JP2011150867A - Manufacturing method of ternary system electrode catalyst for fuel cell, and solid polymer fuel cell using the same - Google Patents

Manufacturing method of ternary system electrode catalyst for fuel cell, and solid polymer fuel cell using the same Download PDF

Info

Publication number
JP2011150867A
JP2011150867A JP2010010634A JP2010010634A JP2011150867A JP 2011150867 A JP2011150867 A JP 2011150867A JP 2010010634 A JP2010010634 A JP 2010010634A JP 2010010634 A JP2010010634 A JP 2010010634A JP 2011150867 A JP2011150867 A JP 2011150867A
Authority
JP
Japan
Prior art keywords
catalyst
cobalt
fuel cell
metal
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010010634A
Other languages
Japanese (ja)
Other versions
JP5489740B2 (en
Inventor
Nobuaki Mizutani
宣明 水谷
Yosuke Horiuchi
洋輔 堀内
Tomoaki Terada
智明 寺田
Takahiro Nagata
貴寛 永田
Akihiro Hori
彰宏 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to JP2010010634A priority Critical patent/JP5489740B2/en
Publication of JP2011150867A publication Critical patent/JP2011150867A/en
Application granted granted Critical
Publication of JP5489740B2 publication Critical patent/JP5489740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To aim at reduction of a use volume of expensive platinum, by providing a manufacturing method of electrode catalyst for a fuel cell of high four-electron reduction performance and high activity. <P>SOLUTION: In the manufacturing method of ternary system electrode catalyst for the fuel cell with catalyst components consisting of platinum, cobalt, and at least another kind of metal M with a melting point lower than that of cobalt carried on a carbon carrier, a composition (atomic ratio) of platinum:cobalt:the metal M in the catalyst components is to be 1:0.11 to 0.19:0.02 to 0.11. The platinum, the cobalt and the metal M are to be alloyed at a temperature higher than the melting point of the metal M and lower than the melting point of cobalt. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、白金合金触媒の性能向上を図った燃料電池用3元系電極触媒の製造方法、及びそれを用いた固体高分子型燃料電池に関する。   The present invention relates to a method for producing a ternary electrode catalyst for a fuel cell that improves the performance of a platinum alloy catalyst, and a polymer electrolyte fuel cell using the same.

固体高分子型燃料電池に使用されるガス拡散性の電極は、イオン交換樹脂で被覆された触媒担持カーボンを含有する触媒層と、この触媒層に反応ガスを供給すると共に電子を集電するガス拡散層とからなる。そして、触媒層内には、構成材料となるカーボンの二次粒子間或いは三次粒子間に形成される微小な細孔からなる空隙部が存在し、当該空隙部が反応ガスの拡散流路として機能している。   A gas diffusible electrode used in a polymer electrolyte fuel cell includes a catalyst layer containing catalyst-supported carbon coated with an ion exchange resin, and a gas that supplies a reaction gas to the catalyst layer and collects electrons. It consists of a diffusion layer. In the catalyst layer, there are voids composed of fine pores formed between carbon secondary particles or tertiary particles as a constituent material, and the voids function as a diffusion flow path for the reaction gas. is doing.

従来、高分子電解質型燃料電池の電極触媒のカソード及びアノード触媒としては、白金又は白金合金等の貴金属をカーボンブラックに担持した触媒が用いられてきた。白金担持カーボンブラックは、塩化白金酸水溶液に、亜硫酸水素ナトリウムを加えた後、過酸化水素水と反応させ、生じた白金コロイドをカーボンブラックに担持させ、洗浄後、必要に応じて熱処理することにより調製するのが一般的である。高分子電解質型燃料電池の電極は、白金担持カーボンブラックを高分子電解質溶液に分散させてインクを調製し、そのインクをカーボンペーパーなどのガス拡散基材に塗布し、乾燥することにより作製される。この2枚の電極で高分子電解質膜を挟み、ホットプレスをすることにより電解質膜−電極接合体(MEA)が組み立てられる。   Conventionally, as a cathode and an anode catalyst of an electrode catalyst of a polymer electrolyte fuel cell, a catalyst in which a noble metal such as platinum or a platinum alloy is supported on carbon black has been used. Platinum-supported carbon black is obtained by adding sodium hydrogen sulfite to a chloroplatinic acid aqueous solution, then reacting with hydrogen peroxide solution, supporting the resulting platinum colloid on carbon black, washing, and heat-treating as necessary. It is common to prepare. The electrode of a polymer electrolyte fuel cell is prepared by dispersing platinum-supported carbon black in a polymer electrolyte solution, preparing an ink, applying the ink to a gas diffusion substrate such as carbon paper, and drying. . An electrolyte membrane-electrode assembly (MEA) is assembled by sandwiching a polymer electrolyte membrane between these two electrodes and performing hot pressing.

白金は高価な貴金属であり、少ない担持量で十分な性能を発揮させることが望まれている。そのため、より少量で触媒活性を高める検討がなされており、例えば、下記特許文献1には、運転中の白金粒子の成長が抑制され、高い耐久性能を有する燃料電池用電極触媒を提供することを目的として、導電性炭素材料、前記導電性炭素材料に担持された、酸性条件下で白金より酸化されにくい金属粒子、および前記金属粒子の外表面を覆う白金からなる電極触媒が開示されている。具体的には、金属粒子として、金、クロム、鉄、ニッケル、コバルト、チタン、バナジウム、銅、およびマンガンより選ばれた少なくとも一種の金属と白金とからなる合金が例示されている。   Platinum is an expensive noble metal and it is desired to exhibit sufficient performance with a small amount of support. Therefore, studies have been made to increase the catalytic activity with a smaller amount. For example, Patent Document 1 below provides a fuel cell electrode catalyst that suppresses the growth of platinum particles during operation and has high durability performance. As an object, there is disclosed an electrocatalyst composed of a conductive carbon material, metal particles supported on the conductive carbon material that are less likely to be oxidized than platinum under acidic conditions, and platinum covering the outer surface of the metal particles. Specifically, examples of the metal particles include an alloy made of platinum and at least one metal selected from gold, chromium, iron, nickel, cobalt, titanium, vanadium, copper, and manganese.

また、下記特許文献2には、優れたカソード分極特性を有し、高い電池出力を得ることを目的として、カソードの触媒層に白金及び白金合金からなる群から選ばれる金属触媒に加えて所定量の鉄又はクロムを有する金属錯体を含有させることが記載されており、これによりカソードにおける分極特性を向上させている。具体的には、アノードと、カソードと、アノードとカソードとの間に配置された高分子電解質膜とを備えた固体高分子型燃料電池であって、カソードが、ガス拡散層と、当該ガス拡散層と高分子電解質膜との間に配置される触媒層とを備えており、白金及び白金合金からなる群から選ばれる貴金属触媒と、鉄又はクロムを含む金属錯体とが前記触媒層に含有されており、かつ、金属錯体は、当該金属錯体と貴金属触媒との合量の1〜40モル%含まれる。   In addition, Patent Document 2 listed below has a predetermined amount in addition to a metal catalyst selected from the group consisting of platinum and a platinum alloy in the cathode catalyst layer for the purpose of obtaining excellent battery polarization characteristics and high battery output. Incorporation of a metal complex having iron or chromium is described, thereby improving the polarization characteristics of the cathode. Specifically, a solid polymer fuel cell comprising an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, the cathode comprising a gas diffusion layer and the gas diffusion layer A catalyst layer disposed between the layer and the polymer electrolyte membrane, wherein the catalyst layer contains a noble metal catalyst selected from the group consisting of platinum and a platinum alloy, and a metal complex containing iron or chromium. In addition, the metal complex is contained in an amount of 1 to 40 mol% of the total amount of the metal complex and the noble metal catalyst.

更に、下記特許文献3には、カーボン担体上に白金−金合金を析出させ、次いでニッケル、コバルト及びマンガンから選択される2種以上の金属の有機酸アミンを添加し且つ低温で加熱して、白金−金合金とニッケル、コバルト及びマンガンから選択される2種以上の金属を合金させることによって得られる白金合金触媒が開示されている。なお、特許文献3で具体的に開示されている触媒成分は、白金:コバルト:金:マンガン=40〜90:4〜28:1〜8:4〜28である。   Furthermore, in Patent Document 3 below, a platinum-gold alloy is deposited on a carbon support, and then an organic acid amine of two or more metals selected from nickel, cobalt and manganese is added and heated at a low temperature, A platinum alloy catalyst obtained by alloying a platinum-gold alloy with two or more metals selected from nickel, cobalt and manganese is disclosed. In addition, the catalyst component specifically disclosed in Patent Document 3 is platinum: cobalt: gold: manganese = 40 to 90: 4 to 28: 1 to 8: 4 to 28.

特開2002−289208号公報Japanese Patent Laid-Open No. 2002-289208 特開2002−15744号公報JP 2002-15744 A 特開平4−141236号公報JP-A-4-141236

特許文献1、2に記載の触媒は、四電子還元性能が十分ではなく、より高性能の触媒の開発が望まれていた。   The catalysts described in Patent Documents 1 and 2 have insufficient four-electron reduction performance, and the development of higher performance catalysts has been desired.

また、コバルトは電気特性がよく、従来から合金触媒として利用されている。しかしコバルトの融点が高いため、白金と合金化するためには大量のエネルギーが必要であり、さらに高融点であるため白金と混合しにくい。また大量のエネルギーを付与する際、高温で固溶化すると、触媒金属の粒径が大きくなるため発電性能が低下する。よって、特許文献3に記載の白金合金触媒の製造方法では、大量のエネルギーを必要とする上に、合金化が十分でなく、触媒活性も高くなかった。   Cobalt has good electrical characteristics and has been conventionally used as an alloy catalyst. However, since the melting point of cobalt is high, a large amount of energy is required for alloying with platinum, and since it has a high melting point, it is difficult to mix with platinum. In addition, when applying a large amount of energy, if the solid solution is formed at a high temperature, the particle size of the catalyst metal becomes large, so that the power generation performance decreases. Therefore, in the method for producing a platinum alloy catalyst described in Patent Document 3, a large amount of energy is required, alloying is not sufficient, and catalytic activity is not high.

本発明は、白金、コバルト、及び第3金属Mとからなる触媒成分がカーボン担体上に担持された燃料電池用3元系電極触媒の、少ないエネルギーで合金化を達成し、得られた燃料電池用触媒を高性能とする製造方法を提供することを目的とする。   The present invention achieves alloying of a ternary electrode catalyst for a fuel cell in which a catalyst component composed of platinum, cobalt, and a third metal M is supported on a carbon support with a small amount of energy. It aims at providing the manufacturing method which makes the catalyst for high performance high performance.

本発明者らは、特定の第3金属Mを選択し、且つ特定の温度で合金化することで上記課題が解決されることを見出し、本発明に到達した。   The present inventors have found that the above problem can be solved by selecting a specific third metal M and alloying at a specific temperature, and have reached the present invention.

即ち、第1に、本発明は、白金、コバルト、及びコバルトより融点の低い少なくとも1種の金属Mとからなる触媒成分がカーボン担体上に担持された燃料電池用3元系電極触媒の製造方法の発明であって、触媒成分中の白金:コバルト:金属Mの組成(原子割合)を1:0.11〜0.19:0.02〜0.11とし、これら白金、コバルト及び金属Mを、金属Mの融点より高くコバルトの融点より低い温度で合金化することを特徴とする。   That is, first, the present invention relates to a method for producing a ternary electrode catalyst for a fuel cell in which a catalyst component comprising platinum, cobalt, and at least one metal M having a melting point lower than cobalt is supported on a carbon support. The composition (atomic ratio) of platinum: cobalt: metal M in the catalyst component is 1: 0.11-0.19: 0.02-0.11, and these platinum, cobalt, and metal M are And alloying at a temperature higher than the melting point of the metal M and lower than the melting point of cobalt.

本発明により製造された燃料電池用3元系電極触媒は十分に合金化され、触媒成分の粒径が肥大化していないことから、発電性能に優れている。つまり、コバルトより融点の低い金属Mを利用し、金属Mの融点より高くかつコバルトの融点より低い温度で処理することで、液体化した金属Mがコバルトを固溶化し、更に白金を固溶化することで3元系合金が得られ、低エネルギー(低温)で3元系触媒を作製することかできる。この結果、触媒成分の粒径が増大することが防がれるため、発電性能が向上する。   The ternary electrode catalyst for fuel cells produced according to the present invention is sufficiently alloyed and has excellent power generation performance because the particle size of the catalyst component is not enlarged. That is, by using a metal M having a melting point lower than that of cobalt and processing at a temperature higher than the melting point of the metal M and lower than the melting point of cobalt, the liquefied metal M solidifies the cobalt and further solidifies the platinum. Thus, a ternary alloy can be obtained, and a ternary catalyst can be produced with low energy (low temperature). As a result, the particle size of the catalyst component is prevented from increasing, and the power generation performance is improved.

また、コバルトと金属Mのモル比が1:9.5〜1:1であるとき、発電特性が向上する3元系電極触媒が得られ、白金の使用量を低減することができる。コバルトと金属Mのモル比が1:9.5未満のとき(=コバルトの量が少ないとき)は、活性に寄与する金属が低下するため、電気特性が低下する。コバルトと金属Mのモル比が1:1より大きいとき(=コバルトの量が多いとき)は、コバルトを固溶化できる金属Mの量が少ないため、コバルト全てを固溶化することができず、さらには白金全てを固溶化することができないため、3元系触媒としての効果が得られない。   Further, when the molar ratio of cobalt to metal M is 1: 9.5 to 1: 1, a ternary electrode catalyst with improved power generation characteristics is obtained, and the amount of platinum used can be reduced. When the molar ratio of cobalt to metal M is less than 1: 9.5 (= when the amount of cobalt is small), the metal that contributes to the activity decreases, so the electrical characteristics deteriorate. When the molar ratio of cobalt to metal M is greater than 1: 1 (= when the amount of cobalt is large), since the amount of metal M that can solidify cobalt is small, all of cobalt cannot be solidified, Cannot solidify all platinum, so that the effect as a three-way catalyst cannot be obtained.

本発明で製造する3元系電極触媒の触媒成分の1つである金属Mはコバルトより融点の低い金属から選択される。コバルトの融点が1495℃であることから、マンガン(融点:1246℃)、銅(融点:1084.4℃)、金(融点:1064.2℃)、銀(融点:961℃)、ニッケル(融点:1455℃)、及び亜鉛(融点:419.5℃)などが好ましく例示される。なお、本発明は燃料電池用3元系電極触媒の製造方法にかかるものであるが、金属Mは1種以上用いてもよい。   The metal M, which is one of the catalyst components of the ternary electrode catalyst produced in the present invention, is selected from metals having a melting point lower than that of cobalt. Since the melting point of cobalt is 1495 ° C., manganese (melting point: 1246 ° C.), copper (melting point: 1084.4 ° C.), gold (melting point: 1064.2 ° C.), silver (melting point: 961 ° C.), nickel (melting point) : 1455 ° C.) and zinc (melting point: 419.5 ° C.). In addition, although this invention concerns on the manufacturing method of the ternary system electrode catalyst for fuel cells, you may use 1 or more types of the metal M. FIG.

本発明では、上記金属Mを用いた場合、合金化温度として962〜1495℃が具体的範囲として好ましい。   In the present invention, when the metal M is used, the alloying temperature is preferably 962-1495 ° C. as a specific range.

第2に、本発明は、上記の方法により製造された燃料電池用電極触媒を備えた固体高分子型燃料電池に関する。   Secondly, the present invention relates to a polymer electrolyte fuel cell comprising a fuel cell electrode catalyst produced by the above method.

本発明の燃料電池用電極触媒は、従来の白金合金触媒と比べて、四電子還元性能が高く高活性である。   The electrode catalyst for fuel cells of the present invention has high four-electron reduction performance and high activity as compared with conventional platinum alloy catalysts.

実施例と比較例で用いたPtとCo以外の金属の融点を示す。The melting points of metals other than Pt and Co used in Examples and Comparative Examples are shown. 金属種と初期性能の結果を示す。The metal species and initial performance results are shown. Co:Mnの比率と触媒性能の関係を示す。The relationship between the ratio of Co: Mn and catalyst performance is shown.

以下、実施例および比較例によって本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

[実施例:Pt−Co−Mn/C触媒の調製]
下記の手順により、Pt−Co−Mn/C触媒を調製した。
[実施例1]
市販品KetjenEC(ケッチェンブラックインターナショナル製)5.0gと白金4.54gを含むヘキサヒドロキソ白金硝酸溶液と硝酸CoをCo量0.4gとし、硝酸MnをMn量0.08gとなるように純水0.5Lに加え分散させた。これに0.1Nアンモニア約100mLを添加してpHを約10とし、それぞれ水酸化物を形成させカーボン上に析出させた。
[Example: Preparation of Pt-Co-Mn / C catalyst]
A Pt—Co—Mn / C catalyst was prepared by the following procedure.
[Example 1]
Commercially available KetjenEC (made by Ketjen Black International) 5.0 g of hexahydroxo platinum nitric acid solution containing 4.54 g of platinum and pure water so that Co nitrate has a Co content of 0.4 g and Mn nitrate has a Mn content of 0.08 g. Added to 0.5 L and dispersed. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and a hydroxide was formed and precipitated on carbon.

この分散液をろ過し、得られた粉末を100℃で10時間真空乾燥させた。次に水素ガス中で400℃、2時間保持して還元処理した後、窒素ガス中で1000℃、10時間保持して合金化し、触媒粉末を得た。   The dispersion was filtered, and the resulting powder was vacuum-dried at 100 ° C. for 10 hours. Next, after reducing in hydrogen gas at 400 ° C. for 2 hours, reduction treatment was performed in nitrogen gas at 1000 ° C. for 10 hours to obtain an alloy powder.

得られた触媒粉末の廃液分析からはPtは検出されず、すべてのPtが担持されたことを確認した。この触媒粉末を1.0N硝酸で攪拌した。攪拌は室温で2時間行った。攪拌した溶液をろ過し、ろ液の廃液分析(Pt、Co、Mnの定量)から、Pt:45.40wt%、Co:1.57wt%、Mn:1.43wt%、C:51.00wt%であった。ここで、コバルトとマンガンをモル比で比較すると1.0:1.0であった。さらに、触媒の粒径はXRDのPt(111)面のピーク位置から算出(シェラー式)し5.0nmであった。添加元素の固溶はEDX分析での粒子の組成から確認した。   Pt was not detected from the waste liquid analysis of the obtained catalyst powder, and it was confirmed that all Pt was supported. The catalyst powder was stirred with 1.0N nitric acid. Stirring was performed at room temperature for 2 hours. The stirred solution was filtered, and from the waste liquid analysis of the filtrate (quantitative determination of Pt, Co, Mn), Pt: 45.40 wt%, Co: 1.57 wt%, Mn: 1.43 wt%, C: 51.00 wt% Met. Here, the molar ratio of cobalt and manganese was 1.0: 1.0. Further, the particle diameter of the catalyst was 5.0 nm as calculated from the peak position of the XRD Pt (111) plane (Scherrer equation). The solid solution of the additive element was confirmed from the composition of the particles by EDX analysis.

[実施例2]
硝酸Mnの添加量を低減させ、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:45.50wt%、Co:1.75wt%、Mn:1.25wt%、C:51.50wt%であった。ここでコバルトとマンガンをモル比で比較すると1.3:1.0であった。
[Example 2]
The amount of Mn nitrate added was reduced, and a catalyst was produced in the same manner as the catalyst production of Example 1. The obtained catalyst composition was Pt: 45.50 wt%, Co: 1.75 wt%, Mn: 1.25 wt%, C: 51.50 wt%. Here, when the molar ratio of cobalt and manganese was compared, it was 1.3: 1.0.

[実施例3]
硝酸Mnの添加量を低減させ、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:46.50wt%、Co:2.6wt%、Mn:0.4wt%、C:50.50wt%であった。ここでコバルトとマンガンをモル比で比較すると6.1:1.0であった。
[Example 3]
The amount of Mn nitrate added was reduced, and a catalyst was produced in the same manner as the catalyst production of Example 1. The obtained catalyst composition was Pt: 46.50 wt%, Co: 2.6 wt%, Mn: 0.4 wt%, C: 50.50 wt%. Here, when the molar ratio of cobalt and manganese was compared, it was 6.1: 1.0.

[実施例4]
硝酸Mnの添加量を低減させ、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:46.70wt%、Co:2,72wt%、Mn:0.28wt%、C:50.30wt%であった。ここでコバルトとマンガンをモル比で比較すると9.1:1.0であった。
[Example 4]
The amount of Mn nitrate added was reduced, and a catalyst was produced in the same manner as the catalyst production of Example 1. The obtained catalyst composition was Pt: 46.70 wt%, Co: 2,72 wt%, Mn: 0.28 wt%, C: 50.30 wt%. Here, when the molar ratio of cobalt and manganese was compared, it was 9.1: 1.0.

[比較例1]
硝酸Coの添加量を低減させ、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:46.50wt%、Co:0.3wt%、Mn:2.7wt%、C:50.50wt%であった。ここでコバルトとマンガンをモル比で比較すると0.1:1.0であった。
[Comparative Example 1]
The amount of Co nitrate added was reduced, and a catalyst was produced in the same manner as the catalyst production in Example 1. The obtained catalyst composition was Pt: 46.50 wt%, Co: 0.3 wt%, Mn: 2.7 wt%, and C: 50.50 wt%. Here, the molar ratio of cobalt and manganese was 0.1: 1.0.

[比較例2]
硝酸Coの添加量を低減させ、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:46.00wt%、Co:1.35wt%、Mn:1.65wt%、C:51.00wt%であった。ここでコバルトとマンガンをモル比で比較すると0.8:1.0であった。
[Comparative Example 2]
The amount of Co nitrate added was reduced, and a catalyst was produced in the same manner as the catalyst production in Example 1. The obtained catalyst composition was Pt: 46.00 wt%, Co: 1.35 wt%, Mn: 1.65 wt%, C: 51.00 wt%. Here, when the molar ratio of cobalt and manganese was compared, it was 0.8: 1.0.

[比較例3]
硝酸Mnの添加量を低減させ、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:47.00wt%、Co:2.75wt%、Mn:0.25wt%、C:50.00wt%であった。ここでコバルトとマンガンをモル比で比較すると10.3:1.0であった。
[Comparative Example 3]
The amount of Mn nitrate added was reduced, and a catalyst was produced in the same manner as the catalyst production of Example 1. The obtained catalyst composition was Pt: 47.00 wt%, Co: 2.75 wt%, Mn: 0.25 wt%, and C: 50.00 wt%. Here, when comparing the molar ratio of cobalt and manganese, it was 10.3: 1.0.

[比較例4]
硝酸Mnの添加量を低減させ、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:45.40wt%、Co:2.78wt%、Mn:0.22wt%、C:51.60wt%であった。ここでコバルトとマンガンをモル比で比較すると11.8:1.0であった。
[Comparative Example 4]
The amount of Mn nitrate added was reduced, and a catalyst was produced in the same manner as the catalyst production of Example 1. The obtained catalyst composition was Pt: 45.40 wt%, Co: 2.78 wt%, Mn: 0.22 wt%, C: 51.60 wt%. Here, when the molar ratio of cobalt and manganese was compared, it was 11.8: 1.0.

[実施例5]
硝酸Mnを塩化Auとし、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:45.80wt%、Co:1.84wt%、Au:1.16wt%、C:51.20wt%であった。ここでコバルトと金をモル比で比較すると5.3:1.0であった。
[Example 5]
A catalyst was prepared in the same manner as in Example 1 except that Mn nitrate was Au chloride. The obtained catalyst composition was Pt: 45.80 wt%, Co: 1.84 wt%, Au: 1.16 wt%, and C: 51.20 wt%. Here, when the molar ratio of cobalt and gold was compared, it was 5.3: 1.0.

[実施例6]
硝酸Mnを硫酸Cuとし、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:45.40wt%、Co:2.48wt%、Cu:0.52wt%、C:51.60wt%であった。ここでコバルトと銅をモル比で比較すると5.1.:1.0であった。
[Example 6]
A catalyst was prepared in the same manner as the catalyst preparation in Example 1, except that Mn nitrate was Cu sulfate. The obtained catalyst composition was Pt: 45.40 wt%, Co: 2.48 wt%, Cu: 0.52 wt%, C: 51.60 wt%. Here, when comparing the molar ratio of cobalt and copper, 5.1. : 1.0.

[実施例7]
硝酸Mnを硝酸Agとし、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:45.90wt%、Co:2.24wt%、Ag:0.76wt%、C:51.10wt%であった。ここでコバルトと銀をモル比で比較すると5.4:1.0であった。
[Example 7]
A catalyst was prepared in the same manner as in Example 1 except that Mn nitrate was Ag nitrate. The obtained catalyst composition was Pt: 45.90 wt%, Co: 2.24 wt%, Ag: 0.76 wt%, and C: 51.10 wt%. Here, when the molar ratio of cobalt and silver was compared, it was 5.4: 1.0.

[比較例5]
硝酸Mnを硝酸Feとし、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:47.00wt%、Co:2.53wt%、Fe:0.47wt%、C:50.00wt%であった。ここでコバルトと鉄をモル比で比較すると5.1:1.0であった。
[Comparative Example 5]
A catalyst was prepared in the same manner as in the preparation of the catalyst of Example 1 using Mn nitrate as Fe nitrate. The obtained catalyst composition was Pt: 47.00 wt%, Co: 2.53 wt%, Fe: 0.47 wt%, and C: 50.00 wt%. Here, when the molar ratio of cobalt and iron was compared, it was 5.1: 1.0.

[比較例6]
硝酸Mnを硝酸Crとし、実施例1の触媒作製と同様な方法で触媒を作製した。得られた触媒組成はPt:46.30wt%、Co:2.56wt%、Cr:0.44wt%、C:50.70wt%であった。ここでコバルトとクロムをモル比で比較すると5.1:1.0であった。
[Comparative Example 6]
A catalyst was prepared in the same manner as the catalyst preparation in Example 1, except that Mn nitrate was Cr nitrate. The obtained catalyst composition was Pt: 46.30 wt%, Co: 2.56 wt%, Cr: 0.44 wt%, C: 50.70 wt%. Here, when the molar ratio of cobalt and chromium was compared, it was 5.1: 1.0.

[比較例7]
硝酸Mnを硝酸Rhとし、実施例1の触媒作製と同様な方法で触媒を作製した。触媒組成はPt:47.30wt%、Co:2.22wt%、Rh:0.78wt%、C:49.30wt%であった。ここでコバルトとロジウムをモル比で比較すると5.3:1.0であった。
[Comparative Example 7]
A catalyst was prepared in the same manner as in Example 1 except that Mn nitrate was Rh nitrate. The catalyst composition was Pt: 47.30 wt%, Co: 2.22 wt%, Rh: 0.78 wt%, C: 49.30 wt%. Here, the molar ratio of cobalt and rhodium was 5.3: 1.0.

[初期性能測定]
初期段階での触媒性能を比較するため初期電圧測定を以下に示すように実施した。単セルのセル温度を80℃に設定し、カソード側の電極に加湿バブラを通過させた加湿空気をRH100、ストイキ比7.5、アノード側の電極に加湿バブラを通過させた加湿水素をRH100、ストイキ比7.5で供給し、電子負荷を用いて電流電圧特性を測定した。各電極のPt量はともに0.3mg/cmとした。
[Initial performance measurement]
In order to compare the catalyst performance in the initial stage, the initial voltage measurement was performed as follows. The cell temperature of the single cell was set to 80 ° C., the humidified air that passed the humidified bubbler through the cathode side electrode was RH100, the stoichiometric ratio was 7.5, and the humidified hydrogen that was passed through the humidified bubbler through the anode side electrode was RH100, The stoichiometric ratio was 7.5 and the current-voltage characteristics were measured using an electronic load. The Pt amount of each electrode was 0.3 mg / cm 2 .

表1に、上記実施例1〜7、比較例1〜7について、触媒組成とその数値処理結果、及び電池性能をまとめる。   Table 1 summarizes the catalyst composition, numerical processing results, and battery performance for Examples 1 to 7 and Comparative Examples 1 to 7.

Figure 2011150867
Figure 2011150867

図1に、実施例と比較例で用いたPtとCo以外の金属の融点を示す。3元系合金化の課題は3つの元素が完全に固溶することである。本発明ではPtとCoの高活性種に第3の元素を合金化させることを特徴としている。ここで、第3の金属Mとして、Coより融点の低い金属を選択することで、低融点で且つ3つの元素を固溶させ、高活性な触媒を得ることができる。   FIG. 1 shows melting points of metals other than Pt and Co used in Examples and Comparative Examples. The problem of ternary alloying is that the three elements are completely dissolved. The present invention is characterized in that the third element is alloyed with a highly active species of Pt and Co. Here, by selecting a metal having a melting point lower than that of Co as the third metal M, it is possible to obtain a highly active catalyst having a low melting point and solid solution of three elements.

次にPtとCoの高活性種に第3の元素を合金化させた触媒の評価結果を示す。サンプルは表1より、実施例3、4、5、6、比較例5、6、7を選んだ。図2に、金属種と初期性能の結果を示す。なお、サンプル間の評価はCo:金属M=5:1を狙って作製した。比率の違いによる性能差が起こらない範囲で測定した。   Next, the evaluation results of the catalyst in which the third element is alloyed with the highly active species of Pt and Co are shown. From Table 1, Examples 3, 4, 5, 6 and Comparative Examples 5, 6, 7 were selected from Table 1. FIG. 2 shows the results of the metal species and initial performance. The evaluation between samples was made with the aim of Co: metal M = 5: 1. Measurements were made in a range where there was no difference in performance due to the difference in ratio.

図2の結果、図1に示すCoよりも低融点の金属では高活性な触媒であることがわかる。3元合金の合金化効果によるものと推測される。   2 shows that a metal having a lower melting point than that of Co shown in FIG. 1 is a highly active catalyst. This is presumably due to the alloying effect of the ternary alloy.

また、表2に、PtとCoとMnを固定し、Co:Mnの比率を変化させた触媒の性能を調べた。図3に、Co:Mnの比率と触媒性能の関係を示す。   In Table 2, the performance of the catalyst in which Pt, Co, and Mn were fixed and the ratio of Co: Mn was changed was examined. FIG. 3 shows the relationship between the Co: Mn ratio and the catalyst performance.

Figure 2011150867
Figure 2011150867

表2及び図3から、Co:Mnの比率が1:1〜9.5:1の範囲で特異的に高性能を得ることができることが分かる。   It can be seen from Table 2 and FIG. 3 that high performance can be obtained specifically in the range of Co: Mn ratio of 1: 1 to 9.5: 1.

本発明の燃料電池用電極触媒は、四電子還元性能が高く高活性であり、高価な白金使用量の低減に役立つ。これにより、燃料電池の実用化と普及に貢献する。   The fuel cell electrode catalyst of the present invention has high four-electron reduction performance and high activity, and is useful for reducing the amount of expensive platinum used. This contributes to the practical application and spread of fuel cells.

Claims (4)

白金、コバルト、及びコバルトより融点の低い少なくとも1種の金属Mからなる触媒成分がカーボン担体上に担持された燃料電池用3元系電極触媒の製造方法であって、触媒成分中の白金:コバルト:金属Mの組成(原子割合)を1:0.11〜0.19:0.02〜0.11とし、これら白金、コバルト及び金属Mを、金属Mの融点より高くコバルトの融点より低い温度で合金化することを特徴とする燃料電池用3元系電極触媒の製造方法。   A method for producing a ternary electrode catalyst for a fuel cell in which a catalyst component comprising platinum, cobalt, and at least one metal M having a melting point lower than cobalt is supported on a carbon carrier, wherein platinum: cobalt in the catalyst component : The composition (atomic ratio) of the metal M is 1: 0.11 to 0.19: 0.02 to 0.11, and these platinum, cobalt, and metal M are higher than the melting point of the metal M and lower than the melting point of cobalt. A method for producing a ternary electrode catalyst for a fuel cell, characterized by being alloyed with 前記金属Mが、マンガン、銅、金、銀、ニッケル、及び亜鉛から選択される1種以上であることを特徴とする請求項1に記載の燃料電池用3元系電極触媒の製造方法。   The method for producing a ternary electrode catalyst for a fuel cell according to claim 1, wherein the metal M is one or more selected from manganese, copper, gold, silver, nickel, and zinc. 前記合金化温度が962〜1495℃であることを特徴とする請求項1又は2に記載の燃料電池用3元系電極触媒の製造方法。   The method for producing a ternary electrode catalyst for a fuel cell according to claim 1 or 2, wherein the alloying temperature is 962 to 1495 ° C. 請求項1〜3のいずれか1項に記載の製造方法によって得られた燃料電池用電極触媒を備えた固体高分子型燃料電池。
The polymer electrolyte fuel cell provided with the electrode catalyst for fuel cells obtained by the manufacturing method of any one of Claims 1-3.
JP2010010634A 2010-01-21 2010-01-21 Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same Active JP5489740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010010634A JP5489740B2 (en) 2010-01-21 2010-01-21 Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010634A JP5489740B2 (en) 2010-01-21 2010-01-21 Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2011150867A true JP2011150867A (en) 2011-08-04
JP5489740B2 JP5489740B2 (en) 2014-05-14

Family

ID=44537684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010634A Active JP5489740B2 (en) 2010-01-21 2010-01-21 Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same

Country Status (1)

Country Link
JP (1) JP5489740B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152942B1 (en) * 2012-06-25 2013-02-27 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
JP5531125B1 (en) * 2013-02-04 2014-06-25 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
WO2014126077A1 (en) 2013-02-15 2014-08-21 田中貴金属工業株式会社 Catalyst for solid polymer fuel cells and method for producing same
WO2018194008A1 (en) 2017-04-18 2018-10-25 田中貴金属工業株式会社 Catalyst for solid polymer electrolyte fuel cells and method for producing same
KR20190034333A (en) 2016-10-10 2019-04-01 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer type fuel cell and method for manufacturing the same
JP7346729B2 (en) 2019-12-31 2023-09-19 コーロン インダストリーズ インク Fuel cell catalyst, method for producing the same, and membrane-electrode assembly including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696493B (en) 2017-09-27 2020-06-21 日商田中貴金屬工業股份有限公司 Catalyst for polymer electrolyte fuel cell and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224274A (en) * 1985-03-28 1986-10-04 Toshiba Corp Electrode for fuel cell
JPS62155940A (en) * 1985-12-23 1987-07-10 インタ−ナシヨナル・フユ−エル・セルズ・コ−ポレイシヨン Ternary alloy catalyst and its production
JPH06246160A (en) * 1993-02-22 1994-09-06 Tanaka Kikinzoku Kogyo Kk Production of alloy catalyst for fuel cell
JPH1069914A (en) * 1996-08-26 1998-03-10 N E Chemcat Corp Carbon carrier platinum skeleton alloy electrode catalyst having vacancy type lattice defect
JP2008130325A (en) * 2006-11-20 2008-06-05 Asahi Kasei Corp Electrode catalyst for fuel cell
JP2008305561A (en) * 2007-06-05 2008-12-18 Asahi Kasei Corp Electrode catalyst for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224274A (en) * 1985-03-28 1986-10-04 Toshiba Corp Electrode for fuel cell
JPS62155940A (en) * 1985-12-23 1987-07-10 インタ−ナシヨナル・フユ−エル・セルズ・コ−ポレイシヨン Ternary alloy catalyst and its production
JPH06246160A (en) * 1993-02-22 1994-09-06 Tanaka Kikinzoku Kogyo Kk Production of alloy catalyst for fuel cell
JPH1069914A (en) * 1996-08-26 1998-03-10 N E Chemcat Corp Carbon carrier platinum skeleton alloy electrode catalyst having vacancy type lattice defect
JP2008130325A (en) * 2006-11-20 2008-06-05 Asahi Kasei Corp Electrode catalyst for fuel cell
JP2008305561A (en) * 2007-06-05 2008-12-18 Asahi Kasei Corp Electrode catalyst for fuel cell

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412431B (en) * 2012-06-25 2017-06-06 田中贵金属工业株式会社 Use in solid polymer fuel cell catalyst and its manufacture method
EP2866287A4 (en) * 2012-06-25 2015-12-23 Tanaka Precious Metal Ind Catalyst for solid polymer fuel cell and method for producing same
JP5152942B1 (en) * 2012-06-25 2013-02-27 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
US10903503B2 (en) 2012-06-25 2021-01-26 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cell and method for producing same
US10454113B2 (en) 2012-06-25 2019-10-22 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cell and method for producing same
CN104412431A (en) * 2012-06-25 2015-03-11 田中贵金属工业株式会社 Catalyst for solid polymer fuel cell and method for producing same
KR20150028300A (en) 2012-06-25 2015-03-13 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer fuel cell and method for producing same
WO2014002840A1 (en) * 2012-06-25 2014-01-03 田中貴金属工業株式会社 Catalyst for solid polymer fuel cell and method for producing same
KR101705998B1 (en) * 2012-06-25 2017-02-10 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer fuel cell and method for producing same
CN104969391A (en) * 2013-02-04 2015-10-07 田中贵金属工业株式会社 Solid polymer fuel cell catalyst and method for manufacturing same
JP5531125B1 (en) * 2013-02-04 2014-06-25 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
WO2014119707A1 (en) 2013-02-04 2014-08-07 田中貴金属工業株式会社 Solid polymer fuel cell catalyst and method for manufacturing same
KR101842332B1 (en) * 2013-02-04 2018-03-26 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer fuel cell and method for manufacturing the same
US9905859B2 (en) 2013-02-04 2018-02-27 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cell and method for manufacturing the same
WO2014126077A1 (en) 2013-02-15 2014-08-21 田中貴金属工業株式会社 Catalyst for solid polymer fuel cells and method for producing same
CN105074981A (en) * 2013-02-15 2015-11-18 田中贵金属工业株式会社 Catalyst for solid polymer fuel cells and method for producing same
KR101757088B1 (en) * 2013-02-15 2017-07-11 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer fuel cell and method for manufacturing the same
US9960431B2 (en) 2013-02-15 2018-05-01 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cell and method for manufacturing the same
JP6053223B2 (en) * 2013-02-15 2016-12-27 田中貴金属工業株式会社 Catalyst for polymer electrolyte fuel cell and method for producing the same
KR20190034333A (en) 2016-10-10 2019-04-01 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer type fuel cell and method for manufacturing the same
US10998556B2 (en) 2016-10-10 2021-05-04 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cell and method for producing same
KR20210076198A (en) 2016-10-10 2021-06-23 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer fuel cell and method for producing same
KR20190121847A (en) 2017-04-18 2019-10-28 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for solid polymer fuel cell and manufacturing method thereof
WO2018194008A1 (en) 2017-04-18 2018-10-25 田中貴金属工業株式会社 Catalyst for solid polymer electrolyte fuel cells and method for producing same
US11145874B2 (en) 2017-04-18 2021-10-12 Tanaka Kikinzoku Kogyo K.K. Catalyst for solid polymer fuel cells and method for producing same
JP7346729B2 (en) 2019-12-31 2023-09-19 コーロン インダストリーズ インク Fuel cell catalyst, method for producing the same, and membrane-electrode assembly including the same

Also Published As

Publication number Publication date
JP5489740B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
JP5489740B2 (en) Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same
US8236462B2 (en) Electrode catalyst for fuel cell, method for producing the electrode catalyst, and polymer electrolyte fuel cell using the electrode catalyst
Ohyama et al. High performance of Ru nanoparticles supported on carbon for anode electrocatalyst of alkaline anion exchange membrane fuel cell
JP2001325964A (en) Electrode catalyst for solid polymer electrolyte fuel cell
US20090047568A1 (en) Electrode catalyst for fuel and fuel cell
Cruz-Martínez et al. Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells
KR102007412B1 (en) Electrode catalyst for fuel cell, method for preparing the same, membrane electrode assembly and fuel cell including the same
JP2013154346A (en) Composite material, catalyst containing the same, fuel cell and lithium air cell containing the same
JP2007273340A (en) High-durability electrode catalyst for fuel cell, and fuel cell using the same
JP5158334B2 (en) Method for producing electrode catalyst for fuel cell
TWI474547B (en) Fuel cell and electrocatalyst
Sharma et al. Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction
Chen et al. Multicomponent platinum-free nanoporous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction
Li et al. Carbon supported Ir nanoparticles modified and dealloyed with M (M= V, Co, Ni and Ti) as anode catalysts for polymer electrolyte fuel cells
KR20140070246A (en) Electrode catalyst for fuel cell, method for preparing the same, electrode for fuel cell including the electrode catalyst, and fuel cell including the same
Choudhary et al. Synthesis of low-cost HNO 3-functionalized acetylene black carbon supported Pt-Ru/C AB nano electrocatalysts for the application in direct ethanol fuel cell (DEFC)
Tatus-Portnoy et al. A low-loading Ru-rich anode catalyst for high-power anion exchange membrane fuel cells
Liu et al. Development of ruthenium-based bimetallic electrocatalysts for oxygen reduction reaction
CA2776367A1 (en) Fuel cell electrocatalytic particle and method for producing the same
da Silva et al. Electrochemical and fuel cell evaluation of PtIr/C electrocatalysts for ethanol electrooxidation in alkaline medium
Muthukumar et al. Electrodeposited Pt–Pd dendrite on carbon support as anode for direct formic acid fuel cells
Ding et al. Aqueous phase approach to Au-modified Pt–Co/C toward efficient and durable cathode catalyst of PEMFCs
JP5601280B2 (en) Catalyst for polymer electrolyte fuel cell
JP2016146305A (en) Electrode for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R151 Written notification of patent or utility model registration

Ref document number: 5489740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250