Comparative Example 1, except that the amount of (made by Wako Chemical) was changed from 4.545 g to 0.0250 g.
[0139] 〈力ソード電極の作成〉 <Creation of force sword electrode>
得られた触媒を用いた他は、比較例 1と同様の方法により Ruと Teの総付着量が 5.6 8ngZcm2となるように力ソード電極を作成し、同様に評価を行って結果を表 2に示し た。 Obtained other is using the catalyst, Comparative Example 1. Table of results performed to create a force cathode electrode such that the total amount of adhered Ru and Te is 5.6 8NgZcm 2, evaluated as the same manner as 2 It was shown to.
[0140] [比較例 3]  [0140] [Comparative Example 3]
メノー乳鉢により粉化した Te金属 (NEケムキャット製) 0.299gと Ru (CO) (Aldrich製) 0.5  Te metal (manufactured by NE Chemcat) 0.299g and Ru (CO) (manufactured by Aldrich) 0.5
3 12  3 12
gを m_Xylene 50mlに加えて N下、還流条件下で 20時間 139°Cに加熱した後、反応  After adding g to m_Xylene 50ml and heating to 139 ° C under reflux condition for 20 hours under N, reaction
2  2
液をろ過することにより黒色粉末を得た。次にこの粉末をジェチルエーテルで洗浄後 空気乾燥することにより触媒を調製した。  The liquid was filtered to obtain a black powder. Next, this powder was washed with jetyl ether and air-dried to prepare a catalyst.
[0141] 〈力ソード電極の作成〉 [0141] <Creation of force sword electrode>
得られた触媒を用いた他は、比較例 1と同様の方法により Ruと Teの総付着量が 5.75 ng/cm2となるように力ソード電極を作成し、同様に評価を行って結果を表 2に示した Except for using the obtained catalyst, a force sword electrode was prepared by the same method as in Comparative Example 1 so that the total adhesion amount of Ru and Te was 5.75 ng / cm 2. Shown in Table 2
[0142] [表 2] [0142] [Table 2]
Figure imgf000033_0001
Figure imgf000033_0001
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。なお本出願は、 2005 年 6月 23日付で出願された日本特許出願(特願 2005— 183682)に基づいており、 その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on June 23, 2005 (Japanese Patent Application No. 2005-183682), which is incorporated by reference in its entirety.

Claims

請求の範囲 The scope of the claims
[I] テルル (Te)と、  [I] Tellurium (Te),
ノレテニゥム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(〇s)、及びイリジウム (Ir)よりなる群から選ばれる少なくとも 1種の元素 Mと  At least one element M selected from the group consisting of noretenum (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir);
を含み、組成を M Te と表した際、 0. 2<X<4であることを特徴とする燃料電池用  When the composition is expressed as M Te, it is 0.2 <X <4.
1 X  1 X
触媒。  catalyst.
[2] 請求項 1において、 1 <Xであることを特徴とする燃料電池用触媒。  [2] The fuel cell catalyst according to claim 1, wherein 1 <X.
[3] 請求項 1において、実質的に Teと Ruよりなることを特徴とする燃料電池用触媒。  [3] The fuel cell catalyst according to claim 1, substantially consisting of Te and Ru.
[4] 請求項 1におレ、て、 RuTeを含むことを特徴とする燃料電池用触媒。  [4] A fuel cell catalyst according to claim 1, comprising RuTe.
2  2
[5] テルル(Te)と、  [5] Tellurium (Te),
ルテニウム(RU)と、  Ruthenium (RU),
ロジウム(Rh)、パラジウム(Pd)、オスミウム(〇s)、及びイリジウム(Ir)よりなる群力 選ばれる少なくとも 1種の元素しと  Group power consisting of rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir)
を含み、組成を L Ru Te と表した際、 0. 2く Xであり、 0< Y≤ 10であることを特徴と  When the composition is expressed as L Ru Te, it is 0.2 and X, and 0 <Y≤10.
Υ 1 X  Υ 1 X
する燃料電池用触媒。  Fuel cell catalyst.
[6] 請求項 1において、さらに、 Te及び元素 Μが被着された基体を含むことを特徴とす る燃料電池用触媒。  [6] The fuel cell catalyst according to claim 1, further comprising a substrate on which Te and elemental metal are deposited.
[7] 請求項 5において、さらに、 Te、 Ru及び元素 Lが被着された基体を含むことを特徴 とする燃料電池用触媒。  7. The fuel cell catalyst according to claim 5, further comprising a substrate on which Te, Ru and element L are deposited.
[8] 請求項 6において、基体は炭素系基体であることを特徴とする燃料電池用触媒。 8. The fuel cell catalyst according to claim 6, wherein the substrate is a carbon-based substrate.
[9] 請求項 7において、基体は炭素系基体であることを特徴とする燃料電池用触媒。 9. The fuel cell catalyst according to claim 7, wherein the substrate is a carbon-based substrate.
[10] 請求項 1において、燃料電池が固体高分子型燃料電池であることを特徴とする燃 料電池用触媒。 10. The fuel cell catalyst according to claim 1, wherein the fuel cell is a polymer electrolyte fuel cell.
[II] 請求項 5において、燃料電池が固体高分子型燃料電池であることを特徴とする燃 料電池用触媒。  [II] The fuel cell catalyst according to claim 5, wherein the fuel cell is a polymer electrolyte fuel cell.
[12] イオン交換膜と、  [12] an ion exchange membrane;
該イオン交換膜上に形成された請求項 1の燃料電池用触媒の層とを有する燃料電 池用電極材料。 A fuel cell electrode material comprising the fuel cell catalyst layer of claim 1 formed on the ion exchange membrane.
[13] イオン交換膜と、 [13] an ion exchange membrane;
該イオン交換膜上に形成された請求項 5の燃料電池用触媒の層とを有する燃料電 池用電極材料。  6. A fuel cell electrode material comprising the fuel cell catalyst layer of claim 5 formed on the ion exchange membrane.
[14] 電極ガス拡散層と、該電極ガス拡散層上に形成された請求項 1の燃料電池用触媒 の層とを有する燃料電池用電極材料。  14. A fuel cell electrode material comprising an electrode gas diffusion layer and the fuel cell catalyst layer of claim 1 formed on the electrode gas diffusion layer.
[15] 電極ガス拡散層と、該電極ガス拡散層上に形成された請求項 5の燃料電池用触媒 の層とを有する燃料電池用電極材料。 15. A fuel cell electrode material comprising an electrode gas diffusion layer and the fuel cell catalyst layer of claim 5 formed on the electrode gas diffusion layer.
[16] 転写用フィルムと、該転写用フィルム上に形成された請求項 1の燃料電池用触媒の 層とを有する燃料電池用電極材料。 16. A fuel cell electrode material comprising a transfer film and the fuel cell catalyst layer according to claim 1 formed on the transfer film.
[17] 転写用フィルムと、該転写用フィルム上に形成された請求項 5の燃料電池用触媒の 層とを有する燃料電池用電極材料。 [17] An electrode material for a fuel cell, comprising: a transfer film; and the fuel cell catalyst layer according to claim 5 formed on the transfer film.
[18] 請求項 1に記載の燃料電池用触媒を含有することを特徴とする燃料電池用電極。 18. A fuel cell electrode comprising the fuel cell catalyst according to claim 1.
[19] 請求項 5に記載の燃料電池用触媒を含有することを特徴とする燃料電池用電極。 [19] A fuel cell electrode comprising the fuel cell catalyst according to [5].
[20] 請求項 18に記載の燃料電池用電極を用いた燃料電池。 20. A fuel cell using the fuel cell electrode according to claim 18.
[21] 請求項 19に記載の燃料電池用電極を用いた燃料電池。 21. A fuel cell using the fuel cell electrode according to claim 19.
[22] 請求項 20において、燃料電池は固体高分子型燃料電池であることを特徴とする燃 料電池。  22. The fuel cell according to claim 20, wherein the fuel cell is a polymer electrolyte fuel cell.
[23] 請求項 21において、燃料電池は固体高分子型燃料電池であることを特徴とする燃 料電池。  23. The fuel cell according to claim 21, wherein the fuel cell is a polymer electrolyte fuel cell.
[24] 請求項 8に記載の燃料電池用触媒を製造する方法であって、  [24] A method for producing the fuel cell catalyst according to claim 8,
炭素系基体、 Teの前駆体及び元素 Mの前駆体を混合する工程と、  Mixing a carbon-based substrate, a precursor of Te and a precursor of element M;
該前駆体を活性にする工程と  Activating the precursor; and
を有することを特徴とする燃料電池用触媒の製造方法。  The manufacturing method of the catalyst for fuel cells characterized by having.
[25] 請求項 9に記載の燃料電池用触媒を製造する方法であって、 [25] A method for producing the fuel cell catalyst according to claim 9,
炭素系基体、 Teの前駆体、 Ruの前駆体及び元素 Lの前駆体を混合する工程と、 該前駆体を活性にする工程と  A step of mixing a carbon-based substrate, a precursor of Te, a precursor of Ru, and a precursor of element L, and a step of activating the precursor
を有することを特徴とする燃料電池用触媒の製造方法。  The manufacturing method of the catalyst for fuel cells characterized by having.
[26] 請求項 8に記載の燃料電池用触媒を製造する方法であって、炭素系基体と請求項 1に記載の燃料電池用触媒とを混合する工程を有することを特徴とする燃料電池用 触媒の製造方法。 [26] A method for producing a fuel cell catalyst according to claim 8, comprising: a carbon-based substrate; and A method for producing a fuel cell catalyst, comprising a step of mixing the fuel cell catalyst according to 1.
[27] 請求項 9に記載の燃料電池用触媒を製造する方法であって、炭素系基体と請求項 5に記載の燃料電池用触媒とを混合する工程を有することを特徴とする燃料電池用 触媒の製造方法。  [27] A method for producing the fuel cell catalyst according to claim 9, comprising a step of mixing the carbon-based substrate and the fuel cell catalyst according to claim 5. A method for producing a catalyst.
[28] 請求項 24において、更に遷移金属を炭素系基体に被着させる工程を有することを 特徴とする燃料電池用触媒の製造方法。  28. The method for producing a fuel cell catalyst according to claim 24, further comprising a step of depositing a transition metal on the carbon-based substrate.
[29] 請求項 25において、更に遷移金属を炭素系基体に被着させる工程を有することを 特徴とする燃料電池用触媒の製造方法。 29. The method for producing a fuel cell catalyst according to claim 25, further comprising a step of depositing a transition metal on the carbon-based substrate.
[30] 請求項 26において、更に遷移金属を炭素系基体に被着させる工程を有することを 特徴とする燃料電池用触媒の製造方法。 30. The method for producing a fuel cell catalyst according to claim 26, further comprising a step of depositing a transition metal on the carbon-based substrate.
[31] 請求項 27において、更に遷移金属を炭素系基体に被着させる工程を有することを 特徴とする燃料電池用触媒の製造方法。 31. The method for producing a fuel cell catalyst according to claim 27, further comprising a step of depositing a transition metal on the carbon-based substrate.
[32] 請求項 1に記載の燃料電池用触媒を含有する燃料電池スタック。 32. A fuel cell stack containing the fuel cell catalyst according to claim 1.
[33] 請求項 5に記載の燃料電池用触媒を含有する燃料電池スタック。 [33] A fuel cell stack comprising the fuel cell catalyst according to claim 5.
[34] 請求項 32に記載の燃料電池スタックを含む燃料電池システム。 34. A fuel cell system comprising the fuel cell stack according to claim 32.
[35] 請求項 33に記載の燃料電池スタックを含む燃料電池システム。 35. A fuel cell system comprising the fuel cell stack according to claim 33.
PCT/JP2006/311908 2005-06-23 2006-06-14 Fuel cell, catalyst thereof, and electrode thereof WO2006137302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007522247A JP5217434B2 (en) 2005-06-23 2006-06-14 Fuel cell, its catalyst and its electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005183682 2005-06-23
JP2005-183682 2005-06-23

Publications (1)

Publication Number Publication Date
WO2006137302A1 true WO2006137302A1 (en) 2006-12-28

Family

ID=37570332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311908 WO2006137302A1 (en) 2005-06-23 2006-06-14 Fuel cell, catalyst thereof, and electrode thereof

Country Status (2)

Country Link
JP (1) JP5217434B2 (en)
WO (1) WO2006137302A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157711A (en) * 2005-11-30 2007-06-21 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system
JP2008287927A (en) * 2007-05-15 2008-11-27 Mitsubishi Chemicals Corp CATALYST FOR FUEL CELL CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING CATALYST FOR FUEL CELL, AND FUEL CELL
JP2008287930A (en) * 2007-05-15 2008-11-27 Mitsubishi Chemicals Corp CATALYST FOR FUEL CELL CONTAINING RuTe2 AND N ELEMENT, AND ELECTRODE MATERIAL FOR FUEL CELL USING THIS CATALYST FOR FUEL CELL, AND FUEL CELL
JP2008287928A (en) * 2007-05-15 2008-11-27 Mitsubishi Chemicals Corp CATALYST FOR FUEL CELL CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING THIS CATALYST FOR FUEL CELL, AND FUEL CELL
WO2009014250A1 (en) * 2007-07-24 2009-01-29 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
WO2009020246A1 (en) * 2007-08-09 2009-02-12 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
WO2009020247A1 (en) * 2007-08-09 2009-02-12 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
WO2009020248A1 (en) * 2007-08-09 2009-02-12 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
JP2009037953A (en) * 2007-08-03 2009-02-19 Asahi Glass Co Ltd Method of manufacturing membrane-electrode assembly for polymer electrolyte fuel cell
JP2009283165A (en) * 2008-05-20 2009-12-03 Toyota Motor Corp Activating method of catalyst for solid polymer fuel cell, and activated catalyst for solid polymer fuel cell
JP2009301755A (en) * 2008-06-10 2009-12-24 Asahi Glass Co Ltd Forming method of catalyst layer, and manufacturing method of membrane electrode assembly for solid polymer fuel cell
US8057961B2 (en) 2006-04-28 2011-11-15 Samsung Sdi Co., Ltd. Catalyst for a fuel cell, a method for preparing the same, and a membrane-electrode assembly for a fuel cell and a fuel cell system including the same
CN112103520A (en) * 2020-09-24 2020-12-18 扬州大学 Anode catalyst of alcohol fuel cell
CN115656282A (en) * 2022-10-28 2023-01-31 湖北理工学院 Lanthanum-loaded air cathode microbial fuel cell type phosphorus sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092441A (en) * 1996-09-13 1998-04-10 Asahi Glass Co Ltd Solid high molecular type fuel cell
JP2003024798A (en) * 2001-05-05 2003-01-28 Omg Ag & Co Kg Noble metal-containing supported catalyst and process for its preparation
JP2005105336A (en) * 2003-09-30 2005-04-21 Mitsubishi Chemicals Corp Method of coprecipitating chalcogen compound, method of producing platinum group-chalcogen alloy, method of producing platinum group-chalcogen alloy/inorganic porous carried product, and method of producing oxide reaction product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118601A (en) * 1983-12-01 1985-06-26 Meidensha Electric Mfg Co Ltd Hydrogen storage substance and its preparation
JP3007986B2 (en) * 1990-03-02 2000-02-14 大塚化学株式会社 Preparation of β-lactam derivatives
JP3125355B2 (en) * 1990-09-10 2001-01-15 東ソー株式会社 Method for producing allyl chloride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092441A (en) * 1996-09-13 1998-04-10 Asahi Glass Co Ltd Solid high molecular type fuel cell
JP2003024798A (en) * 2001-05-05 2003-01-28 Omg Ag & Co Kg Noble metal-containing supported catalyst and process for its preparation
JP2005105336A (en) * 2003-09-30 2005-04-21 Mitsubishi Chemicals Corp Method of coprecipitating chalcogen compound, method of producing platinum group-chalcogen alloy, method of producing platinum group-chalcogen alloy/inorganic porous carried product, and method of producing oxide reaction product

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8053143B2 (en) 2005-11-30 2011-11-08 Samsung Sdi Co., Ltd. Supported ruthenium cathode catalyst for fuel cell
JP2007157711A (en) * 2005-11-30 2007-06-21 Samsung Sdi Co Ltd Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system
US8057961B2 (en) 2006-04-28 2011-11-15 Samsung Sdi Co., Ltd. Catalyst for a fuel cell, a method for preparing the same, and a membrane-electrode assembly for a fuel cell and a fuel cell system including the same
JP2008287927A (en) * 2007-05-15 2008-11-27 Mitsubishi Chemicals Corp CATALYST FOR FUEL CELL CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING CATALYST FOR FUEL CELL, AND FUEL CELL
JP2008287930A (en) * 2007-05-15 2008-11-27 Mitsubishi Chemicals Corp CATALYST FOR FUEL CELL CONTAINING RuTe2 AND N ELEMENT, AND ELECTRODE MATERIAL FOR FUEL CELL USING THIS CATALYST FOR FUEL CELL, AND FUEL CELL
JP2008287928A (en) * 2007-05-15 2008-11-27 Mitsubishi Chemicals Corp CATALYST FOR FUEL CELL CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING THIS CATALYST FOR FUEL CELL, AND FUEL CELL
WO2009014250A1 (en) * 2007-07-24 2009-01-29 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
JP2009037953A (en) * 2007-08-03 2009-02-19 Asahi Glass Co Ltd Method of manufacturing membrane-electrode assembly for polymer electrolyte fuel cell
WO2009020248A1 (en) * 2007-08-09 2009-02-12 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
WO2009020247A1 (en) * 2007-08-09 2009-02-12 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
WO2009020246A1 (en) * 2007-08-09 2009-02-12 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst, method for evaluating performance of oxygen-reducing catalyst, and solid polymer fuel cell comprising the fuel cell electrode catalyst
JP2009283165A (en) * 2008-05-20 2009-12-03 Toyota Motor Corp Activating method of catalyst for solid polymer fuel cell, and activated catalyst for solid polymer fuel cell
JP2009301755A (en) * 2008-06-10 2009-12-24 Asahi Glass Co Ltd Forming method of catalyst layer, and manufacturing method of membrane electrode assembly for solid polymer fuel cell
CN112103520A (en) * 2020-09-24 2020-12-18 扬州大学 Anode catalyst of alcohol fuel cell
CN115656282A (en) * 2022-10-28 2023-01-31 湖北理工学院 Lanthanum-loaded air cathode microbial fuel cell type phosphorus sensor
CN115656282B (en) * 2022-10-28 2023-09-12 湖北理工学院 Lanthanum-loaded air cathode microbial fuel cell type phosphorus sensor

Also Published As

Publication number Publication date
JPWO2006137302A1 (en) 2009-01-15
JP5217434B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5217434B2 (en) Fuel cell, its catalyst and its electrode
KR101350865B1 (en) Supported catalyst for fuel cell, method for preparing the same, electrode for fuel cell comprising the same, membrane electrode assembly comprising the electrode and fuel cell comprising the membrane electrode assembly
JP5017007B2 (en) Catalyst, catalyst manufacturing method, membrane electrode assembly, and fuel cell
JP4861445B2 (en) Method for producing catalyst layer-carrying substrate, catalyst layer-carrying substrate and fuel cell
JP5314910B2 (en) Methanol oxidation catalyst and method for producing the same
JP4519871B2 (en) Anode-supported catalyst, method for producing anode-supported catalyst, anode catalyst, method for producing anode catalyst, membrane electrode assembly, and fuel cell
JP4815823B2 (en) Fuel cell catalyst and method for producing the same, fuel cell electrode and fuel cell using the same
JP5305699B2 (en) Catalyst, catalyst manufacturing method, membrane electrode assembly, and fuel cell
JP5205013B2 (en) Anode for fuel cell and fuel cell using the same
JP5032250B2 (en) Methanol oxidation catalyst and method for producing the same
JP6603396B2 (en) Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly and fuel cell using carbon powder for fuel cell
JP2013154346A (en) Composite material, catalyst containing the same, fuel cell and lithium air cell containing the same
JP2008021609A (en) Direct methanol fuel cell and catalyst
JP4374036B2 (en) Polymer solid oxide fuel cell catalyst, membrane electrode assembly and fuel cell
JP2007042519A (en) Catalyst for fuel cell, its manufacturing method, and electrode for fuel cell and fuel cell using it
JP2010149008A (en) Electrode catalyst
JP2007059140A (en) Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell
JP5217236B2 (en) Fuel cell catalyst containing RuTe2 and N element, fuel cell electrode material and fuel cell using the fuel cell catalyst
JP2008021610A (en) Pefc fuel cell, and catalyst
JP2008287927A (en) CATALYST FOR FUEL CELL CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING CATALYST FOR FUEL CELL, AND FUEL CELL
JP2008235031A (en) Catalyst, manufacturing method of catalyst, membrane-electrode assembly, and fuel cell
JP2009238569A (en) Catalyst for fuel cell, its manufacturing method, membrane electrode assembly and fuel cell using its catalyst
JP2009252411A (en) CATALYST FOR RuTe2-CONTAINING DMFC TYPE FUEL CELL, ELECTRODE MATERIAL FOR FUEL CELL USING THE CATALYST FOR FUEL CELL, AND FUEL CELL
JP5217235B2 (en) Fuel cell catalyst containing RuTe2, electrode material for fuel cell and fuel cell using the fuel cell catalyst
JP2008287929A (en) CATALYST FOR FUEL CELL CONTAINING RuTe2 AND TUNGSTEN OXIDE, AND ELECTRODE MATERIAL FOR FUEL CELL USING THIS CATALYST FOR FUEL CELL, AND FUEL CELL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522247

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766677

Country of ref document: EP

Kind code of ref document: A1