JP5217434B2 - Fuel cell, its catalyst and its electrode - Google Patents

Fuel cell, its catalyst and its electrode Download PDF

Info

Publication number
JP5217434B2
JP5217434B2 JP2007522247A JP2007522247A JP5217434B2 JP 5217434 B2 JP5217434 B2 JP 5217434B2 JP 2007522247 A JP2007522247 A JP 2007522247A JP 2007522247 A JP2007522247 A JP 2007522247A JP 5217434 B2 JP5217434 B2 JP 5217434B2
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
electrode
substrate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007522247A
Other languages
Japanese (ja)
Other versions
JPWO2006137302A1 (en
Inventor
弘昭 板垣
善則 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007522247A priority Critical patent/JP5217434B2/en
Publication of JPWO2006137302A1 publication Critical patent/JPWO2006137302A1/en
Application granted granted Critical
Publication of JP5217434B2 publication Critical patent/JP5217434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池用触媒及びその製造方法と、この燃料電池用触媒を用いた燃料電池用電極及び燃料電池に関する。   The present invention relates to a fuel cell catalyst, a method for producing the same, a fuel cell electrode and a fuel cell using the fuel cell catalyst.

近年、エネルギーのより一層の効率化と環境問題の解決のために、燃料電池を自動車の動力源とすることにより排気ガスをクリーンにすることが試みられており、その普及に大きな関心が寄せられている。特に、燃料自動車(FCHV)用燃料電池として固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)の実用化に向けた開発が急速に進んでいる。   In recent years, in order to further improve energy efficiency and solve environmental problems, attempts have been made to clean exhaust gas by using a fuel cell as a power source for automobiles. ing. In particular, development of a polymer electrolyte fuel cell (PEFC) as a fuel cell for a fuel vehicle (FCHV) has been rapidly progressing.

燃料電池は、アノードに燃料、カソードに酸化剤をそれぞれ供給し、アノードとカソード間の電位差を電圧として取り出し、負荷に供給する発電装置であり、アノード燃料としては水素が、酸化剤としては一般的には空気中の酸素が用いられる。燃料電池は、アノード極とカソード極とその間に挟まれた電解質で構成されており、固体高分子型燃料電池においては、電解質としてイオン交換膜が用いられている。具体的には、電解質としてのイオン交換膜の両面に触媒層が形成され、該触媒層の外側にそれぞれアノードガス拡散層及びカソードガス拡散層が一体に形成されてなる電解質膜/電極接合体が、隔壁板、電解質膜/電極接合体及び隔壁板の積層体よりなる単位セルとして、用途に応じた所望の電圧が得られるように数十セルから数百セル積層されて燃料電池が構成されている。   A fuel cell is a power generator that supplies fuel to the anode and oxidant to the cathode, takes out the potential difference between the anode and cathode as voltage, and supplies it to the load. Hydrogen is commonly used as the anode fuel, and oxidant is generally used as the oxidant. For this, oxygen in the air is used. A fuel cell is composed of an anode and a cathode and an electrolyte sandwiched between them. In a polymer electrolyte fuel cell, an ion exchange membrane is used as an electrolyte. Specifically, an electrolyte membrane / electrode assembly in which a catalyst layer is formed on both surfaces of an ion exchange membrane as an electrolyte, and an anode gas diffusion layer and a cathode gas diffusion layer are integrally formed on the outside of the catalyst layer, respectively. A unit cell composed of a barrier plate, an electrolyte membrane / electrode assembly, and a barrier plate laminate is formed by stacking several tens to several hundreds of cells so as to obtain a desired voltage according to the application. Yes.

このような燃料電池では、アノード触媒層に水素が到達すると電気化学的反応過程によりプロトンと電子が生ずる。ここで生成したプロトンは順次電解質中を移動してカソードに達する。一方、電子は、外部負荷を経由してカソードに送られる。カソード触媒層では、外部負荷を経由して送られてきた電子と、酸化剤としての空気中の酸素と、電解質中を移動してきたプロトンとが電気化学的反応過程により結合して水を生成する。   In such a fuel cell, when hydrogen reaches the anode catalyst layer, protons and electrons are generated by an electrochemical reaction process. Protons generated here move sequentially in the electrolyte and reach the cathode. On the other hand, electrons are sent to the cathode via an external load. In the cathode catalyst layer, electrons sent via an external load, oxygen in the air as an oxidant, and protons that have moved through the electrolyte combine to form water through an electrochemical reaction process. .

従来、このような燃料電池の触媒としては、カソード、アノードとも、高価で資源的にも問題がある白金等の貴金属を主体にした触媒が使用されており、その使用量は、同じ動力を発生するガソリン車の排気ガス浄化用触媒に使用される白金の量よりも相当に多量となっている。   Conventionally, as a catalyst for such a fuel cell, a catalyst based on a noble metal such as platinum, which is expensive and has a problem in terms of resources, has been used for both the cathode and the anode. The amount of platinum used for the exhaust gas purification catalyst of gasoline cars is considerably larger than that of platinum.

従って、燃料電池を商業的に実用化するためには、価格的にも資源的にも問題のある白金等の貴金属を主体とした触媒に代わる、安価で実用に供しうる燃料電池用触媒の開発が必須の課題の一つとなる。   Therefore, in order to commercialize fuel cells, development of fuel cell catalysts that can be put into practical use at low cost, replacing catalysts based on precious metals such as platinum, which are problematic in terms of price and resources. Is one of the essential issues.

下記特許文献1には、白金元素とテルル元素等の添加元素とからなる合金を燃料電池用触媒に用いることがその特許請求の範囲に記載され、実施例4においてPtTe2が検討されている。しかし当該文献ではVIII族元素はPtに限定されており、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)については一切開示されていない。
また、非特許文献にはルテニウム元素とテルル元素とからなる触媒について記載されているが、ルテニウム元素とテルル元素の存在比が、Ru/Te=1/0.055の触媒についてのみ開示されており、テルル元素の存在比が0.055を超える触媒については、一切開示されておらず、かつ何らの示唆も示されていない。
非特許文献には、RuxTeyが開示されているが、具体的なxとyの値が開示されていない。合成方法は非特許文献1と同様であることから、RuTe0.055のみが検討されているものと推測される。
また、非特許文献にはMo4Ru2Te8,Mo5Rh1Te8,Mo5.4Os0.6Te8が開示されている。しかしTe元素とMo以外の遷移金属(Ru,Rh,Os)の存在比が特定の領域であるのが望ましい等の記載は一切開示されていない。
In the following Patent Document 1, it is described in the claims that an alloy composed of platinum element and an additive element such as tellurium element is used for the fuel cell catalyst, and PtTe 2 is studied in Example 4. However, in this document, the group VIII element is limited to Pt, and there is no disclosure about ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), or iridium (Ir).
Non-patent documents 1 and 2 describe a catalyst composed of a ruthenium element and a tellurium element, but only a catalyst having an abundance ratio of ruthenium element and tellurium element of Ru / Te = 1 / 0.055 is disclosed. No catalyst is disclosed for the tellurium element ratio exceeding 0.055, and no suggestion is given.
Non-Patent Document 3 discloses LuxTey, but does not disclose specific values of x and y. Since the synthesis method is the same as in Non-Patent Document 1, it is speculated that only Ru 1 Te 0.055 has been studied.
Non-patent documents 4 and 5 disclose Mo 4 Ru 2 Te 8 , Mo 5 Rh 1 Te 8 , and Mo 5.4 Os 0.6 Te 8 . However, it does not disclose any description that it is desirable that the abundance ratio of transition metals (Ru, Rh, Os) other than Te element and Mo is in a specific region.

特開平10−92441号公報JP-A-10-92441

Electrochimica Acta 47, 2002, 3807-3814Electrochimica Acta 47, 2002, 3807-3814 Journal of Physical Chemistry B 106(7), 2002, 1670-1676Journal of Physical Chemistry B 106 (7), 2002, 1670-1676 Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 448(1-2), 2000, 323-326.Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 448 (1-2), 2000, 323-326. Journal of Applied Electrochemistry 25(11), 1995, 1004-1008Journal of Applied Electrochemistry 25 (11), 1995, 1004-1008 J Chim Phys Phys Chim Biol 93(4), 1996, 702-710J Chim Phys Phys Chim Biol 93 (4), 1996, 702-710

上記文献1に記載されるように、白金とテルルの合金を燃料電池用触媒として用い得ることは知られているが、この燃料電池用触媒では、高価で資源的にも問題がある白金を用いる必要があり、白金等の貴金属を主体とした触媒に代わる、安価で実用に供しうる燃料電池用触媒の開発という課題は解決し得ない。
本発明は、安価で、白金等の貴金属触媒に代替しうる、優れた触媒作用を発揮する燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極及び燃料電池を提供することを目的とする。
As described in Document 1, it is known that an alloy of platinum and tellurium can be used as a fuel cell catalyst. However, this fuel cell catalyst uses platinum which is expensive and has problems in terms of resources. The problem of developing a catalyst for a fuel cell that can be used practically at low cost instead of a catalyst mainly composed of noble metals such as platinum cannot be solved.
The present invention provides a fuel cell catalyst that exhibits an excellent catalytic action that is inexpensive and can be substituted for a noble metal catalyst such as platinum, and a fuel cell electrode and a fuel cell using the fuel cell catalyst. Objective.

第1アスペクトの燃料電池用触媒は、テルル(Te)と、ルテニウム(Ru)とを含み、組成をRu 1Teと表した際、<X<4であることを特徴とするものである。 The fuel cell catalyst according to the first aspect includes tellurium (Te) and ruthenium (Ru ), and when the composition is expressed as Ru 1 Te X , 1 <X <4. .

第2アスペクトの燃料電池用触媒は、テルル(Te)と、ルテニウム(Ru)の他に、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる少なくとも1種の元素Lとを含み、組成をLYRu1Teと表した際、<Xであり、0<Y≦10であることを特徴とするものである。 The fuel cell catalyst of the second aspect is selected from the group consisting of rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) in addition to tellurium (Te) and ruthenium (Ru). When at least one element L is included and the composition is expressed as L Y Ru 1 Te X , 1 <X and 0 <Y ≦ 10.

第3アスペクトの燃料電池用電極材料及び第4アスペクトの燃料電池用電極は、第1又は第2アスペクトの触媒を有する。   The fuel cell electrode material of the third aspect and the fuel cell electrode of the fourth aspect have the catalyst of the first or second aspect.

第5アスペクトの燃料電池は、第4アスペクトの電極を有する。   The fuel cell of the fifth aspect has the electrode of the fourth aspect.

本発明者等は、上記状況に鑑み鋭意検討した結果、ルテニウム等のVIII族元素とテルルとからなる合金ないし化合物を用いることにより、触媒活性が高く、白金等の貴金属触媒に代替しうる実用性を有する燃料電池用触媒が得られることを見出した。また、これを基体に被着させることにより、安価で、より一層触媒活性が高く、白金等の貴金属触媒に代替しうる実用性を有する燃料電池用触媒が得られることを見出した。
本発明は、このような知見をもとに完成されたものであり、以下を要旨とする。
As a result of intensive investigations in view of the above circumstances, the present inventors have a high catalytic activity by using an alloy or a compound composed of a group VIII element such as ruthenium and tellurium, and can be substituted for a noble metal catalyst such as platinum. It has been found that a fuel cell catalyst having the following can be obtained. Further, it has been found that by attaching this to a substrate, a fuel cell catalyst can be obtained that is inexpensive, has a higher catalytic activity, and has a practical utility that can replace a noble metal catalyst such as platinum.
The present invention has been completed based on such knowledge, and the gist thereof is as follows.

[1] テルル(Te)と、ルテニウム(Ru)とを含み、組成をRu 1Teと表した際、<X<4であることを特徴とする燃料電池用触媒
[2] [1]において、RuTeを含むことを特徴とする燃料電池用触媒。
[1]において、テルル(Te)と、ルテニウム(Ru)の他に、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる少なくとも1種の元素Lとを含み、組成をLYRu1Teと表した際、<Xであり、0<Y≦10であることを特徴とする燃料電池用触媒。
] [1]において、さらに、Te及びRuが被着された基体を含むことを特徴とする燃料電池用触媒
[5] []において、基体は炭素系基体であることを特徴とする燃料電池用触媒
[6] [1]において、燃料電池が固体高分子型燃料電池であることを特徴とする燃料電池用触媒
[7] イオン交換膜と、該イオン交換膜上に形成された[1]の燃料電池用触媒の層とを有する燃料電池用電極材料
[8] 電極ガス拡散層と、該電極ガス拡散層上に形成された[1]の燃料電池用触媒の層とを有する燃料電池用電極材料
[9] 転写用フィルムと、該転写用フィルム上に形成された[1]の燃料電池用触媒の層とを有する燃料電池用電極材料
[10] [1]に記載の燃料電池用触媒を含有することを特徴とする燃料電池用電極
[11] [10]に記載の燃料電池用電極を用いた燃料電池
[12] [11]において、燃料電池は固体高分子型燃料電池であることを特徴とする燃料電池
[13] []に記載の燃料電池用触媒を製造する方法であって、炭素系基体、Teの前駆体及びRuの前駆体を混合する工程と、該前駆体を活性にする工程とを有することを特徴とする燃料電池用触媒の製造方法
[14] []に記載の燃料電池用触媒を製造する方法であって、炭素系基体と[1]に記載の燃料電池用触媒とを混合する工程を有することを特徴とする燃料電池用触媒の製造方法
[15] [13]において、更に遷移金属を炭素系基体に被着させる工程を有することを特徴とする燃料電池用触媒の製造方法
[16] [14]において、更に遷移金属を炭素系基体に被着させる工程を有することを特徴とする燃料電池用触媒の製造方法
[17] [1]に記載の燃料電池用触媒を含有する燃料電池スタック
[18] [17]に記載の燃料電池スタックを含む燃料電池システム
[1] A fuel cell catalyst comprising tellurium (Te) and ruthenium (Ru ) , wherein the composition is expressed as Ru 1 Te X , 1 <X <4 .
[2 ] A fuel cell catalyst according to [1], which contains RuTe 2 .
[ 3 ] In [1], in addition to tellurium (Te) and ruthenium (Ru) , at least one selected from the group consisting of rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) A catalyst for a fuel cell comprising a seed element L and having a composition expressed as L Y Ru 1 Te X , wherein 1 <X and 0 <Y ≦ 10.
[ 4 ] The fuel cell catalyst according to [1], further including a substrate on which Te and Ru are deposited .
[5 ] The catalyst for a fuel cell according to [ 4 ], wherein the substrate is a carbon-based substrate .
[6 ] A fuel cell catalyst according to [1], wherein the fuel cell is a polymer electrolyte fuel cell .
[7 ] A fuel cell electrode material comprising an ion exchange membrane and a fuel cell catalyst layer of [1] formed on the ion exchange membrane .
[8 ] A fuel cell electrode material comprising an electrode gas diffusion layer and a fuel cell catalyst layer of [1] formed on the electrode gas diffusion layer .
[9 ] A fuel cell electrode material comprising a transfer film and a fuel cell catalyst layer of [1] formed on the transfer film .
[10 ] A fuel cell electrode comprising the fuel cell catalyst according to [1] .
[11 ] A fuel cell using the fuel cell electrode according to [ 10 ] .
[12 ] In the fuel cell according to [ 11 ], the fuel cell is a polymer electrolyte fuel cell .
[13 ] A method for producing a fuel cell catalyst according to [ 5 ], comprising the steps of mixing a carbon-based substrate, a Te precursor and a Ru precursor, and activating the precursor. method for producing a catalyst for a fuel cell characterized by having.
[14 ] A method for producing a fuel cell catalyst according to [ 5 ], comprising a step of mixing a carbon-based substrate and the fuel cell catalyst according to [1]. A method for producing a catalyst .
[15 ] The method for producing a fuel cell catalyst according to [ 13 ], further comprising a step of depositing a transition metal on the carbon-based substrate .
[16 ] The method for producing a fuel cell catalyst according to [ 14 ], further comprising a step of depositing a transition metal on a carbon-based substrate .
[17 ] A fuel cell stack containing the fuel cell catalyst according to [1] .
[18 ] A fuel cell system including the fuel cell stack according to [ 17 ] .

本発明によれば、高価で資源的にも問題のある白金等の貴金属触媒に代替し得る、良好な触媒作用を示し、安価にかつ安全に合成することが可能な、実用的な燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極及び燃料電池が提供される。   INDUSTRIAL APPLICABILITY According to the present invention, for a practical fuel cell that exhibits good catalytic action and can be synthesized safely at low cost, which can be replaced with a noble metal catalyst such as platinum, which is expensive and problematic in terms of resources. Provided are a catalyst, a fuel cell electrode and a fuel cell using the fuel cell catalyst.

本発明によれば、安価な燃料電池用触媒を用いた燃料電池が提供されるため、燃料自動車、固定式コジェネレーションシステム等への燃料電池の用途の拡大と実用化が促進される。   According to the present invention, since a fuel cell using an inexpensive fuel cell catalyst is provided, the expansion and practical application of the fuel cell to a fuel vehicle, a stationary cogeneration system, and the like are promoted.

以下、本発明についてさらに詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, the present invention will be described in more detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

[燃料電池用触媒]
本発明の第1態様の燃料電池用触媒は、テルル(Te)を含み、さらにルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種以上の元素Mを含み、M1Teと表した際のXの値が、0.2<X<4である。第1態様の説明において、Teと元素Mとを併せて活性成分ということがある。
[Fuel cell catalyst]
The fuel cell catalyst according to the first aspect of the present invention contains tellurium (Te), and further comprises ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir). The value of X when including one or more selected elements M and expressed as M 1 Te X is 0.2 <X <4. In the description of the first aspect, Te and the element M may be collectively referred to as an active component.

本発明の第2態様の燃料電池用触媒は、テルル(Te)と、ルテニウム(Ru)と、必要に応じて含まれるロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種以上の元素Lとを含み、LYRu1TeXと表した際のXの値が、X>0.2であり、Yの値が0<y≦10である。第2態様の説明において、Teと、Ruと、元素Lとを併せて活性成分ということがある。 The catalyst for a fuel cell according to the second aspect of the present invention includes tellurium (Te), ruthenium (Ru), and rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) contained as necessary. ), The value of X when expressed as L Y Ru 1 Te X is X> 0.2, and the value of Y is 0 <y ≦ 10. It is. In the description of the second aspect, Te, Ru, and element L may be collectively referred to as an active component.

いずれの態様においても、本発明の燃料電池用触媒は、活性成分のみからなるものであっても良く、さらに他の遷移金属を含んでも良い。活性成分は基体に被着されても良い。   In any embodiment, the fuel cell catalyst of the present invention may be composed of only active components, and may further contain other transition metals. The active ingredient may be applied to the substrate.

なお、以下において、Mで表される元素すなわちルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種以上の元素を「VIII族金属」と称す場合がある。また、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種以上の元素Lを「Ru以外のVIII族金属」と称す場合がある。   In the following, an element represented by M, that is, one or more elements selected from the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) is represented by “ Sometimes referred to as “Group VIII metal”. One or more elements L selected from the group consisting of rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) may be referred to as “Group VIII metal other than Ru”.

また、活性成分が基体に被着されておらず、実質的に活性成分のみから構成される燃料電池用触媒を「純触媒(essential catalyst)」と称し、活性成分を基体に被着させた燃料電池用触媒を「被着触媒(adhered catalyst)」と称す場合がある。   In addition, a fuel cell catalyst that is not coated with an active component and is substantially composed of only the active component is referred to as a “pure catalyst”, and a fuel in which the active component is deposited on the substrate. Battery catalysts are sometimes referred to as “adhered catalysts”.

〈活性成分〉
第1態様の燃料電池用触媒の活性成分におけるテルル(Te)元素と、VIII族金属元素(M)の存在比率を次に説明する。活性成分の組成をM1TeXと記載した場合、X>0.2であり、特に好ましくはX>1であり、X<4、好ましくはX<3、より好ましくはX<2.5である。テルル元素の存在比率Xが、この範囲を下回ると活性が低くなりやすく、この範囲を超えても活性が出にくくなる。VIII族金属元素(M)は2種以上用いてもよい。M1TeXは、VIII族金属元素Mの合計の元素数と、テルル元素Teの元素数の比率を表す。
<Active ingredient>
Next, the abundance ratio of tellurium (Te) element and group VIII metal element (M) in the active component of the fuel cell catalyst of the first embodiment will be described. When the composition of the active ingredient is described as M 1 Te X , X> 0.2, particularly preferably X> 1, X <4, preferably X <3, more preferably X <2.5. is there. If the abundance ratio X of the tellurium element is less than this range, the activity tends to be low, and if it exceeds this range, the activity is difficult to be produced. Two or more Group VIII metal elements (M) may be used. M 1 Te X represents the ratio of the total number of elements of the group VIII metal element M to the number of tellurium elements Te.

第2態様の燃料電池用触媒の活性成分におけるテルル(Te)元素と、ルテニウム(Ru)元素と、Ru以外のVIII族金属(L)の存在比率を次に説明する。第2態様の活性成分の組成をLYRu1TeXと記載した場合、Xは、X>0.2であり、好ましくはX>1であり、通常X<20、好ましくはX<15、より好ましくはX<10、より好ましくはX<5、特に好ましくはX<3である。テルル元素の存在比率が、この範囲を下回ると活性が低くなりやすく、この範囲を超えても活性が出にくくなる。 Next, the abundance ratio of tellurium (Te) element, ruthenium (Ru) element and group VIII metal (L) other than Ru in the active component of the fuel cell catalyst of the second embodiment will be described. When the composition of the active ingredient of the second aspect is described as L Y Ru 1 Te X , X is X> 0.2, preferably X> 1, usually X <20, preferably X <15, More preferably, X <10, more preferably X <5, and particularly preferably X <3. If the abundance ratio of the tellurium element is below this range, the activity tends to be low, and if it exceeds this range, the activity is difficult to be produced.

Yは0<Y≦10であり、好ましくは0<Y≦5、より好ましくは0<Y≦3である。Ru以外のVIII族金属元素(L)は2種以上用いてもよい。LYRu1TeXは、Ru以外のVIII族金属元素Lの合計の元素数と、ルテニウム元素(Ru)の元素数と、テルル元素(Te)の元素数の比率を表す。 Y is 0 <Y ≦ 10, preferably 0 <Y ≦ 5, more preferably 0 <Y ≦ 3. Two or more Group VIII metal elements (L) other than Ru may be used. L Y Ru 1 Te X represents the ratio of the total number of group VIII metal elements L other than Ru, the number of elements of ruthenium element (Ru), and the number of elements of tellurium element (Te).

第1及び第2のいずれの態様においても、触媒中の各元素の存在比は、常法に従い、触媒を秤量後アルカリ溶融して分解し、酸を添加後定容して誘導結合プラズマ発光分光分析法により定量することができる。   In either of the first and second embodiments, the abundance ratio of each element in the catalyst is determined by inductively coupled plasma emission spectroscopy according to a conventional method by weighing the catalyst and then decomposing it by melting with alkali, adding the acid, and measuring the volume. It can be quantified by analytical methods.

いずれの態様の場合も、活性成分中のテルルの含有量は、活性成分全体に対して、重量として通常5%以上、より好ましくは6%以上、更に好ましくは10%以上、通常96%以下、好ましくは95%以下、より好ましくは93%以下、更に好ましくは90%以下、更に最も好ましくは87%以下である。活性成分中のテルルの含有量がこの範囲を下回ると活性が低くなりやすく、この範囲を超えても活性が出にくくなる。   In any embodiment, the content of tellurium in the active ingredient is usually 5% or more by weight, more preferably 6% or more, still more preferably 10% or more, usually 96% or less, based on the whole active ingredient. Preferably it is 95% or less, More preferably, it is 93% or less, More preferably, it is 90% or less, More preferably, it is 87% or less. If the tellurium content in the active ingredient is below this range, the activity tends to be low, and if it exceeds this range, the activity is difficult to be produced.

第1及び第2態様において、活性成分中のVIII族金属、即ち、ルテニウム、ロジウム、パラジウム、オスミウム、及びイリジウムの合計の含有量は、活性成分全体に対して、通常1%以上、好ましくは5%以上、より好ましくは7%以上、更に好ましくは10%以上、より好ましくは13%以上、通常95%以下、好ましくは90%以下、より好ましくは88%以下、更に好ましくは85%以下である。活性成分中のVIII族金属の含有量がこの範囲を下回ると活性が低くなりやすく、この範囲を超えても活性が出にくくなる。   In the first and second embodiments, the total content of Group VIII metals in the active ingredient, that is, ruthenium, rhodium, palladium, osmium, and iridium is usually 1% or more, preferably 5 with respect to the whole active ingredient. % Or more, more preferably 7% or more, further preferably 10% or more, more preferably 13% or more, usually 95% or less, preferably 90% or less, more preferably 88% or less, still more preferably 85% or less. . If the content of the group VIII metal in the active ingredient is below this range, the activity tends to be low, and if it exceeds this range, the activity is difficult to be produced.

第1及び第2態様において、活性成分は、VIII族金属の1種を単独で含んでいても良く、2種以上を含んでいても良い。活性成分は、VIII族金属としてルテニウム又はロジウムを含むことが好ましく、特にVIII族金属としてルテニウムを含むことが好ましい。   In the first and second embodiments, the active ingredient may contain one kind of Group VIII metal alone or may contain two or more kinds. The active ingredient preferably contains ruthenium or rhodium as the Group VIII metal, and particularly preferably contains ruthenium as the Group VIII metal.

なお、活性成分は、テルル元素とVIII族金属以外の成分を、本発明の効果を損なわない範囲で含むことも可能である。   The active ingredient can also contain ingredients other than tellurium elements and Group VIII metals as long as the effects of the present invention are not impaired.

第1及び第2態様の活性成分において、テルルは、Te元素であってもよく、TeO2,TeO3等の酸化物、H2TeO3,H6TeO6等のオキソ酸、TeCl2,TeBr2等の塩化物などの無機化合物、及びテルロフェン等の有機化合物の形態をとっていても良い。VIII族金属も、金属元素、酸化物、塩化物等の無機化合物の他、有機化合物と結合する形態をとることができる。例えばルテニウムは、Ru元素であってもよく、RuO,RuO2等の酸化物、RuCl3・xH2O等の塩化物やRu(NO)(NO3)3等の無機化合物、Ru(acac)3及びRu3(CO)12等の有機化合物と結合する形態をとっていても良い。 In the active ingredient of the first and second embodiments, tellurium may be Te element, oxide such as TeO 2 and TeO 3 , oxo acid such as H 2 TeO 3 and H 6 TeO 6 , TeCl 2 and TeBr. It may take the form of an inorganic compound such as chloride such as 2 and an organic compound such as tellurophen. Group VIII metals can also take the form of bonding with organic compounds in addition to inorganic compounds such as metal elements, oxides, and chlorides. For example, ruthenium may be a Ru element, an oxide such as RuO or RuO 2 , a chloride such as RuCl 3 · xH 2 O, an inorganic compound such as Ru (NO) (NO 3 ) 3 , Ru (acac) 3 and Ru 3 (CO) 12 may be combined with an organic compound such as 12 .

活性成分を構成するこれらテルル成分及びVIII族金属成分は、それぞれ結合を有さずに存在しても良いし、結合を有して存在しても良い。これらが結合を有して存在している場合で、元素同士が直接結合している場合は、活性成分としてはいわゆる合金の形態を有するものが挙げられる。   These tellurium components and group VIII metal components constituting the active component may be present without any bond, or may be present with a bond. In the case where these elements have a bond and the elements are directly bonded to each other, the active component may be a so-called alloy.

合金の形態を有する活性成分としては、具体的には、RuTe2,RuTe,Ru2Te,OsTe2,RhTe,RhTe2,Rh3Te2,Rh3Te4,Rh3Te8,IrTe2,Ir3Te8,PdTe,Pd3Te2,PdTe2,Pd9Te4,Pd2.5Te,Pd3Te,Pd2Te,Pd20Te7,Pd8Te3,Pd7Te2,Pd7Te3,Pd4Te,Pd17Te4等が挙げられ、中でもRuTe2、RuTe、Ru2Teが好ましく、特にRuTe2が好ましい。テルルと、VIII族金属のうちの2つ以上の元素とが結合した合金の形態であっても良い。 Specific examples of the active component having an alloy form include RuTe 2 , RuTe, Ru 2 Te, OsTe 2 , RhTe, RhTe 2 , Rh 3 Te 2 , Rh 3 Te 4 , Rh 3 Te 8 , IrTe 2 , Ir 3 Te 8, PdTe, Pd 3 Te 2, PdTe 2, Pd 9 Te 4, Pd 2.5 Te, Pd 3 Te, Pd 2 Te, Pd 20 Te 7, Pd 8 Te 3, Pd 7 Te 2, Pd 7 Te 3 , Pd 4 Te, Pd 17 Te 4 and the like. Among them, RuTe 2 , RuTe and Ru 2 Te are preferable, and RuTe 2 is particularly preferable. It may be in the form of an alloy in which tellurium and two or more elements of group VIII metals are bonded.

活性成分中の元素の存在形態()は、X線回折(XRD)で特定することができる。即ち、例えば、後述の基体に被着された活性成分に対してX線(Cu−Kα線)を照射し、その回折スペクトルを観察することによって元素の存在形態を特定することができる。   The presence form () of the element in the active ingredient can be specified by X-ray diffraction (XRD). That is, for example, the existence form of an element can be specified by irradiating an active ingredient deposited on a substrate described later with X-rays (Cu-Kα rays) and observing the diffraction spectrum thereof.

その測定装置及び測定条件としては、例えば以下のものが挙げられるが、それらに限定されるものではない。   Examples of the measurement apparatus and measurement conditions include, but are not limited to, the following.

測定装置
粉末X線解析装置/PANalytical PW1700
測定条件
X線出力(Cu−Kα):40kV,30mA
走査軸:θ/2θ
測定範囲(2θ):3.0°〜90.0°
測定モード:Continuous
読込幅:0.05°
走査速度:3.0°/min
DS,SS,RS:1°,1°,0.20mm
Measuring device X-ray powder analysis device / PANallytical PW1700
Measurement conditions X-ray output (Cu-Kα): 40 kV, 30 mA
Scanning axis: θ / 2θ
Measurement range (2θ): 3.0 ° to 90.0 °
Measurement mode: Continuous
Reading width: 0.05 °
Scanning speed: 3.0 ° / min
DS, SS, RS: 1 °, 1 °, 0.20mm

具体的には、RuTe2は、X線回折の2θ(±0.3゜)のピークとして、21.808゜、27.920゜、31.287゜、32.716゜、43.369゜、45.203゜、48.322゜、51.509゜、53.981゜、56.910゜、68.565゜等の特徴的ピークを与えるものや、21.767゜、26.189゜、27.877゜、31.249゜、32.658゜、33.847゜、36.719゜、39.822゜、43.308゜、44.377゜、45.177゜、45.801゜、48.244゜、50.117゜、50.661゜、51.426゜等の特徴的ピークを与えるものや、27.857゜、31.271゜、34.344゜、39.873゜、47.123゜、49.353゜、51.532゜、53.614゜、57.636゜、65.236゜、67.032゜、68.881゜、72.414゜、77.547゜、80.922゜、82.608゜、85.948゜等の特徴的ピークを与えるものが挙げられる。 Specifically, RuTe 2 has 21.808 °, 27.920 °, 31.287 °, 32.716 °, 43.369 ° as 2θ (± 0.3 °) peaks of X-ray diffraction. Those giving characteristic peaks such as 45.203 °, 48.322 °, 51.509 °, 53.981 °, 56.910 °, 68.565 °, 21.767 °, 26.189 °, 27 .877 °, 31.249 °, 32.658 °, 33.847 °, 36.719 °, 39.822 °, 43.308 °, 44.377 °, 45.177 °, 45.801 °, 48 Those giving characteristic peaks such as 244 °, 50.117 °, 50.661 °, 51.426 °, 27.857 °, 31.271 °, 34.344 °, 39.873 °, 47. 123 °, 49.353 °, 51.53 °, 53.614 °, 57.636 °, 65.236 °, 67.032 °, 68.881 °, 72.414 °, 77.547 °, 80.922 °, 82.608 °, 85.948 Those that give a characteristic peak such as °.

〈純触媒の形状〉
基体に被着されていない活性成分よりなる純触媒の形状は特に制限はないが、最も一般的には粒子状である。粒子状の純触媒の平均粒径は、通常100μm以下、好ましくは1000nm以下、より好ましくは500nm以下、中でも300nm以下で、通常0.5nm以上、好ましくは1.0nm以上、より好ましくは2.0nm以上である。純触媒の粒径がこの範囲を下回ると不安定となって、失活しやすくなり、この範囲を超えると高い活性を得にくくなる。
<Pure catalyst shape>
There is no particular limitation on the shape of the pure catalyst made of the active component not deposited on the substrate, but it is most generally particulate. The average particle size of the particulate pure catalyst is usually 100 μm or less, preferably 1000 nm or less, more preferably 500 nm or less, especially 300 nm or less, usually 0.5 nm or more, preferably 1.0 nm or more, more preferably 2.0 nm. That's it. If the particle size of the pure catalyst is less than this range, it becomes unstable and easily deactivates, and if it exceeds this range, it becomes difficult to obtain high activity.

なお、純触媒の平均粒径は、走査型電子顕微鏡(SEM)或いは透過型電子顕微鏡(TEM)により、粒径の長さを測定する方向を統一して、その方向での粒子長さを測定し、これを平均した値で示される。   In addition, the average particle diameter of the pure catalyst is measured by unifying the direction of measuring the length of the particle diameter with a scanning electron microscope (SEM) or transmission electron microscope (TEM) and measuring the particle length in that direction. This is shown as an average value.

〈基体〉
被着触媒は、基体と、該基体に被着されて保持された活性成分とを有する。活性成分を電気的に導通させるために、基体は、高い導電性を有することが好ましい。
<Substrate>
The deposition catalyst has a substrate and an active component deposited and held on the substrate. In order to electrically connect the active component, the substrate preferably has high conductivity.

基体は、高い導電性を有する炭素系基体が好適である。   The substrate is preferably a carbon-based substrate having high conductivity.

炭素系基体は、特に制限はないが、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスター、フラーレン、熱分解炭素、活性炭素等であってもよい。炭素系基体は、気相法による気相成長炭素繊維(Vapor Grown Carbon Fiber:以下「VGCF」と略すこともある。)であってもよく、特に、熱処理して電気伝導性を高めたVGCFは適度な弾性を持ち、好適である。   The carbon-based substrate is not particularly limited, and may be, for example, carbon black, carbon nanotube, carbon nanohorn, carbon nanocluster, fullerene, pyrolytic carbon, activated carbon, or the like. The carbon-based substrate may be a vapor-grown carbon fiber (Vapor Growth Carbon Fiber: hereinafter sometimes abbreviated as “VGCF”) by a vapor-phase method. It has moderate elasticity and is suitable.

これらの炭素系基体の中でも、導電性、入手容易性、価格、の点で総合的に、カーボンブラックが工業的に有利である。カーボンブラックとしては、チャンネルブラック、ファーネスブラック、サーマルブラック、アセチレンブラック、オイルファーネスブラック、ガスファーネスブラック等が挙げられる。これらの炭素系基体は1種を単独であるいは2種以上を組み合わせて使用することができる。   Among these carbon-based substrates, carbon black is industrially advantageous in terms of conductivity, availability, and cost. Examples of carbon black include channel black, furnace black, thermal black, acetylene black, oil furnace black, and gas furnace black. These carbon-based substrates can be used singly or in combination of two or more.

基体の比表面積は、特に制限が無いが、通常5m2/g以上、好ましくは100m/g以上、更に好ましくは150m/g以上で、通常5000m/g以下、好ましくは2000m2/g以下であることが好ましい。この比表面積が小さ過ぎると活性成分の被着有効面積が少なくなることにより、反応場が少なくなって触媒活性が十分に得られなくなる。また比表面積が過度に大きいものは基体の細孔径が小さい場合があり、その小さな細孔内に活性成分が被着しても触媒活性が十分に得られなくなる。なお基体の比表面積はBET法で測定される。 The specific surface area of the substrate is not particularly limited, but is usually 5 m 2 / g or more, preferably 100 m 2 / g or more, more preferably 150 m 2 / g or more, and usually 5000 m 2 / g or less, preferably 2000 m 2 / g. The following is preferable. If the specific surface area is too small, the effective area for depositing the active ingredient is reduced, and the reaction field is reduced, so that sufficient catalytic activity cannot be obtained. Moreover, when the specific surface area is excessively large, the pore diameter of the substrate may be small, and even if the active component is deposited in the small pores, sufficient catalytic activity cannot be obtained. The specific surface area of the substrate is measured by the BET method.

また基体の形態についても特に制限はないが、最も一般的に用いられるのは、粉体状のものである。   The form of the substrate is not particularly limited, but the most commonly used is a powder form.

〈基体への活性成分の被着〉
本発明において、基体に活性成分が被着されている状態とは、活性成分と基体との間の導電性がとれるように両者が接触している状態を指す。従って、活性成分と基体とを単に混合するのみでも活性成分を基体に被着させることができるが、後述のように、活性成分の供給化合物と基体を混合した後、この混合物を焼成して被着させることが好ましい。また、基体と活性成分とを混合した後焼成しても良い。なお、以下において、基体に活性成分の供給化合物又は活性成分を混合後焼成して活性成分を被着させた状態を「担持」と称す。
<Adhesion of active ingredient to substrate>
In the present invention, the state in which the active component is applied to the substrate refers to a state in which the active component and the substrate are in contact with each other so as to obtain electrical conductivity. Therefore, the active ingredient can be applied to the substrate by simply mixing the active component and the substrate. However, as described later, after mixing the active compound supply compound and the substrate, the mixture is calcined and coated. It is preferable to wear. Alternatively, the substrate and the active component may be mixed and then fired. In the following, the state in which the active ingredient is mixed with the active ingredient supply compound or the active ingredient and then baked to deposit the active ingredient is referred to as “supporting”.

基体に被着された活性成分の形状としては特に制限はないが、最も一般的なのは粒子状である。粒子状の活性成分は、その平均粒径が通常100μm以下、好ましくは1000nm以下、より好ましくは500nm以下、中でも300nm以下であり、通常0.5nm以上、好ましくは1.0nm以上、より好ましくは2.0nm以上であることが望ましい。活性成分の粒径がこの範囲を下回ると不安定となって、失活しやすくなり、この範囲を超えると高い活性を得にくくなる。   The shape of the active ingredient applied to the substrate is not particularly limited, but the most common is a particulate form. The average active particle size of the particulate active ingredient is usually 100 μm or less, preferably 1000 nm or less, more preferably 500 nm or less, especially 300 nm or less, usually 0.5 nm or more, preferably 1.0 nm or more, more preferably 2 It is desirable that it is 0.0 nm or more. If the particle size of the active ingredient is below this range, it becomes unstable and easily deactivated, and if it exceeds this range, it becomes difficult to obtain high activity.

なお、基体に被着された活性成分の平均粒径は、走査型電子顕微鏡(SEM)或いは透過型電子顕微鏡(TEM)により、粒子の長さを測定する方向を統一して、その方向での粒子長さを測定し、これを平均した値で示される。   The average particle size of the active ingredient deposited on the substrate is determined by unifying the direction in which the particle length is measured with a scanning electron microscope (SEM) or transmission electron microscope (TEM). The particle length is measured and indicated as an average value.

このような小さめの平均粒径の活性成分を基体に被着させるには、後述の如く、その製造方法を工夫すれば良い。中でも、基体と活性成分とを混合した後の焼成温度を低めとし、焼成時間を短めにすることによって、結晶成長の状態を制御することが好ましい。   In order to deposit such a small average particle size active ingredient on a substrate, the production method may be devised as described later. Among these, it is preferable to control the state of crystal growth by lowering the firing temperature after mixing the substrate and the active component and shortening the firing time.

活性成分の基体への被着比率を示す活性成分/(活性成分+基体)の重量比は、特に限定されるものではないが、通常10−5以上、好ましくは0.001以上、より好ましくは0.01以上、中でも0.05以上で、通常0.95以下、好ましくは0.4以下、中でも0.3以下であることが望ましい。活性成分の被着比率がこの範囲を下回ると所望の活性が得られず、この範囲を超えると被着による活性の向上効果が出にくくなる。 The weight ratio of active ingredient / (active ingredient + substrate) indicating the deposition ratio of the active ingredient to the substrate is not particularly limited, but is usually 10 −5 or more, preferably 0.001 or more, more preferably It is 0.01 or more, especially 0.05 or more, and usually 0.95 or less, preferably 0.4 or less, and especially 0.3 or less. If the deposition ratio of the active ingredient is below this range, the desired activity cannot be obtained, and if it exceeds this range, the effect of improving the activity due to deposition becomes difficult.

〈その他の触媒成分〉
本発明においては、本発明の効果を損なわない限り、基体にさらに遷移金属が被着されてもよい。
<Other catalyst components>
In the present invention, a transition metal may be further deposited on the substrate as long as the effects of the present invention are not impaired.

この遷移金属(以下「他の触媒成分」と称す場合がある)は、周期律表のIIIA〜VIIA族、VIII族、及びIB族の第4周期から第6周期に属する元素であり、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ランタン(La)、ユウロピウム(Eu)、金(Au)、セリウム(Ce)、タンタル(Ta)、タングステン(W)、レニウム(Re)、プラセオジウム(Pr)、ネオジム(Nd)が例示される。遷移金属は、下記電気化学平衡式
酸化体+ne-=還元体
で示される、水溶液中での標準電極電位E゜(25℃)の値がプラスであるものが望ましい。これは、金属本来の性質として酸化による溶出が起こり難く、それに起因する触媒の劣化が少ないからである。このような遷移金属としては、具体的には、金、銀等が挙げられる。
This transition metal (hereinafter sometimes referred to as “other catalyst component”) is an element belonging to the fourth to sixth periods of groups IIIA to VIIA, VIII, and IB of the periodic table, and titanium ( Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), yttrium (Y), zirconium (Zr), niobium ( Nb), molybdenum (Mo), lanthanum (La), europium (Eu), gold (Au), cerium (Ce), tantalum (Ta), tungsten (W), rhenium (Re), praseodymium (Pr), neodymium ( Nd) is exemplified. The transition metal is preferably one having a positive standard electrode potential E ° (25 ° C.) in an aqueous solution represented by the following electrochemical equilibrium formula: oxidant + ne = reduced form. This is because elution due to oxidation is unlikely to occur as a natural property of metals, and there is little deterioration of the catalyst due to it. Specific examples of such a transition metal include gold and silver.

ただし、より工業的に有利な触媒とするには、上記の中で高価な触媒成分をなるべく少なくする方が良い。   However, in order to make the catalyst more industrially advantageous, it is better to reduce the number of expensive catalyst components as much as possible.

遷移金属として白金(Pt)を併用することも可能であるが、白金は高価であるため、添加量は少量であることが望ましい。白金を添加する場合、具体的には、白金成分の合計/活性成分の重量比は、通常0.001以上、好ましくは0.01以上、中でも0.05以上で、通常0.4以下、好ましくは0.3以下、中でも0.2以下が好ましい。   Although platinum (Pt) can be used in combination as the transition metal, platinum is expensive, so it is desirable that the addition amount be small. When platinum is added, specifically, the weight ratio of the total platinum component / active ingredient is usually 0.001 or more, preferably 0.01 or more, more preferably 0.05 or more, and usually 0.4 or less, preferably Is preferably 0.3 or less, and more preferably 0.2 or less.

なお、以下に主な遷移金属の電気化学平衡式と標準電極電位E°(25℃)を示す。   In addition, the following shows the electrochemical equilibrium formula of main transition metals and the standard electrode potential E ° (25 ° C.).

Figure 0005217434
Figure 0005217434

これらの他の触媒成分としての遷移金属は1種を単独で用いても良く、2種以上を併用しても良い。   These transition metals as other catalyst components may be used alone or in combination of two or more.

遷移金属と活性成分とを併用する具体例としては、次のi)−v)が挙げられる。
i) 活性成分と共に他の触媒成分を基体に混合する。
ii) 活性成分と共に他の触媒成分を基体に担持する。
iii) 基体に担持した活性成分を、他の触媒成分と混合する。
iv) 他の基体に担持した他の触媒成分を、活性成分と混合する。
v) 他の基体に担持した他の触媒成分を、基体に担持した活性成分と混合する。
Specific examples in which the transition metal and the active component are used in combination include the following i) to v).
i) The active ingredient is mixed with other catalyst components to the substrate.
ii) Other catalyst components are supported on the substrate together with the active components.
iii) The active component supported on the substrate is mixed with other catalyst components.
iv) The other catalyst component supported on the other substrate is mixed with the active component.
v) The other catalyst component supported on the other substrate is mixed with the active component supported on the substrate.

遷移金属の合計/活性成分の重量比は、通常0.001以上、好ましくは0.01以上、中でも0.05以上であり、通常0.5以下、好ましくは0.4以下、中でも0.3以下が好ましい。この重量比がこの範囲を下回ると所望の活性が得られにくく、この範囲を超えると活性の向上効果が出にくくなる。   The total transition metal / active component weight ratio is usually 0.001 or more, preferably 0.01 or more, especially 0.05 or more, usually 0.5 or less, preferably 0.4 or less, especially 0.3. The following is preferred. If this weight ratio is less than this range, it is difficult to obtain the desired activity, and if it exceeds this range, it is difficult to improve the activity.

遷移金属は粉体状であることが好ましい。この粉体の平均粒径は、通常1000nm以下、好ましくは500nm以下、中でも300nm以下であり、通常0.5nm以上であることが好ましい。平均粒径がこの範囲を下回ると触媒が不安定となって失活しやすくなり、この範囲を超えると高い活性を得にくくなる。   The transition metal is preferably in the form of powder. The average particle size of the powder is usually 1000 nm or less, preferably 500 nm or less, and more preferably 300 nm or less, and usually 0.5 nm or more. When the average particle size is less than this range, the catalyst becomes unstable and easily deactivates, and when it exceeds this range, it is difficult to obtain high activity.

なお、本発明の燃料電池用触媒においては、上記遷移金属元素以外の金属成分が、活性成分の重量を基準に数重量%以下の量で含まれていてもよい。 In the fuel cell catalyst of the present invention, a metal component other than the transition metal element may be contained in an amount of several weight percent or less based on the weight of the active component.

活性成分と遷移金属とを含んだ触媒、とりわけ、活性成分及び遷移金属が基体に担持された触媒は、触媒活性が高い。これは、遷移金属が活性成分の助触媒として機能し、活性が向上するためであると推定される。   A catalyst containing an active component and a transition metal, in particular, a catalyst having an active component and a transition metal supported on a substrate has high catalytic activity. This is presumably because the transition metal functions as a cocatalyst for the active component and the activity is improved.

〈純触媒の製造〉
基体に被着されていない活性成分のみで構成される第1態様の純触媒の合成方法については特に制限はなく、公知の任意の方法によって行うことができる。
<Manufacture of pure catalyst>
There is no particular limitation on the method for synthesizing the pure catalyst of the first aspect composed only of the active component not deposited on the substrate, and any known method can be used.

例えば、活性成分となる元素の供給化合物、即ち活性成分の前駆体を所定のモル比で、水等の溶媒に溶解或いは分散させ、濾過或いは溶媒を留去した後、必要に応じて前駆体を活性化する工程(例えば還元処理)を施して調製される。   For example, an element supply compound as an active ingredient, that is, a precursor of the active ingredient is dissolved or dispersed in a solvent such as water in a predetermined molar ratio, and after filtration or evaporation of the solvent, the precursor is added as necessary. It is prepared by applying an activation step (for example, reduction treatment).

各元素の前駆体としては加熱分解可能なものであれば特に制限はない。テルル前駆体としては、テルルパウダー(Te)の他、TeCl2,TeBr2,TeCl4等のハロゲン化物、TeO2,TeO3等の酸化物、H2TeO3,H6TeO6等のオキソ酸等の無機塩が挙げられる。 The precursor of each element is not particularly limited as long as it can be thermally decomposed. Tellurium precursors include tellurium powder (Te), halides such as TeCl 2 , TeBr 2 and TeCl 4 , oxides such as TeO 2 and TeO 3 , and oxo acids such as H 2 TeO 3 and H 6 TeO 6. Inorganic salts such as

また、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)の前駆体としては、これらのハロゲン化物、酸化物、無機塩、有機酸塩等の他、有機化合物と結合する化合物等が挙げられる。ルテニウム化合物としては、具体的にはRuCl3・xH2O,RuBr3等のハロゲン化物,Ru(SO42,Ru(NO)(NO3)3,2RuO4・H2O等の無機塩,Ru(OCHCO)等の有機酸塩、ルテニウムアセチルアセトネート(Ru(acac))等の有機化合物が挙げられる。ロジウム化合物としては、RhCl3・xH2O,RhBr3等のハロゲン化物,KRh(SO42・12H2O,Rh(NO33・2H2O等の無機塩,Rh(OCH3CO)3等の有機酸塩が挙げられる。パラジウム化合物としては、PdCl2,PdCl2・2H2O,PdF2,PdCl4,K2PdCl4,K2PdCl6等のハロゲン化物,Pd(NO32等の無機塩,Pd(OCH3CO)2等の有機酸塩が挙げられる。オスミニウム化合物としては、OsCl3,K2OsCl6等のハロゲン化物,OsO2等の酸化物が挙げられる。イリジウム化合物としては、IrCl3,IrBr3等のハロゲン化物,IrO2等の酸化物,Ir(SO42等の無機塩等が挙げられる。 Moreover, as precursors of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), in addition to these halides, oxides, inorganic salts, organic acid salts, etc., Examples include compounds that bind to organic compounds. Specific examples of the ruthenium compound include halides such as RuCl 3 · xH 2 O and RuBr 3 , Ru (SO 4 ) 2 , Ru (NO) (NO 3 ) 3, K 2 RuO 4 · H 2 O and the like. Examples thereof include inorganic salts, organic acid salts such as Ru 2 (OCH 3 CO) 4 , and organic compounds such as ruthenium acetylacetonate (Ru (acac) 3 ). Examples of the rhodium compound include halides such as RhCl 3 · xH 2 O and RhBr 3 , inorganic salts such as KRh (SO 4 ) 2 · 12H 2 O, Rh (NO 3 ) 3 · 2H 2 O, and Rh (OCH 3 CO ) Organic acid salts such as 3 . Examples of the palladium compound include halides such as PdCl 2 , PdCl 2 .2H 2 O, PdF 2 , PdCl 4 , K 2 PdCl 4 , K 2 PdCl 6 , inorganic salts such as Pd (NO 3 ) 2 , Pd (OCH 3). CO) 2 and other organic acid salts. Examples of the osmium compound include halides such as OsCl 3 and K 2 OsCl 6 , and oxides such as OsO 2 . Examples of the iridium compound include halides such as IrCl 3 and IrBr 3 , oxides such as IrO 2 , and inorganic salts such as Ir (SO 4 ) 2 .

これらの前駆体は1種を単独で用いても良く、2種以上を混合して用いても良い。   These precursors may be used individually by 1 type, and 2 or more types may be mixed and used for them.

RuTe純触媒を製造するには、例えば、RuCl3又はRu(acac)とH6TeO6を所望のモル比(RuCl3、Ru(acac)等に対するH6TeO6のモル比は、通常0.2以上、好ましくは1以上、通常10以下、好ましくは4以下)に応じた配合比で水に溶解させ、所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)放置した後、必要であれば所定の温度(通常60℃以上、好ましくは100℃以上、通常300℃以下、好ましくは200℃以下)で所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)加熱或いは還流し、その後、エバポレーターにより沈殿物を取得する。これを室温で風乾後、窒素、アルゴン等の不活性ガス雰囲気下所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)、所定の温度(通常100℃以上、好ましくは200℃以上、通常1000℃以下、好ましくは800℃以下)で乾燥処理する。次いで、所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)、所定の温度(通常100℃以上、好ましくは200℃以上、更に好ましくは300℃以上、通常1000℃以下、好ましくは800℃以下)で水素を含む気流下(窒素或いはAr等の不活性ガスを混合しても良く、不活性ガス中の水素濃度としては特に制限はないが、1%以上、好ましくは10%以上、100%以下、或いは80%以下)で加熱する。これにより、Ru及びTeを含有する活性成分、即ち純触媒を得ることができる。 In order to produce a RuTe X pure catalyst, for example, RuCl 3 or Ru (acac) 3 and H 6 TeO 6 are mixed in a desired molar ratio (RuCl 3 , Ru (acac) 3, etc., the molar ratio of H 6 TeO 6 is Usually 0.2 or more, preferably 1 or more, usually 10 or less, preferably 4 or less, dissolved in water at a blending ratio, and a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less). , Preferably 30 hours or less) and then, if necessary, at a predetermined temperature (usually 60 ° C. or higher, preferably 100 ° C. or higher, usually 300 ° C. or lower, preferably 200 ° C. or lower) for a predetermined time (usually 10 minutes or longer). (Preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less) Heating or refluxing, and then obtaining a precipitate by an evaporator. This is air-dried at room temperature, and then in an inert gas atmosphere such as nitrogen or argon for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), a predetermined temperature (usually 100 The drying treatment is carried out at a temperature of not less than 200 ° C, preferably not less than 200 ° C, usually not more than 1000 ° C, preferably not more than 800 ° C. Next, a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), a predetermined temperature (usually 100 ° C or more, preferably 200 ° C or more, more preferably 300 ° C or more). In general, an inert gas such as nitrogen or Ar may be mixed under an air stream containing hydrogen at 1000 ° C. or lower, preferably 800 ° C. or lower. The hydrogen concentration in the inert gas is not particularly limited, but 1 % Or more, preferably 10% or more, 100% or less, or 80% or less). Thereby, an active component containing Ru and Te, that is, a pure catalyst can be obtained.

RuTe以外の純触媒も同様にして製造することができる。 Pure catalysts other than RuTe X can be produced in the same manner.

この後、更に、低酸素濃度(例えば、5重量%以下、中でも2重量%以下程度の酸素濃度)の不活性ガス雰囲気中で、所定時間(通常数10分以上、好ましくは30分以上、通常10時間以下、中でも5時間以下)で、所定の温度(通常は、室温付近)で処理することにより不動態膜を形成させる不動態化処理を行っても良い。   Thereafter, in an inert gas atmosphere having a low oxygen concentration (for example, an oxygen concentration of about 5 wt% or less, especially about 2 wt% or less), a predetermined time (usually several tens of minutes, preferably 30 minutes or more, usually Passivation treatment may be performed to form a passive film by treatment at a predetermined temperature (usually around room temperature) for 10 hours or less, particularly 5 hours or less.

〈被着触媒の製造〉
第2態様の被着触媒は、活性成分を基体に被着することにより製造される。ここで、基体への活性成分の被着は、例えば、活性成分或いは活性成分の前駆体を基体と混合して焼成する担持法のほか、活性成分と基体とを単に混合する混合法、その他含浸法、沈殿法、吸着法等の公知の手法によって行うことができる。
<Manufacture of deposited catalyst>
The deposition catalyst of the second embodiment is produced by depositing an active component on a substrate. Here, the active component may be applied to the substrate by, for example, a loading method in which the active component or a precursor of the active component is mixed and baked with the substrate, a mixing method in which the active component and the substrate are simply mixed, and other impregnations. It can carry out by well-known methods, such as a method, a precipitation method, and an adsorption method.

例えば、被着触媒は、各元素の前駆体を所望のモル比で、水溶液等の溶媒に溶解或いは分散させ、この液を基体に含浸させるか、この液中に基体を浸漬させた後、濾過或いは溶媒を留去することにより基体上に前駆体を被着させ、必要に応じて活性成分の前駆体を活性化する工程(例えば還元処理)を施して調製される。尚、活性成分の前駆体は、純触媒の製造に用いられる化合物と同様の化合物を用いることができる。中でもルテニウム前駆体としてはRuCl3・xH2O、Ru(acac)3、Ru(NO)(NO3)3が好ましく、テルル前駆体としてはH6TeO6が好ましい。 For example, the deposited catalyst is prepared by dissolving or dispersing a precursor of each element in a solvent such as an aqueous solution in a desired molar ratio, and impregnating the substrate with the solution or immersing the substrate in the solution, followed by filtration. Alternatively, it is prepared by depositing the precursor on the substrate by distilling off the solvent and, if necessary, activating the precursor of the active ingredient (for example, reduction treatment). In addition, the precursor similar to the compound used for manufacture of a pure catalyst can be used for the precursor of an active component. Among these, RuCl 3 · xH 2 O, Ru (acac) 3 and Ru (NO) (NO 3 ) 3 are preferable as the ruthenium precursor, and H 6 TeO 6 is preferable as the tellurium precursor.

活性成分としてRuとTeを含む被着触媒の製造法の一例を次に説明する。RuCl3又はRu(acac)とH6TeO6を所望とするモル比に応じた配合比(RuCl3、Ru(acac)等に対するH6TeO6のモル比は、通常0.2以上、好ましくは1以上、通常10以下、好ましくは4以下)で水に溶解させ、これにカーボンブラック等の基体を所定量混合し、所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)放置する。尚、この放置の際、超音波処理を行っても良い。次に必要であれば所定の温度(通常60℃以上、好ましくは100℃以上、通常300℃以下、好ましくは200℃以下)で所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)加熱或いは還流する。その後、濾過或いはエバポレーターにより沈殿物を取得する。これを室温で風乾する。次いで、窒素、アルゴン等の不活性ガス雰囲気下所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)、所定の温度(通常100℃以上、好ましくは200℃以上、通常1000℃以下、好ましくは800℃以下)で乾燥処理後、所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)、所定の温度(通常100℃以上、好ましくは200℃以上、更に好ましくは300℃以上、通常1000℃以下、好ましくは800℃以下)で水素を含む気流下(窒素或いはAr等の不活性ガスを混合しても良く、不活性ガス中の水素濃度としては特に制限はないが、1%以上、好ましくは10%以上、100%以下、或いは80%以下)で加熱する。これにより、Ru及びTeを含有する活性成分が基体に担持された被着触媒が得られる。 Next, an example of a method for producing a deposition catalyst containing Ru and Te as active components will be described. RuCl 3 or Ru (acac) 3 and H 6 TeO 6 blending ratio corresponding to the molar ratio of the desired (RuCl 3, Ru (acac) molar ratio of H 6 TeO 6 for like 3 is generally 0.2 or more, Preferably, it is dissolved in water at 1 or more, usually 10 or less, preferably 4 or less, and a predetermined amount of a substrate such as carbon black is mixed therewith, and a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50). Or less, preferably 30 hours or less). In this case, ultrasonic treatment may be performed. Next, if necessary, a predetermined temperature (usually 60 ° C or higher, preferably 100 ° C or higher, usually 300 ° C or lower, preferably 200 ° C or lower) for a predetermined time (usually 10 minutes or longer, preferably 30 minutes or longer, usually 50 ° C). Heating or refluxing for a period of time or less, preferably 30 hours or less). Thereafter, a precipitate is obtained by filtration or an evaporator. This is air dried at room temperature. Next, a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less) under a inert gas atmosphere such as nitrogen or argon, a predetermined temperature (usually 100 ° C. or more, preferably After drying at 200 ° C. or higher, usually 1000 ° C. or lower, preferably 800 ° C. or lower), a predetermined time (usually 10 minutes or longer, preferably 30 minutes or longer, usually 50 hours or shorter, preferably 30 hours or shorter), a predetermined temperature (Normally 100 ° C or higher, preferably 200 ° C or higher, more preferably 300 ° C or higher, usually 1000 ° C or lower, preferably 800 ° C or lower). The hydrogen concentration in the inert gas is not particularly limited, but is heated at 1% or more, preferably 10% or more, 100% or less, or 80% or less. As a result, an adherent catalyst in which an active component containing Ru and Te is supported on a substrate is obtained.

その後、更に、低酸素濃度(例えば、5重量%以下、中でも2重量%以下程度の酸素濃度)の不活性ガス雰囲気中で、所定時間(通常数10分以上、好ましくは30分以上、通常10時間以下、中でも5時間以下)で、所定の温度(通常は、室温付近)で処理することにより不動態膜を形成させる不動態化処理を行うこともできる。   Thereafter, in an inert gas atmosphere having a low oxygen concentration (for example, an oxygen concentration of about 5 wt% or less, especially about 2 wt% or less) for a predetermined time (usually several tens of minutes, preferably 30 minutes or more, usually 10 It is also possible to perform a passivation treatment for forming a passive film by treatment at a predetermined temperature (usually around room temperature) for a time or less, particularly 5 hours or less.

また、活性成分を、前記した公知の方法により予め調製し、これを基体と混合し、乳鉢等で混練することにより、活性成分を基体に被着させることもできる。この混合は、乾式でも湿式でも良いが、好ましくは水等の媒体を用いて湿式混合し、その後100〜200℃程度で乾燥することが好ましい。   Further, the active ingredient can be applied to the substrate by preparing the active component in advance by the above-described known method, mixing it with the substrate, and kneading the mixture with a mortar or the like. This mixing may be dry or wet, but is preferably wet mixed using a medium such as water and then dried at about 100 to 200 ° C.

上記した触媒の製造方法の中でも、炭素系基体と、活性成分及び活性成分の前駆体から選ばれるものとを混合した後に、焼成する担持法が好ましい。この焼成は、得られる触媒の活性を向上させることができる。このように焼成を行うことにより活性を向上させることができる理由については必ずしも明らかではないが、炭素系基体に活性成分が被着しているので、焼成時に活性成分のシンタリングが押さえられ、活性が向上することによるものと推定される。   Among the above-described catalyst production methods, a support method in which a carbon base and a component selected from an active component and a precursor of the active component are mixed and then calcined is preferable. This calcination can improve the activity of the resulting catalyst. The reason why the activity can be improved by firing in this way is not necessarily clear, but since the active component is adhered to the carbon-based substrate, the sintering of the active component is suppressed during firing, and the activity is reduced. Is estimated to be due to the improvement.

活性成分と共に前述の遷移金属を基体に被着させる場合、活性成分の被着工程において同時に遷移金属を被着させても良く、活性成分の被着工程の前、又は後に遷移金属を被着させても良い。なお、ここで、「活性成分の被着工程」とは、活性成分を被着させるための処理過程、即ち、活性成分前駆体の添加から活性成分を与える迄の過程全体を包含する。   When the above-mentioned transition metal is applied to the substrate together with the active component, the transition metal may be applied simultaneously in the active component application step, and the transition metal is applied before or after the active component application step. May be. Here, the “active component deposition step” includes the treatment process for depositing the active component, that is, the entire process from the addition of the active component precursor to the provision of the active component.

基体に遷移金属を被着するための遷移金属の前駆体としては、酸化物の他、硝酸塩、硫酸塩、炭酸塩等の無機酸塩、酢酸塩等の有機酸塩、ハロゲン化物、水素化物、カルボニル化合物、アミン化合物、オレフィン配位化合物、ホスフィン配位化合物又はホスファイト配位化合物等が挙げられる。これらは1種を単独で用いても良く、2種以上を併用しても良い。   As transition metal precursors for depositing transition metals on the substrate, oxides, inorganic acid salts such as nitrates, sulfates and carbonates, organic acid salts such as acetates, halides, hydrides, Examples include carbonyl compounds, amine compounds, olefin coordination compounds, phosphine coordination compounds, and phosphite coordination compounds. These may be used alone or in combination of two or more.

活性成分と共に遷移金属を基体に被着させるには、例えば、先に記載した方法で合成したRu及びTeを含有する活性成分を基体に担持させた触媒に、塩化物等の遷移金属化合物を溶解した溶液を加えて所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)放置した後、溶媒をエバポレーターにより留去する。尚、この放置の際、超音波処理を行っても良い。次に、水素を含む気流下(窒素或いはAr等の不活性ガスを混合しても良く、不活性ガス中の水素濃度としては特に制限はないが、1%以上、好ましくは10%以上、100%以下、或いは80%以下)、所定の温度(通常100℃以上、好ましくは150℃以上、通常800℃以下、好ましくは500℃以下)で所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)加熱する。これにより、Ru及びTeを含有する活性成分と遷移金属が共に基体に担持された被着触媒が得られる。   In order to deposit the transition metal together with the active component on the substrate, for example, a transition metal compound such as chloride is dissolved in the catalyst in which the active component containing Ru and Te synthesized by the method described above is supported on the substrate. The solution is added and allowed to stand for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), and then the solvent is distilled off by an evaporator. In this case, ultrasonic treatment may be performed. Next, under an air stream containing hydrogen (inert gas such as nitrogen or Ar may be mixed, the hydrogen concentration in the inert gas is not particularly limited, but is 1% or more, preferably 10% or more, 100 % Or less, or 80% or less) at a predetermined temperature (usually 100 ° C. or higher, preferably 150 ° C. or higher, usually 800 ° C. or lower, preferably 500 ° C. or lower) for a predetermined time (usually 10 minutes or longer, preferably 30 minutes or longer). Usually 50 hours or less, preferably 30 hours or less). As a result, an adherent catalyst in which both the active component containing Ru and Te and the transition metal are supported on the substrate is obtained.

その後、更に、低酸素濃度(例えば、5重量%以下、中でも2重量%以下程度の酸素濃度)の不活性ガス雰囲気中で、所定時間(通常数10分以上、好ましくは30分以上、通常10時間以下、中でも5時間以下)で、所定の温度(通常は、室温付近)で処理することにより不動態膜を形成させる不動態化処理を行うこともできる。   Thereafter, in an inert gas atmosphere having a low oxygen concentration (for example, an oxygen concentration of about 5 wt% or less, especially about 2 wt% or less) for a predetermined time (usually several tens of minutes, preferably 30 minutes or more, usually 10 It is also possible to perform a passivation treatment for forming a passive film by treatment at a predetermined temperature (usually around room temperature) for a time or less, particularly 5 hours or less.

なお、前述の如く、遷移金属は、そのまま活性成分を被着した基体と混合して用いても良く、また、遷移金属を被着した基体に、活性成分を混合して用いても良い。   As described above, the transition metal may be used as it is by mixing it with the substrate to which the active component is applied, or may be used by mixing the active component with the substrate to which the transition metal is applied.

[燃料電池用電極及び燃料電池]
本発明の燃料電池用電極は、上記した本発明の燃料電池用触媒を含有する。また、本発明の燃料電池は、このような本発明の燃料電池用電極を用いる。
[Fuel cell electrode and fuel cell]
The fuel cell electrode of the present invention contains the above-described fuel cell catalyst of the present invention. The fuel cell of the present invention uses such a fuel cell electrode of the present invention.

本発明に係る燃料電池は、前述の如くアノードに燃料、カソードに酸化剤を供給しアノードとカソード間の電位差を電圧として取り出し、負荷に電力を供給する。この発電装置は、アノード極と、カソード極と、その間に挟まれた電解質とを有する。固体高分子型燃料電池においては、電解質としてイオン交換膜が用いられる。固体高分子型燃料電池は、燃料として水素を用いるPEFC型燃料電池、及びメタノールと水を用いる直接メタノール型燃料電池(DMFC,Direct Methanol Fuel Cell)の双方を含む。   In the fuel cell according to the present invention, as described above, fuel is supplied to the anode and oxidant is supplied to the cathode, the potential difference between the anode and cathode is taken out as a voltage, and power is supplied to the load. This power generation device includes an anode electrode, a cathode electrode, and an electrolyte sandwiched therebetween. In a polymer electrolyte fuel cell, an ion exchange membrane is used as an electrolyte. Solid polymer fuel cells include both PEFC fuel cells using hydrogen as a fuel and direct methanol fuel cells (DMFC) using methanol and water.

電解質としてのイオン交換膜の両面に触媒層が形成され、該触媒層の外側にそれぞれガス拡散層が形成されたPEFC型燃料電池の場合、アノードガス拡散層及びカソードガス拡散層が一体に形成されてなる電解質膜/電極接合体が用いられる。DMFC型燃料電池の場合、メタノール水溶液集電体及びカソードガス拡散層が一体に形成されてなる電解質膜/電極接合体が用いられる。電解質膜/電極接合体はその拡散層側に隔壁板が配置され、この隔壁板、電解質膜/電極接合体及び隔壁板からなる単位セルが、用途に応じた所望の電圧になるまで複数積層して燃料電池スタックを形成する。通常、単位セルが数十セルから数百セル積層されて、燃料電池スタックを形成する。   In the case of a PEFC type fuel cell in which a catalyst layer is formed on both surfaces of an ion exchange membrane as an electrolyte, and a gas diffusion layer is formed outside the catalyst layer, the anode gas diffusion layer and the cathode gas diffusion layer are integrally formed. An electrolyte membrane / electrode assembly is used. In the case of a DMFC type fuel cell, an electrolyte membrane / electrode assembly in which a methanol aqueous solution current collector and a cathode gas diffusion layer are integrally formed is used. The electrolyte membrane / electrode assembly is provided with a partition plate on the diffusion layer side, and a plurality of unit cells including the partition plate, the electrolyte membrane / electrode assembly, and the partition plate are stacked until a desired voltage is obtained according to the application. To form a fuel cell stack. Usually, several tens to hundreds of unit cells are stacked to form a fuel cell stack.

この電解質膜/電極接合体の触媒層を形成する触媒として、前述の第1及び第2態様のいずれかの燃料電池用触媒が用いられる。   As the catalyst for forming the catalyst layer of the electrolyte membrane / electrode assembly, the fuel cell catalyst according to any of the first and second embodiments described above is used.

電解質としてのイオン交換膜は、カチオン交換能があれば良いが、実用上、燃料電池の使用温度である80〜100℃程度での酸化還元雰囲気に長期に耐えることが望まれることから、パーフルオロアルキルスルホン酸樹脂がもっぱら用いられている。具体的には、ナフィオン(デュポン社製登録商標)、フレミオン(旭硝子社製登録商標)、Aciplex(旭化成社製登録商標)等のパーフルオロアルキルスルホン酸樹脂膜が挙げられる。   An ion exchange membrane as an electrolyte is only required to have a cation exchange capacity, but it is practically desired to withstand an oxidation-reduction atmosphere at a temperature of about 80 to 100 ° C., which is a use temperature of a fuel cell. Alkyl sulfonic acid resins are exclusively used. Specific examples include perfluoroalkylsulfonic acid resin membranes such as Nafion (registered trademark manufactured by DuPont), Flemion (registered trademark manufactured by Asahi Glass Co., Ltd.), and Aciplex (registered trademark manufactured by Asahi Kasei Co., Ltd.).

イオン交換膜は、好ましくは、10μm程度以上、数100μm程度以下の厚さを有するが、電気抵抗を下げるためにはより薄くすることが望ましい。ナフィオンを例に取ると、厚み120μm程度のナフィオン115がよく使用されるが、補強材を入れた30〜50μmの厚さの電解質膜が開発され始めており、これらのものも同様に用いることができる。   The ion exchange membrane preferably has a thickness of about 10 μm or more and several hundreds of μm or less, but it is desirable to make the thickness thinner in order to reduce the electric resistance. Taking Nafion as an example, Nafion 115 having a thickness of about 120 μm is often used. However, an electrolyte membrane having a thickness of 30 to 50 μm including a reinforcing material has begun to be developed, and these can be used similarly. .

PEFC型燃料電池の拡散層は、アノードでは水素、カソードでは、空気を供給すると共に、発生した電圧を取り出すための集電体としての機能も併せ持つ。従って、拡散層は好ましくは優れた電子伝導体でかつ水素、空気の両ガスが通流し、かつ使用雰囲気に耐える材料で構成される。アノードガス拡散層及びカソードガス拡散層を構成する材料としては、厚みが、通常100〜500μm、好ましくは100〜200μm程度の、カーボンペーパー、カーボンクロス等のカーボン多孔体が用いられる。DMFC型燃料電池のメタノール水溶液集電体の材料についても同様に、メタノール水溶液が流通し、かつ使用雰囲気に耐える材料が選択され、厚みが、通常100〜500μm、好ましくは100〜200μm程度の、カーボンペーパー、カーボンクロス等のカーボン多孔体が用いられる。   The diffusion layer of the PEFC type fuel cell supplies hydrogen at the anode and air at the cathode, and also has a function as a current collector for taking out the generated voltage. Therefore, the diffusion layer is preferably made of a material that is an excellent electronic conductor, allows both hydrogen and air gases to flow through, and can withstand the working atmosphere. As a material constituting the anode gas diffusion layer and the cathode gas diffusion layer, a carbon porous body such as carbon paper or carbon cloth having a thickness of usually about 100 to 500 μm, preferably about 100 to 200 μm is used. Similarly, the material of the methanol aqueous solution current collector of the DMFC type fuel cell is selected from materials in which the methanol aqueous solution circulates and can withstand the use atmosphere, and the thickness is usually 100 to 500 μm, preferably about 100 to 200 μm. A carbon porous body such as paper or carbon cloth is used.

電解質膜/電極接合体を燃料電池に用いる際には、その背後に水素と空気が混合しないように、通常、カーボン、場合によってはステンレス、チタン等の材料でできた隔壁板が配置されるが、この隔壁板には、水素と空気の均一かつ安定供給を目的とした溝を形成したものを用いることが一般的である。   When an electrolyte membrane / electrode assembly is used in a fuel cell, a partition plate made of a material such as carbon, and in some cases, stainless steel, titanium, etc. is usually disposed behind the membrane to prevent hydrogen and air from mixing. In general, the partition plate is formed with grooves for the purpose of uniform and stable supply of hydrogen and air.

本発明の燃料電池の電解質膜/電極接合体を作製する方法としては特に制限はないが、例えば次のような方法が挙げられる。   Although there is no restriction | limiting in particular as a method of producing the electrolyte membrane / electrode assembly of the fuel cell of this invention, For example, the following methods are mentioned.

カソード側触媒層及びアノード側触媒層をイオン交換膜上に形成する方法の一例について次に説明する。まず第1又は第2態様の燃料電池用触媒を、適当な容器に入れ、DuPont社のNafion(登録商標)を溶解したNafionの溶液(濃度5重量%,アルドリッチ製)及びアルコール、水等の媒体に分散させ触媒スラリーを調製する。この際に分散を良好に進行させるために、超音波振動をかける方がより好ましい。この触媒スラリー中の本発明の燃料電池用触媒の濃度は、所望の分散性を得るために、1〜50g/L程度であるのが好ましい。また、撥水性を持たせたり、触媒層の剥がれを防ぐ等の目的でポリテトラフルオロエチレン(PTFE)等のバインダーをスラリー中に3〜30重量%程度の範囲で加えることは勿論可能である。また、内容物を凝集させて、ペースト化したい場合、エタノール、イソプロピルアルコールといった炭素数2〜5、好ましくは炭素数2〜4程度の低級アルコール、或いはエチレングリコール等の炭素数2〜5、好ましくは炭素数2〜4程度の多価アルコールを、水に対して0.25〜1.0の比になるように加えて凝集させることもできる。   Next, an example of a method for forming the cathode side catalyst layer and the anode side catalyst layer on the ion exchange membrane will be described. First, the fuel cell catalyst according to the first or second aspect is put in a suitable container, and a Nafion solution (concentration 5 wt%, manufactured by Aldrich) in which Naponion (registered trademark) manufactured by DuPont is dissolved, and a medium such as alcohol or water. To prepare a catalyst slurry. At this time, it is more preferable to apply ultrasonic vibration in order to promote the dispersion well. The concentration of the fuel cell catalyst of the present invention in the catalyst slurry is preferably about 1 to 50 g / L in order to obtain a desired dispersibility. Of course, a binder such as polytetrafluoroethylene (PTFE) may be added to the slurry in the range of about 3 to 30% by weight for the purpose of imparting water repellency or preventing the catalyst layer from peeling off. In addition, when the contents are to be agglomerated and made into a paste, the alcohol has 2 to 5 carbon atoms such as ethanol or isopropyl alcohol, preferably a lower alcohol having about 2 to 4 carbon atoms, or 2 to 5 carbon atoms such as ethylene glycol, preferably A polyhydric alcohol having about 2 to 4 carbon atoms can be added and aggregated so as to have a ratio of 0.25 to 1.0 with respect to water.

このようにして得られる触媒スラリーをイオン交換膜、ガス拡散電極材又は転写用フィルムの上に付着させた後、乾燥してカソード側触媒層及びアノード側触媒層を形成する。   The catalyst slurry thus obtained is deposited on an ion exchange membrane, a gas diffusion electrode material or a transfer film, and then dried to form a cathode side catalyst layer and an anode side catalyst layer.

カソード側触媒層及びアノード側触媒層は具体的には、それぞれ次のa)−d)のいずれかの方法でイオン交換膜上、又は、ガス拡散電極材上に形成される。
a) 用いるイオン交換膜に触媒スラリーを吹き付けて乾燥する。
b) カーボンペーパー等のガス拡散電極材に触媒スラリーを吹き付けて乾燥する。
c) テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)フィル
ム等の転写用フィルム材上に触媒スラリーを吹き付けて(展開処理)乾燥し、転写用フィルム面と反対側の面をナフィオン等の所望のイオン交換膜上に適宜圧接して触媒層を転写する。
d) c)と同様に、FEPフィルム上に触媒スラリーを展開処理した後、スラリー上にカーボンペーパー等のガス拡散電極材を被せて乾燥する。
Specifically, the cathode side catalyst layer and the anode side catalyst layer are respectively formed on the ion exchange membrane or the gas diffusion electrode material by any one of the following methods a) to d).
a) Spray the catalyst slurry on the ion exchange membrane to be used and dry it.
b) Spray the catalyst slurry on a gas diffusion electrode material such as carbon paper and dry.
c) Spray the catalyst slurry onto a transfer film material such as a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) film (development treatment) and dry it. The surface opposite to the transfer film surface is desired, such as Nafion. The catalyst layer is transferred by appropriately pressing on the ion exchange membrane.
d) Similarly to c), after the catalyst slurry is spread on the FEP film, the slurry is covered with a gas diffusion electrode material such as carbon paper and dried.

カソード側触媒層及びアノード側触媒層のいずれにおいても、活性成分付着量(目付量)は、通常0.01mg/cm2以上、好ましくは0.1mg/cm2以上、通常1g/cm2以下、好ましくは20mg/cm2以下、最も好ましくは10mg/cm2以下程度である。この活性成分付着量がこの範囲よりも少ないと充分な触媒活性を得ることができず、この範囲よりも多いと電解質膜/電極接合体が形成し難くなる。 In any of the cathode side catalyst layer and the anode side catalyst layer, the active component adhesion amount (basis weight) is usually 0.01 mg / cm 2 or more, preferably 0.1 mg / cm 2 or more, usually 1 g / cm 2 or less, It is preferably 20 mg / cm 2 or less, and most preferably about 10 mg / cm 2 or less. If the amount of the active component attached is less than this range, sufficient catalytic activity cannot be obtained, and if it is more than this range, it is difficult to form an electrolyte membrane / electrode assembly.

触媒層をイオン交換膜上に形成してからアノードガス拡散層材またはカソードガス拡散層材と積層してもよく、触媒層をアノードガス拡散層材上またはカソードガス拡散層材上に形成してからイオン交換膜と積層してもよい。この積層体を予備的に加圧成形した後、プレス機によって加圧加熱成形することにより電解質膜/電極接合体が得られる。この接合体においては、イオン交換膜の片側の面に上記したカソード側触媒層が形成され、該イオン交換膜の反対側の面に、アノード側触媒層が形成され、更に、両触媒層の外側にそれぞれアノード及びカソードを構成するガス拡散層が積層されている。   The catalyst layer may be formed on the ion exchange membrane and then laminated with the anode gas diffusion layer material or the cathode gas diffusion layer material. The catalyst layer may be formed on the anode gas diffusion layer material or the cathode gas diffusion layer material. May be laminated with an ion exchange membrane. The laminated body is preliminarily pressure-molded and then pressure-heat-molded with a press to obtain an electrolyte membrane / electrode assembly. In this joined body, the above-mentioned cathode-side catalyst layer is formed on one surface of the ion exchange membrane, the anode-side catalyst layer is formed on the opposite surface of the ion-exchange membrane, and the outer sides of both catalyst layers. The gas diffusion layers constituting the anode and the cathode are respectively laminated.

なお、積層体を予備的に加圧成形する場合は、触媒層の崩壊が防止される範囲で、本成形の条件より温度、圧力は低く、時間は短く設定するのが好ましい。それは、触媒粒子、ガス拡散層用多孔体の圧縮破壊を起こさないためである。   In addition, when press-molding a laminated body preliminarily, it is preferable to set temperature and pressure lower than the conditions of the main molding and to set the time short as long as the collapse of the catalyst layer is prevented. This is because the catalyst particles and the gas diffusion layer porous body do not cause compression failure.

本願発明のPEFC用燃料電池システムは、電気化学反応により起電力を得る上述の燃料電池スタックと、酸素含有ガスとして圧縮空気を供給するコンプレッサの他、燃料ガスである水素を高圧に圧縮した状態で貯蔵する水素ボンベを有する。他に燃料電池スタックにおいて発電に利用されなかった排水素および排空気を燃焼する触媒燃焼器を必要に応じて備えてもよい。また、メタノール、天然ガスまたはメタン等の改質反応により水素を供給してもよい。その場合燃料電池システムは水素ボンベの代わりに、メタノール、天然ガスまたはメタン等のタンク、水タンク、及び、メタノール等と水の混合器、メタノール水溶液等を蒸発させるための蒸発器、改質反応を行う改質器を備える。更に、改質反応後の水素ガス中に含まれる一酸化炭素による燃料電池の被毒を防ぐために、一酸化炭素低減装置を備えてもよい。   In the fuel cell system for PEFC of the present invention, in addition to the above fuel cell stack that obtains an electromotive force by an electrochemical reaction and a compressor that supplies compressed air as an oxygen-containing gas, hydrogen as a fuel gas is compressed to a high pressure. Has a hydrogen cylinder to store. In addition, a catalytic combustor that combusts exhaust hydrogen and exhaust air that have not been used for power generation in the fuel cell stack may be provided as necessary. Further, hydrogen may be supplied by a reforming reaction such as methanol, natural gas, or methane. In that case, the fuel cell system uses a tank of methanol, natural gas or methane, a water tank, a mixer of methanol and water, an evaporator for evaporating methanol aqueous solution, etc. instead of a hydrogen cylinder, a reforming reaction. A reformer to perform is provided. Furthermore, in order to prevent poisoning of the fuel cell by carbon monoxide contained in the hydrogen gas after the reforming reaction, a carbon monoxide reduction device may be provided.

また、本願発明のDMFC用燃料電池システムは、電気化学反応により起電力を得る燃料電池スタックと、酸素含有ガスとして圧縮空気を供給するコンプレッサの他、燃料であるメタノール水溶液容器を備える。メタノール水溶液は送液ポンプにより燃料電池スタックのアノード極に送られる。また、メタノール水溶液は予め蒸発器により昇温・気化させてからアノード極に供給しても良い。他に燃料電池スタックにおいて発電に利用されなかったメタノール水溶液は回収し、メタノール水溶液容器に戻しても良い。メタノール水溶液の回収は必要時には気液分離器を用いて行っても良い。   In addition, the DMFC fuel cell system of the present invention includes a fuel cell stack that obtains an electromotive force by an electrochemical reaction, a compressor that supplies compressed air as an oxygen-containing gas, and a methanol aqueous solution container that is fuel. The aqueous methanol solution is sent to the anode electrode of the fuel cell stack by a feed pump. The aqueous methanol solution may be supplied to the anode electrode after being heated and vaporized by an evaporator in advance. In addition, an aqueous methanol solution not used for power generation in the fuel cell stack may be collected and returned to the aqueous methanol solution container. The methanol aqueous solution may be collected using a gas-liquid separator when necessary.

次に実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、以下の実施例によって限定されるものではない。   EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited by a following example.

以下の実施例及び比較例において、作製した触媒のXRD分析は、下記の条件で行った。
[粉末XRD分析]
測定装置
粉末X線解析装置/PANalytical PW1700
測定条件
X線出力(Cu−Kα):40kV,30mA
走査軸:θ/2θ
測定範囲(2θ):3.0°〜90.0°
測定モード:Continuous
読込幅:0.05°
走査速度:3.0°/min
DS,SS,RS:1°,1°,0.20mm
In the following examples and comparative examples, XRD analysis of the prepared catalysts was performed under the following conditions.
[Powder XRD analysis]
Measuring device X-ray powder analysis device / PANallytical PW1700
Measurement conditions X-ray output (Cu-Kα): 40 kV, 30 mA
Scanning axis: θ / 2θ
Measurement range (2θ): 3.0 ° to 90.0 °
Measurement mode: Continuous
Reading width: 0.05 °
Scanning speed: 3.0 ° / min
DS, SS, RS: 1 °, 1 °, 0.20mm

以下の実施例及び比較例において、作製したカソード電極の性能(触媒活性)は、下記のサイクリックボルタンメトリー(CV)測定により行った。   In the following examples and comparative examples, the performance (catalytic activity) of the produced cathode electrode was measured by the following cyclic voltammetry (CV) measurement.

[CV測定]
サイクリックボルタンメトリー(CV)測定は、電解槽に密封性を保ち得る栓を用い、電解液中に窒素又は空気をバブリングしつつ、酸素は供給律速になっていない条件で行った。測定条件は以下の通りである。
電解液:1.0M HSO水溶液
走査速度:5mV/秒
走査範囲:100〜700mV
カウンター電極:Pt
比較電極:標準水素電極(SHE)
[CV measurement]
Cyclic voltammetry (CV) measurement was performed under the condition that oxygen was not rate-controlled while bubbling nitrogen or air into the electrolytic solution using a stopper capable of keeping hermeticity in the electrolytic cell. The measurement conditions are as follows.
Electrolyte: 1.0 MH 2 SO 4 aqueous solution Scan speed: 5 mV / sec Scan range: 100 to 700 mV
Counter electrode: Pt
Reference electrode: Standard hydrogen electrode (SHE)

電極の電位を標準水素電極に対して700mV程度から100mVの方向に走査にすると作用電極とPt対極の間に
4H++O2+4e-→2H2
による酸素の還元電流が流れるのが認められる。卑の方向に走査した時に400mV(SHE基準)の時に流れる電流値を測定し、測定された電流値を触媒に含まれる活性成分の単位重量(1g)当たりの電流値に換算したもので触媒活性を評価した。
When the potential of the electrode is scanned in the direction of about 700 mV to 100 mV with respect to the standard hydrogen electrode, 4H + + O 2 + 4e → 2H 2 O between the working electrode and the Pt counter electrode
It can be seen that the oxygen reduction current due to. Measures the current value flowing at 400 mV (SHE standard) when scanned in the base direction, and converts the measured current value into a current value per unit weight (1 g) of the active component contained in the catalyst. Evaluated.

なお、以下の実施例では、触媒活性が大きすぎると測定できないために、測定の便宜上、基体被着触媒中の活性成分の割合が小さくなるように希釈して電極を作成したが、実際の電極作成のための好適な活性成分割合及び電極への活性成分担持量の好適範囲は前述の通りである。   In the following examples, since measurement cannot be performed if the catalyst activity is too large, for convenience of measurement, the electrode was prepared by diluting so that the ratio of the active component in the substrate-coated catalyst was reduced. The preferred active ingredient ratio for preparation and the preferred range of the active ingredient loading on the electrode are as described above.

[比較例1]
〈RuTe(X=4.77)触媒の合成〉
RuとTeの仕込みモル比が1:10となるように、Ru(acac)3即ちルテニウムアセチルアセトネート0.7888g及びテルル酸(三ツ和化学製)4.545gをカーボンブラック(VULCAN XC−72R(Cabot社製、比表面積(BET)254m2/g))0.8gと共に乳鉢で物理混合して混合物を得た。この混合物を水素3L/hrの流量で室温から300℃まで20分、300℃から500℃まで3時間かけて昇温した。その後500℃で2時間保持したのち、室温まで冷却した。最後に1%酸素を含む窒素雰囲気下に2時間放置して不動態化することにより、触媒を製造した。この触媒は、XRD分析により、RuTe2(2θの値、21.757°,26.202°,27.901°,31.294°,32.677°,33.897°,36.791°,39.858°,43.352°,44.444°,45.209°,45.900°,48.304°,51.491°,53.912°,56.906°,59.005°,59.902°,68.508°,72.957°,78.340°,80.853°,82.115°,85.902°にピークを与えた)とTe(2θの値、23.037°,27.556°,38.261°,40.451°,49.609°,62.808°,63.709°にピークを与えた)を含有していることが確認された。
[Comparative Example 1]
<Synthesis of RuTe X (X = 4.77) catalyst>
Ru (acac) 3, that is, 0.7888 g of ruthenium acetylacetonate and 4.545 g of telluric acid (manufactured by Mitsuwa Chemical) were added to carbon black (VULCAN XC-72R (manufactured by Cabot) so that the charged molar ratio of Ru and Te was 1:10. , Specific surface area (BET) 254 m 2 / g)) and 0.8 g physically mixed in a mortar to obtain a mixture. This mixture was heated from room temperature to 300 ° C. for 20 minutes and from 300 ° C. to 500 ° C. over 3 hours at a flow rate of 3 L / hr of hydrogen. Thereafter, it was kept at 500 ° C. for 2 hours and then cooled to room temperature. Finally, the catalyst was produced by leaving it in a nitrogen atmosphere containing 1% oxygen for 2 hours for passivation. This catalyst was analyzed by RuD 2 (value of 2θ, 21.757 °, 26.202 °, 27.901 °, 31.294 °, 32.677 °, 33.897 °, 36.791 °, 39.858 °, 43.352 °, 44.444 °, 45.209 °, 45.900 ° by XRD analysis. , 48.304 °, 51.491 °, 53.912 °, 56.906 °, 59.005 °, 59.902 °, 68.508 °, 72.957 °, 78.340 °, 80.853 °, 82.115 °, 85.902 °) and Te (value of 2θ, 23.037) It was confirmed that it contained peaks at 27 °, 27.556 °, 38.261 °, 40.451 °, 49.609 °, 62.808 °, and 63.709 °).

〈カソード電極の作成〉
得られたRuTe2、Te及びCB含有触媒と、別途用意したカーボンブラック(VULCAN XC−72R(Cabot社製、比表面積(BET)254m2/g))を乳鉢で混合した。この混合物中のRuとTeの合計の含有率は0.01778重量%であった。この混合物の28.27mgをエタノール5mLと混合し、超音波洗浄器で充分撹拌した後、マイクロシリンジでRuとTeの総付着量(Ru及びTe元素が揮発していないとして計算。以下の実施例及び比較例においても同様)が72.41ng/cm2となるように作用電極であるグラッシーカーボン電極に滴下し、放置により乾燥した。次に、5%ナフィオン(登録商標)溶液(アルコール溶液、アルドリッチ・ケミカル社製)を滴下し、放置により乾燥し、その後更に真空下で乾燥することによりカソード電極とした。
<Creation of cathode electrode>
The obtained RuTe 2 , Te and CB-containing catalyst and separately prepared carbon black (VULCAN XC-72R (manufactured by Cabot, specific surface area (BET) 254 m 2 / g)) were mixed in a mortar. The total content of Ru and Te in this mixture was 0.01778% by weight. 28.27 mg of this mixture was mixed with 5 mL of ethanol, sufficiently stirred with an ultrasonic cleaner, and then the total amount of Ru and Te deposited with a microsyringe (calculated on the assumption that Ru and Te elements were not volatilized. And the same in the comparative example) was dropped onto a glassy carbon electrode as a working electrode so as to be 72.41 ng / cm 2 and dried by standing. Next, a 5% Nafion (registered trademark) solution (alcohol solution, manufactured by Aldrich Chemical Co., Ltd.) was added dropwise, dried by standing, and then further dried under vacuum to obtain a cathode electrode.

このカソード電極についてCV測定を行い、触媒活性の評価結果を表2に示した。なお、活性種はRu1Teであるのか、Teとの相互作用を有するRu自体なのか不明のため、RuとTeの合計の単位重量当たりの活性と、Ru単位重量当りの活性の双方を記載した。 CV measurement was performed on this cathode electrode, and the evaluation results of catalyst activity are shown in Table 2. Since it is unknown whether the active species is Ru 1 Te X or Ru itself having an interaction with Te, both the activity per unit weight of the total of Ru and Te and the activity per unit weight of Ru are determined. Described.

また、実施例1,7,10及び比較例1,2のTe/Ruの比は、常法に従い、触媒を秤量後アルカリ溶融して分解し、酸を添加後定容して誘導結合プラズマ発光分光分析法により求めた。   The Te / Ru ratios of Examples 1, 7, 10 and Comparative Examples 1 and 2 were determined by inductively coupled plasma emission according to a conventional method by weighing the catalyst and decomposing it by melting with alkali, adding the acid and then adjusting the volume. Obtained by spectroscopic analysis.

実施例2〜6,8,9及び比較例3の場合、水素流通下での昇温過熱処理の際、Ru及びTe元素が揮発し吹き流されていないものとして、電極中のRuとTeの総担持量、電極中のRu担持量、触媒活性を算出した。   In the case of Examples 2 to 6, 8, 9 and Comparative Example 3, it is assumed that Ru and Te elements are volatilized and are not blown at the time of heating and heat treatment under hydrogen flow, and Ru and Te in the electrode are not blown. The total loading, Ru loading in the electrode, and catalytic activity were calculated.

[実施例1]
〈RuTe(X=2)触媒の合成〉
RuとTeの仕込みモル比が1:4となるように、比較例1におけるテルル酸(三ツ和化学製)の量を4.545gから1.818gに変えた他は比較例1と全く同様の方法で触媒を調製した。この化合物はXRD分析により、RuTe2(2θの値、21.788°,26.203°,27.902°,31.293°,32.694°,33.892°,39.850°,43.350°,44.412°,45.207°,45.842°,48.300°,51.459°,53.949°,56.906°,58.999°,59.814°,60.295°,68.500°,72.995°,73.543°,76.072°,78.303°,80.849°,82.402°,85.404°,85.901°にピークを与えた)を含有していることを確認した。
[Example 1]
<Synthesis of RuTe X (X = 2) catalyst>
The catalyst was prepared in the same manner as in Comparative Example 1, except that the amount of telluric acid (manufactured by Mitsuwa Chemical) in Comparative Example 1 was changed from 4.545 g to 1.818 g so that the charged molar ratio of Ru and Te was 1: 4. Was prepared. This compound was analyzed by XRD analysis using RuTe 2 (value of 2θ, 21.788 °, 26.203 °, 27.902 °, 31.293 °, 32.694 °, 33.892 °, 39.850 °, 43.350 °, 44.412 °, 45.207 °, 45.842 °, 48.300 °, 51.459 °, 53.949 °, 56.906 °, 58.999 °, 59.814 °, 60.295 °, 68.500 °, 72.995 °, 73.543 °, 76.072 °, 78.303 °, 80.849 °, 82.402 °, 85.404 °, 85.901 °) It confirmed that it contained.

〈カソード電極の作成〉
得られた触媒を用いたほかは、比較例1と同様の方法によりRuとTeの総付着量が32.15ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
Except for using the obtained catalyst, a cathode electrode was prepared by the same method as in Comparative Example 1 so that the total adhesion amount of Ru and Te was 32.15 ng / cm 2. It was shown in 2.

[実施例2]
〈塩化Ruを用いたRuTe(X=2)触媒の合成〉
RuとTeの仕込みモル比が1:2となるように、比較例1におけるRu(acac)3,0.7888gとテルル酸(三ツ和化学製)4.545gの替わりに、塩化ルテニウム(含水品、ルテニウム含量42重量%、NEケムキャット製)0.476gとテルル酸(三ツ和化学製)0.909gを用いて、それらを50mlの水に溶解させた。その中にRu/(Ru+CB)=20重量%となるように、カーボンブラック(VULCAN XC−72)0.8gを入れ室温で一時間超音波処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をアルゴン気流下、300℃で、3時間乾燥した。その後、室温まで冷却し、水素3L/hrの流量で室温から300℃まで20分、300℃から800℃まで3時間かけて昇温した。その後800℃で2時間保持したのち、室温まで冷却した。最後に1%酸素を含む窒素雰囲気下に2時間放置して不動態化した。
[Example 2]
<Synthesis of RuTe X (X = 2) catalyst using Ru chloride>
Instead of Ru (acac) 3 , 0.7888 g and telluric acid (manufactured by Mitsuwa Chemical Co., Ltd.) 4.545 g in Comparative Example 1 so that the charged molar ratio of Ru and Te is 1: 2, ruthenium chloride (water-containing product, ruthenium content) They were dissolved in 50 ml of water using 0.476 g of 42% by weight (manufactured by NE Chemcat) and 0.909 g of telluric acid (manufactured by Mitsuwa Chemical). The carbon black (VULCAN XC-72) 0.8g was put in it so that it might become Ru / (Ru + CB) = 20 weight%, and it ultrasonicated at room temperature for 1 hour. Then, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours under an argon stream. Thereafter, the mixture was cooled to room temperature, and heated at a flow rate of 3 L / hr of hydrogen from room temperature to 300 ° C. for 20 minutes and from 300 ° C. to 800 ° C. over 3 hours. Thereafter, the mixture was kept at 800 ° C. for 2 hours and then cooled to room temperature. Finally, it was left to passivate in a nitrogen atmosphere containing 1% oxygen for 2 hours.

この化合物はXRD分析により、RuTe2を含有していることを確認した(2θの値は21.991°,26.258°,28.044°,31.396°,32.757°,34.449°,39.996°,43.546°,45.441°,47.248°,48.448°,51.603°,53.703°,57.095°,60.344°,65.341°,66.506°,68.697°,73.156°,78.402°,81.098°,82.696°,86.052°にピークを与えた)。 This compound was confirmed to contain RuTe 2 by XRD analysis (values of 2θ were 21.991 °, 26.258 °, 28.044 °, 31.396 °, 32.757 °, 34.449 °, 39.996 °, 43.546 °, 45.441 °, 47.248 °, 48.448 °, 51.603 °, 53.703 °, 57.095 °, 60.344 °, 65.341 °, 66.506 °, 68.697 °, 73.156 °, 78.402 °, 81.098 °, 82.696 °, 86.052 °).

〈カソード電極の作成〉
得られたRuTe2含有触媒/CBを用いた他は、比較例1と同様の方法によりRuとTeの総付着量が19ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
Except for using the obtained RuTe 2 -containing catalyst / CB, a cathode electrode was prepared by the same method as in Comparative Example 1 so that the total adhesion amount of Ru and Te was 19 ng / cm 2, and evaluation was performed in the same manner. The results are shown in Table 2.

[実施例3]
〈硝酸系Ruを用いたRuTe(X=2)触媒の合成〉
RuとTeの仕込みモル比が1:2となるように、比較例1におけるRu(acac)3,0.7888gの替わりに3.72%のRu(NO)(NO3)3水溶液を5.37gとテルル酸(三ツ和化学製)0.909gを用いて、それらを50mlの水に溶解させた。その中にRu/(Ru+CB)=20重量%となるように、カーボンブラック(VULCAN XC−72)0.8gを入れ室温で一時間超音波処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をアルゴン気流下、300℃で、3時間乾燥した。その後、室温まで冷却し、水素3L/hrの流量で室温から300℃まで20分、300℃から650℃まで3時間かけて昇温した。その後650℃で2時間保持したのち、室温まで冷却した。最後に1%酸素を含む窒素雰囲気下に2時間放置して不動態化した。
[Example 3]
<Synthesis of RuTe X (X = 2) catalyst using nitric acid-based Ru>
Instead of Ru (acac) 3 and 0.7888 g in Comparative Example 1, 5.37 g of telluric acid and 3.72% Ru (NO) (NO 3 ) 3 aqueous solution were used so that the charged molar ratio of Ru and Te was 1: 2. Using 0.909 g (manufactured by Mitsuwa Chemical), they were dissolved in 50 ml of water. The carbon black (VULCAN XC-72) 0.8g was put in it so that it might become Ru / (Ru + CB) = 20 weight%, and it ultrasonicated at room temperature for 1 hour. Then, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours under an argon stream. Thereafter, the mixture was cooled to room temperature, and heated at a flow rate of 3 L / hr of hydrogen from room temperature to 300 ° C. for 20 minutes and from 300 ° C. to 650 ° C. over 3 hours. Thereafter, it was kept at 650 ° C. for 2 hours, and then cooled to room temperature. Finally, it was left to passivate in a nitrogen atmosphere containing 1% oxygen for 2 hours.

この化合物はXRD分析により、RuTe2を含有していることを確認した(2θの値は21.755°,27.893°,31.250°,32.694°,34.342°,39.850°,43.351°,45.251°,47.108°,48.260°,51.499°,53.643°,56.949°,57.611°,65.204°,67.049°,68.804°,77.549°,80.907°,82.558°,85.950°にピークを与えた)。 This compound was confirmed to contain RuTe 2 by XRD analysis (the values of 2θ were 21.755 °, 27.893 °, 31.250 °, 32.694 °, 34.342 °, 39.850 °, 43.351 °, 45.251 °, 47.108 °, 48.260 °, 51.499 °, 53.643 °, 56.949 °, 57.611 °, 65.204 °, 67.049 °, 68.804 °, 77.549 °, 80.907 °, 82.558 ° and 85.950 °).

〈カソード電極の作成〉
得られたRuTe2含有触媒/CBを用いた他は、比較例1と同様の方法によりRuとTeの総付着量が19ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
Except for using the obtained RuTe 2 -containing catalyst / CB, a cathode electrode was prepared by the same method as in Comparative Example 1 so that the total adhesion amount of Ru and Te was 19 ng / cm 2, and evaluation was performed in the same manner. The results are shown in Table 2.

[実施例4]
〈実施例2において熱処理温度を500℃とした例〉
RuTe合成熱処理温度を500℃とした他は実施例2と同様にして触媒を合成した。
[Example 4]
<Example in which the heat treatment temperature was 500 ° C. in Example 2>
A catalyst was synthesized in the same manner as in Example 2 except that the RuTe 2 synthesis heat treatment temperature was 500 ° C.

即ち、RuとTeの仕込みモル比が1:2となるように、比較例1におけるRu(acac)3,0.7888gとテルル酸(三ツ和化学製)4.545gの替わりに、塩化ルテニウム(含水品、ルテニウム含量42重量%、NEケムキャット製)0.476gとテルル酸(三ツ和化学製)0.909gを用いて、それらを50mlの水に溶解させた。その中にRu/(Ru+CB)=20重量%となるように、カーボンブラック(VULCAN XC−72)0.8gを入れ室温で一時間超音波処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をアルゴン気流下、300℃で、3時間乾燥した。その後、室温まで冷却し、水素3L/hrの流量で室温から300℃まで20分、300℃から500℃まで3時間かけて昇温した。その後500℃で2時間保持したのち、室温まで冷却した。最後に1%酸素を含む窒素雰囲気下に2時間放置して不動態化した。 That is, in place of Ru (acac) 3 , 0.7888 g and telluric acid (manufactured by Mitsuwa Chemical Co., Ltd.) 4.545 g in Comparative Example 1 so that the charged molar ratio of Ru and Te is 1: 2, ruthenium chloride (water-containing product, They were dissolved in 50 ml of water using 0.476 g of ruthenium content of 42% by weight (manufactured by NE Chemcat) and 0.909 g of telluric acid (manufactured by Mitsuwa Chemical). The carbon black (VULCAN XC-72) 0.8g was put in it so that it might become Ru / (Ru + CB) = 20 weight%, and it ultrasonicated at room temperature for 1 hour. Then, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours under an argon stream. Thereafter, the mixture was cooled to room temperature, and heated at a flow rate of 3 L / hr of hydrogen from room temperature to 300 ° C. for 20 minutes and from 300 ° C. to 500 ° C. over 3 hours. Thereafter, it was kept at 500 ° C. for 2 hours and then cooled to room temperature. Finally, it was left to passivate in a nitrogen atmosphere containing 1% oxygen for 2 hours.

この化合物はXRD分析により、RuTe2を含有していることを確認した(2θの値は21.695°,27.855°,31.302°,32.741°,39.905°,43.448°,45.889°,48.300°,51.457°,53.998°,57.199°,58.848°,65.247°,68.357°,73.096°,78.150°,82.486°,85.749°,85.954°にピークを与えた)。 This compound was confirmed to contain RuTe 2 by XRD analysis (the values of 2θ were 21.695 °, 27.855 °, 31.302 °, 32.741 °, 39.905 °, 43.448 °, 45.889 °, 48.300 °, 51.457 °, Peaks were given at 53.998 °, 57.199 °, 58.848 °, 65.247 °, 68.357 °, 73.096 °, 78.150 °, 82.486 °, 85.749 °, and 85.954 °).

〈カソード電極の作成〉
得られたRuTe2含有触媒/CBを用いた他は、比較例1と同様の方法によりRuとTeの総付着量が95ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
A cathode electrode was prepared in the same manner as in Comparative Example 1 except that the obtained RuTe 2 -containing catalyst / CB was used so that the total adhesion amount of Ru and Te was 95 ng / cm 2, and evaluation was performed in the same manner. The results are shown in Table 2.

[実施例5]
〈実施例2において熱処理温度を350℃とした例〉
RuTe合成熱処理温度を350℃とした他は実施例2と同様にして触媒を合成した。
[Example 5]
<Example in which the heat treatment temperature was 350 ° C. in Example 2>
A catalyst was synthesized in the same manner as in Example 2 except that the RuTe 2 synthesis heat treatment temperature was 350 ° C.

即ち、RuとTeの仕込みモル比が1:2となるように、比較例1におけるRu(acac)3,0.7888gとテルル酸(三ツ和化学製)4.545gの替わりに、塩化ルテニウム(含水品、ルテニウム含量42重量%、NEケムキャット製)0.476gとテルル酸(三ツ和化学製)0.909gを用いて、それらを50mlの水に溶解させた。その中にRu/(Ru+CB)=20重量%となるように、カーボンブラック(VULCAN XC−72)0.8gを入れ室温で一時間超音波処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をアルゴン気流下、300℃で、3時間乾燥した。その後、室温まで冷却し、水素3L/hrの流量で室温から300℃まで20分、300℃から350℃まで3時間かけて昇温した。その後350℃で2時間保持したのち、室温まで冷却した。最後に1%酸素を含む窒素雰囲気下に2時間放置して不動態化した。 That is, in place of Ru (acac) 3 , 0.7888 g and telluric acid (manufactured by Mitsuwa Chemical Co., Ltd.) 4.545 g in Comparative Example 1 so that the charged molar ratio of Ru and Te is 1: 2, ruthenium chloride (water-containing product, They were dissolved in 50 ml of water using 0.476 g of ruthenium content of 42% by weight (manufactured by NE Chemcat) and 0.909 g of telluric acid (manufactured by Mitsuwa Chemical). The carbon black (VULCAN XC-72) 0.8g was put in it so that it might become Ru / (Ru + CB) = 20 weight%, and it ultrasonicated at room temperature for 1 hour. Then, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours under an argon stream. Thereafter, the mixture was cooled to room temperature, and heated at a flow rate of 3 L / hr of hydrogen from room temperature to 300 ° C. for 20 minutes and from 300 ° C. to 350 ° C. over 3 hours. Thereafter, it was kept at 350 ° C. for 2 hours and then cooled to room temperature. Finally, it was left to passivate in a nitrogen atmosphere containing 1% oxygen for 2 hours.

この化合物はXRD分析により、RuTe2を含有していることを確認した(2θの値は27.850°,28.155°,31.447°,32.449°,39.763°,43.700°,48.254°,57.108°にピークを与えた)。 This compound was confirmed to contain RuTe 2 by XRD analysis (2θ values peaked at 27.850 °, 28.155 °, 31.447 °, 32.449 °, 39.763 °, 43.700 °, 48.254 °, 57.108 °). )

〈カソード電極の作成〉
得られたRuTe2含有触媒/CBを用いた他は、比較例1と同様の方法によりRuとTeの総付着量が19ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
A cathode electrode was prepared by the same method as in Comparative Example 1 except that the obtained RuTe 2 -containing catalyst / CB was used, so that the total adhesion amount of Ru and Te was 19 ng / cm 2, and evaluation was performed in the same manner. The results are shown in Table 2.

[実施例6]
〈実施例2において熱処理温度を650℃とした例〉
〈RuTe2/カーボンブラック(CB)触媒の合成〉
RuTe合成熱処理温度を650℃とした他は実施例2と同様にして触媒を合成した。
[Example 6]
<Example in which the heat treatment temperature was 650 ° C. in Example 2>
<Synthesis of RuTe 2 / carbon black (CB) catalyst>
A catalyst was synthesized in the same manner as in Example 2 except that the RuTe 2 synthesis heat treatment temperature was 650 ° C.

即ち、RuとTeの仕込みモル比が1:2となるように、比較例1におけるRu(acac)3,0.7888gとテルル酸(三ツ和化学製)4.545gの替わりに、塩化ルテニウム(含水品、ルテニウム含量42重量%、NEケムキャット製)0.476gとテルル酸(三ツ和化学製)0.909gを用いて、それらを50mlの水に溶解させた。その中にRu/(Ru+CB)=20重量%となるように、カーボンブラック(VULCAN XC−72R)0.8gを入れ室温で一時間超音波処理をした。その後、エバポレーターで溶媒を留去し、得られた残留物をアルゴン気流下、300℃で、3時間乾燥した。その後、室温まで冷却し、水素3L/hrの流量で室温から300℃まで20分、300℃から650℃まで3時間かけて昇温した。その後650℃で2時間保持したのち、室温まで冷却した。最後に1%酸素を含む窒素雰囲気下に2時間放置して不動態化した。 That is, in place of Ru (acac) 3 , 0.7888 g and telluric acid (manufactured by Mitsuwa Chemical Co., Ltd.) 4.545 g in Comparative Example 1 so that the charged molar ratio of Ru and Te is 1: 2, ruthenium chloride (water-containing product, They were dissolved in 50 ml of water using 0.476 g of ruthenium content of 42% by weight (manufactured by NE Chemcat) and 0.909 g of telluric acid (manufactured by Mitsuwa Chemical). The carbon black (VULCAN XC-72R) 0.8g was put in it so that it might become Ru / (Ru + CB) = 20 weight%, and it ultrasonicated at room temperature for 1 hour. Then, the solvent was distilled off with an evaporator, and the obtained residue was dried at 300 ° C. for 3 hours under an argon stream. Thereafter, the mixture was cooled to room temperature, and heated at a flow rate of 3 L / hr of hydrogen from room temperature to 300 ° C. for 20 minutes and from 300 ° C. to 650 ° C. over 3 hours. Thereafter, it was kept at 650 ° C. for 2 hours, and then cooled to room temperature. Finally, it was left to passivate in a nitrogen atmosphere containing 1% oxygen for 2 hours.

この化合物はXRD分析により、RuTe2を含有していることを確認した(2θの値は21.899°,26.355°,27.951°,31.304°,32.753°,34.350°,39.949°,43.403°,45.300°,47.220°,48.307°,51.595°,53.702°,56.909°,59.946°,65.347°,68.598°,73.103°,78.302°,82.505°,85.996°にピークを与えた)。 This compound was confirmed to contain RuTe 2 by XRD analysis (values of 2θ were 21.899 °, 26.355 °, 27.951 °, 31.304 °, 32.753 °, 34.350 °, 39.949 °, 43.403 °, 45.300 °, 47.220 °, 48.307 °, 51.595 °, 53.702 °, 56.909 °, 59.946 °, 65.347 °, 68.598 °, 73.103 °, 78.302 °, 82.505 °, 85.996 °).

〈カソード電極の作成〉
得られたRuTe2含有触媒/CBを用いた他は、比較例1と同様の方法によりRuとTeの総付着量が19ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
このカソード電極についてCV測定を行い、触媒活性の評価結果を表2に示した。
<Creation of cathode electrode>
A cathode electrode was prepared by the same method as in Comparative Example 1 except that the obtained RuTe 2 -containing catalyst / CB was used, so that the total adhesion amount of Ru and Te was 19 ng / cm 2, and evaluation was performed in the same manner. The results are shown in Table 2.
CV measurement was performed on this cathode electrode, and the evaluation results of catalyst activity are shown in Table 2.

[実施例7]
〈RuTe(X=2.11)触媒の合成〉
RuとTeの仕込みモル比が1:2となるように、比較例1におけるテルル酸(三ツ和化学製)の量を4.545gから0.909gに変えた以外は比較例1と全く同様の方法で触媒を調製した。この化合物はXRD分析により、RuTe2(2θの値、21.507°,27.805°,31.300°,32.743°,40.041°,43.498°,45.356°,48.246°,51.441°,54.002°,57.057°,59.850°,65.306°,68.306°,73.347°,82.394°,85.753°,86.095°にピークを与えた)を含有していることを確認した。
[Example 7]
<Synthesis of RuTe X (X = 2.11) catalyst>
Except that the amount of telluric acid (manufactured by Mitsuwa Chemical Co., Ltd.) in Comparative Example 1 was changed from 4.545 g to 0.909 g so that the charged molar ratio of Ru and Te was 1: 2, the same method as Comparative Example 1 was used. A catalyst was prepared. This compound was analyzed by XRD analysis using RuTe 2 (value of 2θ, 21.507 °, 27.805 °, 31.300 °, 32.743 °, 40.041 °, 43.498 °, 45.356 °, 48.246 °, 51.441 °, 54.002 °, 57.057 °, 59.850 °, 65.306 °, 68.306 °, 73.347 °, 82.394 °, 85.753 °, and 86.095 °).

〈カソード電極の作成〉
得られた触媒を用いたほかは、比較例1と同様の方法によりRuとTeの総付着量が19ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
Obtained are except that using the catalyst, Comparative Example 1. Table of results performed to create a cathode electrode such that the total amount of adhered Ru and Te is 19 ng / cm 2, evaluated as the same manner as 2 It was shown to.

比較例4
〈RuTe(X=1)触媒の合成〉
RuとTeの仕込みモル比が1:1となるように、比較例1におけるテルル酸(三ツ和化学製)の量を4.545gから0.4545gに変えた以外は比較例1と全く同様の方法で触媒を調製した。この化合物はXRD分析により、RuTe2(2θの値、21.901°,27.945°,31.300°,32.655°,40.047°,48.153°,51.594°,53.695°,65.170°,73.212°,82.447°にピークを与えた)とRu(2θの値、38.449°,43.550°,57.199°,68.542°,78.451°,85.997°にピークを与えた)を含有していることを確認した。
[ Comparative Example 4 ]
<Synthesis of RuTe X (X = 1) catalyst>
The catalyst was prepared in the same manner as in Comparative Example 1 except that the amount of telluric acid (manufactured by Mitsuwa Chemical) in Comparative Example 1 was changed from 4.545 g to 0.4545 g so that the charged molar ratio of Ru and Te was 1: 1. Was prepared. This compound gave peaks at RuTe 2 (values of 2θ, 21.901 °, 27.945 °, 31.300 °, 32.655 °, 40.047 °, 48.153 °, 51.594 °, 53.695 °, 65.170 °, 73.212 °, 82.447 ° by XRD analysis. And Ru (values of 2θ, which gave peaks at 38.449 °, 43.550 °, 57.199 °, 68.542 °, 78.451 °, and 85.997 °).

〈カソード電極の作成〉
得られた触媒を用いたほかは、比較例1と同様の方法によりRuとTeの総付着量が12.02ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
Except for using the obtained catalyst, a cathode electrode was prepared by the same method as in Comparative Example 1 so that the total adhesion amount of Ru and Te was 12.02 ng / cm 2. It was shown in 2.

比較例5
〈RuTe(X=0.5)触媒の合成〉
RuとTeの仕込みモル比が1:0.5となるように、比較例4においてテルル酸の量を0.227gに変更した以外、比較例4と全く同様の方法で触媒を調製した。この化合物はXRD分析により、RuTe2(2θの値、21.846°,26.107°,27.907°,31.300°,32.745°,34.047°,39.897°,43.501°,45.244°,48.304°,51.590°,53.572°,54.003°,57.041°,68.555°,72.953°,82.364°にピークを与えた)とRu(2θの値、38.705°,44.025°,78.394°,85.950°にピークを与えた)を含有していることを確認した。
[ Comparative Example 5 ]
<Synthesis of RuTe X (X = 0.5) catalyst>
A catalyst was prepared in the same manner as in Comparative Example 4 except that the amount of telluric acid was changed to 0.227 g in Comparative Example 4 so that the charged molar ratio of Ru and Te was 1: 0.5. This compound was analyzed by XRD analysis with RuTe 2 (value of 2θ, 21.846 °, 26.107 °, 27.907 °, 31.300 °, 32.745 °, 34.047 °, 39.897 °, 43.501 °, 45.244 °, 48.304 °, 51.590 °, 53.572 °, 54.003 °, 57.041 °, 68.555 °, 72.953 °, 82.364 °) and Ru (2θ, 38.705 °, 44.025 °, 78.394 °, 85.950 °) It was confirmed.

〈カソード電極の作成〉
得られたRuTe2含有触媒/CBを用いたほかは、実施例8と同様の方法によりRuとTeの総付着量が12ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
Except for using the obtained RuTe 2 -containing catalyst / CB, a cathode electrode was prepared by the same method as in Example 8 so that the total adhesion amount of Ru and Te was 12 ng / cm 2, and evaluated in the same manner. The results are shown in Table 2.

比較例6
〈RuTe(X=0.24)触媒の合成〉
RuとTeの仕込みモル比が1:0.2となるように、比較例1におけるテルル酸(三ツ和化学製)の量を4.545gから0.0909gに変えた他は、比較例1と全く同様の方法で触媒を調製した。この化合物はXRD分析により、RuTe2(2θの値、27.920°,31.298°,32.512°にピークを与えた)とRu(2θの値、38.440°,42.205°,43.999°,69.351°,78.497°,84.630°にピークを与えた)を含有していることを確認した。
[ Comparative Example 6 ]
<Synthesis of RuTe X (X = 0.24) catalyst>
Except that the amount of telluric acid (manufactured by Mitsuwa Chemical) in Comparative Example 1 was changed from 4.545 g to 0.0909 g so that the charged molar ratio of Ru and Te was 1: 0.2, the same method as Comparative Example 1 The catalyst was prepared with This compound was analyzed by XRD analysis with RuTe 2 (values at 2θ, peaks at 27.920 °, 31.298 °, and 32.512 °) and Ru (values at 2θ, 38.440 °, 42.205 °, 43.999 °, 69.351 °, 78.497 °, To give a peak at 84.630 °).

〈カソード電極の作成〉
得られたRuTe2含有触媒/CBを用いたほかは、比較例1と同様の方法によりRuとTeの総付着量が6.66ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
A cathode electrode was prepared in the same manner as in Comparative Example 1 except that the obtained RuTe 2 -containing catalyst / CB was used so that the total adhesion amount of Ru and Te was 6.66 ng / cm 2. The results are shown in Table 2.

[比較例2]
〈RuTe(X=0.12)触媒の合成〉
RuとTeの仕込みモル比が1:0.055となるように、比較例1におけるテルル酸(三ツ和化学製)の量を4.545gから0.0250gに変えた他は、比較例1と全く同様の方法で触媒を調製した。
[Comparative Example 2]
<Synthesis of RuTe X (X = 0.12) catalyst>
Except that the amount of telluric acid (manufactured by Mitsuwa Chemical Co., Ltd.) in Comparative Example 1 was changed from 4.545 g to 0.0250 g so that the charged molar ratio of Ru and Te was 1: 0.055, the same method as Comparative Example 1 The catalyst was prepared with

〈カソード電極の作成〉
得られた触媒を用いた他は、比較例1と同様の方法によりRuとTeの総付着量が5.68ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
Except for using the obtained catalyst, a cathode electrode was prepared by the same method as in Comparative Example 1 so that the total adhesion amount of Ru and Te was 5.68 ng / cm 2. It was shown in 2.

[比較例3]
メノー乳鉢により粉化したTe金属(NEケムキャット製)0.299gとRu3(CO)12(Aldrich製)0.5gをm-Xylene 50mlに加えてN下、還流条件下で20時間139℃に加熱した後、反応液をろ過することにより黒色粉末を得た。次にこの粉末をジエチルエーテルで洗浄後空気乾燥することにより触媒を調製した。
[Comparative Example 3]
Add 0.299 g of Te metal (manufactured by NE Chemcat) and 0.5 g of Ru 3 (CO) 12 (manufactured by Aldrich) to 50 ml of m-Xylene and heat to reflux at 139 ° C. for 20 hours under N 2 under reflux conditions. Then, a black powder was obtained by filtering the reaction solution. Next, the powder was washed with diethyl ether and air-dried to prepare a catalyst.

〈カソード電極の作成〉
得られた触媒を用いた他は、比較例1と同様の方法によりRuとTeの総付着量が5.75ng/cm2となるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
<Creation of cathode electrode>
Except for using the obtained catalyst, a cathode electrode was prepared by the same method as in Comparative Example 1 so that the total adhesion amount of Ru and Te was 5.75 ng / cm 2. It was shown in 2.

Figure 0005217434
Figure 0005217434

本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。なお本出願は、2005年6月23日付で出願された日本特許出願(特願2005−183682)に基づいており、その全体が引用により援用される。   Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2005-183682) filed on June 23, 2005, and is incorporated by reference in its entirety.

Claims (18)

テルル(Te)と、ルテニウム(Ru)と
を含み、組成をRu 1Teと表した際、<X<4であることを特徴とする燃料電池用触媒。
And tellurium (Te), comprising the <br/> ruthenium (Ru), when the composition expressed as Ru 1 Te X, 1 <X < catalyst for a fuel cell, which is a 4.
請求項1において、RuTeを含むことを特徴とする燃料電池用触媒。 2. The fuel cell catalyst according to claim 1, comprising RuTe2. 請求項1において、テルル(Te)と、 ルテニウム(Ru)の他に
ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる少なくとも1種の元素Lと
を含み、組成をLYRu1Teと表した際、<Xであり、0<Y≦10であることを特徴とする燃料電池用触媒。
According to claim 1, and tellurium (Te), in addition to ruthenium (Ru),
Rhodium (Rh), palladium (Pd), and at least one element L selected from the group consisting of osmium (Os), and iridium (Ir), when the composition expressed as L Y Ru 1 Te X, 1 <X and 0 <Y ≦ 10. A fuel cell catalyst.
請求項1において、さらに、Te及びRuが被着された基体を含むことを特徴とする燃料電池用触媒。 2. The fuel cell catalyst according to claim 1, further comprising a substrate on which Te and Ru are deposited. 請求項において、基体は炭素系基体であることを特徴とする燃料電池用触媒。 5. The fuel cell catalyst according to claim 4, wherein the substrate is a carbon-based substrate. 請求項1において、燃料電池が固体高分子型燃料電池であることを特徴とする燃料電池用触媒。   2. The fuel cell catalyst according to claim 1, wherein the fuel cell is a polymer electrolyte fuel cell. イオン交換膜と、
該イオン交換膜上に形成された請求項1の燃料電池用触媒の層とを有する燃料電池用電極材料。
An ion exchange membrane;
A fuel cell electrode material comprising the fuel cell catalyst layer of claim 1 formed on the ion exchange membrane.
電極ガス拡散層と、該電極ガス拡散層上に形成された請求項1の燃料電池用触媒の層とを有する燃料電池用電極材料。   A fuel cell electrode material comprising: an electrode gas diffusion layer; and a fuel cell catalyst layer according to claim 1 formed on the electrode gas diffusion layer. 転写用フィルムと、該転写用フィルム上に形成された請求項1の燃料電池用触媒の層とを有する燃料電池用電極材料。   A fuel cell electrode material comprising: a transfer film; and a fuel cell catalyst layer according to claim 1 formed on the transfer film. 請求項1に記載の燃料電池用触媒を含有することを特徴とする燃料電池用電極。   A fuel cell electrode comprising the fuel cell catalyst according to claim 1. 請求項10に記載の燃料電池用電極を用いた燃料電池。 A fuel cell using the fuel cell electrode according to claim 10 . 請求項11において、燃料電池は固体高分子型燃料電池であることを特徴とする燃料電池。 12. The fuel cell according to claim 11, wherein the fuel cell is a polymer electrolyte fuel cell. 請求項に記載の燃料電池用触媒を製造する方法であって、
炭素系基体、Teの前駆体及びRuの前駆体を混合する工程と、
該前駆体を活性にする工程と
を有することを特徴とする燃料電池用触媒の製造方法。
A method for producing a fuel cell catalyst according to claim 5 ,
Mixing a carbon-based substrate, a precursor of Te and a precursor of Ru ;
A method for producing a catalyst for a fuel cell, comprising the step of activating the precursor.
請求項に記載の燃料電池用触媒を製造する方法であって、炭素系基体と請求項1に記載の燃料電池用触媒とを混合する工程を有することを特徴とする燃料電池用触媒の製造方法。 6. A method for producing a fuel cell catalyst according to claim 5 , comprising a step of mixing a carbon-based substrate and the fuel cell catalyst according to claim 1. Method. 請求項13において、更に遷移金属を炭素系基体に被着させる工程を有することを特徴とする燃料電池用触媒の製造方法。 14. The method for producing a fuel cell catalyst according to claim 13 , further comprising a step of depositing a transition metal on the carbon-based substrate. 請求項14において、更に遷移金属を炭素系基体に被着させる工程を有することを特徴とする燃料電池用触媒の製造方法。 15. The method for producing a fuel cell catalyst according to claim 14 , further comprising a step of depositing a transition metal on the carbon-based substrate. 請求項1に記載の燃料電池用触媒を含有する燃料電池スタック。   A fuel cell stack containing the fuel cell catalyst according to claim 1. 請求項17に記載の燃料電池スタックを含む燃料電池システム。 A fuel cell system comprising the fuel cell stack according to claim 17 .
JP2007522247A 2005-06-23 2006-06-14 Fuel cell, its catalyst and its electrode Expired - Fee Related JP5217434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007522247A JP5217434B2 (en) 2005-06-23 2006-06-14 Fuel cell, its catalyst and its electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005183682 2005-06-23
JP2005183682 2005-06-23
JP2007522247A JP5217434B2 (en) 2005-06-23 2006-06-14 Fuel cell, its catalyst and its electrode
PCT/JP2006/311908 WO2006137302A1 (en) 2005-06-23 2006-06-14 Fuel cell, catalyst thereof, and electrode thereof

Publications (2)

Publication Number Publication Date
JPWO2006137302A1 JPWO2006137302A1 (en) 2009-01-15
JP5217434B2 true JP5217434B2 (en) 2013-06-19

Family

ID=37570332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007522247A Expired - Fee Related JP5217434B2 (en) 2005-06-23 2006-06-14 Fuel cell, its catalyst and its electrode

Country Status (2)

Country Link
JP (1) JP5217434B2 (en)
WO (1) WO2006137302A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684853B1 (en) 2005-11-30 2007-02-20 삼성에스디아이 주식회사 Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
KR100766976B1 (en) 2006-04-28 2007-10-12 삼성에스디아이 주식회사 Catalyst for cathod of fuel cell, method for preparing same, and membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP2008287927A (en) * 2007-05-15 2008-11-27 Mitsubishi Chemicals Corp CATALYST FOR FUEL CELL CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING CATALYST FOR FUEL CELL, AND FUEL CELL
JP5217235B2 (en) * 2007-05-15 2013-06-19 三菱化学株式会社 Fuel cell catalyst containing RuTe2, electrode material for fuel cell and fuel cell using the fuel cell catalyst
JP5217236B2 (en) * 2007-05-15 2013-06-19 三菱化学株式会社 Fuel cell catalyst containing RuTe2 and N element, fuel cell electrode material and fuel cell using the fuel cell catalyst
JP5056236B2 (en) * 2007-07-24 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP5194624B2 (en) * 2007-08-03 2013-05-08 旭硝子株式会社 Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP5056256B2 (en) * 2007-08-09 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP5056258B2 (en) * 2007-08-09 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP5056257B2 (en) * 2007-08-09 2012-10-24 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR EVALUATING PERFORMANCE OF OXYGEN REDUCTION CATALYST, AND SOLID POLYMER FUEL CELL
JP5315791B2 (en) * 2008-05-20 2013-10-16 トヨタ自動車株式会社 Method for activating catalyst for polymer electrolyte fuel cell
JP5277740B2 (en) * 2008-06-10 2013-08-28 旭硝子株式会社 Method for forming catalyst layer and method for producing membrane electrode assembly for polymer electrolyte fuel cell
CN112103520B (en) * 2020-09-24 2022-05-24 扬州大学 Anode catalyst of alcohol fuel cell
CN115656282B (en) * 2022-10-28 2023-09-12 湖北理工学院 Lanthanum-loaded air cathode microbial fuel cell type phosphorus sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118601A (en) * 1983-12-01 1985-06-26 Meidensha Electric Mfg Co Ltd Hydrogen storage substance and its preparation
JPH03255066A (en) * 1990-03-02 1991-11-13 Otsuka Chem Co Ltd Production of beta-lactam derivative
JPH0585969A (en) * 1990-09-10 1993-04-06 Tosoh Corp Production of allyl chloride
JPH1092441A (en) * 1996-09-13 1998-04-10 Asahi Glass Co Ltd Solid high molecular type fuel cell
JP2003024798A (en) * 2001-05-05 2003-01-28 Omg Ag & Co Kg Noble metal-containing supported catalyst and process for its preparation
JP2005105336A (en) * 2003-09-30 2005-04-21 Mitsubishi Chemicals Corp Method of coprecipitating chalcogen compound, method of producing platinum group-chalcogen alloy, method of producing platinum group-chalcogen alloy/inorganic porous carried product, and method of producing oxide reaction product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118601A (en) * 1983-12-01 1985-06-26 Meidensha Electric Mfg Co Ltd Hydrogen storage substance and its preparation
JPH03255066A (en) * 1990-03-02 1991-11-13 Otsuka Chem Co Ltd Production of beta-lactam derivative
JPH0585969A (en) * 1990-09-10 1993-04-06 Tosoh Corp Production of allyl chloride
JPH1092441A (en) * 1996-09-13 1998-04-10 Asahi Glass Co Ltd Solid high molecular type fuel cell
JP2003024798A (en) * 2001-05-05 2003-01-28 Omg Ag & Co Kg Noble metal-containing supported catalyst and process for its preparation
JP2005105336A (en) * 2003-09-30 2005-04-21 Mitsubishi Chemicals Corp Method of coprecipitating chalcogen compound, method of producing platinum group-chalcogen alloy, method of producing platinum group-chalcogen alloy/inorganic porous carried product, and method of producing oxide reaction product

Also Published As

Publication number Publication date
JPWO2006137302A1 (en) 2009-01-15
WO2006137302A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP5217434B2 (en) Fuel cell, its catalyst and its electrode
KR101350865B1 (en) Supported catalyst for fuel cell, method for preparing the same, electrode for fuel cell comprising the same, membrane electrode assembly comprising the electrode and fuel cell comprising the membrane electrode assembly
JP5017007B2 (en) Catalyst, catalyst manufacturing method, membrane electrode assembly, and fuel cell
JP5314910B2 (en) Methanol oxidation catalyst and method for producing the same
JP4901143B2 (en) Electrode catalyst, electrode for fuel electrode, fuel cell device, and method for producing electrode catalyst
JP5205013B2 (en) Anode for fuel cell and fuel cell using the same
US7723260B2 (en) Methanol oxidation catalyst
JP4519871B2 (en) Anode-supported catalyst, method for producing anode-supported catalyst, anode catalyst, method for producing anode catalyst, membrane electrode assembly, and fuel cell
JP5305699B2 (en) Catalyst, catalyst manufacturing method, membrane electrode assembly, and fuel cell
JP4815823B2 (en) Fuel cell catalyst and method for producing the same, fuel cell electrode and fuel cell using the same
JP2013154346A (en) Composite material, catalyst containing the same, fuel cell and lithium air cell containing the same
JP5032251B2 (en) Methanol oxidation catalyst and method for producing the same
JP2008021609A (en) Direct methanol fuel cell and catalyst
JP2008243577A (en) Catalyst for polymer solid electrolyte fuel cell, membrane-electrode assembly, and fuel cell
JP2007042519A (en) Catalyst for fuel cell, its manufacturing method, and electrode for fuel cell and fuel cell using it
JP2007059140A (en) Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell
JP5283913B2 (en) Proton-conducting inorganic material used in fuel cells and anode for fuel cells using the same
KR20240035414A (en) oxygen generation reaction catalyst
JP5217236B2 (en) Fuel cell catalyst containing RuTe2 and N element, fuel cell electrode material and fuel cell using the fuel cell catalyst
JP2006294601A (en) Electrocatalyst for fuel cell
JP2008287927A (en) CATALYST FOR FUEL CELL CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING CATALYST FOR FUEL CELL, AND FUEL CELL
JP2009252411A (en) CATALYST FOR RuTe2-CONTAINING DMFC TYPE FUEL CELL, ELECTRODE MATERIAL FOR FUEL CELL USING THE CATALYST FOR FUEL CELL, AND FUEL CELL
JP5217235B2 (en) Fuel cell catalyst containing RuTe2, electrode material for fuel cell and fuel cell using the fuel cell catalyst
JP2008021610A (en) Pefc fuel cell, and catalyst
JP2008235031A (en) Catalyst, manufacturing method of catalyst, membrane-electrode assembly, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees