JP2010027506A - Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same - Google Patents

Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same Download PDF

Info

Publication number
JP2010027506A
JP2010027506A JP2008190013A JP2008190013A JP2010027506A JP 2010027506 A JP2010027506 A JP 2010027506A JP 2008190013 A JP2008190013 A JP 2008190013A JP 2008190013 A JP2008190013 A JP 2008190013A JP 2010027506 A JP2010027506 A JP 2010027506A
Authority
JP
Japan
Prior art keywords
fuel cell
noble metal
electrode catalyst
catalyst
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190013A
Other languages
Japanese (ja)
Inventor
Nobuaki Mizutani
宣明 水谷
Hiroaki Takahashi
宏明 高橋
Yosuke Horiuchi
洋輔 堀内
Tomoaki Terada
智明 寺田
Takahiro Nagata
貴寛 永田
Akihiro Hori
彰宏 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP2008190013A priority Critical patent/JP2010027506A/en
Publication of JP2010027506A publication Critical patent/JP2010027506A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell electrode catalyst having higher initial power generating performance (higher activity) than a conventional platinum alloy catalyst while satisfactorily suppressing (enduring) performance degradation after long-time power generating operation, and to provide its manufacturing method and a solid polymer fuel cell using the same. <P>SOLUTION: The fuel cell electrode catalyst is formed of a nonnoble metal alloy which can be complexed with noble metal-carbon supported on a conductive carbon carrier. Herein, the conductive carbon carrier is complexed with a nonnoble metal component and the complexed nonnoble metal component is alloyed with a noble metal component. The fuel cell electrode catalyst is manufactured in a method which includes a first step of complexing the conductive carbon carrier with the nonnoble metal component which can be complexed with carbon fired, a second step of cleaning the complexed material obtained in the first step, and a third step of alloying the complexed nonnoble metal component with the noble metal component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、従来の白金合金系触媒の発電性能向上を図った燃料電池用電極触媒、その製造方法、及びそれを用いた固体高分子型燃料電池に関する。   The present invention relates to an electrode catalyst for a fuel cell that improves the power generation performance of a conventional platinum alloy catalyst, a method for producing the same, and a polymer electrolyte fuel cell using the same.

固体高分子型燃料電池の電極触媒のカソード及びアノード触媒としては、白金又は白金合金等の貴金属をカーボンブラックに担持した触媒が用いられてきた。固体高分子型燃料電池の電極は、白金担持カーボンブラックを高分子電解質溶液に分散させてインクを調製し、そのインクをカーボンペーパーなどのガス拡散基材に塗布し、乾燥することにより作製される。この2枚の電極で高分子電解質膜を挟み、ホットプレスをすることにより電解質膜−電極接合体(MEA)が組立られる。   As a cathode and an anode catalyst of an electrode catalyst of a polymer electrolyte fuel cell, a catalyst in which a noble metal such as platinum or a platinum alloy is supported on carbon black has been used. An electrode of a polymer electrolyte fuel cell is prepared by dispersing platinum-supported carbon black in a polymer electrolyte solution, preparing an ink, applying the ink to a gas diffusion substrate such as carbon paper, and drying. . An electrolyte membrane-electrode assembly (MEA) is assembled by sandwiching a polymer electrolyte membrane between these two electrodes and performing hot pressing.

白金は高価な貴金属であり、少ない担持量で十分な性能を発揮させることが望まれている。そのため、より少量で触媒活性を高める検討がなされており、例えば、下記特許文献1には、優れたカソード分極特性を有し、高い電池出力を得ることを目的として、カソードの触媒層に白金及び白金合金からなる群から選ばれる金属触媒に加えて所定量の鉄又はクロムを有する金属錯体を含有させることによりカソードにおける分極特性を向上させている。具体的には、アノードと、カソードと、アノードとカソードとの間に配置された高分子電解質膜とを備えた固体高分子型燃料電池であって、カソードが、ガス拡散層と、当該ガス拡散層と高分子電解質膜との間に配置される触媒層とを備えており、白金及び白金合金からなる群から選ばれる貴金属触媒と、鉄又はクロムを含む金属錯体とが前記触媒層に含有されており、かつ、金属錯体は、当該金属錯体と貴金属触媒との合量の1〜40モル%含まれる。   Platinum is an expensive noble metal and it is desired to exhibit sufficient performance with a small amount of support. Therefore, studies have been made to increase the catalytic activity with a smaller amount. For example, Patent Document 1 listed below has excellent cathode polarization characteristics, and platinum and platinum are used in the cathode catalyst layer for the purpose of obtaining high battery output. In addition to the metal catalyst selected from the group consisting of platinum alloys, the polarization characteristics at the cathode are improved by containing a metal complex having a predetermined amount of iron or chromium. Specifically, a solid polymer fuel cell comprising an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, the cathode comprising a gas diffusion layer and the gas diffusion layer A catalyst layer disposed between the layer and the polymer electrolyte membrane, wherein the catalyst layer contains a noble metal catalyst selected from the group consisting of platinum and a platinum alloy, and a metal complex containing iron or chromium. In addition, the metal complex is contained in an amount of 1 to 40 mol% of the total amount of the metal complex and the noble metal catalyst.

また、下記特許文献2には、触媒担体であるカーボンの表面の酸化を防止して、燃料電池用電極触媒の耐久性能を向上させることを目的として、(1)金属Mの原料化合物とカーボン粒子とを混合して、金属Mとカーボンとを含む複合粒子を得る第1の工程と、前記複合粒子に触媒を担持させる第2の工程からなる燃料電池用電極触媒の製造方法と、(2)金属Mの原料化合物とカーボン粒子とを混合して、金属Mとカーボンとを含む複合粒子Aを得る第1の工程と、前記複合粒子Aを酸化して、金属酸化物とカーボンとを含む複合粒子Bを得る第2の工程と、前記複合粒子Bに触媒を担持させる第3の工程からなる燃料電池用電極触媒の製造方法が開示されている。   In addition, in Patent Document 2 below, for the purpose of preventing the oxidation of the surface of carbon as a catalyst carrier and improving the durability performance of the electrode catalyst for fuel cells, (1) a raw material compound of metal M and carbon particles And a method for producing an electrode catalyst for a fuel cell comprising a first step of obtaining composite particles containing metal M and carbon, and a second step of supporting a catalyst on the composite particles, (2) A first step of obtaining a composite particle A containing metal M and carbon by mixing a raw material compound of metal M and carbon particles, and a composite containing metal oxide and carbon by oxidizing the composite particle A A method for producing a fuel cell electrode catalyst comprising a second step of obtaining particles B and a third step of supporting the catalyst on the composite particles B is disclosed.

特許文献1、2に記載の触媒は、水素還元性能と耐久性が十分ではなく、より高性能で耐久性に優れた触媒の開発が望まれていた。   The catalysts described in Patent Documents 1 and 2 have insufficient hydrogen reduction performance and durability, and it has been desired to develop a catalyst having higher performance and superior durability.

特開2002−15744号公報JP 2002-15744 A 特開2007−117862号公報JP 2007-117862 A

固体高分子型燃料電池の電極触媒は多量の貴金属(白金)を使用している。そのためには長期発電運転後の性能低下抑制が重要な課題となる。性能低下の原因は主に触媒の貴金属(主に白金)の溶出による活性点の減少がある。性能低下を抑制するためには貴金属の溶出を抑制し、活性点の減少を抑制することが必要となる。   A large amount of noble metal (platinum) is used for the electrode catalyst of the polymer electrolyte fuel cell. For that purpose, it is an important subject to suppress the performance degradation after long-term power generation operation. The cause of the decrease in performance is mainly a decrease in active sites due to elution of precious metals (mainly platinum) from the catalyst. In order to suppress the performance degradation, it is necessary to suppress the elution of the noble metal and suppress the decrease of the active sites.

そこで、本発明は、従来の白金合金触媒より初期発電性能の向上(高活性)とともに長期発電運転後の性能低下抑制(耐久性)を克服した燃料電池用電極触媒、その製造方法、及びそれを用いた固体高分子型燃料電池を提供することを目的とする。   Therefore, the present invention provides an electrode catalyst for a fuel cell that overcomes the deterioration in performance after long-term power generation operation (durability) as well as improved initial power generation performance (high activity) than conventional platinum alloy catalysts, and a method for producing the same. An object of the present invention is to provide a solid polymer fuel cell used.

固体高分子型燃料電池用電極触媒の高活性、高耐久化のために、従来より貴金属の合金化が行われている。一般的に合金化を行うことによって、電極触媒の合金種の効果で活性向上が期待される。更に合金化したことによる粒径増大化で、触媒粒子の安定性が増し耐久性向上が期待される。   In order to increase the activity and durability of an electrode catalyst for a polymer electrolyte fuel cell, a noble metal has been conventionally alloyed. In general, by alloying, an improvement in activity is expected due to the effect of the alloy type of the electrode catalyst. Furthermore, the increase in particle size due to alloying is expected to increase the stability of the catalyst particles and improve the durability.

本発明者らは、導電性炭素担体に複合化した非貴金属成分に貴金属成分を合金化させることで、カーボン+非貴金属+貴金属の相互作用が触媒の劣化のひとつである貴金属の溶出を抑制する効果があることを見出し、本発明に到達した。   The present inventors suppress the elution of the noble metal in which the interaction of carbon + non-noble metal + noble metal is one of the deterioration of the catalyst by alloying the noble metal component with the non-noble metal component compounded on the conductive carbon support. As a result, the present invention has been found.

即ち、第1に、本発明は、導電性炭素担体上に担持された貴金属−炭素と複合化しうる非貴金属合金からなる燃料電池用電極触媒の発明であって、導電性炭素担体と非貴金属成分とが複合化され、且つ複合化した非貴金属成分と貴金属成分とが合金化されていることを特徴とする。   That is, first, the present invention is an invention of a fuel cell electrode catalyst comprising a non-noble metal alloy that can be combined with a noble metal-carbon supported on a conductive carbon support, wherein the conductive carbon support and the non-noble metal component And the composite non-noble metal component and noble metal component are alloyed.

本発明の燃料電池用電極触媒に用いられる貴金属成分は、白金、ルテニウム、イリジウムなどの白金族金属から選択される。又、本発明で用いられる非貴金属の選択は、非貴金属と炭素の相図より、非貴金属と炭素安定構造が存在する遷移金属や希土類金属を選択する。具体的には、炭素と複合化しうる非貴金属として、マンガン(Mn)、クロム(Cr)、セリウム(Ce)、モリブデン(Mo)、鉄(Fe)、ニオブ(Nb)、シリコン(Si)、チタン(Ti)、タンタル(Ta)から選択される1種以上が好ましく例示される。   The noble metal component used in the fuel cell electrode catalyst of the present invention is selected from platinum group metals such as platinum, ruthenium and iridium. The non-noble metal used in the present invention is selected from a transition metal or a rare earth metal having a non-noble metal and a stable carbon structure based on the phase diagram of the non-noble metal and carbon. Specifically, manganese (Mn), chromium (Cr), cerium (Ce), molybdenum (Mo), iron (Fe), niobium (Nb), silicon (Si), titanium as non-noble metals that can be combined with carbon One or more types selected from (Ti) and tantalum (Ta) are preferably exemplified.

第2に、本発明は、導電性炭素担体上に担持された貴金属−炭素と複合化しうる非貴金属合金からなる燃料電池用電極触媒の製造方法の発明であって、導電性炭素担体と炭素と複合化しうる非貴金属成分を焼成して複合化する第1工程と、第1工程で得られた複合化物を洗浄する第2工程と、複合化した非貴金属成分と貴金属成分を合金化する第3工程とを含む。   Second, the present invention is an invention of a method for producing a fuel cell electrode catalyst comprising a non-noble metal alloy capable of being combined with a noble metal-carbon supported on a conductive carbon support, wherein the conductive carbon support and carbon A first step of firing and compositing a non-noble metal component that can be combined, a second step of cleaning the composite obtained in the first step, and a third step of alloying the combined non-noble metal component and the noble metal component Process.

本発明の燃料電池用電極触媒の製造方法においては、第3工程時に、水素バブリング及び窒素バブリングを行うことが好ましい。   In the method for producing a fuel cell electrode catalyst of the present invention, it is preferable to perform hydrogen bubbling and nitrogen bubbling in the third step.

本発明の燃料電池用電極触媒の製造に用いられる貴金属及び炭素と複合化しうる非貴金属の例示は上述の通りである。   Examples of the noble metal and non-noble metal that can be combined with carbon used in the production of the fuel cell electrode catalyst of the present invention are as described above.

第3に、本発明は、上記の燃料電池用電極触媒をアノード触媒及び/又はカソード触媒として備えた固体高分子型燃料電池である。   Thirdly, the present invention is a polymer electrolyte fuel cell comprising the above fuel cell electrode catalyst as an anode catalyst and / or a cathode catalyst.

導電性炭素担体と炭素と複合化しうる非貴金属(金属粒子)とを一定条件下で焼成し複合化することで、金属粒子が導電性炭素担体から溶け出しにくい構造となる。次に洗浄によって複合化しきれていない金属粒子を取り除くため、複合化物内の金属粒子は脱落しにくいものだけとなる。そして、触媒担体より金属粒子の方が触媒金属成分である貴金属が担持されやすいため、複合化物内の金属粒子に選択的に触媒金属成分が担持される。さらに、合金化により複合化物内の金属粒子と触媒金属との一体化が可能となる。   By baking and compounding a conductive carbon support and a non-noble metal (metal particles) that can be combined with carbon under certain conditions, the metal particles have a structure that does not easily dissolve from the conductive carbon support. Next, since metal particles that have not been combined are removed by washing, the metal particles in the composite are only those that do not easily fall off. Since the noble metal, which is the catalyst metal component, is more easily supported on the metal particles than the catalyst carrier, the catalyst metal component is selectively supported on the metal particles in the composite. Furthermore, the alloying enables the metal particles in the composite and the catalyst metal to be integrated.

これにより、本発明の燃料電池用電極触媒は、従来の燃料電池用白金合金などの貴金属合金系触媒と比べて高活性であるとともに耐久性に優れている。   As a result, the fuel cell electrode catalyst of the present invention is highly active and superior in durability as compared with conventional noble metal alloy catalysts such as platinum alloys for fuel cells.

以下、実施例および比較例によって本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

[実施例:Pt−Mn/C触媒の調製]
下記の手順により、白金マンガン合金がカーボンに担持された触媒(Pt−Mn/C触媒)を調製した。
(実施例1)
市販品KetjenEC(商標名、ケッチェンブラックインターナショナル製)4.5gと硝酸MnをMn量が1gとなるように混合し、2hr攪拌した。この溶液に0.1Nのアンモニアで中和、担持することでカーボンブラックにMnを担持させた。これを1000℃、5hrで熱処理しMn/Cの担体を得た。
[Example: Preparation of Pt-Mn / C catalyst]
A catalyst in which a platinum manganese alloy was supported on carbon (Pt—Mn / C catalyst) was prepared by the following procedure.
Example 1
4.5 g of a commercial product KetjenEC (trade name, manufactured by Ketjen Black International) and Mn nitrate were mixed so that the amount of Mn was 1 g, and stirred for 2 hours. The solution was neutralized and supported with 0.1N ammonia to support Mn on carbon black. This was heat-treated at 1000 ° C. for 5 hours to obtain a Mn / C support.

焼成後のMn/Cを1.0N硝酸で洗浄、ろ過、乾燥した。Mnがカーボンに担持されている状態では硝酸で洗浄することによりカーボン上から脱落する。得られた乾燥粉末のMn/Cは5.0gであり、0.2gのMnがCに複合していることを確認した。また、蛍光X線分析(XRF)でもMnの存在を確認した。   Mn / C after firing was washed with 1.0N nitric acid, filtered and dried. In a state where Mn is supported on carbon, it is removed from the carbon by washing with nitric acid. Mn / C of the obtained dry powder was 5.0 g, and it was confirmed that 0.2 g of Mn was combined with C. The presence of Mn was also confirmed by fluorescent X-ray analysis (XRF).

この粉末5.0gを純水1.8Lに加え、水素バブリング後、窒素バブリングを行い分散させた。   5.0 g of this powder was added to 1.8 L of pure water, and after hydrogen bubbling, nitrogen bubbling was performed and dispersed.

この分散液に、白金5.0gを含むヘキサヒドロキソ白金硝酸溶液を滴下し十分にカーボンと攪拌した。これに0.1Nアンモニア約100mLを添加してPHを約10としそれぞれ水酸化物を形成させカーボン上に析出させ、さらにエタノールを用いて90℃で還元した。この分散液をろ過、乾燥し、得られた粉末を水素ガス中で400℃、2hr保持して還元処理した後、窒素ガス中で1000℃で10hr保持して合金化し触媒粉末を得た。   To this dispersion, a hexahydroxo platinum nitric acid solution containing 5.0 g of platinum was dropped and sufficiently stirred with carbon. To this, about 100 mL of 0.1N ammonia was added to adjust the pH to about 10 to form hydroxides, which were deposited on carbon, and further reduced at 90 ° C. using ethanol. This dispersion was filtered and dried, and the resulting powder was reduced in hydrogen gas at 400 ° C. for 2 hours, and then alloyed by holding in nitrogen gas at 1000 ° C. for 10 hours to obtain a catalyst powder.

得られた触媒粉末の白金担持密度は廃液分析からはPtは検出されず、すべてのPtが担持されたことを確認し、Pt:50wt%、Mn:2.0wt%、C:48wt%であった。さらに、触媒の粒径はXRDのPt(111)面のピーク位置から算出(シェラー式)したところ5.2nmであり、39°付近のPt(111)面のピークが広角側にシフトしたことから添加元素の固溶(合金化)を確認した。   The platinum loading density of the obtained catalyst powder was confirmed that Pt was not detected from the waste liquid analysis, and that all the Pt was loaded. Pt: 50 wt%, Mn: 2.0 wt%, C: 48 wt%. It was. Furthermore, the particle size of the catalyst was calculated from the peak position of the XRD Pt (111) plane (Scherrer formula), which was 5.2 nm, and the peak of the Pt (111) plane near 39 ° was shifted to the wide angle side. The solid solution (alloying) of the additive element was confirmed.

(実施例2)
実施例1で得た触媒を1.0N硝酸で攪拌した。攪拌は室温で2hr行った。攪拌した溶液をろ過し、ろ液の廃液分析(Mn定量)から、Pt:50wt%、Mn:1.9wt%、C:48.1wt%であった。
(Example 2)
The catalyst obtained in Example 1 was stirred with 1.0 N nitric acid. Stirring was performed at room temperature for 2 hours. The stirred solution was filtered, and it was Pt: 50 wt%, Mn: 1.9 wt%, and C: 48.1 wt% from waste liquid analysis (quantification of Mn) of the filtrate.

(比施例1)
KetjenEC(商標名、ケッチェンブラックインターナショナル製)4.2gと白金5.0gを含むヘキサヒドロキソ白金硝酸溶液と硝酸MnをMn量0.8gとし、純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してPHを約10とし、それぞれ水酸化物を形成させ、カーボン上に析出させた。この分散液をろ過し、得られた粉末を100℃で10hr真空乾燥させた。次に水素ガス中で400℃、2hr保持して還元処理した後、窒素ガス中で1000℃、10hr保持して合金化し、触媒粉末を得た。
(Comparative Example 1)
A hexahydroxo platinum nitric acid solution containing 4.2 g of KetjenEC (trade name, manufactured by Ketjen Black International) and 5.0 g of platinum and Mn nitrate were adjusted to 0.8 g of Mn and dispersed in 0.5 L of pure water. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and hydroxides were formed and precipitated on carbon. The dispersion was filtered, and the obtained powder was vacuum-dried at 100 ° C. for 10 hours. Next, reduction treatment was carried out by holding at 400 ° C. for 2 hours in hydrogen gas, and then alloying was carried out by holding at 1000 ° C. for 10 hours in nitrogen gas to obtain a catalyst powder.

得られた触媒粉末の白金担持密度は廃液分析からはPtは検出されず、すべてのPtが担持されたことを確認し、Pt:50wt%、Mn:8.0wt%、C:42wt%であった。さらに、触媒の粒径はXRDのPt(111)面のピーク位置から算出(シェラー式)したところ4.9nmであり、39°付近のPt(11)面のピークが広角側にシフトしたことから添加元素の固溶を確認した。   The platinum loading density of the obtained catalyst powder was not detected from the waste liquid analysis, and it was confirmed that all the Pt was loaded. Pt: 50 wt%, Mn: 8.0 wt%, C: 42 wt% It was. Furthermore, the particle size of the catalyst was calculated from the peak position of the XRD Pt (111) plane (Scherrer formula), which was 4.9 nm, and the peak of the Pt (11) plane near 39 ° was shifted to the wide angle side. The solid solution of the added element was confirmed.

(比較例2)
比較例1で得た触媒を1.0N硝酸で攪拌した。攪拌は室温で2hr行った。攪拌した溶液をろ過し、ろ液の廃液分析(Mn定量)から、Pt:50wt%、Mn:1.8wt%、C:48.2wt%であった。
(Comparative Example 2)
The catalyst obtained in Comparative Example 1 was stirred with 1.0 N nitric acid. Stirring was performed at room temperature for 2 hours. The stirred solution was filtered, and it was Pt: 50 wt%, Mn: 1.8 wt%, and C: 48.2 wt% from waste liquid analysis (Mn determination) of the filtrate.

(比較例3)
市販品KetjenEC(商標名、ケッチェンブラックインターナショナル製)4.8gと硝酸MnをMn量が0.2gとなるように混合し、2hr攪拌した。この溶液に0.1Nのアンモニアで中和、担持することでカーボンブラックにMnを担持させた。これを100℃、5hrで熱処理しMn/Cの担体を得た。このMn/Cの酸処理を行わず、実施例1と同様な方法でPtMn/C触媒を得た。得られた触媒の物性はPt:50wt%、Mn:2.0wt%、C:48wt%であった。
(Comparative Example 3)
4.8 g of a commercial product KetjenEC (trade name, manufactured by Ketjen Black International) and Mn nitrate were mixed so that the amount of Mn was 0.2 g, and stirred for 2 hours. The solution was neutralized and supported with 0.1N ammonia to support Mn on carbon black. This was heat-treated at 100 ° C. for 5 hours to obtain a Mn / C support. A PtMn / C catalyst was obtained in the same manner as in Example 1 without performing this acid treatment of Mn / C. The physical properties of the obtained catalyst were Pt: 50 wt%, Mn: 2.0 wt%, and C: 48 wt%.

[性能評価]
(初期性能測定)
初期段階での触媒性能を比較するため初期電圧測定を以下に示すように実施した。単セルのセル温度を80℃に設定し、カソード側の電極に加温バブラを通過させた加湿空気をRH100、ストイキ比7.5、アノード側の電極に加温バブラを通過させた加湿水素をRH100、ストイキ比7.5で供給し、電子負荷を用いて電流電圧特性を測定した。各電極のPt量はともに0.3mg/cmとした。
[Performance evaluation]
(Initial performance measurement)
In order to compare the catalyst performance in the initial stage, the initial voltage measurement was performed as follows. The cell temperature of the single cell is set to 80 ° C., the humidified air that has passed the heating bubbler to the cathode side electrode is RH100, the stoichiometric ratio is 7.5, and the humidified hydrogen that has been passed through the heating bubbler to the anode side electrode is RH100 was supplied at a stoichiometric ratio of 7.5, and current-voltage characteristics were measured using an electronic load. The Pt amount of each electrode was 0.3 mg / cm 2 .

(耐久試験法)
初期電圧測定後、以下に示す条件で耐久試験(カーボン加速劣化試験)を実施した。単セルのセル温度を80℃に設定し、カソード側の電極に加温バブラを通過させた加湿空気をRH100,ストイキ比7.5、アノード側の電極に加温バブラを通過させた加湿水素をRH100、ストイキ比7.5で供給した。電流値をOCVと0.1A/cmで5秒毎に変動させ、2000hr後の0.1A/cmでの電圧特性を耐久後の性能とした。
(Durability test method)
After the initial voltage measurement, an endurance test (carbon accelerated deterioration test) was performed under the following conditions. The cell temperature of the single cell is set to 80 ° C., the humidified air that has passed the heating bubbler to the cathode side electrode is RH100, the stoichiometric ratio is 7.5, and the humidified hydrogen that has passed the heating bubbler to the anode side electrode is RH100 was supplied at a stoichiometric ratio of 7.5. Current value is varied every 5 seconds OCV and 0.1 A / cm 2 and the voltage characteristics at 0.1 A / cm 2 after 2000hr was performance after endurance.

表1に結果をまとめる。図1に、実施例及び比較例の耐久時間と電池電圧の関係を示す。   Table 1 summarizes the results. FIG. 1 shows the relationship between endurance time and battery voltage in Examples and Comparative Examples.

Figure 2010027506
Figure 2010027506

本発明の実施例1及び2の触媒が、初期発電性能及び長期発電運転後の性能低下抑制(耐久性)に優れているのに対して、比較例1〜3の触媒は特に耐久性に劣っている。   The catalysts of Examples 1 and 2 of the present invention are excellent in initial power generation performance and performance deterioration suppression (durability) after long-term power generation operation, whereas the catalysts of Comparative Examples 1 to 3 are particularly inferior in durability. ing.

本発明の触媒は、Mn/CにPtが合金化していることを特徴としており、従来のPtMn/Cとの違いのイメージ図で示す。図2は、実施例1及び2の触媒のイメージ図である。図3は、比較例1及び2の触媒のイメージ図である。図4は、比較例3の触媒のイメージ図である。   The catalyst of the present invention is characterized in that Pt is alloyed with Mn / C, and is shown in an image diagram of a difference from conventional PtMn / C. FIG. 2 is an image diagram of the catalysts of Examples 1 and 2. FIG. 3 is an image diagram of the catalysts of Comparative Examples 1 and 2. FIG. 4 is an image diagram of the catalyst of Comparative Example 3.

本発明のPtMn/CではカーボンとMnが複合されている状態にPtを合金化しているため、いわばアンカー効果によりPtMnがカーボン上にしっかりと固定される。この結果、図1に示されるように耐久試験後の性能低下が確認されなかった。即ち、Mnとカーボンが焼成により複合し、更にその上にPtが担持されている。又、水素バブリングと窒素バブリングを行うことで、活性化されたMnに選択的にPtが担持される。よって、Mnが溶け出しにくい構造となったためと考えられる。   In the PtMn / C of the present invention, since Pt is alloyed in a state where carbon and Mn are composited, the PtMn is firmly fixed on the carbon by the anchor effect. As a result, as shown in FIG. 1, no performance degradation after the durability test was confirmed. That is, Mn and carbon are combined by firing, and Pt is supported thereon. Further, Pt is selectively supported on the activated Mn by performing hydrogen bubbling and nitrogen bubbling. Therefore, it is considered that Mn is difficult to dissolve.

これに対して、従来のPtMn/CではPtMnがカーボン上に担持されている。そのため、実施例1、実施例2と比較すると溶け出しやすい構造であることから、合金崩壊での活性点の減少による性能低下が起こっていると考えられる。又、PtMnがカーボン上を横方向に移動してシンタリングを起こしやすいものと考えられる。   On the other hand, in conventional PtMn / C, PtMn is supported on carbon. Therefore, compared with Example 1 and Example 2, it is a structure which is easy to melt | dissolve, Therefore It is thought that the performance fall by the reduction | decrease of the active point by alloy collapse has occurred. Further, it is considered that PtMn tends to cause sintering by moving laterally on the carbon.

比較例3の、Mnとカーボンを焼成した後、酸処理を行わずPtを担持し合金化した触媒では、焼成後のMn/Cを酸処理していないため、複合化したMn/Cと複合化していないMn/Cが混在していることから、図1に示すような性能低下が起こったものと思われる。   In the catalyst of Comparative Example 3, in which Mn and carbon were calcined and then Pt was supported and alloyed without acid treatment, Mn / C after calcining was not acid-treated. Since Mn / C which is not converted is mixed, it is considered that the performance deterioration as shown in FIG. 1 has occurred.

実施例1及び2ではMnとカーボンが焼成により複合しているものを例とした。Mnをカーボンに担持したものは酸処理によってすべて溶解してしまうのに対して、焼成することによって複合化していることがわかる。さらに、Niなど焼成しても複合しない遷移金属もある。図5に、Mnと対比してNiをカーボンに担持した場合の洗浄時間と金属量の関係を示す。焼成温度は1000℃、酸は1.0N硝酸を用いた。図5の結果より、Niでは焼成してもカーボンと複合化しないことが分かる。   In Examples 1 and 2, Mn and carbon are combined by firing. It can be seen that Mn supported on carbon is completely dissolved by acid treatment, whereas it is compounded by firing. In addition, there are transition metals such as Ni that do not composite even when fired. FIG. 5 shows the relationship between the cleaning time and the amount of metal when Ni is supported on carbon as compared with Mn. The firing temperature was 1000 ° C., and the acid was 1.0N nitric acid. From the results of FIG. 5, it can be seen that Ni does not form a composite with carbon even when fired.

本発明の燃料電池用電極触媒は、従来の白金合金触媒より初期発電性能が向上(高活性)するとともに長期発電運転後の性能低下抑制(耐久性)を克服した。これにより、燃料電池の普及に貢献する。   The fuel cell electrode catalyst of the present invention has improved initial power generation performance (higher activity) than the conventional platinum alloy catalyst and overcame performance degradation suppression (durability) after long-term power generation operation. This contributes to the spread of fuel cells.

実施例及び比較例の耐久時間と電池電圧の関係を示す。The relationship of the endurance time and battery voltage of an Example and a comparative example is shown. 実施例1及び2の触媒のイメージ図である。It is an image figure of the catalyst of Example 1 and 2. FIG. 比較例1及び2の触媒のイメージ図である。It is an image figure of the catalyst of the comparative examples 1 and 2. 比較例3の触媒のイメージ図である。4 is an image diagram of a catalyst of Comparative Example 3. FIG. Mnと対比してNiをカーボンに担持した場合の洗浄時間と金属量の関係を示す。The relationship between the cleaning time and the amount of metal when Ni is supported on carbon as compared with Mn is shown.

Claims (6)

導電性炭素担体上に担持された貴金属−炭素と複合化しうる非貴金属合金からなる燃料電池用電極触媒であって、導電性炭素担体と非貴金属成分とが複合化され、且つ複合化した非貴金属成分と貴金属成分とが合金化されていることを特徴とする燃料電池用電極触媒。   A non-noble metal electrode catalyst for a fuel cell comprising a noble metal-carbon alloy capable of being combined with a noble metal-carbon supported on a conductive carbon support, wherein the conductive carbon support and a non-noble metal component are combined and combined An electrode catalyst for a fuel cell, wherein a component and a noble metal component are alloyed. 前記炭素と複合化しうる非貴金属が、マンガン(Mn)、クロム(Cr)、セリウム(Ce)、モリブデン(Mo)、鉄(Fe)、ニオブ(Nb)、シリコン(Si)、チタン(Ti)、タンタル(Ta)から選択される1種以上であることを特徴とする請求項1に記載の燃料電池用電極触媒。   Non-noble metals that can be combined with the carbon are manganese (Mn), chromium (Cr), cerium (Ce), molybdenum (Mo), iron (Fe), niobium (Nb), silicon (Si), titanium (Ti), The electrode catalyst for fuel cells according to claim 1, wherein the electrode catalyst is one or more selected from tantalum (Ta). 導電性炭素担体上に担持された貴金属−炭素と複合化しうる非貴金属合金からなる燃料電池用電極触媒の製造方法であって、導電性炭素担体と炭素を焼成して複合化しうる非貴金属成分とを複合化する第1工程と、第1工程で得られた複合化物を洗浄する第2工程と、複合化した非貴金属成分と貴金属成分を合金化する第3工程とを含む燃料電池用電極触媒の製造方法。   A method for producing an electrode catalyst for a fuel cell comprising a noble metal-alloy capable of being combined with a noble metal-carbon supported on a conductive carbon support, wherein the conductive carbon support and a non-noble metal component capable of being composited by firing carbon A fuel cell electrode catalyst, comprising: a first step of compounding the second step; a second step of cleaning the composite obtained in the first step; and a third step of alloying the combined non-noble metal component and noble metal component. Manufacturing method. 前記第3工程時に、水素バブリング及び窒素バブリングを行うことを特徴とする請求項3に記載の燃料電池用電極触媒の製造方法。   The method for producing a fuel cell electrode catalyst according to claim 3, wherein hydrogen bubbling and nitrogen bubbling are performed in the third step. 前記炭素と複合化しうる非貴金属が、マンガン(Mn)、クロム(Cr)、セリウム(Ce)、モリブデン(Mo)、鉄(Fe)、ニオブ(Nb)、シリコン(Si)、チタン(Ti)、タンタル(Ta)から選択される1種以上であることを特徴とする請求項3又は4に記載の燃料電池用電極触媒の製造方法。   Non-noble metals that can be combined with the carbon are manganese (Mn), chromium (Cr), cerium (Ce), molybdenum (Mo), iron (Fe), niobium (Nb), silicon (Si), titanium (Ti), The method for producing an electrode catalyst for a fuel cell according to claim 3 or 4, wherein the method is one or more selected from tantalum (Ta). 請求項1又は2に記載の燃料電池用電極触媒をアノード触媒及び/又はカソード触媒として備えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the fuel cell electrode catalyst according to claim 1 or 2 as an anode catalyst and / or a cathode catalyst.
JP2008190013A 2008-07-23 2008-07-23 Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same Pending JP2010027506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190013A JP2010027506A (en) 2008-07-23 2008-07-23 Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190013A JP2010027506A (en) 2008-07-23 2008-07-23 Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2010027506A true JP2010027506A (en) 2010-02-04

Family

ID=41733127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190013A Pending JP2010027506A (en) 2008-07-23 2008-07-23 Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2010027506A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137952A (en) * 2011-12-28 2013-07-11 Equos Research Co Ltd Method for manufacturing catalytic layer for fuel cell
JP5701466B1 (en) * 2013-12-27 2015-04-15 昭和電工株式会社 Method for producing electrode catalyst for fuel cell
WO2015098181A1 (en) * 2013-12-27 2015-07-02 昭和電工株式会社 Method for producing electrode catalyst for fuel cells
CN115084543A (en) * 2022-05-26 2022-09-20 深圳航天科技创新研究院 Composite catalyst for alkaline fuel cell, preparation method of composite catalyst and alkaline fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137952A (en) * 2011-12-28 2013-07-11 Equos Research Co Ltd Method for manufacturing catalytic layer for fuel cell
JP5701466B1 (en) * 2013-12-27 2015-04-15 昭和電工株式会社 Method for producing electrode catalyst for fuel cell
WO2015098181A1 (en) * 2013-12-27 2015-07-02 昭和電工株式会社 Method for producing electrode catalyst for fuel cells
CN105794030A (en) * 2013-12-27 2016-07-20 昭和电工株式会社 Method for producing electrode catalyst for fuel cells
EP3089249A4 (en) * 2013-12-27 2017-06-21 Showa Denko K.K. Method for producing electrode catalyst for fuel cells
US9947940B2 (en) 2013-12-27 2018-04-17 Showa Denko K.K. Method for producing fuel cell electrode catalyst
CN105794030B (en) * 2013-12-27 2019-04-26 昭和电工株式会社 The manufacturing method of electrode catalyst for fuel cell
CN115084543A (en) * 2022-05-26 2022-09-20 深圳航天科技创新研究院 Composite catalyst for alkaline fuel cell, preparation method of composite catalyst and alkaline fuel cell

Similar Documents

Publication Publication Date Title
JP6352955B2 (en) Fuel cell electrode catalyst and method for producing fuel cell electrode catalyst
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
WO2009096356A1 (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
Lee et al. Comparison of the stabilities and activities of Pt–Ru/C and Pt3–Sn/C electrocatalysts synthesized by the polyol method for methanol electro-oxidation reaction
JP5893305B2 (en) Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
Delpeuch et al. Influence of H-and OH-adsorbates on the ethanol oxidation reaction–a DEMS study
JP2010102889A (en) Electrode catalyst for fuel cell
Wang et al. Au–Cu–Pt ternary catalyst fabricated by electrodeposition and galvanic replacement with superior methanol electrooxidation activity
JP2009208070A (en) Electrode catalyst for fuel cells, method for producing the same, and electrode for fuel cells
JP4785757B2 (en) Method for producing noble metal-supported electrode catalyst and noble metal-supported electrode catalyst obtained by the production method
Han et al. Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells
JP2007112696A (en) Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cell
JP2011150867A (en) Manufacturing method of ternary system electrode catalyst for fuel cell, and solid polymer fuel cell using the same
JP2011014475A (en) Electrode catalyst for fuel cell, manufacturing method thereof, and solid polymer fuel cell
JP6460975B2 (en) Fuel cell electrode catalyst
JP2010027506A (en) Fuel cell electrode catalyst and its manufacturing method, and solid polymer fuel cell using the same
JP2009193956A (en) Electrode catalyst for fuel cell, and solid polymer fuel cell using the same
Li et al. New non-platinum Ir–V–Mo electro-catalyst, catalytic activity and CO tolerance in hydrogen oxidation reaction
WO2015098181A1 (en) Method for producing electrode catalyst for fuel cells
JP2007115668A (en) Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode
JP2013164929A (en) Method of producing electrode catalyst for fuel cell
JP2007324092A (en) Manufacturing method of platinum or platinum alloy supported catalyst
JP2010102911A (en) Electrode catalyst for solid polymer fuel cell
JP2017016895A (en) Catalyst particle and catalyst for solid polymer type fuel battery, and method of manufacturing catalyst particle
JP2004335328A (en) Electrode catalyst for solid polymer type fuel cell