JP2007059140A - Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell - Google Patents

Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell Download PDF

Info

Publication number
JP2007059140A
JP2007059140A JP2005241402A JP2005241402A JP2007059140A JP 2007059140 A JP2007059140 A JP 2007059140A JP 2005241402 A JP2005241402 A JP 2005241402A JP 2005241402 A JP2005241402 A JP 2005241402A JP 2007059140 A JP2007059140 A JP 2007059140A
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
substrate
carbon
active component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005241402A
Other languages
Japanese (ja)
Inventor
Yoshinori Hara
善則 原
Hiroaki Itagaki
弘昭 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005241402A priority Critical patent/JP2007059140A/en
Publication of JP2007059140A publication Critical patent/JP2007059140A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide catalyst for a fuel cell of low cost exerting an excellent catalytic action well worth substituting precious metal catalyst such as that of platinum, as well as an electrode for a fuel cell and a fuel cell using the catalyst. <P>SOLUTION: An active component containing one or more elements selected from a group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir), and an element of phosphorus (P) are clad on a carbonaceous base body to make up the catalyst for the fuel cell. The electrode for the fuel cell contains the catalyst for the fuel cell, and the fuel cell uses the electrode for the fuel cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種以上の添加元素とリン(P)元素とを含む活性成分を、基体上に被着させてなることを特徴とする燃料電池用触媒及びその製造方法と、この燃料電池用触媒を用いた燃料電池用電極及び燃料電池に関する。   The present invention includes at least one additive element selected from the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osnium (Os), and iridium (Ir) and a phosphorus (P) element. The present invention relates to a fuel cell catalyst, an active component deposited on a substrate, a method for producing the same, a fuel cell electrode and a fuel cell using the fuel cell catalyst.

近年、エネルギーのより一層の効率化と環境問題の解決のために、燃料電池を自動車の動力源とすることにより排気ガスをクリーンにすることが試みられており、その普及に大きな関心が寄せられている。特に、燃料自動車(FCHV)用燃料電池として固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)の実用化に向けた開発が急速に進んでいる。   In recent years, in order to further improve energy efficiency and solve environmental problems, attempts have been made to clean exhaust gas by using a fuel cell as a power source for automobiles. ing. In particular, development of a polymer electrolyte fuel cell (PEFC) as a fuel cell for a fuel vehicle (FCHV) has been rapidly progressing.

燃料電池は、アノードに燃料、カソードに酸化剤をそれぞれ供給し、アノードとカソード間の電位差を電圧として取り出し、負荷に供給する発電装置であり、アノード燃料としては水素が、酸化剤としては一般的には空気中の酸素が用いられる。燃料電池は、アノード極とカソード極とその間に挟まれた電解質で構成されており、固体高分子型燃料電池においては、電解質としてイオン交換膜が用いられている。具体的には、電解質としてのイオン交換膜の両面に触媒層が形成され、該触媒層の外側にそれぞれアノードガス拡散層及びカソードガス・燃料拡散層が一体に形成されてなる電解質膜/電極接合体が、隔壁板、電解質膜/電極接合体及び隔壁板の積層体よりなる単位セルとして、用途に応じた所望の電圧が得られるように数十セルから数百セル積層されて燃料電池が構成されている。   A fuel cell is a power generator that supplies fuel to the anode and oxidant to the cathode, takes out the potential difference between the anode and cathode as voltage, and supplies it to the load. Hydrogen is commonly used as the anode fuel, and oxidant is generally used as the oxidant. For this, oxygen in the air is used. A fuel cell is composed of an anode and a cathode and an electrolyte sandwiched between them. In a polymer electrolyte fuel cell, an ion exchange membrane is used as an electrolyte. Specifically, a catalyst layer is formed on both surfaces of an ion exchange membrane as an electrolyte, and an anode gas diffusion layer and a cathode gas / fuel diffusion layer are integrally formed outside the catalyst layer, respectively. A fuel cell is constructed by stacking several tens to several hundreds of cells as unit cells composed of a laminate of a partition plate, an electrolyte membrane / electrode assembly, and a partition plate so as to obtain a desired voltage according to the application. Has been.

このような燃料電池では、アノード触媒層に水素が到達すると電気化学的反応過程によりプロトンと電子が生ずる。ここで生成したプロトンは順次電解質中を移動してカソードに達する。一方、電子は、外部負荷を経由してカソードに送られる。カソード触媒層では、外部負荷を経由して送られてきた電子と、酸化剤としての空気中の酸素と、電解質中を移動してきたプロトンとが電気化学的反応過程により結合して水を生成する。   In such a fuel cell, when hydrogen reaches the anode catalyst layer, protons and electrons are generated by an electrochemical reaction process. Protons generated here move sequentially in the electrolyte and reach the cathode. On the other hand, electrons are sent to the cathode via an external load. In the cathode catalyst layer, electrons sent via an external load, oxygen in the air as an oxidant, and protons that have moved through the electrolyte combine to form water through an electrochemical reaction process. .

従来、このような燃料電池の触媒としては、カソード、アノードとも、高価で資源的にも問題がある白金等の貴金属を主体にした触媒が使用されており、その使用量は、同じ動力を発生するガソリン車の排気ガス浄化用触媒に使用される白金の量よりも相当に多量となっている。   Conventionally, as a catalyst for such a fuel cell, a catalyst based on a noble metal such as platinum, which is expensive and has a problem in terms of resources, has been used for both the cathode and the anode. The amount of platinum used for the exhaust gas purification catalyst of gasoline cars is considerably larger than that of platinum.

従って、燃料電池を商業的に実用化するためには、価格的にも資源的にも問題のある白金等の貴金属を主体とした触媒に代わる、安価で実用に供しうる燃料電池用触媒の開発が必須の課題の一つとなる。   Therefore, in order to commercialize fuel cells, development of fuel cell catalysts that can be put into practical use at low cost, replacing catalysts based on precious metals such as platinum, which are problematic in terms of price and resources. Is one of the essential issues.

特許文献1には、請求項1において白金元素とリン元素からなるPtPを燃料電池用触媒に用いることが開示されている。しかし当該文献ではVIII族元素はPtに限定されており、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、イリジウム(Ir)については一切開示されていない。 Patent Document 1 discloses that PtP 2 made of platinum element and phosphorus element is used for a fuel cell catalyst in claim 1. However, in this document, the group VIII element is limited to Pt, and there is no disclosure about ruthenium (Ru), rhodium (Rh), palladium (Pd), osnium (Os), or iridium (Ir).

また、特許文献2にはルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、イリジウム(Ir)のリン化物が燃料電池用電極触媒として請求項4に開示されているが、該触媒は、カーボンファイバーとフッ化グラファイトファイバーで形成されたシート状織布と集電体を結合させる、ポリ四フッ化エチレン(PTFE)等の有機高分子物質からなる結着剤に含有されている。従って、電気的に導通させるための基体中に触媒成分を含有した態様の燃料電池触媒は開示されていない。
USP3,449,169号公報 特開昭61−49378号公報
Patent Document 2 discloses a phosphide of ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt), and iridium (Ir) as an electrode catalyst for a fuel cell. The catalyst is contained in a binder made of an organic polymer material such as polytetrafluoroethylene (PTFE), which binds a sheet-like woven fabric formed of carbon fiber and graphite fluoride fiber and a current collector. ing. Therefore, there is no disclosure of a fuel cell catalyst in which the catalyst component is contained in the substrate for electrical conduction.
USP 3,449,169 JP 61-49378 A

特許文献1に記載されるように、白金のリン化物を燃料電池用触媒として用い得ることは知られているが、この燃料電池用触媒では、高価で資源的にも問題がある白金を用いる必要があり、白金等の貴金属を主体とした触媒に代わる、安価で実用に供しうる燃料電池用触媒の開発という課題は解決し得ない。   As described in Patent Document 1, it is known that a phosphide of platinum can be used as a catalyst for a fuel cell. However, in this catalyst for a fuel cell, it is necessary to use platinum which is expensive and has problems in terms of resources. However, the problem of developing a catalyst for a fuel cell that can be used practically at low cost instead of a catalyst mainly composed of noble metals such as platinum cannot be solved.

本発明は、安価で、白金等の貴金属触媒に代替しうる、優れた触媒作用を発揮する燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極及び燃料電池を提供することを目的とする。   The present invention provides a fuel cell catalyst that exhibits an excellent catalytic action that is inexpensive and can be substituted for a noble metal catalyst such as platinum, and a fuel cell electrode and a fuel cell using the fuel cell catalyst. Objective.

本発明者等は、上記状況に鑑み鋭意検討した結果、ルテニウム等のVIII族元素のリン化物を用いることにより、触媒活性が高く、白金等の貴金属触媒に代替しうる実用性を有する燃料電池用触媒が得られることを見出した。また、これを基体に被着させることにより、安価で、より一層触媒活性が高く、白金等の貴金属触媒に代替しうる実用性を有する燃料電池用触媒が得られることを見出した。
本発明は、このような知見をもとに完成されたものであり、以下を要旨とする。
As a result of intensive studies in view of the above circumstances, the present inventors have high catalytic activity by using a phosphide of a Group VIII element such as ruthenium, and have a utility that can be substituted for a noble metal catalyst such as platinum. It has been found that a catalyst can be obtained. Further, it has been found that by attaching this to a substrate, a fuel cell catalyst can be obtained that is inexpensive, has a higher catalytic activity, and has a practical utility that can replace a noble metal catalyst such as platinum.
The present invention has been completed based on such knowledge, and the gist thereof is as follows.

[1] ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種又は2種以上の元素とリン(P)元素とを含む活性成分を基体上に被着させてなることを特徴とする燃料電池用触媒。 [1] One or more elements selected from the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osnium (Os), and iridium (Ir) and a phosphorus (P) element A catalyst for a fuel cell, comprising an active component that is deposited on a substrate.

[2] [1]において、前記基体が炭素系基体であることを特徴とする燃料電池用触媒。 [2] The fuel cell catalyst according to [1], wherein the substrate is a carbon-based substrate.

[3] [2]において、前記炭素系基体が、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスター、フラーレン、熱分解炭素、及び活性炭素よりなる群から選ばれる1種又は2種以上であることを特徴とする燃料電池用触媒。 [3] In [2], the carbon-based substrate is one or more selected from the group consisting of carbon black, carbon nanotube, carbon nanohorn, carbon nanocluster, fullerene, pyrolytic carbon, and activated carbon. A fuel cell catalyst.

[4] [1]〜[3]において、前記活性成分が平均粒径1000nm以下の粒子状であることを特徴とする燃料電池用触媒。 [4] A fuel cell catalyst according to [1] to [3], wherein the active component is in the form of particles having an average particle size of 1000 nm or less.

[5] [1]〜[4]において、更に遷移金属が前記基体上に被着されていることを特徴とする燃料電池用触媒。 [5] A fuel cell catalyst according to any one of [1] to [4], wherein a transition metal is further deposited on the substrate.

[6] [1]〜[5]に記載の燃料電池用触媒を含有することを特徴とする燃料電池用電極。 [6] A fuel cell electrode comprising the fuel cell catalyst according to any one of [1] to [5].

[7] [6]の燃料電池用電極を用いたことを特徴とする燃料電池。 [7] A fuel cell using the fuel cell electrode according to [6].

[8] [1]〜[5]の燃料電池用触媒を製造する方法であって、前記基体に前記活性成分の前駆体を担持あるいは混合した後に該前駆体を活性にする工程を有することを特徴とする燃料電池用触媒の製造方法。 [8] A method for producing a fuel cell catalyst according to [1] to [5], comprising the step of activating the precursor after supporting or mixing the precursor of the active component on the substrate. A method for producing a fuel cell catalyst.

[9] [8]において、更に遷移金属を前記基体に被着させる工程を有することを特徴とする燃料電池用触媒の製造方法。 [9] The method for producing a fuel cell catalyst according to [8], further comprising the step of depositing a transition metal on the substrate.

[10] ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種又は2種以上の元素とリン(P)元素を含む活性成分を含むことを特徴とするPEFC用燃料電池用触媒。 [10] Including one or more elements selected from the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osnium (Os), and iridium (Ir), and a phosphorus (P) element A catalyst for a fuel cell for PEFC, comprising an active component.

本発明によれば、高価で資源的にも問題のある白金等の貴金属触媒に代替し得る、良好な触媒作用を示し、安価に合成することが可能な、実用的な燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極及び燃料電池が提供される。   According to the present invention, a practical catalyst for a fuel cell that can be synthesized at low cost, exhibiting a good catalytic action, which can be replaced with a noble metal catalyst such as platinum, which is expensive and problematic in terms of resources, Provided are a fuel cell electrode and a fuel cell using the fuel cell catalyst.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

[燃料電池用触媒]
本発明の燃料電池用触媒は、活性成分として、リン(P)元素と、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種以上の元素とを含み、かつ、この活性成分を基体に被着させたものである。
[Fuel cell catalyst]
The fuel cell catalyst of the present invention is selected from the group consisting of phosphorus (P) element, ruthenium (Ru), rhodium (Rh), palladium (Pd), osnium (Os), and iridium (Ir) as active components. And the active ingredient is deposited on a substrate.

なお、以下において、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種以上の元素を「VIII族金属」と称し、「M」で表す場合がある。
また、活性成分を基体に被着させた燃料電池用触媒を「基体被着触媒」と称す場合がある。
In the following, one or more elements selected from the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osnium (Os), and iridium (Ir) are referred to as “Group VIII metal”, It may be represented by “M”.
A fuel cell catalyst in which an active component is deposited on a substrate may be referred to as a “substrate-coated catalyst”.

〈活性成分〉
本発明の燃料電池用触媒において、活性成分におけるリン(P)元素と、VIII族金属元素(M)の存在比率は、活性成分を構成する元素の数の比でMと記載した場合、下限として、X>0.01、好ましくはX>0.05、より好ましくはX>0.1、特に好ましくはX>0.2であり、上限としてX<10、好ましくはX<5、より好ましくはX<4である。リン元素とVIII族金属元素との存在比率が、この下限を下回ると活性が低くなりやすく、上限を超えても活性が出にくくなる。
<Active ingredient>
In the fuel cell catalyst of the present invention, the abundance ratio of the phosphorus (P) element and the group VIII metal element (M) in the active component is described as M 1 P X in the ratio of the number of elements constituting the active component The lower limit is X> 0.01, preferably X> 0.05, more preferably X> 0.1, particularly preferably X> 0.2, and the upper limit is X <10, preferably X <5. More preferably, X <4. If the abundance ratio of the phosphorus element and the Group VIII metal element is below this lower limit, the activity tends to be low, and even if the upper limit is exceeded, the activity is difficult to be produced.

活性成分中のリンの含有量は、活性成分全体に対して、重量として通常1%以上、好ましくは5%以上、より好ましくは10%以上、通常96%以下、好ましくは95%以下、より好ましくは93%以下である。活性成分中のリンの含有量がこの下限を下回ると活性が低くなりやすく、上限を超えても活性が出にくくなる。   The content of phosphorus in the active ingredient is usually 1% or more by weight, preferably 5% or more, more preferably 10% or more, usually 96% or less, preferably 95% or less, more preferably with respect to the whole active ingredient. Is 93% or less. If the phosphorus content in the active ingredient is below this lower limit, the activity tends to be low, and even if the upper limit is exceeded, the activity is difficult to be produced.

また、活性成分中のVIII族金属、即ち、ルテニウム、ロジウム、パラジウム、オスニウム、及びイリジウムの合計の含有量は、活性成分全体に対して、通常1%以上、好ましくは5%以上、より好ましくは10%以上、通常95%以下、好ましくは90%以下、より好ましくは85%以下である。活性成分中のVIII族金属の含有量がこの下限を下回ると活性が低くなりやすく、上限を超えても活性が出にくくなる。   Further, the total content of Group VIII metals in the active ingredient, that is, ruthenium, rhodium, palladium, osnium, and iridium is usually 1% or more, preferably 5% or more, more preferably, based on the whole active ingredient. It is 10% or more, usually 95% or less, preferably 90% or less, more preferably 85% or less. If the content of the Group VIII metal in the active component is below this lower limit, the activity tends to be low, and even if the upper limit is exceeded, the activity is difficult to be produced.

本発明において、活性成分中にはVIII族金属の1種を単独で含んでいても良く、2種以上を含んでいても良いが、特にVIII族金属としてルテニウムを含むことが好ましい。
なお、本発明に係る活性成分中には、リン元素とVIII族金属以外の成分を、本発明の効果を損なわない範囲で含むことも可能である。
In the present invention, the active ingredient may contain one kind of Group VIII metal alone or two or more kinds, but it is particularly preferred that ruthenium is contained as the Group VIII metal.
In addition, in the active ingredient which concerns on this invention, it is also possible to contain components other than a phosphorus element and a Group VIII metal in the range which does not impair the effect of this invention.

本発明に係る活性成分において、リンは、P元素のほか、P等の酸化物、HPO等のオキソ酸、PCl,PBr等の塩化物などの無機化合物、及びPMe(Me=メチル基)等の炭素原子と結合した有機化合物の形態をとっていても良い。他方、VIII族金属についても、金属元素、酸化物、塩化物等の無機化合物、有機化合物の形態をとることができ、例えばルテニウムの場合、Ru元素のほか、RuO,RuO等の酸化物、RuCl・xHO等の塩化物等の無機化合物、及びRu(CO)12等の有機化合物の形態をとっていても良い。また、RuP,RuP,RuP等のリン化物として存在していても良い。 In the active ingredient according to the present invention, phosphorus is an inorganic compound such as P element, oxide such as P 2 O 5 , oxo acid such as H 3 PO 4 , chloride such as PCl 3 and PBr 3 , and PMe. 3 It may take the form of an organic compound bonded to a carbon atom such as (Me = methyl group). On the other hand, Group VIII metals can also take the form of metal elements, oxides, chlorides and other inorganic compounds and organic compounds. For example, in the case of ruthenium, in addition to Ru elements, oxides such as RuO and RuO 2 , It may take the form of an inorganic compound such as a chloride such as RuCl 3 .xH 2 O and an organic compound such as Ru 3 (CO) 12 . Further, RUP, it may be present as phosphides such RuP 2, RuP 4.

活性成分を構成するこれらリン成分及びVIII族金属成分は、それぞれ結合を有さずに存在しても良いし、上述のリン化物のように結合を有して存在していても良い。結合を有しているものとして具体的には、上述のRuP,RuP,RuP等が挙げられる。また、リンと、VIII族金属のうちの2つ以上の元素とが結合した形態であっても良い。 These phosphorus component and group VIII metal component constituting the active component may be present without having a bond, or may be present with a bond like the above-described phosphide. Specific examples of those having a bond include the aforementioned RuP, RuP 2 , RuP 4 and the like. Moreover, the form which phosphorus and two or more elements of the group VIII metals couple | bonded may be sufficient.

本発明の燃料電池用触媒中の活性成分の存在形態は、X線回折(XRD)で確認することができる。即ち、例えば、後述の基体に被着された活性成分に対してX線(Cu−Kα線)を照射し、その回折スペクトルを観察することによって確認することができる。   The presence form of the active component in the fuel cell catalyst of the present invention can be confirmed by X-ray diffraction (XRD). That is, for example, it can be confirmed by irradiating an active ingredient deposited on a substrate described later with X-rays (Cu-Kα rays) and observing the diffraction spectrum thereof.

その測定装置及び測定条件としては、例えば以下のものが挙げられるが、本発明の燃料電池用触媒のXRD分析手法は、何ら以下の測定装置及び測定条件に限定されるものではない。   Examples of the measurement apparatus and measurement conditions include the following, but the XRD analysis method for the fuel cell catalyst of the present invention is not limited to the following measurement apparatus and measurement conditions.

(粉末XRD分析)
測定装置
粉末X線解析装置/PANalytical PW1700
測定条件
X線出力(Cu−Kα):40kV,30mA
走査軸:θ/2θ
測定範囲(2θ):3.0°〜70.0°
測定モード:Continuous
読込幅:0.05°
走査速度:3.0°/min
DS,SS,RS:1°,1°,0.20mm
(Powder XRD analysis)
Measuring device X-ray powder analysis device / PANallytical PW1700
Measurement conditions X-ray output (Cu-Kα): 40 kV, 30 mA
Scanning axis: θ / 2θ
Measurement range (2θ): 3.0 ° to 70.0 °
Measurement mode: Continuous
Reading width: 0.05 °
Scanning speed: 3.0 ° / min
DS, SS, RS: 1 °, 1 °, 0.20mm

具体的には、RuPは、X線回折の2θ(±0.3゜)のピークとして、23.002゜、30.317゜、34.731゜、35.044゜、35.122゜、35.836゜、47.003゜、47.627゜、49.685゜、50.168゜、56.088゜、56.747゜等の特徴的ピークを与えるものである。 Specifically, RuP 2 has 2θ (± 0.3 °) peaks of X-ray diffraction as 23.002 °, 30.317 °, 34.731 °, 35.044 °, 35.122 °, It gives characteristic peaks such as 35.836 °, 47.003 °, 47.627 °, 49.685 °, 50.168 °, 56.088 ° and 56.747 °.

〈基体〉
本発明で用いる基体は、カーボンファイバーとフッ化グラファイトファイバーで形成されたシート状織布と集電体を結合させる結着剤を除いては、特に制限はなく、炭素系基体を用いることが、高い触媒活性が得られる点で好適である。
<Substrate>
The substrate used in the present invention is not particularly limited except for a binder that binds a sheet-like woven fabric formed of carbon fiber and graphite fluoride fiber and a current collector, and a carbon-based substrate is used. This is preferable in that high catalytic activity can be obtained.

炭素系基体としては種々のものが使用でき、特に制限はないが、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスター、フラーレン、熱分解炭素、活性炭素等が挙げられる。また、ナノチューブ、又は気相法による気相成長炭素繊維(Vapor Grown Carbon Fiber:以下「VGCF」と略すこともある。)も好ましく、特に、熱処理して電気伝導性を高めたVGCFは適度な弾性を持ち、好適である。   Various carbon-based substrates can be used and are not particularly limited. Examples thereof include carbon black, carbon nanotube, carbon nanohorn, carbon nanocluster, fullerene, pyrolytic carbon, and activated carbon. Further, a nanotube or a vapor grown carbon fiber (Vapor Growth Carbon Fiber: hereinafter sometimes abbreviated as “VGCF”) by vapor phase method is also preferable, and in particular, VGCF which has been heat-treated to increase electrical conductivity has an appropriate elasticity. It is suitable.

これらの炭素系基体の中でも、導電性、入手容易性、価格、の点で総合的に、カーボンブラックが工業的に有利であり、カーボンブラックとしては、具体的にはチャンネルブラック、ファーネスブラック、サーマルブラック、アセチレンブラック、オイルファーネスブラック、ガスファーネスブラック、等が挙げられる。
これらの炭素系基体は1種を単独であるいは2種以上を組み合わせて使用することができる。
Among these carbon-based substrates, carbon black is industrially advantageous in terms of conductivity, availability, and price. Specifically, as carbon black, specifically, channel black, furnace black, thermal Black, acetylene black, oil furnace black, gas furnace black, etc. are mentioned.
These carbon-based substrates can be used singly or in combination of two or more.

基体の比表面積については特に制限が無いが、5m/g以上2000m/g以下であることが好ましい。
また基体の形態についても特に制限はないが、最も一般的に用いられるのは、粉体状のものである。
Although there is no particular limitation on the specific surface area of the substrate, it is preferable 5 m 2 / g or more 2000m 2 / g or less.
The form of the substrate is not particularly limited, but the most commonly used is a powder form.

〈基体への活性成分の被着〉
本発明において、基体に活性成分が被着されている状態とは、活性成分と基体との間の導電性がとれるように両者が接触している状態を指す。従って、活性成分と基体とを単に混合するのみでも活性成分を基体に被着させることができるが、活性成分の前駆体を基体に担持ないし混合した後、その後この担持物又は混合物を還元条件下で焼成して活性成分の前駆体を活性化させる方法が好ましい。なお、以下において、基体に活性成分の前駆体を担持ないし混合した後、必要に応じて乾燥させ、その後焼成して活性成分を基体に被着させる調整方法を「担持焼成」と称す。
<Adhesion of active ingredient to substrate>
In the present invention, the state in which the active component is applied to the substrate refers to a state in which the active component and the substrate are in contact with each other so as to obtain electrical conductivity. Accordingly, the active ingredient can be applied to the substrate simply by mixing the active ingredient and the substrate. However, after the active ingredient precursor is supported on or mixed with the substrate, the support or mixture is then subjected to reducing conditions. A method in which the precursor of the active ingredient is activated by baking with the above is preferable. In the following, an adjustment method in which a precursor of an active component is supported or mixed on a substrate, dried as necessary, and then fired to deposit the active component on the substrate is referred to as “supported firing”.

基体に被着された活性成分の形状としては特に制限はないが、最も一般的なのは粒子状である。粒子状の活性成分は、その平均粒径の上限が通常100μm以下、好ましくは1000nm以下、より好ましくは500nm以下、中でも300nm以下で、下限が通常0.5nm以上、好ましくは1.0nm以上、より好ましくは2.0nm以上であることが望ましい。活性成分の粒径がこの下限を下回ると不安定となって、失活しやすくなり、上限を超えると高い活性を得にくくなる。   The shape of the active ingredient applied to the substrate is not particularly limited, but the most common is a particulate form. The upper limit of the average particle diameter of the particulate active ingredient is usually 100 μm or less, preferably 1000 nm or less, more preferably 500 nm or less, especially 300 nm or less, and the lower limit is usually 0.5 nm or more, preferably 1.0 nm or more, more Preferably it is 2.0 nm or more. If the particle size of the active ingredient is below this lower limit, it becomes unstable and tends to be deactivated, and if it exceeds the upper limit, it becomes difficult to obtain high activity.

なお、基体に被着された活性成分の平均粒径は、走査型電子顕微鏡(SEM)或いは透過型電子顕微鏡(TEM)により、粒子の長さを測定する方向を統一して、その方向での粒子長さを測定し、これを平均した値で示される。   The average particle size of the active ingredient deposited on the substrate is determined by unifying the direction in which the particle length is measured with a scanning electron microscope (SEM) or transmission electron microscope (TEM). The particle length is measured and indicated as an average value.

このような小さめの平均粒径の活性成分を基体に被着させるには、後述の如く、その製造方法を工夫すれば良く、中でも、担持焼成における焼成温度を低めとし、焼成時間を短めにすることによって、結晶成長の状態を制御することが挙げられる。   In order to deposit an active ingredient having such a small average particle diameter on a substrate, the production method may be devised as will be described later. In particular, the firing temperature in the supporting firing is lowered and the firing time is shortened. Thus, it is possible to control the state of crystal growth.

活性成分の基体への被着比率としては、特に限定されるものではないが、活性成分/(活性成分+基体)の重量比で、下限として通常0.001以上、好ましくは0.01以上、中でも0.05以上で、上限として通常0.95以下、好ましくは0.6以下、中でも0.5以下であることが望ましい。活性成分の被着比率がこの下限を下回ると所望の活性が得られず、上限を超えると被着による活性の向上効果が出にくくなる。   The ratio of the active ingredient to the substrate is not particularly limited, but the weight ratio of active ingredient / (active ingredient + substrate) is usually 0.001 or more, preferably 0.01 or more as a lower limit. Above all, it is 0.05 or more, and the upper limit is usually 0.95 or less, preferably 0.6 or less, and more preferably 0.5 or less. If the deposition ratio of the active ingredient is below this lower limit, the desired activity cannot be obtained, and if it exceeds the upper limit, the activity improvement effect due to deposition is less likely to occur.

〈その他の触媒成分〉
本発明においては、本発明の効果を損なわない限り、基体にさらに遷移金属を被着することができる。
<Other catalyst components>
In the present invention, a transition metal can be further applied to the substrate as long as the effects of the present invention are not impaired.

この遷移金属(以下「他の触媒成分」と称す場合がある)は、周期律表のIIIA〜VIIA族、VIII族、及びIB族の第4周期から第6周期に属する元素であり、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ランタン(La)、ユウロピウム(Eu)、金(Au)、セリウム(Ce)、タンタル(Ta)、タングステン(W)、レニウム(Re)、プラセオジウム(Pr)、ネオジム(Nd)が例示され、好ましくは下記電気化学平衡式
酸化体+ne=還元体
で示される、水溶液中での標準電極電位E゜(25℃)の値がプラスであるものが望ましい。これは、金属本来の性質として酸化による溶出が起こり難く、それに起因する触媒の劣化が少ないからである。このようなものとしては、具体的には、金、銀等が挙げられる。
This transition metal (hereinafter sometimes referred to as “other catalyst component”) is an element belonging to the fourth to sixth periods of groups IIIA to VIIA, VIII, and IB of the periodic table, and titanium ( Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), yttrium (Y), zirconium (Zr), niobium ( Nb), molybdenum (Mo), lanthanum (La), europium (Eu), gold (Au), cerium (Ce), tantalum (Ta), tungsten (W), rhenium (Re), praseodymium (Pr), neodymium ( Nd) is exemplified, and it is preferable that the value of the standard electrode potential E ° (25 ° C.) in an aqueous solution, which is represented by the following electrochemical equilibrium formula oxidant + ne = reduced substance, is positive. This is because elution due to oxidation is unlikely to occur as a natural property of metals, and there is little deterioration of the catalyst due to it. Specific examples of such materials include gold and silver.

ただし、より工業的に有利な触媒とするには、上記の中で高価な触媒成分をなるべく少なくする方が良い。   However, in order to make the catalyst more industrially advantageous, it is better to reduce the number of expensive catalyst components as much as possible.

また、遷移金属として白金(Pt)を併用することも当然可能であるが、白金は高価であるため、添加量は所望の触媒活性を考慮しつつ、少量であることが、安価で実用的な燃料電池用触媒を提供する上で望ましい。   Of course, platinum (Pt) can be used in combination as a transition metal. However, since platinum is expensive, it is inexpensive and practical to add a small amount while considering the desired catalytic activity. It is desirable to provide a fuel cell catalyst.

なお、以下に主な遷移金属の電気化学平衡式と標準電極電位E°(25℃)を示す。   In addition, the following shows the electrochemical equilibrium formula of main transition metals and the standard electrode potential E ° (25 ° C.).

Figure 2007059140
Figure 2007059140

これらの他の触媒成分は1種を単独で用いても良く、2種以上を併用しても良い。   These other catalyst components may be used individually by 1 type, and may use 2 or more types together.

他の触媒成分を共触媒として併用する場合に、他の触媒成分の併用形態としては、次のようなものが挙げられる。
(1) 活性成分と共に他の触媒成分を基体に混合する。
(2) 活性成分と共に他の触媒成分を基体に担持焼成する。
(3) 基体に担持焼成した活性成分を、他の触媒成分と混合する。
(4) 基体に担持焼成した活性成分に、他の触媒成分を更に担持焼成する。
(5) 他の基体に担持焼成した他の触媒成分を、活性成分と混合する。
(6) 他の基体に担持焼成した他の触媒成分を、基体に担持焼成した活性成分と混合する。
When other catalyst components are used in combination as a cocatalyst, examples of the combined form of the other catalyst components include the following.
(1) The catalyst component is mixed with the active component together with the active component.
(2) The active component and other catalyst components are supported and fired on the substrate.
(3) The active component supported and fired on the substrate is mixed with other catalyst components.
(4) The active component supported and fired on the substrate is further supported and fired with other catalyst components.
(5) The other catalyst component supported and calcined on another substrate is mixed with the active component.
(6) The other catalyst component supported and fired on another substrate is mixed with the active component supported and fired on the substrate.

他の触媒成分を用いる場合、他の触媒成分は、活性成分に対して、他の触媒成分の合計/活性成分の重量比で、下限として通常0.001以上、好ましくは0.01以上、中でも0.05以上で、上限として通常0.5以下、好ましくは0.4以下、中でも0.3以下となるように使用することが好ましい。活性成分に対する他の触媒成分の割合がこの下限を下回ると所望の活性が得られず、上限を超えると活性の向上効果が出にくくなる。   When other catalyst components are used, the other catalyst components are generally 0.001 or more, preferably 0.01 or more as a lower limit in terms of the total weight of the other catalyst components / weight ratio of the active components with respect to the active components. It is preferably 0.05 or more and used so that the upper limit is usually 0.5 or less, preferably 0.4 or less, especially 0.3 or less. If the ratio of the other catalyst component to the active component is below this lower limit, the desired activity cannot be obtained, and if it exceeds the upper limit, the effect of improving the activity is difficult to appear.

この他の触媒成分は粉体状であることが好ましく、この場合の平均粒径は、上限として通常1000nm以下、好ましくは500nm以下、中でも300nm以下で、下限として通常0.5nm以上であることが好ましい。この下限を下回ると不安定となって失活しやすくなり、上限を超えると高い活性を得にくくなる。   The other catalyst component is preferably in the form of powder, and the average particle size in this case is usually 1000 nm or less as an upper limit, preferably 500 nm or less, especially 300 nm or less, and the lower limit is usually 0.5 nm or more. preferable. Below this lower limit, it becomes unstable and easily deactivated, and when it exceeds the upper limit, it becomes difficult to obtain high activity.

なお、本発明の燃料電池用触媒においては、上記遷移金属元素以外の金属成分が、活性成分の重量を基準に数重量%以下の量で含まれていても、本発明の目的と効果において許容できる。   In the fuel cell catalyst of the present invention, even if a metal component other than the transition metal element is contained in an amount of several weight percent or less based on the weight of the active component, it is acceptable for the purpose and effect of the present invention. it can.

このような他の触媒成分を併用することにより、とりわけ、他の触媒成分を活性成分と共に基体に担持焼成して用いることにより、触媒活性を高めることができ、好ましい。他の触媒成分の併用、特に、他の触媒成分を活性成分と共に基体に担持焼成させることによる触媒活性の向上効果の作用機構の詳細は必ずしも明らかではないが、他の触媒成分の遷移金属が活性成分の助触媒として機能するために活性が向上するものと推定される。   By using such other catalyst components in combination, it is particularly preferable to use the other catalyst components by carrying them on a substrate together with the active components. Although the details of the action mechanism of the effect of improving the catalytic activity by using other catalyst components in combination, in particular, by supporting and firing the other catalyst components on the substrate together with the active component are not necessarily clear, the transition metals of other catalyst components are active. It is estimated that the activity is improved because it functions as a co-catalyst for the component.

〈基体被着触媒の製造〉
本発明の燃料電池用触媒は、活性成分を基体に被着することにより製造される。ここで、基体への活性成分の被着は、例えば、活性成分或いは活性成分の前駆体(活性成分の元素供給化合物)を基体に担持ないし混合した後焼成する方法のほか、活性成分と基体とを単に混合する混合法、その他含浸法、沈殿法、吸着法等の公知の手法によって行うことができる。
<Manufacture of substrate-coated catalyst>
The fuel cell catalyst of the present invention is produced by depositing an active component on a substrate. Here, the active component may be deposited on the substrate by, for example, a method in which the active component or a precursor of the active component (element supply compound of the active component) is supported on or mixed with the substrate and then fired. Can be carried out by a known method such as a mixing method in which these are simply mixed, other impregnation methods, precipitation methods, adsorption methods and the like.

例えば活性成分の元素供給化合物を所望のモル比で、水、有機溶媒等に溶解或いは分散させ、基体に含浸或いは基体を浸漬させた後、濾過或いは溶媒を留去することにより基体上に該活性成分の元素供給化合物を担持した後、必要に応じて前駆体を活性化する工程(例えば還元処理)を施して調製される。   For example, the element supply compound of the active ingredient is dissolved or dispersed in a desired molar ratio in water, an organic solvent or the like, impregnated or immersed in the substrate, and then filtered or evaporated to remove the active component on the substrate. After supporting the element supply compound as a component, it is prepared by performing a step of activating the precursor (for example, reduction treatment) if necessary.

各元素供給化合物としては加熱分解可能なものであれば特に制限はなく、リン供給化合物であれば、P元素のほか、P等の酸化物、HPO等のオキソ酸、PCl,PBr等の塩化物、(NHHPO、NHPO等の塩化合物等が挙げられる。 Each element supply compound is not particularly limited as long as it can be thermally decomposed. If it is a phosphorus supply compound, in addition to P element, an oxide such as P 2 O 5 , an oxo acid such as H 3 PO 4 , PCl 3 , chlorides such as PBr 3 and salt compounds such as (NH 4 ) 2 HPO 4 and NH 4 H 2 PO 4 .

また、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、イリジウム(Ir)の供給化合物としては、これらのハロゲン化物、酸化物、無機酸塩、有機酸塩、等が挙げられる。
具体的にはRuCl・xHO,RuBr等のハロゲン化物、Ru(SO,KRuO・HO等の無機塩、Ru(OCHCO)等の有機酸塩、RhCl・xHO,RhBr等のハロゲン化物、KRh(SO・12HO,Rh(NO・2HO等の無機塩、Rh(OCHCO)等の有機酸塩、PdCl,PdCl・2HO,PdF,PdCl,KPdCl,KPdCl等のハロゲン化物、Pd(NO等の無機塩,Pd(OCHCO)等の有機酸塩、OsCl,KOsCl等のハロゲン化物、OsO等の酸化物、IrCl,IrBr等のハロゲン化物、IrO等の酸化物、Ir(SO等の無機塩等が挙げられる。
Further, as the supply compounds of ruthenium (Ru), rhodium (Rh), palladium (Pd), osnium (Os), iridium (Ir), these halides, oxides, inorganic acid salts, organic acid salts, etc. Can be mentioned.
Specifically, RuCl 3 · xH 2 O, halides such as RuBr 3, Ru (SO 4) 2, K 2 RuO 4 · H 2 Inorganic salts O etc., Ru 2 (OCH 3 CO) 4 and organic acids Salts, halides such as RhCl 3 .xH 2 O, RhBr 3 , inorganic salts such as KRh (SO 4 ) 2 .12H 2 O, Rh (NO 3 ) 3 .2H 2 O, Rh (OCH 3 CO) 3 and the like Organic acid salts, halides such as PdCl 2 , PdCl 2 .2H 2 O, PdF 2 , PdCl 4 , K 2 PdCl 4 , K 2 PdCl 6 , inorganic salts such as Pd (NO 3 ) 2 , Pd (OCH 3 CO) 2 and other organic acid salts, OsCl 3 , K 2 OsCl 6 and other halides, OsO 2 and other oxides, IrCl 3 and IrBr 3 and other halides, IrO 2 and other oxides, Ir (SO 4 ) Inorganic such as 2 Examples include salts.

これらの供給化合物は1種を単独で用いても良く、2種以上を混合して用いても良い。また予め有機リン化合物が錯化した金属錯体を活性成分の前駆体として用いても良い。このようなものとしては、例えばRuCl(PPh,HRu(PPh等が挙げられる。 These feed compounds may be used alone or in a combination of two or more. Further, a metal complex obtained by complexing an organic phosphorus compound in advance may be used as a precursor of the active component. These include, for example, RuCl 2 (PPh 3) 3, H 2 Ru (PPh 3) 4 and the like.

基体に活性成分を担持した基体被着触媒の一般的な合成法として、活性成分としてRuとPを含む触媒の製造法を例示すると、例えば、RuClと(NHHPOを所望とするモル比に応じた配合比で水等の可溶性溶媒に溶解させ、これにカーボンブラック等の基体を所定量混合し、所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)放置する。尚、この放置の際、超音波処理を行っても良い。次に必要であれば所定の温度で加熱或いは還流し、その後、濾過或いはエバポレーターにより沈殿物を取得する。次いで空気等の酸素雰囲気ガス流通条件下、所定の温度(通常、200℃以上、好ましくは300℃以上、通常、1000℃以下、好ましくは800℃以下)で焼成する。次に所定の温度(通常200℃以上、好ましくは300℃以上、1000℃以下、好ましくは800℃以下)で水素を含む気流下(窒素或いはAr等の不活性ガスを混合しても良く、不活性ガス中の水素濃度としては特に制限はないが、1%以上、好ましくは10%以上が好ましい)で加熱することにより、Ru及びPを含有する活性成分を基体に担持させた触媒を得る。 As a general synthesis method of a substrate-coated catalyst having an active component supported on a substrate, a production method of a catalyst containing Ru and P as active components is exemplified. For example, RuCl 3 and (NH 4 ) 2 HPO 4 are desired. It is dissolved in a soluble solvent such as water at a mixing ratio according to the molar ratio to be mixed, and a predetermined amount of a substrate such as carbon black is mixed therein, and a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less). , Preferably 30 hours or less). In this case, ultrasonic treatment may be performed. Next, if necessary, the mixture is heated or refluxed at a predetermined temperature, and then a precipitate is obtained by filtration or an evaporator. Next, firing is performed at a predetermined temperature (usually 200 ° C. or higher, preferably 300 ° C. or higher, usually 1000 ° C. or lower, preferably 800 ° C. or lower) under conditions of flowing an oxygen atmosphere gas such as air. Next, an inert gas such as nitrogen or Ar may be mixed under an air stream containing hydrogen at a predetermined temperature (usually 200 ° C or higher, preferably 300 ° C or higher, 1000 ° C or lower, preferably 800 ° C or lower). The concentration of hydrogen in the active gas is not particularly limited, but is heated to 1% or more, preferably 10% or more) to obtain a catalyst in which an active component containing Ru and P is supported on a substrate.

その後、更に、低酸素濃度(例えば、5重量%以下、中でも2重量%以下程度の酸素濃度)の不活性ガス雰囲気中で、所定時間で処理することにより不動態膜を形成させる不動態化処理を行うこともできる。   Thereafter, a passivation treatment is performed in which a passive film is formed by treatment in an inert gas atmosphere at a low oxygen concentration (for example, an oxygen concentration of about 5 wt% or less, especially about 2 wt% or less) for a predetermined time. Can also be done.

また、活性成分を予め調製し、これを基体と混合し乳鉢等で混練することにより活性成分を基体に被着させることもできる。この混合は、乾式でも湿式でも良いが、好ましくは水等の媒体を用いて湿式混合し、その後100〜200℃程度で乾燥することが好ましい。   Alternatively, the active ingredient can be applied to the base by preparing the active ingredient in advance, mixing it with the base, and kneading it in a mortar or the like. This mixing may be dry or wet, but is preferably wet mixed using a medium such as water and then dried at about 100 to 200 ° C.

この場合において、活性成分を予め調整する方法としては、例えば、RuClと(NHHPOを所望とするモル比に応じた配合比で水に溶解させ、次に必要であれば所定の温度で加熱或いは還流し、その後濾過或いはエバポレーターにより沈殿物を取得する。次いで空気等の酸素雰囲気ガス流通条件下、所定の温度(通常、200℃以上、好ましくは300℃以上、通常、1000℃以下、好ましくは800℃以下)で焼成する。次に所定の温度(通常200℃以上、好ましくは300℃以上、1000℃以下、好ましくは800℃以下)で水素を含む気流下(窒素或いはAr等の不活性ガスを混合しても良く、不活性ガス中の水素濃度としては特に制限はないが、1%以上、好ましくは10%以上が好ましい)で加熱することにより、Ru及びPを含有する活性成分を得る。 In this case, as a method for preliminarily adjusting the active ingredient, for example, RuCl 3 and (NH 4 ) 2 HPO 4 are dissolved in water at a blending ratio corresponding to a desired molar ratio, and then, if necessary, predetermined The mixture is heated or refluxed at a temperature of 5 ° C., and then a precipitate is obtained by filtration or an evaporator. Next, firing is performed at a predetermined temperature (usually 200 ° C. or higher, preferably 300 ° C. or higher, usually 1000 ° C. or lower, preferably 800 ° C. or lower) under conditions of flowing an oxygen atmosphere gas such as air. Next, an inert gas such as nitrogen or Ar may be mixed under an air stream containing hydrogen at a predetermined temperature (usually 200 ° C or higher, preferably 300 ° C or higher, 1000 ° C or lower, preferably 800 ° C or lower). The hydrogen concentration in the active gas is not particularly limited, but is heated to 1% or more, preferably 10% or more) to obtain an active component containing Ru and P.

この後、更に、低酸素濃度(例えば、5重量%以下、中でも2重量%以下程度の酸素濃度)の不活性ガス雰囲気中で、所定時間(通常数10分以上、好ましくは30分以上、通常10時間以下、中でも5時間以下)で、所定の温度(通常は、室温付近)で処理することにより不動態膜を形成させる不動態化処理を行っても良い。   Thereafter, in an inert gas atmosphere having a low oxygen concentration (for example, an oxygen concentration of about 5 wt% or less, especially about 2 wt% or less), a predetermined time (usually several tens of minutes, preferably 30 minutes or more, usually Passivation treatment may be performed to form a passive film by treatment at a predetermined temperature (usually around room temperature) for 10 hours or less, particularly 5 hours or less.

本発明においては、上記した触媒の製造方法の中でも、炭素系基体と、活性成分及び活性成分の元素供給化合物から選ばれるものとを混合した後に、焼成する担持焼成法が好ましく、この焼成により得られる触媒の活性を向上させることができる。このように焼成を行うことにより活性を向上させることができる理由については必ずしも明らかではないが、炭素系基体に活性成分が被着しているので、焼成時に活性成分のシンタリングが押さえられるために、活性が向上することによるものと推定される。   In the present invention, among the above-described methods for producing a catalyst, a supported calcining method in which a carbon-based substrate and an active ingredient and an element supply compound of the active ingredient are mixed and then calcined is preferable. The activity of the resulting catalyst can be improved. The reason why the activity can be improved by firing in this way is not necessarily clear, but since the active component is deposited on the carbon-based substrate, the sintering of the active component is suppressed during firing. It is estimated that the activity is improved.

活性成分と共に前述の他の触媒成分を基体に被着させる場合、活性成分の被着工程において同時に他の触媒成分を被着させても良く、活性成分の被着工程の前、又は後に他の触媒成分を被着させても良い。なお、ここで、「活性成分の被着工程」とは、活性成分を被着させるための処理過程、即ち、活性成分供給化合物添加から活性成分を与える迄の過程全体を包含する。   When the above-mentioned other catalyst component is applied to the substrate together with the active component, the other catalyst component may be applied at the same time in the active component application step, and the other component may be applied before or after the active component application step. A catalyst component may be deposited. Here, the “active component deposition step” includes the treatment process for depositing the active component, that is, the entire process from the addition of the active component supply compound to the provision of the active component.

基体に他の触媒成分を被着するための遷移金属供給化合物としては、酸化物の他、硝酸塩、硫酸塩、炭酸塩等の無機酸塩、酢酸塩等の有機酸塩、ハロゲン化物、水素化物、カルボニル化合物、アミン化合物、オレフィン配位化合物、ホスフィン配位化合物又はホスファイト配位化合物等が挙げられる。これらは、1種を単独で用いても良く、2種以上を併用しても良い。   Transition metal supply compounds for depositing other catalyst components on the substrate include oxides, inorganic acid salts such as nitrates, sulfates and carbonates, organic acid salts such as acetates, halides and hydrides. , A carbonyl compound, an amine compound, an olefin coordination compound, a phosphine coordination compound or a phosphite coordination compound. These may be used alone or in combination of two or more.

活性成分と共に他の触媒成分を基体に被着させる具体的な方法としては、例えば、先に記載した方法で合成したRu及びPを含有する活性成分を基体に担持させた触媒に、塩化物等の遷移金属化合物を溶解した溶液を加えて所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)放置した後、溶媒をエバポレーターにより留去する。尚、この放置の際、超音波処理を行っても良い。次に、水素を含む気流下(窒素或いはAr等の不活性ガスを混合しても良く、不活性ガス中の水素濃度としては特に制限はないが、1%以上、好ましくは10%以上、100%以下、或いは80%以下)、所定の温度(通常100℃以上、好ましくは150℃以上、通常800℃以下、好ましくは500℃以下)で所定の時間(通常10分以上、好ましくは30分以上、通常50時間以下、好ましくは30時間以下)加熱することにより、Ru及びPを含有する活性成分と他の触媒成分が共に基体に担持された基体被着触媒が得られる。   As a specific method of depositing other catalyst components together with the active component on the substrate, for example, a catalyst in which the active component containing Ru and P synthesized by the above-described method is supported on the substrate, chloride, etc. A solution in which the transition metal compound is dissolved is added and allowed to stand for a predetermined time (usually 10 minutes or more, preferably 30 minutes or more, usually 50 hours or less, preferably 30 hours or less), and then the solvent is distilled off by an evaporator. In this case, ultrasonic treatment may be performed. Next, under an air stream containing hydrogen (inert gas such as nitrogen or Ar may be mixed, the hydrogen concentration in the inert gas is not particularly limited, but is 1% or more, preferably 10% or more, 100 % Or less, or 80% or less) at a predetermined temperature (usually 100 ° C. or higher, preferably 150 ° C. or higher, usually 800 ° C. or lower, preferably 500 ° C. or lower) for a predetermined time (usually 10 minutes or longer, preferably 30 minutes or longer). (Normally, 50 hours or less, preferably 30 hours or less) By heating, a substrate-adhered catalyst in which an active component containing Ru and P and another catalyst component are both supported on a substrate is obtained.

その後、更に、低酸素濃度(例えば、5重量%以下、中でも2重量%以下程度の酸素濃度)の不活性ガス雰囲気中で、所定時間(通常数10分以上、好ましくは30分以上、通常10時間以下、中でも5時間以下)で、所定の温度(通常は、室温付近)で処理することにより不動態膜を形成させる不動態化処理を行うこともできる。   Thereafter, in an inert gas atmosphere having a low oxygen concentration (for example, an oxygen concentration of about 5 wt% or less, especially about 2 wt% or less) for a predetermined time (usually several tens of minutes, preferably 30 minutes or more, usually 10 It is also possible to perform a passivation treatment for forming a passive film by treatment at a predetermined temperature (usually around room temperature) for a time or less, particularly 5 hours or less.

なお、前述の如く、他の触媒成分は、そのまま活性成分を被着(好ましくは担持焼成)した基体と混合して用いても良く、また、他の触媒成分を被着(好ましくは担持焼成)した基体に、活性成分を混合して用いても良い。   As described above, the other catalyst component may be used as it is by mixing it with the substrate on which the active component is deposited (preferably supported firing), or the other catalyst component is deposited (preferably supported firing). You may mix and use an active ingredient for the base | substrate which was made.

[燃料電池用電極及び燃料電池]
本発明の燃料電池用電極は、上記した本発明の燃料電池用触媒を含有することを特徴とする。また、本発明の燃料電池は、このような本発明の燃料電池用電極を用いたことを特徴とする。
[Fuel cell electrode and fuel cell]
The fuel cell electrode of the present invention is characterized by containing the above-described fuel cell catalyst of the present invention. The fuel cell of the present invention is characterized by using such a fuel cell electrode of the present invention.

本発明に係る燃料電池とは、前述の如くアノードに燃料、カソードに酸化剤を供給しアノードとカソード間の電位差を電圧として取り出し、負荷に供給する発電装置であり、アノード極とカソード極とその間に挟まれた電解質で構成され、固体高分子型燃料電池においては、電解質としてイオン交換膜が用いられている。即ち、電解質としてのイオン交換膜の両面に触媒層が形成され、該触媒層の外側にそれぞれアノードガス拡散層及びカソードガス・燃料拡散層が一体に形成されてなる電解質膜/電極接合体とされている。電解質膜/電極接合体はその拡散層側に隔壁板が配置され、この隔壁板、電解質膜/電極接合体及び隔壁板の単位セルが、用途に応じた所望の電圧になるまで、数十セルから数百セル積層されて燃料電池が構成されている。   The fuel cell according to the present invention is a power generator that supplies fuel to the anode and oxidant to the cathode, takes out the potential difference between the anode and cathode as a voltage, and supplies it to the load as described above. In a polymer electrolyte fuel cell, an ion exchange membrane is used as an electrolyte. That is, an electrolyte membrane / electrode assembly in which a catalyst layer is formed on both surfaces of an ion exchange membrane as an electrolyte, and an anode gas diffusion layer and a cathode gas / fuel diffusion layer are integrally formed on the outside of the catalyst layer, respectively. ing. The electrolyte membrane / electrode assembly has a partition plate disposed on the diffusion layer side, and several tens of cells until the unit cell of the partition plate, electrolyte membrane / electrode assembly, and partition plate has a desired voltage according to the application. Several hundred cells are stacked to form a fuel cell.

本発明においては、この電解質膜/電極接合体の触媒層を形成する触媒として、前述の本発明の燃料電池用触媒を用いる。   In the present invention, the aforementioned fuel cell catalyst of the present invention is used as a catalyst for forming the catalyst layer of the electrolyte membrane / electrode assembly.

電解質としてのイオン交換膜は、カチオン交換能があれば良いが、実用上、燃料電池の使用温度である80〜100℃程度での酸化還元雰囲気に長期に耐えることが望まれることから、パーフルオロアルキルスルホン酸樹脂がもっぱら用いられている。具体的には、ナフィオン(デュポン社製登録商標)、フレミオン(旭硝子社製登録商標)、Aciplex(旭化成社製登録商標)等のパーフルオロアルキルスルホン酸樹脂膜が挙げられる。   An ion exchange membrane as an electrolyte is only required to have a cation exchange capacity, but it is practically desired to withstand an oxidation-reduction atmosphere at a temperature of about 80 to 100 ° C., which is a use temperature of a fuel cell. Alkyl sulfonic acid resins are exclusively used. Specific examples include perfluoroalkylsulfonic acid resin membranes such as Nafion (registered trademark manufactured by DuPont), Flemion (registered trademark manufactured by Asahi Glass Co., Ltd.), and Aciplex (registered trademark manufactured by Asahi Kasei Co., Ltd.).

イオン交換膜の厚みとしては、10μm程度以上、数100μm程度以下のものが用いられるが、電気抵抗を下げるためにはより薄くすることが望ましい。ナフィオンを例に取ると、厚み120μm程度のナフィオン115がよく使用されるが、補強材を入れて30〜50μmの電解質が開発され始めており、これらのものも同様に用いることができる。   As the thickness of the ion exchange membrane, a thickness of about 10 μm or more and about several 100 μm or less is used, but it is desirable to make the thickness thinner in order to lower the electric resistance. Taking Nafion as an example, Nafion 115 having a thickness of about 120 μm is often used. However, an electrolyte having a thickness of 30 to 50 μm has begun to be developed, and these can be used in the same manner.

拡散層の構成材料としては、アノードでは水素、カソードでは、空気を供給すると共に、発生した電圧を取り出すための集電体としての機能も併せ持つものであるため、優れた電子伝導体でかつ水素、空気の両ガスが通流し、かつ使用雰囲気に耐える材料が選択される。アノード燃料拡散層及びカソードガス・燃料拡散層を構成する材料としては、厚みが、通常100〜500μm、好ましくは100〜200μm程度の、カーボンペーパー、カーボンクロス等のカーボン多孔体が用いられる。   As the constituent material of the diffusion layer, hydrogen is supplied to the anode and air is supplied to the cathode, and also has a function as a current collector for taking out the generated voltage. A material that allows both gases of air to flow and withstands the use atmosphere is selected. As a material constituting the anode fuel diffusion layer and the cathode gas / fuel diffusion layer, a carbon porous body such as carbon paper or carbon cloth having a thickness of usually about 100 to 500 μm, preferably about 100 to 200 μm is used.

電解質膜/電極接合体を燃料電池に用いる際には、その背後に水素と空気が混合しないように、通常、カーボン、場合によってはステンレス、チタン等の材料でできた隔壁板が配置されるが、この隔壁板には、水素と空気の均一かつ安定供給を目的とした溝を形成したものを用いることが一般的である。   When an electrolyte membrane / electrode assembly is used in a fuel cell, a partition plate made of a material such as carbon, and in some cases, stainless steel, titanium, etc. is usually disposed behind the membrane to prevent hydrogen and air from mixing. In general, the partition plate is formed with grooves for the purpose of uniform and stable supply of hydrogen and air.

本発明の燃料電池用触媒を用いて触媒層を形成することにより燃料電池の電解質膜/電極接合体を作製する方法としては特に制限はないが、例えば次のような方法が挙げられる。   Although there is no restriction | limiting in particular as a method of producing the electrolyte membrane / electrode assembly of a fuel cell by forming a catalyst layer using the catalyst for fuel cells of this invention, For example, the following methods are mentioned.

カソード側触媒層及びアノード側触媒層を作製する方法については、特に制限はないが、例えば、下記のようにして作製できる。まず、活性成分、又は活性成分を基体に被着させてなる本発明の燃料電池用触媒を、適当な容器に入れ、DuPont社のNafion(登録商標)を溶解したNafionの溶液(濃度5重量%,アルドリッチ製)及びアルコール、水等の媒体に分散させ触媒スラリーを調製する。この際に分散を良好に進行させるために、超音波振動をかける方がより好ましい。この触媒スラリー中の本発明の燃料電池用触媒濃度は、所望の分散性を得るために、1〜50g/L程度であるのが好ましい。また、撥水性を持たせたい、触媒層の剥がれを防ぎたい、等の目的でポリテトラフルオロエチレン(PTFE)等のバインダーをスラリー中に3〜30重量%程度の範囲で加えることは勿論可能である。また、内容物を凝集させて、ペースト化したい場合、エタノール、イソプロピルアルコールといった炭素数2〜5、好ましくは炭素数2〜4程度の低級アルコール、或いはエチレングリコール等の炭素数2〜5、好ましくは炭素数2〜4程度の多価アルコールを、水に対して0.25〜1.0の比になるように加えて凝集させることもできる。   Although there is no restriction | limiting in particular about the method of producing a cathode side catalyst layer and an anode side catalyst layer, For example, it can produce as follows. First, an active ingredient or a catalyst for a fuel cell of the present invention obtained by adhering an active ingredient to a substrate is placed in a suitable container, and a Nafion solution (concentration of 5% by weight) in which NaPotion (registered trademark) of DuPont is dissolved. , Manufactured by Aldrich) and dispersed in a medium such as alcohol or water to prepare a catalyst slurry. At this time, it is more preferable to apply ultrasonic vibration in order to promote the dispersion well. In order to obtain a desired dispersibility, the catalyst concentration for a fuel cell of the present invention in the catalyst slurry is preferably about 1 to 50 g / L. Of course, a binder such as polytetrafluoroethylene (PTFE) can be added to the slurry in the range of about 3 to 30% by weight for the purpose of providing water repellency or preventing the catalyst layer from peeling off. is there. In addition, when the contents are to be agglomerated and made into a paste, the alcohol has 2 to 5 carbon atoms such as ethanol or isopropyl alcohol, preferably a lower alcohol having about 2 to 4 carbon atoms, or 2 to 5 carbon atoms such as ethylene glycol, preferably A polyhydric alcohol having about 2 to 4 carbon atoms can be added and aggregated so as to have a ratio of 0.25 to 1.0 with respect to water.

このようにして得られる触媒スラリーを乾燥して電解質膜/電極接合体のカソード側触媒層及びアノード側触媒層を形成すれば良いが、その方法としては、例えば、触媒層をイオン交換膜上に形成してからガス・燃料拡散層材と積層する方法と、触媒層をガス・燃料拡散層材上に形成してからイオン交換膜と積層する方法が挙げられる。   The catalyst slurry thus obtained may be dried to form the cathode side catalyst layer and the anode side catalyst layer of the electrolyte membrane / electrode assembly. For example, the catalyst layer may be placed on the ion exchange membrane. A method of laminating the gas / fuel diffusion layer material after the formation and a method of laminating the ion exchange membrane after forming the catalyst layer on the gas / fuel diffusion layer material are exemplified.

カソード側触媒層及びアノード側触媒層は具体的には、それぞれ次のような方法でイオン交換膜上、又は、ガス拡散電極材上に形成される。
(1) 用いるイオン交換膜に触媒スラリーを吹き付けて乾燥する。
(2) カーボンペーパー等のガス拡散電極材に触媒スラリーを吹き付けて乾燥する。
(3) テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)フィル
ム等の転写用フィルム材上に触媒スラリーを吹き付けて(展開処理)乾燥し、転写用フィルム面と反対側の面をナフィオン等の所望のイオン交換膜上に適宜圧接して触媒層を転写する。
(4) (3)におけるのと同様に、FEPフィルム上に触媒スラリーを展開処理した後、スラリー上にカーボンペーパー等のガス拡散電極材を被せて乾燥する。
Specifically, the cathode side catalyst layer and the anode side catalyst layer are respectively formed on the ion exchange membrane or the gas diffusion electrode material by the following methods.
(1) Dry the catalyst slurry by spraying it onto the ion exchange membrane to be used.
(2) Spray the catalyst slurry on a gas diffusion electrode material such as carbon paper and dry.
(3) The catalyst slurry is sprayed onto a transfer film material such as a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) film (development treatment) and dried, and the surface opposite to the transfer film surface is made of Nafion, etc. The catalyst layer is transferred onto the desired ion exchange membrane by appropriately pressing.
(4) As in (3), after the catalyst slurry is spread on the FEP film, the slurry is covered with a gas diffusion electrode material such as carbon paper and dried.

カソード側触媒層及びアノード側触媒層は共に、活性成分付着量(目付量)として、通常0.01mg/cm以上、好ましくは0.5mg/cm以上、数g/cm以下、好ましくは1g/cm以下程度の量となるように形成するのが好ましい。この活性成分付着量が上記下限よりも少ないと充分な触媒活性を得ることができず、上記上限よりも多いと電解質膜/電極接合体が形成し難くなる。 Both the cathode side catalyst layer and the anode side catalyst layer are generally 0.01 mg / cm 2 or more, preferably 0.5 mg / cm 2 or more, preferably several g / cm 2 or less, preferably as an active ingredient adhesion amount (weight per unit area). It is preferably formed so as to have an amount of about 1 g / cm 2 or less. If the amount of the active component attached is less than the lower limit, sufficient catalytic activity cannot be obtained, and if it exceeds the upper limit, it is difficult to form an electrolyte membrane / electrode assembly.

上記カソード側触媒層及びアノード側触媒層の各形成工程後、予備的な加圧成型を適宜行った後、最終的な電解質膜/電極接合体、即ち、イオン交換膜の片側の面に上記したカソード側触媒層が形成され、該イオン交換膜の反対側の面に、アノード側触媒層を、更に、両触媒層の外側にそれぞれアノード及びカソードを構成するガス・燃料拡散層が積層されるように、プレス機を用いて加圧加熱成形して、電解質膜/電極接合体が作製される。   After each forming step of the cathode side catalyst layer and the anode side catalyst layer, preliminary pressure molding is appropriately performed, and then the final electrolyte membrane / electrode assembly, that is, the surface on one side of the ion exchange membrane is described above. A cathode-side catalyst layer is formed, and an anode-side catalyst layer is laminated on the opposite surface of the ion-exchange membrane, and a gas / fuel diffusion layer constituting the anode and the cathode is laminated outside the both catalyst layers. Then, an electrolyte membrane / electrode assembly is produced by press-heating using a press machine.

なお、予備的な加圧成形の条件としては、触媒層の崩壊を防げる範囲で後に行う本成形の条件より温度、圧力は低く、時間は短く設定するのが好ましい。それは、触媒粒子、ガス・燃料拡散層用多孔体の圧縮破壊を起こさないためである。   In addition, as conditions for preliminary pressure molding, it is preferable to set the temperature and pressure lower and the time shorter than the conditions of the main molding performed later within a range in which the catalyst layer can be prevented from collapsing. This is because the catalyst particles and gas / fuel diffusion layer porous body do not cause compressive fracture.

次に実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。   EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited by a following example, unless the summary is exceeded.

なお、以下の実施例及び比較例において、作製したカソード電極の性能(触媒活性)は、下記のサイクリックボルタンメトリー(CV)測定により行った。   In the following examples and comparative examples, the performance (catalytic activity) of the produced cathode electrode was measured by the following cyclic voltammetry (CV) measurement.

[CV測定]
サイクリックボルタンメトリー(CV)測定は、電解槽に密封性を保ち得る栓を用い、電解液中に窒素又は空気をバブリングしつつ、酸素は供給律速になっていない条件で行った。測定条件は以下の通りである。
電解液:1.0M HSO水溶液
走査速度:5mV/秒
走査範囲:100〜700mV
カウンター電極:Pt
比較電極:標準水素電極(SHE)
[CV measurement]
Cyclic voltammetry (CV) measurement was performed under the condition that oxygen was not rate-controlled while bubbling nitrogen or air into the electrolytic solution using a stopper capable of keeping hermeticity in the electrolytic cell. The measurement conditions are as follows.
Electrolyte: 1.0 MH 2 SO 4 aqueous solution Scan speed: 5 mV / sec Scan range: 100 to 700 mV
Counter electrode: Pt
Reference electrode: Standard hydrogen electrode (SHE)

電極の電位を標準水素電極に対して700mV程度から100mVの方向に走査にすると作用電極とPt対極の間に
4H+O+4e→2H
による酸素の還元電流が流れるのが認められる。卑の方向に走査した時に400mV(SHE基準)の時に流れる電流値を測定し、測定された電流値を触媒に含まれる活性成分の単位重量(1g)当たりの電流値に換算したもので触媒活性を評価した。
When the potential of the electrode is scanned in the direction of about 700 mV to 100 mV with respect to the standard hydrogen electrode, 4H + + O 2 + 4e → 2H 2 O between the working electrode and the Pt counter electrode
It can be seen that the oxygen reduction current due to. Measures the current value flowing at 400 mV (SHE standard) when scanned in the base direction, and converts the measured current value into a current value per unit weight (1 g) of the active component contained in the catalyst. Evaluated.

[実施例1]
〈Ru・P/カーボンブラック(CB)触媒の合成〉
塩化ルテニウム(含水品、ルテニウム含量42wt%、NEケムキャト製)0.364gと(NHHPO(キシダ化学品)0.198gを50mlの水に溶解させた。その中にカーボンブラック(VULCAN XC−72R,Cabot社製(比表面積(BET)254m/g))0.8gをいれ室温で1時間超音波処理した。その後、エバポレーターで溶媒を留去し、得られた残留物を空気気流下、500℃で3時間焼成した。
その後室温まで冷却した後、空気から水素ガスに切り替え、水素還元処理した。即ち、水素気流下3L/hrの流量で、室温から300℃まで20分、300℃から500℃まで4時間かけて昇温した。500℃で1時間保持したのち室温まで冷却した。最後に1%酸素を含む窒素ガス気流下に2時間放置して不動態化した
[Example 1]
<Synthesis of Ru.P / carbon black (CB) catalyst>
Ruthenium chloride (water-containing product, ruthenium content 42 wt%, manufactured by NE Chemcat) 0.364 g and (NH 4 ) 2 HPO 4 (Kishida Chemical) 0.198 g were dissolved in 50 ml of water. Carbon black (VULCAN XC-72R, manufactured by Cabot (specific surface area (BET) 254 m 2 / g)) 0.8 g was placed therein and sonicated for 1 hour at room temperature. Thereafter, the solvent was distilled off with an evaporator, and the obtained residue was calcined at 500 ° C. for 3 hours in an air stream.
Then, after cooling to room temperature, the air was switched from hydrogen gas to hydrogen reduction treatment. That is, the temperature was increased from room temperature to 300 ° C. for 20 minutes and from 300 ° C. to 500 ° C. over 4 hours at a flow rate of 3 L / hr in a hydrogen stream. After holding at 500 ° C. for 1 hour, it was cooled to room temperature. Finally, it was passivated by leaving it in a nitrogen gas stream containing 1% oxygen for 2 hours.

〈カソード電極の作成〉
得られたカーボンブラックに担持焼成したRuとP元素を含む活性成分と、別途用意したカーボンブラック(VULCAN XC−72R(Cabot社製、比表面積(BET)254m/g))を乳鉢で混合し、該活性成分の重量が0.1重量%となるよう希釈した。その28.27mgをエタノール5mLに混合し、超音波洗浄器で充分撹拌した後、マイクロシリンジで該活性成分付着量が0.4μg/cmとなるように作用電極であるグラッシーカーボン電極に滴下し、放置により乾燥した。次に、デュポン社のナフィオン膜を溶媒に溶解した市販のナフィオン液を滴下し、放置により乾燥し、その後更に真空下で乾燥することによりカソード電極とした。
このカソード電極についてCV測定を行い、触媒活性の評価結果を表2に示した。
<Creation of cathode electrode>
The active component containing Ru and P elements supported and fired on the obtained carbon black and a separately prepared carbon black (VULCAN XC-72R (manufactured by Cabot, specific surface area (BET) 254 m 2 / g)) are mixed in a mortar. The active ingredient was diluted to 0.1% by weight. 28.27 mg of the mixture was mixed with 5 mL of ethanol and sufficiently stirred with an ultrasonic cleaner, and then dropped with a microsyringe onto a glassy carbon electrode as a working electrode so that the amount of active ingredient adhered was 0.4 μg / cm 2. And dried by standing. Next, a commercially available Nafion solution in which a Nafion membrane manufactured by DuPont was dissolved in a solvent was dropped, dried by standing, and then further dried under vacuum to obtain a cathode electrode.
CV measurement was performed on this cathode electrode, and the evaluation results of catalyst activity are shown in Table 2.

[実施例2]
実施例1において採用した、300℃から500℃まで4時間かけて昇温し更500℃で1時間保持した水素還元の処理条件を、300℃から650℃まで4時間かけて昇温し更に650℃で1時間保持した条件に変更した以外は実施例1と全く同様の方法で触媒を調製した。
得られたカーボンブラックに担持焼成したRuとP元素を含む活性成分を、実施例1と同様の方法により該活性成分付着量が0.4μg/cmとなるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
[Example 2]
The hydrogen reduction treatment conditions employed in Example 1 were increased from 300 ° C. to 500 ° C. over 4 hours and maintained at 500 ° C. for 1 hour, and the temperature was increased from 300 ° C. to 650 ° C. over 4 hours. A catalyst was prepared in the same manner as in Example 1 except that the conditions were changed to those maintained at 1 ° C. for 1 hour.
A cathode electrode was prepared by using the active component containing Ru and P elements supported and fired on the obtained carbon black in the same manner as in Example 1 so that the active component adhesion amount was 0.4 μg / cm 2. The results are shown in Table 2.

[実施例3]
実施例1において採用した、300℃から500℃まで4時間かけて昇温し更500℃で1時間保持した水素還元の処理条件を、300℃から800℃まで4時間かけて昇温し更に800℃で1時間保持した条件に変更した以外は実施例1と全く同様の方法で触媒を調製した。
得られたカーボンブラックに担持焼成したRuとP元素を含む活性成分を、実施例1と同様の方法により該活性成分付着量が0.4μg/cmとなるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
[Example 3]
The hydrogen reduction treatment conditions employed in Example 1 were increased from 300 ° C. to 500 ° C. over 4 hours and maintained at 500 ° C. for 1 hour, and the temperature was increased from 300 ° C. to 800 ° C. over 4 hours. A catalyst was prepared in the same manner as in Example 1 except that the conditions were changed to those maintained at 1 ° C. for 1 hour.
A cathode electrode was prepared by using the active component containing Ru and P elements supported and fired on the obtained carbon black in the same manner as in Example 1 so that the active component adhesion amount was 0.4 μg / cm 2. The results are shown in Table 2.

[実施例4]
塩化ルテニウム(含水品、ルテニウム含量42wt% NEケムキャト製)2.24gと(NHHPO(キシダ化学品)1.225gを50mlの蒸留水に溶解し、室温に1時間放置後、エバポレーターで溶媒を溜去して固形物を得た。この固形物を焼成管にいれ、空気気流下3L/hrの流量で、500℃で6時間焼成した。その後室温まで冷却した後、空気から水素ガスに切り替え、水素気流下3L/hrの流量で、室温から300℃まで20分で昇温したのち、600℃まで4時間かけて昇温した。その後、600℃で1時間保持したのち室温まで冷却した。最後に1%酸素を含む窒素ガス気流下に処理して不動態化した。
得られたRuとP元素を含む活性成分を、カーボンブラック(VULCAN XC−72R(Cabot社製、比表面積(BET)254m/g))と混合して該活性成分の重量が1重量%となるよう希釈し、該活性成分付着量が4μg/cmとなるようにカソード電極を作成した他は、実施例1と同様に評価を行って結果を表2に示した。
[Example 4]
Ruthenium chloride (water-containing product, ruthenium content 42 wt%, manufactured by NE Chemcat) 2.24 g and (NH 4 ) 2 HPO 4 (Kishida Chemical) 1.225 g were dissolved in 50 ml of distilled water, allowed to stand at room temperature for 1 hour, and then an evaporator. The solvent was distilled off to obtain a solid. This solid was put into a firing tube and fired at 500 ° C. for 6 hours at a flow rate of 3 L / hr under an air stream. Then, after cooling to room temperature, the air was switched from hydrogen gas to hydrogen gas, and the temperature was raised from room temperature to 300 ° C. in 20 minutes at a flow rate of 3 L / hr, and then raised to 600 ° C. over 4 hours. Thereafter, the mixture was kept at 600 ° C. for 1 hour and then cooled to room temperature. Finally, it was passivated by treatment under a nitrogen gas stream containing 1% oxygen.
The obtained active ingredient containing Ru and P elements was mixed with carbon black (VULCAN XC-72R (manufactured by Cabot, specific surface area (BET) 254 m 2 / g)), and the weight of the active ingredient was 1% by weight. The results are shown in Table 2 and evaluated in the same manner as in Example 1, except that the cathode electrode was prepared so that the amount of the active ingredient adhered was 4 μg / cm 2 .

[実施例5]
実施例4において塩化ルテニウムを6.7g、(NHHPOを1.22gに変更した以外は実施例4と同様の方法で触媒を調製した。
得られたRuとP元素を含む活性成分を、実施例4と同様の方法により該活性成分付着量が4μg/cmとなるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
[Example 5]
A catalyst was prepared in the same manner as in Example 4, except that in Example 4, ruthenium chloride was changed to 6.7 g and (NH 4 ) 2 HPO 4 was changed to 1.22 g.
A cathode electrode was prepared for the obtained active component containing Ru and P elements by the same method as in Example 4 so that the active component adhesion amount was 4 μg / cm 2. It was shown in 2.

[実施例6]
実施例4において塩化ルテニウムを2.24g、(NHHPOを3.68gに変更した以外、実施例4と同様の方法で触媒を調製した。
得られたRuとP元素を含む活性成分を、実施例4と同様の方法により該活性成分付着量が4μg/cmとなるようにカソード電極を作成し、同様に評価を行って結果を表2に示した。
[Example 6]
A catalyst was prepared in the same manner as in Example 4 except that in Example 4, ruthenium chloride was changed to 2.24 g and (NH 4 ) 2 HPO 4 was changed to 3.68 g.
A cathode electrode was prepared for the obtained active component containing Ru and P elements by the same method as in Example 4 so that the active component adhesion amount was 4 μg / cm 2. It was shown in 2.

Figure 2007059140
Figure 2007059140

表2に示すように、CBにRuとPとを被着してなる本発明の燃料電池用触媒は、いずれも優れたカソード活性を示している。特に、担持焼成を行うことにより触媒活性が著しく向上していることが明らかである。   As shown in Table 2, the fuel cell catalyst according to the present invention obtained by depositing Ru and P on CB exhibits excellent cathode activity. In particular, it is clear that the catalytic activity is remarkably improved by carrying out the supported firing.

本発明によれば、安価な燃料電池用触媒を用いた燃料電池が提供されるため、燃料自動車等の燃料電池の用途の拡大と実用化が促進される。   According to the present invention, since a fuel cell using an inexpensive fuel cell catalyst is provided, the expansion and practical use of fuel cells such as fuel vehicles are promoted.

Claims (10)

ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種又は2種以上の元素とリン(P)元素とを含む活性成分を基体上に被着させてなることを特徴とする燃料電池用触媒。   An active component containing one or more elements selected from the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osnium (Os), and iridium (Ir) and a phosphorus (P) element A fuel cell catalyst characterized in that is deposited on a substrate. 請求項1において、前記基体が炭素系基体であることを特徴とする燃料電池用触媒。   2. The fuel cell catalyst according to claim 1, wherein the substrate is a carbon-based substrate. 請求項2において、前記炭素系基体が、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスター、フラーレン、熱分解炭素、及び活性炭素よりなる群から選ばれる1種又は2種以上であることを特徴とする燃料電池用触媒。   3. The carbon base according to claim 2, wherein the carbon-based substrate is one or more selected from the group consisting of carbon black, carbon nanotube, carbon nanohorn, carbon nanocluster, fullerene, pyrolytic carbon, and activated carbon. A fuel cell catalyst. 請求項1ないし3のいずれか1項において、前記活性成分が平均粒径1000nm以下の粒子状であることを特徴とする燃料電池用触媒。   The fuel cell catalyst according to any one of claims 1 to 3, wherein the active component is in the form of particles having an average particle size of 1000 nm or less. 請求項1ないし4のいずれか1項において、更に遷移金属が前記基体上に被着されていることを特徴とする燃料電池用触媒。   5. The fuel cell catalyst according to claim 1, wherein a transition metal is further deposited on the substrate. 請求項1ないし5のいずれか1項に記載の燃料電池用触媒を含有することを特徴とする燃料電池用電極。   A fuel cell electrode comprising the fuel cell catalyst according to any one of claims 1 to 5. 請求項6に記載の燃料電池用電極を用いたことを特徴とする燃料電池。   A fuel cell using the fuel cell electrode according to claim 6. 請求項1ないし5のいずれか1項に記載の燃料電池用触媒を製造する方法であって、前記基体に前記活性成分の前駆体を担持あるいは混合した後に該前駆体を活性にする工程を有することを特徴とする燃料電池用触媒の製造方法。   A method for producing a fuel cell catalyst according to any one of claims 1 to 5, comprising a step of activating the precursor after the precursor of the active component is supported or mixed on the substrate. A method for producing a catalyst for a fuel cell. 請求項8において、更に遷移金属を前記基体に被着させる工程を有することを特徴とする燃料電池用触媒の製造方法。   9. The method for producing a fuel cell catalyst according to claim 8, further comprising a step of depositing a transition metal on the substrate. ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスニウム(Os)、及びイリジウム(Ir)よりなる群から選ばれる1種又は2種以上の元素とリン(P)元素を含む活性成分を含むことを特徴とするPEFC用燃料電池用触媒。   An active ingredient containing one or more elements selected from the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), and iridium (Ir) and a phosphorus (P) element A fuel cell catalyst for PEFC, comprising:
JP2005241402A 2005-08-23 2005-08-23 Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell Pending JP2007059140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241402A JP2007059140A (en) 2005-08-23 2005-08-23 Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241402A JP2007059140A (en) 2005-08-23 2005-08-23 Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell

Publications (1)

Publication Number Publication Date
JP2007059140A true JP2007059140A (en) 2007-03-08

Family

ID=37922457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241402A Pending JP2007059140A (en) 2005-08-23 2005-08-23 Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP2007059140A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153189A1 (en) * 2007-06-11 2008-12-18 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the same, and fuel cell using the electrode catalyst
JP2012038543A (en) * 2010-08-06 2012-02-23 Hitachi Maxell Energy Ltd PtRu-GROUP ALLOY CATALYST FOR FUEL CELLS, MANUFACTURING METHOD THEREOF, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELLS, AND FUEL CELL
KR101497640B1 (en) * 2013-08-21 2015-03-03 부산대학교 산학협력단 Cathode catalyst for fuel cell or electrolyzer, method of manufacturing the same, assembly for fuel cell and fuel cell system comprising the same
KR101901223B1 (en) * 2017-11-07 2018-09-21 광주과학기술원 Multifunctional non-platinum supported catalyst for automotive fuel cells and method for manufacturing the same
US10186712B2 (en) 2016-10-27 2019-01-22 Korea Institue Of Science And Technology Catalyst for oxygen reduction reaction comprising iridium-based alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153189A1 (en) * 2007-06-11 2008-12-18 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the same, and fuel cell using the electrode catalyst
US8338051B2 (en) 2007-06-11 2012-12-25 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method for producing the same, and fuel cell using the electrode catalyst
JP2012038543A (en) * 2010-08-06 2012-02-23 Hitachi Maxell Energy Ltd PtRu-GROUP ALLOY CATALYST FOR FUEL CELLS, MANUFACTURING METHOD THEREOF, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELLS, AND FUEL CELL
KR101497640B1 (en) * 2013-08-21 2015-03-03 부산대학교 산학협력단 Cathode catalyst for fuel cell or electrolyzer, method of manufacturing the same, assembly for fuel cell and fuel cell system comprising the same
US10186712B2 (en) 2016-10-27 2019-01-22 Korea Institue Of Science And Technology Catalyst for oxygen reduction reaction comprising iridium-based alloy
KR101901223B1 (en) * 2017-11-07 2018-09-21 광주과학기술원 Multifunctional non-platinum supported catalyst for automotive fuel cells and method for manufacturing the same
WO2019093765A3 (en) * 2017-11-07 2019-06-27 광주과학기술원 Multifunctional supported non-platinum catalyst for vehicle fuel cell and preparation method therefor

Similar Documents

Publication Publication Date Title
JP5217434B2 (en) Fuel cell, its catalyst and its electrode
KR101350865B1 (en) Supported catalyst for fuel cell, method for preparing the same, electrode for fuel cell comprising the same, membrane electrode assembly comprising the electrode and fuel cell comprising the membrane electrode assembly
TWI404258B (en) Electrode catalyst with improved longevity properties and fuel cell using the same
JP4815823B2 (en) Fuel cell catalyst and method for producing the same, fuel cell electrode and fuel cell using the same
US20130149632A1 (en) Electrode catalyst for a fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including the electrode catalyst
JP5205013B2 (en) Anode for fuel cell and fuel cell using the same
US7723260B2 (en) Methanol oxidation catalyst
JP2008021609A (en) Direct methanol fuel cell and catalyst
JP6603396B2 (en) Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly and fuel cell using carbon powder for fuel cell
JP2008262903A (en) Catalyst, manufacturing method thereof, membrane electrode composite, and fuel cells
JP2024500218A (en) Iridium-containing catalyst for water electrolysis
KR20130067476A (en) Electrode catalyst for fuel cell, method for preparing the same, membrane electrode assembly and fuel cell including the same
JP2007059140A (en) Catalyst for fuel cell and its manufacturing method as well as electrode for fuel cell and fuel cell
JP2007042519A (en) Catalyst for fuel cell, its manufacturing method, and electrode for fuel cell and fuel cell using it
RU2561711C2 (en) Method of catalytic electrode manufacturing based on heteropoly compounds for hydrogen and methanol fuel elements
JP2008243577A (en) Catalyst for polymer solid electrolyte fuel cell, membrane-electrode assembly, and fuel cell
JP4789179B2 (en) Electrode catalyst and method for producing the same
JP2016091878A (en) Method for manufacturing electrode material, membrane-electrode assembly and fuel cell stack
JP2009176649A (en) Proton conductive inorganic material used for fuel cell, and anode for fuel cell using it
JP2008123860A (en) Metal oxide-carrying carbon and fuel cell electrode employing it
KR20240035414A (en) oxygen generation reaction catalyst
JP2018081740A (en) Carbon powder for fuel cell, catalyst arranged by use thereof, electrode catalyst layer, membrane-electrode assembly and fuel cell
JP5217236B2 (en) Fuel cell catalyst containing RuTe2 and N element, fuel cell electrode material and fuel cell using the fuel cell catalyst
JP2008287927A (en) CATALYST FOR FUEL CELL CONTAINING RuTe2, ELECTRODE MATERIAL FOR FUEL CELL USING CATALYST FOR FUEL CELL, AND FUEL CELL
JP2023516253A (en) catalyst carrier