JP2009283165A - Activating method of catalyst for solid polymer fuel cell, and activated catalyst for solid polymer fuel cell - Google Patents

Activating method of catalyst for solid polymer fuel cell, and activated catalyst for solid polymer fuel cell Download PDF

Info

Publication number
JP2009283165A
JP2009283165A JP2008131529A JP2008131529A JP2009283165A JP 2009283165 A JP2009283165 A JP 2009283165A JP 2008131529 A JP2008131529 A JP 2008131529A JP 2008131529 A JP2008131529 A JP 2008131529A JP 2009283165 A JP2009283165 A JP 2009283165A
Authority
JP
Japan
Prior art keywords
catalyst
potential
fuel cell
polymer electrolyte
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008131529A
Other languages
Japanese (ja)
Other versions
JP5315791B2 (en
Inventor
Yukiyoshi Ueno
幸義 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008131529A priority Critical patent/JP5315791B2/en
Publication of JP2009283165A publication Critical patent/JP2009283165A/en
Application granted granted Critical
Publication of JP5315791B2 publication Critical patent/JP5315791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve cell performance by activating a catalyst for a fuel cell. <P>SOLUTION: This activating method of the catalyst for the solid polymer fuel cell is to apply a potential to the catalyst for the solid polymer fuel cell using a prescribed potential application pattern. The potential application pattern includes (1) a potential dropping process to drop a potential to a lower limit reduction potential from an initial potential, (2) a lower limit reduction potential holding process to hold the reduction potential, and (3) a potential elevating process to elevate the potential from the lower limit reduction potential to the initial potential. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体高分子型燃料電池用触媒の活性化方法及び活性化された固体高分子型燃料電池用触媒に関する。   The present invention relates to a method for activating a polymer electrolyte fuel cell catalyst and an activated polymer electrolyte fuel cell catalyst.

通常、固体高分子型燃料電池に使用されるガス拡散性の電極は、高分子電解質で被覆された触媒担持カーボンを含有する触媒層と、この触媒層に反応ガスを供給すると共に電子を集電するガス拡散層とからなる。触媒層内には、構成材料となるカーボンの二次粒子間或いは三次粒子間に形成される微少な細孔からなる空隙部が存在し、当該空隙部が反応ガスの拡散流路として機能している。そして、上記の触媒としては、高分子電解質中において安定な白金、白金合金等の貴金属触媒が通常使用されている。   In general, a gas diffusible electrode used in a polymer electrolyte fuel cell includes a catalyst layer containing catalyst-supported carbon coated with a polymer electrolyte, supplies a reaction gas to the catalyst layer, and collects electrons. Gas diffusion layer. In the catalyst layer, there is a void portion composed of fine pores formed between secondary particles or tertiary particles of carbon as a constituent material, and the void portion functions as a reaction gas diffusion channel. Yes. And as said catalyst, noble metal catalysts, such as platinum and a platinum alloy which are stable in a polymer electrolyte, are usually used.

このように、高分子電解質型燃料電池の電極触媒のカソード及びアノード触媒としては、白金又は白金合金等の貴金属をカーボンブラックに担持した触媒が用いられてきた。白金担持カーボンブラックは、塩化白金酸水溶液に、亜硫酸水素ナトリウムを加えた後、過酸化水素水と反応させ、生じた白金コロイドをカーボンブラックに担持させ、洗浄後、必要に応じて熱処理することにより調製するのが一般的である。高分子電解質型燃料電池の電極は、白金担持カーボンブラックを高分子電解質溶液に分散させてインクを調製し、そのインクをカーボンペーパーなどのガス拡散基材に塗布し、乾燥することにより作製される。この2枚の電極で高分子電解質膜を挟み、ホットプレスをすることにより電解質膜−電極接合体(MEA)が組立られる。   As described above, as a cathode and an anode catalyst of an electrode catalyst of a polymer electrolyte fuel cell, a catalyst in which a noble metal such as platinum or a platinum alloy is supported on carbon black has been used. Platinum-supported carbon black is obtained by adding sodium hydrogen sulfite to a chloroplatinic acid aqueous solution, then reacting with hydrogen peroxide solution, supporting the resulting platinum colloid on carbon black, washing, and heat-treating as necessary. It is common to prepare. The electrode of a polymer electrolyte fuel cell is prepared by dispersing platinum-supported carbon black in a polymer electrolyte solution, preparing an ink, applying the ink to a gas diffusion substrate such as carbon paper, and drying. . An electrolyte membrane-electrode assembly (MEA) is assembled by sandwiching a polymer electrolyte membrane between these two electrodes and performing hot pressing.

白金は高価な貴金属であり、少ない担持量で十分な性能を発揮させることが望まれている。そのため、より少量で触媒活性を高める検討がなされており、例えば、下記特許文献1には、運転中の白金粒子の成長が抑制され、高い耐久性能を有する燃料電池用電極触媒を提供することを目的として、導電性炭素材料、前記導電性炭素材料に担持された、酸性条件下で白金より酸化されにくい金属粒子、および前記金属粒子の外表面を覆う白金からなる電極触媒が開示されている。具体的には、金属粒子として、金、クロム、鉄、ニッケル、コバルト、チタン、バナジウム、銅、およびマンガンより選ばれた少なくとも一種の金属と白金とからなる合金が例示されている。   Platinum is an expensive noble metal and it is desired to exhibit sufficient performance with a small amount of support. Therefore, studies have been made to increase the catalytic activity with a smaller amount. For example, Patent Document 1 below provides a fuel cell electrode catalyst that suppresses the growth of platinum particles during operation and has high durability performance. As an object, there is disclosed an electrocatalyst composed of a conductive carbon material, metal particles supported on the conductive carbon material that are less likely to be oxidized than platinum under acidic conditions, and platinum covering the outer surface of the metal particles. Specifically, examples of the metal particles include an alloy made of platinum and at least one metal selected from gold, chromium, iron, nickel, cobalt, titanium, vanadium, copper, and manganese.

一方、酸素(O)を電解還元すると、1電子還元ではスーパーオキシドが生成し、2電子還元では過酸化水素が生成し、4電子還元では水が生成することが知られている。電極として白金や白金系触媒を用いた燃料電池セルスタックでは、何らかの原因で電圧低下が生じると、4電子還元性が低下し、2電子還元性となってしまう。このため、過酸化水素を発生し、MEAの劣化の原因となっていた。 On the other hand, it is known that when oxygen (O 2 ) is electrolytically reduced, superoxide is generated by one-electron reduction, hydrogen peroxide is generated by two-electron reduction, and water is generated by four-electron reduction. In a fuel cell stack using platinum or a platinum-based catalyst as an electrode, if a voltage drop occurs for some reason, the 4-electron reducibility is reduced and the 2-electron reducibility is obtained. For this reason, hydrogen peroxide is generated, which causes deterioration of MEA.

最近、酸素を4電子還元して水を生成させる反応により、高価な白金触媒を必要としない低コスト型の燃料電池触媒の開発が行われている。下記非特許文献1には、カルコゲン元素を有する触媒が4電子還元性に優れていることが開示され、燃料電池への適用も示唆されている。   Recently, a low-cost fuel cell catalyst that does not require an expensive platinum catalyst has been developed by a reaction in which oxygen is reduced by four electrons to generate water. Non-Patent Document 1 below discloses that a catalyst having a chalcogen element is excellent in 4-electron reducibility and suggests application to a fuel cell.

同様に、下記特許文献2には、白金代替触媒として、少なくとも1種の遷移金属及びカルコゲンからなる電極触媒であって、該遷移金属としてRu、カルコゲンとしてS又はSeからなる電極触媒が開示されている。ここで、Ru:Seのモル比が0.5〜2の範囲であり、且つ(Ru)nSeの化学量論数nが1.5〜2である旨が開示されている。   Similarly, Patent Document 2 below discloses an electrode catalyst made of at least one transition metal and a chalcogen as a platinum substitute catalyst, and an electrode catalyst made of Ru as the transition metal and S or Se as the chalcogen. Yes. Here, it is disclosed that the Ru: Se molar ratio is in the range of 0.5 to 2 and the stoichiometric number n of (Ru) nSe is 1.5 to 2.

ところで、下記特許文献3においては、ダイレクトメタノール型燃料電池の一般的なエージング方法が開示されている。具体的には、ダイレクトメタノール型燃料電池等のエージングを要する燃料電池のアノード電極にメタノール水溶液等のアノード媒質を供給し、カソード電極に空気等のカソード媒質を供給して、両電極間に燃料電池の発電時における通電と同じ方向へ強制通電を行って燃料電池のエージングをしている。   By the way, in the following Patent Document 3, a general aging method for a direct methanol fuel cell is disclosed. Specifically, an anode medium such as a methanol aqueous solution is supplied to the anode electrode of a fuel cell requiring aging such as a direct methanol fuel cell, and a cathode medium such as air is supplied to the cathode electrode, and the fuel cell is interposed between the two electrodes. The fuel cell is aged by forcibly energizing in the same direction as the energization during power generation.

特開2002−289208号公報Japanese Patent Laid-Open No. 2002-289208 特表2001−502467号公報JP-T-2001-502467 特開2006−40869号公報JP 2006-40869 A Electrochimica Acta,vol.39,No.11/12,pp.1647−1653,1994Electrochimica Acta, vol. 39, no. 11/12, pp. 1647-1653, 1994

特許文献1、2、非特許文献1に記載のような、従来の、(A)貴金属触媒、(B)貴金属−遷移金属合金触媒、及び(C)遷移金属−カルコゲナイド触媒は、いずれも、保管中、運転中に発電性能が劣化するという問題があり、これらの触媒を活性化する方法の開発が望まれていた。又、特許文献3の発明は、ダイレクトメタノール型燃料電池のセル組み立て直後の発電特性が低く不安定であることに対処する初期慣らし運転の短縮に関するもので、その通電方向も燃料電池の発電時における通電と同じ方向であり、触媒層の微細構造に関わる活性化方法ではない。   The conventional (A) noble metal catalyst, (B) noble metal-transition metal alloy catalyst, and (C) transition metal-chalcogenide catalyst, as described in Patent Documents 1 and 2 and Non-Patent Document 1, are all stored. In particular, there is a problem that power generation performance deteriorates during operation, and development of a method for activating these catalysts has been desired. The invention of Patent Document 3 relates to shortening of the initial running-in operation to cope with the low and unstable power generation characteristics immediately after cell assembly of the direct methanol fuel cell. This is the same direction as the energization and is not an activation method related to the fine structure of the catalyst layer.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、燃料電池用触媒を活性化状態にすることで電池性能を向上させることを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to improve battery performance by bringing a fuel cell catalyst into an activated state.

本発明者は、従来の燃料電池用触媒の性能劣化は、触媒表面の金属が酸化されて酸化物を形成することが原因であることを見出し、燃料電池用触媒に対して特定の活性化処理を行なうことによって、触媒効率を向上させることが可能であることを見出し本発明に至った。   The present inventor has found that the performance deterioration of the conventional fuel cell catalyst is caused by oxidation of the metal on the catalyst surface to form an oxide, and a specific activation treatment for the fuel cell catalyst. As a result, it was found that the catalyst efficiency can be improved, and the present invention has been achieved.

即ち、本発明は、固体高分子型燃料電池用触媒に対して所定電位印加パターンで電位を印加する固体高分子型燃料電池用触媒の活性化方法の発明であって、該電位印加パターンが、(1)初期電位から下限還元電位まで電位降下させる電位降下工程と、(2)該下限還元電位を保持する還元電位保持工程と、(3)該下限還元電位から該初期電位まで電位上昇させる電位上昇工程とを含むことを特徴とする。   That is, the present invention is an invention of a method for activating a polymer electrolyte fuel cell catalyst that applies a potential to a polymer electrolyte fuel cell catalyst in a predetermined potential application pattern, wherein the potential application pattern is: (1) a potential drop step for lowering the potential from the initial potential to the lower limit reduction potential; (2) a reduction potential holding step for holding the lower limit reduction potential; and (3) a potential for raising the potential from the lower limit reduction potential to the initial potential. And an ascending step.

本発明の固体高分子型燃料電池用触媒の活性化方法によって、触媒表面の金属酸化物が還元され、触媒が有する本来の高活性が得られる。本発明の活性化は、燃料電池を運転する前であっても、運転後で次の運転の前であっても効果的である。   By the method for activating a catalyst for a polymer electrolyte fuel cell of the present invention, the metal oxide on the catalyst surface is reduced, and the original high activity of the catalyst is obtained. The activation of the present invention is effective even before the fuel cell is operated or after the operation and before the next operation.

本発明の活性化は、(1)電位降下工程と、(2)還元電位保持工程と、(3)電位上昇工程とからなる電位印加パターンを1回行ってもよいが、(1)電位降下工程と、(2)還元電位保持工程と、(3)電位上昇工程と、(4)間隔(インターバル)からなる電位印加パターンを複数回繰り返すことも効果的である。   In the activation of the present invention, a potential application pattern comprising (1) a potential drop step, (2) a reduction potential holding step, and (3) a potential rise step may be performed once. It is also effective to repeat a potential application pattern consisting of a step, (2) a reduction potential holding step, (3) a potential increase step, and (4) an interval.

本発明の活性化では、(3)電位上昇工程中の後半部に電位上昇速度を低くした(5)なまし工程を電位印加パターンに設けることも効果的である。   In the activation of the present invention, it is also effective to provide the potential application pattern with (3) an annealing step in which the potential increase rate is lowered in the latter half of the potential increase step.

本発明の活性化の対象となる固体高分子型燃料電池用触媒としては種々の公知の触媒を用いることができる。これらの固体高分子型燃料電池用触媒の中で、(A)貴金属触媒、(B)貴金属−遷移金属合金触媒、及び(C)遷移金属−カルコゲナイド触媒が好ましく例示される。   Various known catalysts can be used as the polymer electrolyte fuel cell catalyst to be activated in the present invention. Among these solid polymer fuel cell catalysts, (A) noble metal catalyst, (B) noble metal-transition metal alloy catalyst, and (C) transition metal-chalcogenide catalyst are preferably exemplified.

以下、(A)貴金属触媒、(B)貴金属−遷移金属合金触媒、及び(C)遷移金属−カルコゲナイド触媒を用いた場合についての詳細を示す。   Hereinafter, details of the case where (A) a noble metal catalyst, (B) a noble metal-transition metal alloy catalyst, and (C) a transition metal-chalcogenide catalyst are used will be described.

固体高分子型燃料電池用触媒が、(C)遷移金属−カルコゲナイド触媒である場合には、(1)電位降下工程の電位降下挿引速度が0〜50mV/sであることが好ましい。電位降下挿引速度が50mV/sを越えても飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is a (C) transition metal-chalcogenide catalyst, it is preferable that the potential drop insertion speed in the (1) potential drop step is 0 to 50 mV / s. Even if the potential drop pulling speed exceeds 50 mV / s, the activation of the catalyst does not occur dramatically.

固体高分子型燃料電池用触媒が(C)遷移金属−カルコゲナイド触媒である場合には、前記(1)電位降下工程の下限還元電位が0〜300mVであることが好ましい。下限還元電位が300mVを越えると飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (C) a transition metal-chalcogenide catalyst, the lower limit reduction potential in the (1) potential lowering step is preferably 0 to 300 mV. When the lower limit reduction potential exceeds 300 mV, the catalyst is not dramatically activated.

固体高分子型燃料電池用触媒が、(C)遷移金属−カルコゲナイド触媒である場合には、(2)還元電位保持工程の保持時間が0〜100秒であることが好ましい。保持時間が100秒を越えても飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (C) a transition metal-chalcogenide catalyst, the retention time in the (2) reduction potential holding step is preferably 0 to 100 seconds. Even if the holding time exceeds 100 seconds, the activation of the catalyst does not occur dramatically.

前記固体高分子型燃料電池用触媒が、(C)遷移金属−カルコゲナイド触媒である場合には、(3)電位上昇工程の電位上昇挿引速度が100mV/s以上であることが好ましい。電位上昇挿引速度が100mV/s未満である飛躍的には触媒の活性化は起こらない。   When the catalyst for a solid polymer fuel cell is (C) a transition metal-chalcogenide catalyst, it is preferable that the potential increase / subtraction speed in the (3) potential increase step is 100 mV / s or more. The activation of the catalyst does not occur drastically when the potential rise / pull speed is less than 100 mV / s.

固体高分子型燃料電池用触媒が、(C)遷移金属−カルコゲナイド触媒である場合には、電位印加パターンを(4)間隔をおいて複数回繰り返す間隔が0〜50秒であることが好ましい。間隔が50秒を越えても飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is a (C) transition metal-chalcogenide catalyst, the interval of repeating the potential application pattern a plurality of times at intervals of (4) is preferably 0 to 50 seconds. Even if the interval exceeds 50 seconds, activation of the catalyst does not occur dramatically.

固体高分子型燃料電池用触媒が、(A)貴金属触媒である場合には、前記(1)電位降下工程の電位降下挿引速度が0〜100mV/sであることが好ましい。電位降下挿引速度が100mV/sを越えても飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (A) a noble metal catalyst, the potential drop insertion speed in the (1) potential drop step is preferably 0 to 100 mV / s. Even if the potential drop pulling speed exceeds 100 mV / s, the catalyst is not dramatically activated.

固体高分子型燃料電池用触媒が、(A)貴金属触媒である場合には、前記(1)電位降下工程の下限還元電位が75〜675mVであることが好ましい。   When the polymer electrolyte fuel cell catalyst is (A) a noble metal catalyst, the lower limit reduction potential in the (1) potential drop step is preferably 75 to 675 mV.

固体高分子型燃料電池用触媒が、(A)貴金属触媒である場合には、前記(2)下限還元電位保持工程の保持時間が0〜60秒であることが好ましい。保持時間が60秒を越えても飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (A) a noble metal catalyst, the retention time in the (2) lower limit reduction potential holding step is preferably 0 to 60 seconds. Even if the holding time exceeds 60 seconds, the activation of the catalyst does not occur dramatically.

固体高分子型燃料電池用触媒が、(A)貴金属触媒である場合には、前記(3)電位上昇工程の電位上昇挿引速度が300mV/s以上であることが好ましい。電位上昇挿引速度が300mV/s未満では飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (A) a noble metal catalyst, it is preferable that the potential increase insertion speed in the (3) potential increase step is 300 mV / s or more. When the potential rise / pull speed is less than 300 mV / s, the activation of the catalyst does not occur dramatically.

固体高分子型燃料電池用触媒が、(A)貴金属触媒である場合には、電位印加パターンを(4)間隔をおいて複数回繰り返す間隔が0〜120秒であることが好ましい。間隔が120秒を越えると飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (A) a noble metal catalyst, it is preferable that the interval of repeating the potential application pattern a plurality of times at (4) intervals is 0 to 120 seconds. When the interval exceeds 120 seconds, the activation of the catalyst does not occur dramatically.

固体高分子型燃料電池用触媒が、(A)貴金属触媒である場合には、前記(5)なまし工程の電位上昇挿引速度が0〜50mV/sであることが好ましい。なまし工程の電位上昇挿引速度が50mV/sを越えると飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (A) a noble metal catalyst, it is preferable that the potential increase / subtraction speed in the (5) annealing step is 0 to 50 mV / s. When the potential rise / pull speed in the annealing process exceeds 50 mV / s, the catalyst is not dramatically activated.

固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒である場合には、前記(1)電位降下工程の電位降下挿引速度が0〜50mV/sであることが好ましい。電位降下挿引速度が50mV/sを越えても飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (B) a noble metal-transition metal alloy catalyst, it is preferable that the potential drop insertion speed in the (1) potential drop step is 0 to 50 mV / s. Even if the potential drop pulling speed exceeds 50 mV / s, the activation of the catalyst does not occur dramatically.

固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒である場合には、(1)電位降下工程の下限還元電位が0〜750mVであることが好ましい。下限還元電位が750mVを越えると飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (B) a noble metal-transition metal alloy catalyst, (1) the lower limit reduction potential of the potential drop step is preferably 0 to 750 mV. When the lower limit reduction potential exceeds 750 mV, the catalyst is not dramatically activated.

固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒である場合には、(2)下限還元電位保持工程の保持時間が0〜16秒であることが好ましい。保持時間が16秒を越えても飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (B) a noble metal-transition metal alloy catalyst, the retention time in the (2) lower limit reduction potential holding step is preferably 0 to 16 seconds. Even if the holding time exceeds 16 seconds, the activation of the catalyst does not occur dramatically.

固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒である場合には、(3)電位上昇工程の電位上昇挿引速度が400mV/s以上であることが好ましい。電位上昇挿引速度が400mV/s未満であると飛躍的には触媒の活性化は起こらない。   When the polymer electrolyte fuel cell catalyst is (B) a noble metal-transition metal alloy catalyst, it is preferable that the potential increase / subtraction speed in the (3) potential increase step is 400 mV / s or more. When the potential rise / pull speed is less than 400 mV / s, the activation of the catalyst does not occur dramatically.

固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒である場合には、電位印加パターンを(4)間隔をおいて複数回繰り返す間隔が0〜240秒であることが好ましい。間隔が240秒を越えても飛躍的には触媒の活性化は起こらない。
又、本発明は、上記の方法で活性化された固体高分子型燃料電池用触媒である。
When the polymer electrolyte fuel cell catalyst is (B) a noble metal-transition metal alloy catalyst, it is preferable that the interval of repeating the potential application pattern at (4) intervals is 0 to 240 seconds. . Even if the interval exceeds 240 seconds, the activation of the catalyst does not occur dramatically.
The present invention also provides a polymer electrolyte fuel cell catalyst activated by the above-described method.

固体高分子型燃料電池用触媒では、触媒金属粒子表面が反応点となるが、貴な電位下では表面が金属酸化物で覆われており発電性能が劣化している。本発明では、特定の操作により、卑な電位とすることで、触媒金属粒子表面の金属酸化物が還元され、メタル化することで、発電性能が向上する。   In the polymer electrolyte fuel cell catalyst, the catalytic metal particle surface serves as a reaction point, but the surface is covered with a metal oxide under a noble potential, and the power generation performance is deteriorated. In the present invention, the power generation performance is improved by reducing the metal oxide on the surface of the catalyst metal particles to a metal by making the base potential by a specific operation.

本発明の固体高分子型燃料電池の触媒層で担体に担持される触媒金属として、例えば(A)貴金属触媒、(B)貴金属−遷移金属合金触媒、及び(C)遷移金属−カルコゲナイド触媒が利用可能である。   Examples of the catalyst metal supported on the support in the catalyst layer of the polymer electrolyte fuel cell of the present invention include (A) noble metal catalyst, (B) noble metal-transition metal alloy catalyst, and (C) transition metal-chalcogenide catalyst. Is possible.

本発明において、貴金属−遷移金属合金としては各種公知のものを組み合わせて用いられる。この中で、貴金属が白金であり、遷移金属が、ルテニウム(Ru)、モリブデン(Mo)、オスニウム(Os)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、鉄(Fe)、ニッケル(Ni)、チタン(Ti)、タングステン(W)、パラジウム(Pd)、レニウム(Re)、クロム(Cr)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)から選択される1種以上である貴金属−遷移金属合金の組み合わせが好ましく例示される。   In the present invention, various known alloys are used in combination as the noble metal-transition metal alloy. Among them, the noble metal is platinum, and the transition metals are ruthenium (Ru), molybdenum (Mo), osmium (Os), cobalt (Co), rhodium (Rh), iridium (Ir), iron (Fe), nickel One or more selected from (Ni), titanium (Ti), tungsten (W), palladium (Pd), rhenium (Re), chromium (Cr), manganese (Mn), niobium (Nb), and tantalum (Ta) The combination of noble metal and transition metal alloy is preferably exemplified.

本発明において、遷移金属−カルコゲナイド触媒の基本組成は、導電性担体に少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素が担持されたものである。少なくとも1種の遷移金属元素と少なくとも1種のカルコゲン元素は、例えば1種の遷移金属元素を用いる2元系触媒では一般式:MXで表される(ここで、Mは遷移金属元素であり、Xはカルコゲン元素である)。また、2種の遷移金属元素を用いる3元系触媒では一般式:MXで表される(ここで、M及びMは遷移金属元素であり、Xはカルコゲン元素である)。更に3種以上の遷移金属元素を用いた多元系触媒でもよい。 In the present invention, the basic composition of the transition metal-chalcogenide catalyst is one in which at least one transition metal element and at least one chalcogen element are supported on a conductive support. At least one transition metal element and at least one chalcogen element are represented by, for example, a general formula: M 1 X in a binary catalyst using one transition metal element (where M 1 is a transition metal element) And X is a chalcogen element). In addition, a ternary catalyst using two kinds of transition metal elements is represented by a general formula: M 1 M 2 X (where M 1 and M 2 are transition metal elements, and X is a chalcogen element). . Furthermore, a multi-component catalyst using three or more transition metal elements may be used.

本発明の遷移金属−カルコゲナイド触媒は、遷移金属元素(M、M・・・)が、ルテニウム(Ru)、モリブデン(Mo)、オスニウム(Os)、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)、鉄(Fe)、ニッケル(Ni)、パラジウム(Pd)、レニウム(Re)から選択される1種以上であり、カルコゲン元素(X)が、イオウ(S)、セレン(Se)、及びテルル(Te)から選択される1種以上であることが好ましい。 In the transition metal-chalcogenide catalyst of the present invention, the transition metal elements (M 1 , M 2 ...) Are ruthenium (Ru), molybdenum (Mo), osmium (Os), cobalt (Co), rhodium (Rh), It is at least one selected from iridium (Ir), iron (Fe), nickel (Ni), palladium (Pd), rhenium (Re), and the chalcogen element (X) is sulfur (S), selenium (Se) And at least one selected from tellurium (Te).

以下、実施例および比較例によって本発明をさらに詳細に説明する。
[(A)貴金属触媒、(B)貴金属−遷移金属合金触媒、及び(C)遷移金属−カルコゲナイド触媒の調製]
(Pt/C触媒の調製)
下記の手順により、白金担持カーボン触媒(Pt/C触媒)を調製した。
1)カーボン(Ketejen Black)2.0gを純水0.2Lに分散させ、スラリーを調製する。
2)スラリーを攪拌しながら、5wt%のヘキサヒドロキソ白金硝酸水溶液を33g(白金換算で1.6g)を滴下する。
3)上記混合液を攪拌する。
4)得られた混合液に、純水1Lを滴下し、混合した後、ろ過する。
5)ろ過後、得られたケーキを更に純水で洗浄する。
6)洗浄後、得られたケーキを1Lの純水に分散させる。
7)得られた混合液にPH9.0となるまで0.01Nのアンモニア溶液を滴下する。
8)更に、上記混合液に3wt%の水素化ホウ素ナトリウム水溶液を140mL滴下する。
9)上記混合液を十分に攪拌する。
10)得られた混合液をろ過する。
11)ろ過後、得られたケーキを更に純水を用いて洗浄する。
12)洗浄後、得られたケーキを、80℃で48時間加熱して乾燥する。
得られたPt/C触媒のPt担持量は45wt%であった。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[Preparation of (A) noble metal catalyst, (B) noble metal-transition metal alloy catalyst, and (C) transition metal-chalcogenide catalyst]
(Preparation of Pt / C catalyst)
A platinum-supported carbon catalyst (Pt / C catalyst) was prepared by the following procedure.
1) Disperse 2.0 g of carbon (Ketjen Black) in 0.2 L of pure water to prepare a slurry.
2) While stirring the slurry, 33 g (1.6 g in terms of platinum) of 5 wt% hexahydroxo platinum nitric acid aqueous solution is dropped.
3) Stir the mixture.
4) 1 L of pure water is dropped into the obtained mixed solution, mixed and then filtered.
5) After filtration, the obtained cake is further washed with pure water.
6) After washing, disperse the obtained cake in 1 L of pure water.
7) A 0.01 N ammonia solution is added dropwise to the resulting mixture until the pH is 9.0.
8) Further, 140 mL of a 3 wt% aqueous sodium borohydride solution is added dropwise to the mixture.
9) Stir the above mixture sufficiently.
10) Filter the resulting mixture.
11) After filtration, the obtained cake is further washed with pure water.
12) After washing, the cake obtained is dried at 80 ° C. for 48 hours.
The obtained Pt / C catalyst had a Pt loading of 45 wt%.

(PtCo/C触媒の調製)
下記の手順により、白金コバルト合金担持カーボン触媒(PtCo/C触媒)を調製した。
1)カーボン(Ketejen Black)2.0gを純水0.2Lに分散させ、スラリーを調製する。
2)スラリーを攪拌しながら、5wt%のヘキサヒドロキソ白金硝酸水溶液を33g(白金換算で1.6g)を滴下する。
3)上記混合液を攪拌する。
4)得られた混合液に、純水1Lを滴下し、混合した後、ろ過する。
5)ろ過後、得られたケーキを更に純水で洗浄する。
6)洗浄後、得られたケーキを1Lの純水に分散させる。
7)硝酸コバルト1.5g(Coを0.16g含む)を純水40gに溶解させる。
8)6)の混合液に7)の硝酸コバルト水溶液を滴下する。
9)得られた混合液にPH9.0となるまで0.01Nのアンモニア溶液を滴下する。
10)得られた混合液に、純水1Lを滴下し、混合した後、ろ過する。
11)ろ過後、得られたケーキを更に純水で洗浄する。
12)洗浄後、得られたケーキを、真空雰囲気下100℃で24時間加熱して乾燥する。
13)乾燥させた粉末を、水素ガス雰囲気下700℃で2時間熱処理を行う。
14)更に、アルゴン雰囲気下800℃で5時間熱処理を行う。
得られたPtCo/C触媒の組成比はPt:Co=5:1であり、PtCo担持量は45wt%であった。
(Preparation of PtCo / C catalyst)
A platinum-cobalt alloy-supported carbon catalyst (PtCo / C catalyst) was prepared by the following procedure.
1) Disperse 2.0 g of carbon (Ketjen Black) in 0.2 L of pure water to prepare a slurry.
2) While stirring the slurry, 33 g (1.6 g in terms of platinum) of 5 wt% hexahydroxo platinum nitric acid aqueous solution is dropped.
3) Stir the mixture.
4) 1 L of pure water is dropped into the obtained mixed solution, mixed and then filtered.
5) After filtration, the obtained cake is further washed with pure water.
6) After washing, disperse the obtained cake in 1 L of pure water.
7) 1.5 g of cobalt nitrate (containing 0.16 g of Co) is dissolved in 40 g of pure water.
8) The cobalt nitrate aqueous solution of 7) is dropped into the mixed solution of 6).
9) A 0.01 N ammonia solution is added dropwise to the resulting mixture until the pH is 9.0.
10) 1 L of pure water is dropped into the obtained mixed solution, mixed, and then filtered.
11) After filtration, the obtained cake is further washed with pure water.
12) After washing, the cake obtained is dried by heating at 100 ° C. for 24 hours in a vacuum atmosphere.
13) The dried powder is heat-treated at 700 ° C. for 2 hours in a hydrogen gas atmosphere.
14) Further, heat treatment is performed at 800 ° C. for 5 hours under an argon atmosphere.
The composition ratio of the obtained PtCo / C catalyst was Pt: Co = 5: 1, and the supported amount of PtCo was 45 wt%.

(RuMoS/C触媒の調製)
下記の手順により、遷移金属−カルコゲナイド担持カーボン触媒(RuMoS/C触媒)を調製した。
1)キシレンを不活性ガスを用いて脱気する。
2)1600mgのルテニウムカルボニルと、250mgのモリブデンカルボニルと、250mgのイオウ粉末を1)のキシレン中に投入する。
3)上記混合液を攪拌する。
4)攪拌後、不活性ガス雰囲気下において140℃で20時間、還流を行う。
5)室温まで冷却を行う。
6)得られた混合液をろ過する。
7)アセトンで洗浄する。
8)自然乾燥後、100℃で24時間真空乾燥する。
9)得られた粉末を、真空下350℃で2時間の熱処理を行う。
得られたRuMoS/C触媒の組成比はRu:Mo:S=5:1:5であり、RuMoS担持量は60wt%であった。
(Preparation of RuMoS / C catalyst)
A transition metal-chalcogenide-supported carbon catalyst (RuMoS / C catalyst) was prepared by the following procedure.
1) Xylene is degassed using an inert gas.
2) 1600 mg of ruthenium carbonyl, 250 mg of molybdenum carbonyl and 250 mg of sulfur powder are put into 1) xylene.
3) Stir the mixture.
4) After stirring, reflux is performed at 140 ° C. for 20 hours in an inert gas atmosphere.
5) Cool to room temperature.
6) Filter the resulting mixture.
7) Wash with acetone.
8) After natural drying, vacuum dry at 100 ° C. for 24 hours.
9) The obtained powder is heat-treated at 350 ° C. for 2 hours under vacuum.
The composition ratio of the obtained RuMoS / C catalyst was Ru: Mo: S = 5: 1: 5, and the amount of RuMoS supported was 60 wt%.

[触媒評価方法]
3電極式の回転ディスク評価装置にて電気化学評価を行った。図1に、本発明の触媒活性化の標準パターンを示す。
1)OCV状態から発電状態の電位まで電位を制御する。
2)発電状態の電位で10秒間保持する。後半の1秒間の電位の平均値を『制御前の初期性能値』とする。
3)任意の電位降下挿引速度で任意の電位(下限還元電位)まで電位を下げる。
4)下限還元電位に任意の時間保持したあと、任意の電位上昇挿引速度で発電状態まで電位を上げる。
5)発電状態の電位で再度10秒間保持する。後半の1秒間の電位の平均値を『制御後の性能値』とする。
6)開回路(OCV)状態とする。
本発明では、酸素還元電流値gain=『制御後の性能値』/『制御前の初期性能値』と定義した。
[Catalyst evaluation method]
Electrochemical evaluation was performed with a three-electrode rotating disk evaluation apparatus. FIG. 1 shows a standard pattern of catalyst activation according to the present invention.
1) The potential is controlled from the OCV state to the potential in the power generation state.
2) Hold for 10 seconds at the potential of the power generation state. The average value of the potential for 1 second in the latter half is defined as “initial performance value before control”.
3) Lower the potential to any potential (lower limit reduction potential) at any potential drop insertion speed.
4) After holding at the lower limit reduction potential for an arbitrary period of time, increase the potential to the power generation state at an arbitrary potential increase / subtraction speed.
5) Hold again for 10 seconds at the potential of the power generation state. The average value of the potential for 1 second in the latter half is defined as “performance value after control”.
6) Set to open circuit (OCV) state.
In the present invention, the oxygen reduction current value gain = “performance value after control” / “initial performance value before control”.

[遷移金属−カルコゲナイド触媒の活性化]
上記RuMoS/C触媒に対して、図1のパターンで活性化を行った。下限還元電位は100mVとした。
[Activation of transition metal-chalcogenide catalyst]
The RuMoS / C catalyst was activated in the pattern of FIG. The lower limit reduction potential was 100 mV.

図2に、電位降下挿引速度を変化させた際の酸素還元電流gainを示す。図2の結果より、最適な電位降下工程の電位降下挿引速度は0〜50mV/sであり、電位降下挿引速度が50mV/sを越えても飛躍的には触媒の活性化は起こらないことが分かる。   FIG. 2 shows the oxygen reduction current gain when the potential drop insertion speed is changed. From the results in FIG. 2, the potential drop insertion speed in the optimum potential drop process is 0 to 50 mV / s, and even if the potential drop draw speed exceeds 50 mV / s, the activation of the catalyst does not occur dramatically. I understand that.

図3に、電位降下工程の下限還元電位を変化させた際の酸素還元電流gainを示す。図3の結果より、最適な電位降下工程の下限還元電位は0〜300mVであり、下限還元電位が300mVを越えると飛躍的には触媒の活性化は起こらないことが分かる。なお、0mV以下では、逆反応が起こり、カソード極で水素が発生するため、0mV以下には制御しない。   FIG. 3 shows the oxygen reduction current gain when the lower limit reduction potential in the potential drop step is changed. From the results of FIG. 3, it can be seen that the lower limit reduction potential of the optimum potential drop step is 0 to 300 mV, and that the catalyst is not dramatically activated when the lower limit reduction potential exceeds 300 mV. In addition, since a reverse reaction occurs at 0 mV or less and hydrogen is generated at the cathode electrode, it is not controlled to 0 mV or less.

図4に、還元電位保持工程の保持時間を変化させた際の酸素還元電流gainを示す。図4の結果より、最適な還元電位保持工程の保持時間は0〜100秒であり、保持時間が100秒を越えても飛躍的には触媒の活性化は起こらないことが分かる。下限還元電位で長く保持すると、電池効率と耐久性が悪くなるため、保持時間は最良の酸素還元電流gainが得られる最小の時間とするのが良い。   FIG. 4 shows the oxygen reduction current gain when the holding time in the reduction potential holding step is changed. From the results of FIG. 4, it can be seen that the optimum holding time of the reduction potential holding step is 0 to 100 seconds, and that the catalyst is not dramatically activated even if the holding time exceeds 100 seconds. Holding for a long time at the lower limit reduction potential deteriorates battery efficiency and durability, so the holding time is preferably the minimum time for obtaining the best oxygen reduction current gain.

図5に、電位上昇工程の電位上昇挿引速度を変化させた際の酸素還元電流gainを示す。図5の結果より、最適な電位上昇工程の電位上昇挿引速度は100mV/s以上であり、電位上昇挿引速度が100mV/s未満では飛躍的には触媒の活性化は起こらないことが分かる。電位上昇挿引速度が大き過ぎると、オーバーシュートにより触媒が酸化し性能が低下する。このため、最良の酸素還元電流gainが得られる最小の電位上昇挿引速度とするのが良い。   FIG. 5 shows the oxygen reduction current gain when the potential increase / subtraction speed in the potential increase step is changed. From the result of FIG. 5, it can be seen that the potential increase / subtraction speed in the optimum potential increase step is 100 mV / s or higher, and that the catalyst activation does not occur drastically when the potential increase / lower speed is less than 100 mV / s. . If the potential rise / pull speed is too high, the catalyst is oxidized by overshoot and the performance is lowered. For this reason, it is good to set it as the minimum electric potential rise insertion speed which can obtain the best oxygen reduction current gain.

図6に、電位印加パターンを間隔をおいて複数回繰り返す場合の間隔を変化させた際の酸素還元電流gainを示す。図6の結果より、最適な間隔は0〜50秒であり、間隔が50秒を越えても飛躍的には触媒の活性化は起こらないことが分かる。   FIG. 6 shows the oxygen reduction current gain when the interval when the potential application pattern is repeated a plurality of times at intervals is changed. From the results of FIG. 6, it can be seen that the optimum interval is 0 to 50 seconds, and even if the interval exceeds 50 seconds, the activation of the catalyst does not occur dramatically.

[貴金属触媒の活性化]
上記Pt/C触媒に対して、図1のパターンで活性化を行った。下限還元電位は600mVとした。
[Activation of precious metal catalysts]
The Pt / C catalyst was activated in the pattern of FIG. The lower limit reduction potential was 600 mV.

図7に、電位降下挿引速度を変化させた際の酸素還元電流gainを示す。図7の結果より、最適な電位降下工程の電位降下挿引速度は0〜100mV/sであり、電位降下挿引速度が100mV/sを越えても飛躍的には触媒の活性化は起こらないことが分かる。   FIG. 7 shows the oxygen reduction current gain when the potential drop insertion speed is changed. From the result of FIG. 7, the potential drop insertion speed of the optimum potential drop process is 0 to 100 mV / s, and even if the potential drop insertion speed exceeds 100 mV / s, the activation of the catalyst does not occur dramatically. I understand that.

図8に、電位降下工程の下限還元電位を変化させた際の酸素還元電流gainを示す。図8の結果より、最適な電位降下工程の下限還元電位は75〜675mVであり、下限還元電位が675mVを越えると飛躍的には触媒の活性化は起こらないことが分かる。なお、0mV以下では、逆反応が起こり、カソード極で水素が発生するため、0mV以下には制御しない。   FIG. 8 shows the oxygen reduction current gain when the lower limit reduction potential in the potential drop step is changed. From the results of FIG. 8, it can be seen that the lower limit reduction potential of the optimum potential drop step is 75 to 675 mV, and that the catalyst is not dramatically activated when the lower limit reduction potential exceeds 675 mV. In addition, since a reverse reaction occurs at 0 mV or less and hydrogen is generated at the cathode electrode, it is not controlled to 0 mV or less.

図9に、還元電位保持工程の保持時間を変化させた際の酸素還元電流gainを示す。図9の結果より、最適な還元電位保持工程の保持時間は0〜60秒であり、保持時間が60秒を越えても飛躍的には触媒の活性化は起こらないことが分かる。下限還元電位で長く保持すると、電池効率と耐久性が悪くなるため、保持時間は最良の酸素還元電流gainが得られる最小の時間とするのが良い。   FIG. 9 shows the oxygen reduction current gain when the holding time in the reduction potential holding step is changed. From the results of FIG. 9, it can be understood that the optimum holding time of the reduction potential holding step is 0 to 60 seconds, and that the catalyst is not dramatically activated even if the holding time exceeds 60 seconds. Holding for a long time at the lower limit reduction potential deteriorates battery efficiency and durability, so the holding time is preferably the minimum time for obtaining the best oxygen reduction current gain.

図10に、電位上昇工程の電位上昇挿引速度を変化させた際の酸素還元電流gainを示す。図10の結果より、最適な電位上昇工程の電位上昇挿引速度は300mV/s以上であり、電位上昇挿引速度が300mV/s未満では飛躍的には触媒の活性化は起こらないことが分かる。電位上昇挿引速度が大き過ぎると、オーバーシュートにより触媒が酸化し性能が低下する。このため、最良の酸素還元電流gainが得られる最小の電位上昇挿引速度とするのが良い。   FIG. 10 shows the oxygen reduction current gain when the potential rise insertion speed in the potential rise step is changed. From the result of FIG. 10, it can be seen that the potential increase / subtraction speed of the optimum potential increase process is 300 mV / s or higher, and that the catalyst activation does not occur drastically when the potential increase / subtraction speed is less than 300 mV / s. . If the potential rise / pull speed is too high, the catalyst is oxidized by overshoot and the performance is lowered. For this reason, it is good to set it as the minimum electric potential rise insertion speed which can obtain the best oxygen reduction current gain.

図11に、電位印加パターンを間隔をおいて複数回繰り返す場合の間隔を変化させた際の酸素還元電流gainを示す。図11の結果より、最適な間隔は0〜120秒であり、間隔が120秒を越えても飛躍的には触媒の活性化は起こらないことが分かる。   FIG. 11 shows the oxygen reduction current gain when the interval is changed when the potential application pattern is repeated a plurality of times at intervals. From the results shown in FIG. 11, it can be seen that the optimum interval is 0 to 120 seconds, and even if the interval exceeds 120 seconds, the activation of the catalyst does not occur dramatically.

図12に、電位上昇工程中の後半部に電位上昇速度を低くしたなまし工程を前記電位印加パターンに設けた場合の、なまし工程の電位上昇挿引速度を変化させた際の酸素還元電流gainを示す。図12の結果より、最適ななまし工程の電位上昇挿引速度は0〜50mV/sであり、なまし工程の電位上昇挿引速度が50mV/sを越えると飛躍的には触媒の活性化は起こらないことが分かる。   FIG. 12 shows the oxygen reduction current when the potential increasing / decreasing speed of the annealing process is changed when the potential application pattern is provided with an annealing process in which the potential increasing speed is lowered in the latter half of the potential increasing process. Indicates gain. From the results of FIG. 12, the optimum potential increasing / lowering speed in the annealing process is 0 to 50 mV / s, and when the increasing potential in the annealing process exceeds 50 mV / s, the activation of the catalyst is dramatically increased. I know that doesn't happen.

[貴金属−遷移金属合金触媒の活性化]
上記PtCo/C触媒に対して、図1のパターンで活性化を行った。下限還元電位は600mVとした。
[Activation of noble metal-transition metal alloy catalyst]
The PtCo / C catalyst was activated in the pattern of FIG. The lower limit reduction potential was 600 mV.

図13に、電位降下挿引速度を変化させた際の酸素還元電流gainを示す。図13の結果より、最適な電位降下工程の電位降下挿引速度は0〜50mV/sであり、電位降下挿引速度が50mV/sを越えても飛躍的には触媒の活性化は起こらないことが分かる。   FIG. 13 shows the oxygen reduction current gain when the potential drop insertion speed is changed. From the result of FIG. 13, the potential drop insertion speed in the optimum potential drop process is 0 to 50 mV / s, and even if the potential drop draw speed exceeds 50 mV / s, the activation of the catalyst does not occur dramatically. I understand that.

図14に、電位降下工程の下限還元電位を変化させた際の酸素還元電流gainを示す。図14の結果より、最適な電位降下工程の下限還元電位は0〜750mVであり、下限還元電位が750mVを越えると飛躍的には触媒の活性化は起こらないことが分かる。なお、0mV以下では、逆反応が起こり、カソード極で水素が発生するため、0mV以下には制御しない。   FIG. 14 shows the oxygen reduction current gain when the lower limit reduction potential in the potential drop step is changed. From the results of FIG. 14, it can be seen that the lower limit reduction potential of the optimum potential drop step is 0 to 750 mV, and that the catalyst is not dramatically activated when the lower limit reduction potential exceeds 750 mV. In addition, since a reverse reaction occurs at 0 mV or less and hydrogen is generated at the cathode electrode, it is not controlled to 0 mV or less.

図15に、還元電位保持工程の保持時間を変化させた際の酸素還元電流gainを示す。図15の結果より、最適な還元電位保持工程の保持時間は0〜16秒であり、保持時間が16秒を越えても飛躍的には触媒の活性化は起こらないことが分かる。下限還元電位で長く保持すると、電池効率と耐久性が悪くなるため、保持時間は最良の酸素還元電流gainが得られる最小の時間とするのが良い。   FIG. 15 shows the oxygen reduction current gain when the holding time of the reduction potential holding step is changed. From the results of FIG. 15, it can be seen that the optimal holding time of the reduction potential holding step is 0 to 16 seconds, and that the catalyst is not dramatically activated even if the holding time exceeds 16 seconds. Holding for a long time at the lower limit reduction potential deteriorates battery efficiency and durability, so the holding time is preferably the minimum time for obtaining the best oxygen reduction current gain.

図16に、電位上昇工程の電位上昇挿引速度を変化させた際の酸素還元電流gainを示す。図16の結果より、最適な電位上昇工程の電位上昇挿引速度は400mV/s以上であり、電位上昇挿引速度が400mV/s未満では飛躍的には触媒の活性化は起こらないことが分かる。電位上昇挿引速度が大き過ぎると、オーバーシュートにより触媒が酸化し性能が低下する。このため、最良の酸素還元電流gainが得られる最小の電位上昇挿引速度とするのが良い。   FIG. 16 shows the oxygen reduction current gain when the potential increase / subtraction speed in the potential increase step is changed. From the results of FIG. 16, it can be seen that the potential increase / subtraction speed in the optimum potential increase step is 400 mV / s or higher, and that the catalyst activation does not occur drastically when the potential increase / subtraction speed is less than 400 mV / s. . If the potential rise / pull speed is too high, the catalyst is oxidized by overshoot and the performance is lowered. For this reason, it is good to set it as the minimum electric potential rise insertion speed which can obtain the best oxygen reduction current gain.

図17に、電位印加パターンを間隔をおいて複数回繰り返す場合の間隔を変化させた際の酸素還元電流gainを示す。図17の結果より、最適な間隔は0〜240秒であり、間隔が240秒を越えても飛躍的には触媒の活性化は起こらないことが分かる。   FIG. 17 shows the oxygen reduction current gain when the interval when the potential application pattern is repeated a plurality of times at intervals is changed. From the results of FIG. 17, it can be seen that the optimum interval is 0 to 240 seconds, and that the activation of the catalyst does not occur dramatically even if the interval exceeds 240 seconds.

本発明により各種燃料電池用触媒が活性化される。これにより、燃料電池の普及に貢献する。   The present invention activates various fuel cell catalysts. This contributes to the spread of fuel cells.

本発明の触媒活性化の標準パターンを示す。2 shows a standard pattern of catalyst activation of the present invention. RuMoS/C触媒に対して活性化を行った場合の、電位降下挿引速度を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when the potential drop insertion speed is changed when the RuMoS / C catalyst is activated is shown. RuMoS/C触媒に対して活性化を行った場合の、電位降下工程の下限還元電位を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the lower limit reduction potential in the potential drop step when the RuMoS / C catalyst is activated is shown. RuMoS/C触媒に対して活性化を行った場合の、還元電位保持工程の保持時間を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the holding time of the reduction potential holding step when the RuMoS / C catalyst is activated is shown. RuMoS/C触媒に対して活性化を行った場合の、電位上昇工程の電位上昇挿引速度を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the potential increase / subtraction speed in the potential increase step when the RuMoS / C catalyst is activated is shown. RuMoS/C触媒に対して活性化を行った場合の、電位印加パターンを間隔をおいて複数回繰り返す場合の間隔を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain is shown when the interval when the potential application pattern is repeated a plurality of times with an interval when the RuMoS / C catalyst is activated is changed. Pt/C触媒に対して活性化を行った場合の、電位降下挿引速度を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the potential drop insertion speed when the Pt / C catalyst is activated is shown. Pt/C触媒に対して活性化を行った場合の、電位降下工程の下限還元電位を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the lower limit reduction potential in the potential drop step when the Pt / C catalyst is activated is shown. Pt/C触媒に対して活性化を行った場合の、還元電位保持工程の保持時間を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the holding time of the reduction potential holding step when the Pt / C catalyst is activated is shown. Pt/C触媒に対して活性化を行った場合の、電位上昇工程の電位上昇挿引速度を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain is shown when the potential rise insertion speed in the potential rise step is changed when activation is performed on the Pt / C catalyst. Pt/C触媒に対して活性化を行った場合の、電位印加パターンを間隔をおいて複数回繰り返す場合の間隔を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the interval when the potential application pattern is repeated a plurality of times with an interval when the Pt / C catalyst is activated is shown. Pt/C触媒に対して活性化を行った場合の、電位上昇工程中の後半部に電位上昇速度を低くしたなまし工程を前記電位印加パターンに設けた場合の、なまし工程の電位上昇挿引速度を変化させた際の酸素還元電流gainを示す。When the Pt / C catalyst is activated, the potential increase insertion in the annealing step when the potential application pattern is provided with an annealing step in which the potential increase rate is reduced in the latter half of the potential increase step. An oxygen reduction current gain when the pulling speed is changed is shown. PtCo/C触媒に対して活性化を行った場合の、電位降下挿引速度を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when the potential drop pulling speed is changed when the PtCo / C catalyst is activated is shown. PtCo/C触媒に対して活性化を行った場合の、電位降下工程の下限還元電位を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the lower limit reduction potential in the potential drop step when the PtCo / C catalyst is activated is shown. PtCo/C触媒に対して活性化を行った場合の、還元電位保持工程の保持時間を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the holding time of the reduction potential holding step when the PtCo / C catalyst is activated is shown. PtCo/C触媒に対して活性化を行った場合の、電位上昇工程の電位上昇挿引速度を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain is shown when the potential increase insertion speed in the potential increase step is changed when the PtCo / C catalyst is activated. PtCo/C触媒に対して活性化を行った場合の、電位印加パターンを間隔をおいて複数回繰り返す場合の間隔を変化させた際の酸素還元電流gainを示す。The oxygen reduction current gain when changing the interval when the potential application pattern is repeated a plurality of times with an interval when the PtCo / C catalyst is activated is shown.

Claims (21)

固体高分子型燃料電池用触媒に対して所定電位印加パターンで電位を印加する固体高分子型燃料電池用触媒の活性化方法であって、該電位印加パターンが、(1)初期電位から下限還元電位まで電位降下させる電位降下工程と、(2)該還元電位を保持する下限還元電位保持工程と、(3)該下限還元電位から該初期電位まで電位上昇させる電位上昇工程とを含むことを特徴とする固体高分子型燃料電池用触媒の活性化方法。   A method for activating a polymer electrolyte fuel cell catalyst that applies a potential to a polymer electrolyte fuel cell catalyst in a predetermined potential application pattern, wherein the potential application pattern is (1) lower limit reduction from initial potential A potential drop step for dropping the potential to a potential; (2) a lower limit reduction potential holding step for holding the reduction potential; and (3) a potential increase step for raising the potential from the lower limit reduction potential to the initial potential. A method for activating a catalyst for a polymer electrolyte fuel cell. 前記(1)電位降下工程と、(2)下限還元電位保持工程と、(3)電位上昇工程とからなる電位印加パターンを(4)間隔をおいて複数回繰り返すことを特徴とする請求項1に記載の固体高分子型燃料電池用触媒の活性化方法。   2. The potential application pattern comprising (1) a potential drop step, (2) a lower limit reduction potential holding step, and (3) a potential rise step is repeated a plurality of times at (4) intervals. A method for activating a catalyst for a polymer electrolyte fuel cell as described in 1). 前記(3)電位上昇工程中の後半部に電位上昇速度を低くした(5)なまし工程を前記電位印加パターンに設けることを特徴とする請求項1又は2に記載の固体高分子型燃料電池用触媒の活性化方法。   3. The polymer electrolyte fuel cell according to claim 1, wherein the potential application pattern is provided with (5) an annealing step in which the potential increase rate is lowered in the latter half of the potential increase step. Method for activating catalysts. 前記固体高分子型燃料電池用触媒が、(A)貴金属触媒、(B)貴金属−遷移金属合金触媒、及び(C)遷移金属−カルコゲナイド触媒から選択されることを特徴とする請求項1乃至3のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   4. The polymer electrolyte fuel cell catalyst is selected from (A) a noble metal catalyst, (B) a noble metal-transition metal alloy catalyst, and (C) a transition metal-chalcogenide catalyst. A method for activating a catalyst for a solid polymer fuel cell according to any one of the above. 前記固体高分子型燃料電池用触媒が、(C)遷移金属−カルコゲナイド触媒であって、前記(1)電位降下工程の電位降下挿引速度が0〜50mV/sであることを特徴とする請求項1乃至4のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a solid polymer fuel cell is (C) a transition metal-chalcogenide catalyst, and (1) a potential drop insertion rate in the potential drop step is 0 to 50 mV / s. Item 5. A method for activating a polymer electrolyte fuel cell catalyst according to any one of Items 1 to 4. 前記固体高分子型燃料電池用触媒が、(C)遷移金属−カルコゲナイド触媒であって、前記(1)電位降下工程の下限還元電位が0〜300mVであることを特徴とする請求項1乃至5のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a solid polymer fuel cell is (C) a transition metal-chalcogenide catalyst, and the lower limit reduction potential in the (1) potential drop step is 0 to 300 mV. A method for activating a catalyst for a solid polymer fuel cell according to any one of the above. 前記固体高分子型燃料電池用触媒が、(C)遷移金属−カルコゲナイド触媒であって、前記(2)下限還元電位保持工程の保持時間が0〜100秒であることを特徴とする請求項1乃至6のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a solid polymer fuel cell is (C) a transition metal-chalcogenide catalyst, and the retention time of the (2) lower limit reduction potential holding step is 0 to 100 seconds. 7. A method for activating a polymer electrolyte fuel cell catalyst according to any one of items 1 to 6. 前記固体高分子型燃料電池用触媒が、(C)遷移金属−カルコゲナイド触媒であって、前記(3)電位上昇工程の電位上昇挿引速度が100mV/s以上であることを特徴とする請求項1乃至7のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a solid polymer fuel cell is (C) a transition metal-chalcogenide catalyst, and (3) a potential increase insertion speed in the potential increase step is 100 mV / s or more. 8. A method for activating a polymer electrolyte fuel cell catalyst according to any one of 1 to 7. 前記固体高分子型燃料電池用触媒が、(C)遷移金属−カルコゲナイド触媒であって、前記電位印加パターンを(4)間隔をおいて複数回繰り返す間隔が0〜50秒であることを特徴とする請求項1乃至8のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a polymer electrolyte fuel cell is (C) a transition metal-chalcogenide catalyst, wherein (4) the interval of repeating the potential application pattern a plurality of times at intervals is 0 to 50 seconds. A method for activating a catalyst for a polymer electrolyte fuel cell according to any one of claims 1 to 8. 前記固体高分子型燃料電池用触媒が、(A)貴金属触媒であって、前記(1)電位降下工程の電位降下挿引速度が0〜100mV/sであることを特徴とする請求項1乃至4のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a solid polymer fuel cell is (A) a noble metal catalyst, and the potential drop insertion rate in the (1) potential drop step is 0 to 100 mV / s. 5. The method for activating a polymer electrolyte fuel cell catalyst according to any one of 4 above. 前記固体高分子型燃料電池用触媒が、(A)貴金属触媒であって、前記(1)電位降下工程の下限還元電位が75〜675mVであることを特徴とする請求項1乃至4又は10のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   11. The polymer electrolyte fuel cell catalyst according to claim 1, wherein the catalyst for a solid polymer fuel cell is (A) a noble metal catalyst, and (1) a lower limit reduction potential in the potential drop step is 75 to 675 mV. A method for activating a catalyst for a solid polymer fuel cell according to any one of the above. 前記固体高分子型燃料電池用触媒が、(A)貴金属触媒であって、前記(2)下限還元電位保持工程の保持時間が0〜60秒であることを特徴とする請求項1乃至4、10、11のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a solid polymer fuel cell is (A) a noble metal catalyst, and the holding time of the (2) lower limit reduction potential holding step is 0 to 60 seconds, A method for activating a catalyst for a polymer electrolyte fuel cell according to any one of 10 and 11. 前記固体高分子型燃料電池用触媒が、(A)貴金属触媒であって、前記(3)電位上昇工程の電位上昇挿引速度が300mV/s以上であることを特徴とする請求項1乃至4、10乃至12のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   5. The polymer electrolyte fuel cell catalyst according to claim 1, wherein (A) a noble metal catalyst, and (3) a potential increasing insertion rate in the potential increasing step is 300 mV / s or more. A method for activating a catalyst for a polymer electrolyte fuel cell according to any one of 10 to 12. 前記固体高分子型燃料電池用触媒が、(A)貴金属触媒であって、前記電位印加パターンを(4)間隔をおいて複数回繰り返す間隔が0〜120秒であることを特徴とする請求項1乃至4、10乃至13のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a polymer electrolyte fuel cell is (A) a noble metal catalyst, and (4) the interval of repeating the potential application pattern a plurality of times at intervals is 0 to 120 seconds. A method for activating a catalyst for a polymer electrolyte fuel cell according to any one of 1 to 4, 10 to 13. 前記固体高分子型燃料電池用触媒が、(A)貴金属触媒であって、前記(5)なまし工程の電位上昇挿引速度が0〜50mV/sであることを特徴とする請求項3乃至14のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a solid polymer fuel cell is (A) a noble metal catalyst, and (5) the potential increase / subtraction speed in the annealing step is 0 to 50 mV / s. 15. The method for activating a polymer electrolyte fuel cell catalyst according to any one of 14 above. 前記固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒であって、前記(1)電位降下工程の電位降下挿引速度が0〜50mV/sであることを特徴とする請求項1乃至4のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The polymer electrolyte fuel cell catalyst is (B) a noble metal-transition metal alloy catalyst, wherein (1) the potential drop insertion speed in the potential drop step is 0 to 50 mV / s. The method for activating the polymer electrolyte fuel cell catalyst according to any one of claims 1 to 4. 前記固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒であって、前記(1)電位降下工程の下限還元電位が0〜750mVであることを特徴とする請求項1乃至4又は16のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a solid polymer fuel cell is (B) a noble metal-transition metal alloy catalyst, wherein the lower limit reduction potential in the (1) potential drop step is 0 to 750 mV. 17. A method for activating a polymer electrolyte fuel cell catalyst according to any one of 4 and 16. 前記固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒であって、前記(2)下限還元電位保持工程の保持時間が0〜16秒であることを特徴とする請求項1乃至4、16、17のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The solid polymer type fuel cell catalyst is (B) a noble metal-transition metal alloy catalyst, and the holding time of the (2) lower limit reduction potential holding step is 0 to 16 seconds. 18. A method for activating a polymer electrolyte fuel cell catalyst according to any one of 1 to 4, 16, and 17. 前記固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒であって、前記(3)電位上昇工程の電位上昇挿引速度が400mV/s以上であることを特徴とする請求項1乃至4、16乃至18のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The catalyst for a polymer electrolyte fuel cell is (B) a noble metal-transition metal alloy catalyst, and (3) a potential increase insertion rate in the potential increase step is 400 mV / s or more. Item 19. A method for activating a catalyst for a polymer electrolyte fuel cell according to any one of Items 1 to 4 and 16 to 18. 前記固体高分子型燃料電池用触媒が、(B)貴金属−遷移金属合金触媒であって、前記電位印加パターンを(4)間隔をおいて複数回繰り返す間隔が0〜240秒であることを特徴とする請求項1乃至4、16乃至19のいずれかに記載の固体高分子型燃料電池用触媒の活性化方法。   The polymer electrolyte fuel cell catalyst is (B) a noble metal-transition metal alloy catalyst, and (4) the interval at which the potential application pattern is repeated a plurality of times at intervals is 0 to 240 seconds. The method for activating a polymer electrolyte fuel cell catalyst according to any one of claims 1 to 4 and 16 to 19. 請求項1乃至20のいずれかに記載の方法で活性化された固体高分子型燃料電池用触媒。   A catalyst for a polymer electrolyte fuel cell activated by the method according to any one of claims 1 to 20.
JP2008131529A 2008-05-20 2008-05-20 Method for activating catalyst for polymer electrolyte fuel cell Expired - Fee Related JP5315791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131529A JP5315791B2 (en) 2008-05-20 2008-05-20 Method for activating catalyst for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131529A JP5315791B2 (en) 2008-05-20 2008-05-20 Method for activating catalyst for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2009283165A true JP2009283165A (en) 2009-12-03
JP5315791B2 JP5315791B2 (en) 2013-10-16

Family

ID=41453431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131529A Expired - Fee Related JP5315791B2 (en) 2008-05-20 2008-05-20 Method for activating catalyst for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5315791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022935A (en) * 2010-07-15 2012-02-02 Toyota Motor Corp Material for air electrode catalyst of lithium air battery, air electrode for lithium air battery including the material, and lithium air battery including the air electrode

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115318A (en) * 2001-10-03 2003-04-18 Mitsubishi Heavy Ind Ltd Operational device and method of fuel cell
JP2003536232A (en) * 2000-06-22 2003-12-02 ユーティーシー フューエル セルズ,エルエルシー Method and apparatus for regenerating PEM fuel cell performance
JP2005158734A (en) * 2003-11-27 2005-06-16 Hyundai Motor Co Ltd Method for initial activation of polymer electrolyte fuel cell
JP2005522821A (en) * 2002-02-06 2005-07-28 バトル、メモリアル、インスティテュート Method for removing contaminants from fuel cell electrodes
JP2005527943A (en) * 2002-03-29 2005-09-15 エストコ バッテリー マネージメント インコーポレイテッド Fuel cell health management system
JP2005327584A (en) * 2004-05-14 2005-11-24 Equos Research Co Ltd Regenerating control method of fuel cell
JP2006252798A (en) * 2005-03-08 2006-09-21 Hitachi Maxell Ltd Manufacturing method of oxygen electrode catalyst for fuel cell, and of direct methanol fuel cell and catalyst
WO2006137302A1 (en) * 2005-06-23 2006-12-28 Mitsubishi Chemical Corporation Fuel cell, catalyst thereof, and electrode thereof
JP2007066908A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Catalyst for cathode electrode of fuel cell and its manufacturing method, as well as, membrane electrode assembly for fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536232A (en) * 2000-06-22 2003-12-02 ユーティーシー フューエル セルズ,エルエルシー Method and apparatus for regenerating PEM fuel cell performance
JP2003115318A (en) * 2001-10-03 2003-04-18 Mitsubishi Heavy Ind Ltd Operational device and method of fuel cell
JP2005522821A (en) * 2002-02-06 2005-07-28 バトル、メモリアル、インスティテュート Method for removing contaminants from fuel cell electrodes
JP2005527943A (en) * 2002-03-29 2005-09-15 エストコ バッテリー マネージメント インコーポレイテッド Fuel cell health management system
JP2005158734A (en) * 2003-11-27 2005-06-16 Hyundai Motor Co Ltd Method for initial activation of polymer electrolyte fuel cell
JP2005327584A (en) * 2004-05-14 2005-11-24 Equos Research Co Ltd Regenerating control method of fuel cell
JP2006252798A (en) * 2005-03-08 2006-09-21 Hitachi Maxell Ltd Manufacturing method of oxygen electrode catalyst for fuel cell, and of direct methanol fuel cell and catalyst
WO2006137302A1 (en) * 2005-06-23 2006-12-28 Mitsubishi Chemical Corporation Fuel cell, catalyst thereof, and electrode thereof
JP2007066908A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Catalyst for cathode electrode of fuel cell and its manufacturing method, as well as, membrane electrode assembly for fuel cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012017254; R.W.Reeve: 'Methanol Tolerant Oxygen Reduction Catalysts Based on Transition Metal Sulfides' J.Electrochem.Soc. Vol.145 No.10, 199810, 3463-3471, The Electrochemical Society *
JPN6012062157; Hendrik Schulenburg et al.: 'Oxygen reduction at carbon supported ruthenium-selenium catalysts: Selenium as promoter and stabiliz' Journal of Power Sources 155, 2006, 47-51 *
JPN6013011196; Yukiyoshi Ueno et al.: 'Study of Alternative Oxygen Reduction Electrocatalyst for Pt Based on Transition Metal Chalcogenides' SAE Tech Pap Ser , 200804 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022935A (en) * 2010-07-15 2012-02-02 Toyota Motor Corp Material for air electrode catalyst of lithium air battery, air electrode for lithium air battery including the material, and lithium air battery including the air electrode

Also Published As

Publication number Publication date
JP5315791B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
US4794054A (en) Platinum alloy electrocatalyst and acid-electrolyte fuel cell electrode using the same
JP5329405B2 (en) catalyst
KR101864967B1 (en) Electrode catalyst for fuel cell and method of producing electrode catalyst for fuel cell
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
JP4656576B2 (en) Method for producing Pt / Ru alloy catalyst for fuel cell anode
WO2009096356A1 (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
WO2006002228A2 (en) Catalyst support for an electrochemical fuel cell
Lee et al. Comparison of the stabilities and activities of Pt–Ru/C and Pt3–Sn/C electrocatalysts synthesized by the polyol method for methanol electro-oxidation reaction
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JP6028027B2 (en) Electrocatalyst composite material, method of producing the composite material, and method of using the same
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP4863735B2 (en) Supported electrode catalyst and catalyst production method
JP2012033492A (en) Electrode catalyst for fuel cell, membrane electrode assembly and fuel cell including the electrode catalyst, and method of producing electrode catalyst for fuel cell
JP2005005257A (en) Air electrode catalyst for fuel cell, and manufacturing method therefor
JP2005259557A (en) Anode catalyst for polymer electrolyte fuel cell
JP2009043618A (en) Electrode catalyst for fuel cell, performance evaluation method of oxygen reduction type catalyst, and solid polymer fuel cell using it
JP5315791B2 (en) Method for activating catalyst for polymer electrolyte fuel cell
JP2010027506A (en) Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same
JP4958133B2 (en) Electrode catalyst for hydrogen electrode of low temperature fuel cell
KR20120121861A (en) Oxygen-reduction electrocatalyst based on porous bimetallic structure, and preparing method of the same
JP2016148078A (en) Platinum alloy powder and method for producing the same
JP2006179427A (en) Electrode catalyst for fuel cell, and the fuel cell
JP2002159866A (en) Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell
JP2005135671A (en) Electrode for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R151 Written notification of patent or utility model registration

Ref document number: 5315791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees