JP2007115668A - Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode - Google Patents

Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode Download PDF

Info

Publication number
JP2007115668A
JP2007115668A JP2006242367A JP2006242367A JP2007115668A JP 2007115668 A JP2007115668 A JP 2007115668A JP 2006242367 A JP2006242367 A JP 2006242367A JP 2006242367 A JP2006242367 A JP 2006242367A JP 2007115668 A JP2007115668 A JP 2007115668A
Authority
JP
Japan
Prior art keywords
carbon particles
particles
supported
platinum
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006242367A
Other languages
Japanese (ja)
Inventor
Hiroko Sawaki
裕子 澤木
Yoshinobu Sato
吉宣 佐藤
Mikio Kishimoto
幹雄 岸本
Harumichi Nakanishi
治通 中西
Masahiro Imanishi
雅弘 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006242367A priority Critical patent/JP2007115668A/en
Publication of JP2007115668A publication Critical patent/JP2007115668A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide particulate-carrying carbon particles which can be used as a substitute of a platinum-carrying carbon particles and metal platinum particles that are at present generally utilized as a catalyst for an electrode of a fuel cell, and in which use of platinum can be reduced compared with conventional platinum-carrying carbon particles or the like, and provide an electrode for the fuel cell using this. <P>SOLUTION: A crystallite size is within a range from 1 nm to 20 nm, and metal oxide particulates containing a noble metal element such as platinum element (metal oxide particles which are expressed by a general formula MOx and in which one part of the metal element M is replaced by a different kind of noble metal element from M) is made to be carried by carbon particles of the average particle diameter of 20 to 70 nm. As a manufacturing means of such particulate carrying carbon particles, a method is adopted in which firstly a solution containing metal complex ions constituting the metal oxide particulates is prepared, and next in which after dispersing the carbon particles in the obtained solution and making the metal complex ions adsorbed to the carbon particles, a hydrothermal treatment is carried out. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微粒子担持カーボン粒子およびその製造方法ならびに燃料電池用電極に関し、さらに詳しくは結晶格子中に貴金属元素を含有する金属酸化物微粒子を担持した微粒子担持カーボン粒子およびその製造方法等に関する。   The present invention relates to fine particle-supported carbon particles, a method for producing the same, and a fuel cell electrode. More specifically, the present invention relates to fine particle-supported carbon particles carrying metal oxide fine particles containing a noble metal element in a crystal lattice, a method for producing the same.

従来、金属粒子、合金粒子、金属酸化物粒子等を担体粒子に担持させたものは、消臭、抗菌、自動車排ガスの浄化、燃料電池、NOx還元など、各種触媒として多用されている。この場合の担体粒子としては主に、酸化チタン、酸化ジルコニウム、酸化鉄、酸化ニッケル、酸化コバルトなどの金属酸化物やカーボン等が用いられている。特に導電性を持つカーボン粒子を担体として用いた触媒は燃料電池の電極用触媒として有効なものである。   Conventionally, metal particles, alloy particles, metal oxide particles and the like supported on carrier particles have been widely used as various catalysts such as deodorizing, antibacterial, automobile exhaust gas purification, fuel cell, NOx reduction. As the carrier particles in this case, metal oxides such as titanium oxide, zirconium oxide, iron oxide, nickel oxide, and cobalt oxide, carbon, and the like are mainly used. In particular, a catalyst using conductive carbon particles as a carrier is effective as a catalyst for an electrode of a fuel cell.

中でも、白金とルテニウムとの合金粒子をカーボン担体上に担持させたものや、酸化モリブデン、酸化セリウム等の特定の金属酸化物粒子を助触媒として、これを金属白金微粒子と共にカーボン担体上に担持させたものは、優れた電極用触媒として知られている。さらに特許文献1には、酸化セリウムや酸化ジルコニウムなどの耐食性酸化物粒子に白金粒子を担持させたものを、カーボン担体上に担持させることにより、白金粒子同士の凝集を抑えることができると記載されている。また特許文献2には、γ−アルミナなどの高比表面積担体を主体とする多孔質担体とセリア−ジルコニア複合酸化物(酸化セリウム−酸化ジルコニウム固溶体)との混合物に、貴金属である白金およびパラジウムのうちの少なくとも一種を担持させることで、耐久性の高い触媒が得られることが記載されている。   Among them, platinum and ruthenium alloy particles supported on a carbon carrier, and specific metal oxide particles such as molybdenum oxide and cerium oxide as a cocatalyst are supported on a carbon carrier together with metal platinum fine particles. Is known as an excellent electrode catalyst. Furthermore, Patent Document 1 describes that the aggregation of platinum particles can be suppressed by supporting platinum particles supported on corrosion-resistant oxide particles such as cerium oxide and zirconium oxide on a carbon carrier. ing. In Patent Document 2, platinum and palladium, which are noble metals, are mixed in a mixture of a porous carrier mainly composed of a high specific surface area carrier such as γ-alumina and a ceria-zirconia composite oxide (cerium oxide-zirconium oxide solid solution). It is described that a highly durable catalyst can be obtained by loading at least one of them.

一方、金属酸化物を担体表面に担持させる方法としては、主に次のような方法が挙げられる。
(1)金属コロイド粒子を担体に吸着させる方法。
(2)金属塩水溶液中に担体粒子を分散させ、アルカリ剤により金属水酸化物を担体表面に沈着させる方法。
(3)あらかじめ微粒子を分散させた微粒子分散液から、微粒子を担体表面に固着させる方法。
On the other hand, as a method for supporting the metal oxide on the surface of the carrier, the following methods are mainly exemplified.
(1) A method of adsorbing metal colloidal particles on a carrier.
(2) A method in which carrier particles are dispersed in an aqueous metal salt solution, and a metal hydroxide is deposited on the carrier surface with an alkali agent.
(3) A method in which fine particles are fixed to the surface of a carrier from a fine particle dispersion in which fine particles are previously dispersed.

このような液相法を用いた公知例としては特許文献3や特許文献4がある。このうち、特許文献3では、あらかじめ白金を担持させたカーボン粒子を、他の所定の金属塩の混合溶液中に分散させ、アルカリ剤によりカーボン粒子に前記金属の水酸化物を沈着させ、還元雰囲気下で1000℃以上に加熱することにより、カーボン粒子に合金微粒子(白金・モリブデン・ニッケル・鉄の4元素の合金微粒子)を担持させることが行われている。そこでは、担持された合金微粒子は約3nm以上とされている。   Known examples using such a liquid phase method include Patent Document 3 and Patent Document 4. Among these, in Patent Document 3, carbon particles preliminarily supporting platinum are dispersed in a mixed solution of other predetermined metal salt, and the hydroxide of the metal is deposited on the carbon particles with an alkali agent. Under heating at 1000 ° C. or higher, alloy particles (four-element alloy particles of platinum, molybdenum, nickel, and iron) are supported on carbon particles. In this case, the supported fine alloy particles are about 3 nm or more.

また特許文献4では、五酸化バナジウムをカーボンに担持させた粒子を得るにあたり、有機バナジウム溶液に有機溶媒を加えることにより、溶媒和させて有機錯体を作製し、これをカーボンに吸着、担持させる方法がとられている。この場合にはカーボンに担持された五酸化バナジウムは非晶質となっている。   In Patent Document 4, when obtaining particles in which vanadium pentoxide is supported on carbon, an organic solvent is added to the organic vanadium solution to solvate it to produce an organic complex, which is adsorbed and supported on carbon. Has been taken. In this case, the vanadium pentoxide supported on carbon is amorphous.

特開2004−363056号公報JP 2004-363056 A 特開平10−277389号公報Japanese Patent Laid-Open No. 10-277389 特開平5−217586号公報JP-A-5-217586 特開2000−36303号公報JP 2000-36303 A

しかしながら、従来における上記のような金属粒子、合金粒子、金属酸化物粒子あるいはこれらを担体粒子に担持させたものは、これらを燃料電池などの電極用触媒に使用した場合において、その耐食性が未だ十分でないという問題があった。例えば、これまでの金属白金粒子を用いた燃料電池の電極用触媒では、使用過程における金属白金粒子のCO被毒による劣化や、100℃以上の温度雰囲気を繰り返すことによる白金粒子同士の固着、粒成長を完全に防ぐことができなかったため、その触媒能が著しく低下するという問題があった。また、この種の電極用触媒において現状の白金量のものを使用することは、コスト面で不利であるだけでなく白金の枯渇をも招くこととなるため、白金の使用量を減少させることは喫緊の課題となっている。   However, conventional metal particles, alloy particles, metal oxide particles or those in which these are supported on carrier particles are still sufficiently resistant to corrosion when used as catalyst for an electrode such as a fuel cell. There was a problem of not. For example, in conventional fuel cell electrode catalysts using metal platinum particles, deterioration of platinum metal particles due to CO poisoning in the process of use, adhesion of platinum particles due to repetition of a temperature atmosphere of 100 ° C. or higher, particles Since the growth could not be completely prevented, there was a problem that the catalytic ability was remarkably lowered. Also, using this type of electrode catalyst with the current amount of platinum is not only disadvantageous in terms of cost but also leads to depletion of platinum, so reducing the amount of platinum used It is an urgent issue.

本発明は、このような問題に対処するもので、燃料電池の電極用触媒などに現在一般に使用されている白金担持カーボン粒子や金属白金粒子の代替材料として使用でき、しかもそのような従来の白金担持カーボン粒子等と比べると貴重な資源である白金の使用量を大幅に減らすことのできる耐食性に優れた微粒子担持カーボン粒子およびその製造方法を提供することを目的とする。   The present invention addresses such problems, and can be used as an alternative material for platinum-supported carbon particles and metal platinum particles that are currently commonly used in fuel cell electrode catalysts, and such conventional platinum. An object of the present invention is to provide fine particle-supported carbon particles having excellent corrosion resistance and a method for producing the same, which can significantly reduce the amount of platinum used as a valuable resource compared to the supported carbon particles.

上記の目的を達成するため、本発明の微粒子担持カーボン粒子は、一般式MOx(x=0.5〜2.0)で表され、このうちの金属元素Mの一部がMとは異種の貴金属元素で置換されている金属酸化物微粒子が、カーボン粒子に担持されている構成としたものである。具体的には、結晶子サイズが1nm以上20nm以下であり且つ結晶格子中に貴金属元素を含有する金属酸化物微粒子を、一次粒子までの単分散状態を保持したまま、平均粒子径が20〜70nmであるカーボン粒子に担持させたものである。   In order to achieve the above object, the fine particle-supported carbon particles of the present invention are represented by the general formula MOx (x = 0.5 to 2.0), and a part of the metal element M is different from M. The metal oxide fine particles substituted with the noble metal element are supported on the carbon particles. Specifically, the average particle diameter of the metal oxide fine particles having a crystallite size of 1 nm or more and 20 nm or less and containing a noble metal element in the crystal lattice is 20 to 70 nm while maintaining a monodispersed state up to the primary particles. Is supported on carbon particles.

本発明者らは、このような微粒子担持カーボン粒子を得るにあたり、構成金属の混合錯イオン溶液を合成し、これをカーボン粒子表面に吸着させたのち、加熱処理を施すことにより、一次粒子までの単分散状態を保持したまま、貴金属含有金属酸化物微粒子(一般式MOxで表され、このうちの金属元素Mの一部が貴金属元素で置換された金属酸化物微粒子)をカーボン粒子に担持させることができることを見出した。これにより、これまでの製造方法では不可能であった微粒子担持カーボン粒子、すなわち粒子の結晶子サイズが1nm以上20nm以下の範囲にある貴金属含有金属酸化物微粒子を、カーボン粒子に担持させてなる微粒子担持カーボン粒子の開発に成功したものである。   In obtaining such fine particle-supporting carbon particles, the present inventors synthesized a mixed complex ion solution of constituent metals, adsorbed it on the surface of the carbon particles, and then subjected to heat treatment to obtain primary particles. Carrying noble metal-containing metal oxide fine particles (metal oxide fine particles represented by the general formula MOx, in which a part of the metal element M is replaced with the noble metal element) on the carbon particles while maintaining the monodispersed state. I found out that I can. As a result, fine particle-supported carbon particles that have been impossible with the conventional production methods, that is, fine particles in which noble metal-containing metal oxide fine particles having a crystallite size of 1 nm to 20 nm are supported on carbon particles. This is a successful development of supported carbon particles.

本発明方法は、上記のような微粒子担持カーボン粒子を得るにあたり、まず、金属酸化物微粒子を構成する金属の錯イオンを含む溶液を調整し、次いで、得られた溶液中にカーボン粒子を分散させて、前記金属の錯イオンをカーボン粒子に吸着させることを特徴とするものである。この場合、前記金属の錯イオンをカーボン粒子に吸着させた後において、さらに水熱処理を施すことにより、結晶格子中に貴金属元素を含有する金属酸化物微粒子をカーボン粒子表面に析出させて担持させるのが好ましい。   In obtaining the fine particle-supporting carbon particles as described above, the method of the present invention first prepares a solution containing metal complex ions constituting the metal oxide fine particles, and then disperses the carbon particles in the obtained solution. The metal complex ions are adsorbed onto the carbon particles. In this case, after the complex ions of the metal are adsorbed on the carbon particles, the metal oxide fine particles containing the noble metal element are precipitated and supported on the surface of the carbon particles by further hydrothermal treatment. Is preferred.

本発明の微粒子担持カーボン粒子では、これを電極用触媒(主として燃料電池の電極用触媒)に用いた場合の耐食性を向上させるべく、触媒機能を持つ貴金属元素を、金属粒子としてではなくイオンの状態でカーボン粒子に担持させている。通常、貴金属元素は、金属粒子の状態で存在しなければ優れた触媒能が発現しないと言われているが、本発明においては、前記のように触媒機能を持つ貴金属元素を、金属粒子としてではなく結晶格子中にイオンの状態で存在させているため、電極用触媒としての使用環境下において、電圧を掛けることによる電子の移動を利用して、含有される貴金属元素を強引に酸化・還元環境下に曝し、還元状態では貴金属元素が金属粒子として析出し、酸化状態では母体となる酸化物中に再固溶する、という過程を繰り返させることができる。これにより、貴金属元素の固着、粒成長を防ぎ、優れた耐久性を実現することが可能となる。   In the fine particle-supported carbon particles of the present invention, in order to improve the corrosion resistance when this is used for an electrode catalyst (mainly an electrode catalyst for a fuel cell), a noble metal element having a catalytic function is in an ionic state rather than as a metal particle. And are supported on carbon particles. Usually, noble metal elements are said to exhibit excellent catalytic ability unless they are present in the form of metal particles, but in the present invention, noble metal elements having a catalytic function as described above are not used as metal particles. Because it is present in the crystal lattice in an ionic state, the precious metal elements contained are forcibly oxidized / reduced using the transfer of electrons by applying a voltage in the environment of use as an electrode catalyst. It is possible to repeat the process of exposing to the bottom and precipitating the precious metal element as metal particles in the reduced state and re-dissolving in the base oxide in the oxidized state. As a result, it is possible to prevent adhesion of noble metal elements and grain growth, and realize excellent durability.

こうして、本発明によれば、燃料電池の電極用触媒に用いられている従来の白金担持カーボン粒子等の代替物となりうる微粒子担持カーボン粒子を実現でき、そのような代替物として用いた場合において、貴重な資源である白金の使用量を従来の電極用触媒材料と比べて大幅に減らすことができる。   Thus, according to the present invention, it is possible to realize fine particle-supported carbon particles that can be used as substitutes for conventional platinum-supported carbon particles and the like used for fuel cell electrode catalysts, and when used as such substitutes, The amount of platinum, which is a valuable resource, can be greatly reduced compared to conventional electrode catalyst materials.

本発明方法では、あらかじめ金属の錯イオンを含む溶液を調整し、この溶液中にカーボン粒子を分散させることにより、金属の錯イオンをカーボン粒子表面に吸着させ、これを乾燥させることにより、カーボン粒子表面に金属酸化物微粒子前駆体を析出させたのち、加熱処理することによって、微粒子担持カーボン粒子を作製する。   In the method of the present invention, by preparing a solution containing metal complex ions in advance and dispersing the carbon particles in the solution, the metal complex ions are adsorbed on the surface of the carbon particles and dried to obtain carbon particles. After depositing a metal oxide fine particle precursor on the surface, heat treatment is performed to produce fine particle-supporting carbon particles.

カーボン粒子表面に金属の錯イオンを吸着させるという上記のような方法により、これまでの製造方法では不可能であった、結晶子サイズが1nmから20nmの範囲にあり、かつ、結晶格子中に白金等の貴金属元素を含有する金属酸化物微粒子を、一次粒子までの単分散状態を保持したまま、カーボン担体に担持させることに成功したものである。   Due to the above-described method of adsorbing metal complex ions on the surface of carbon particles, the crystallite size is in the range of 1 nm to 20 nm, which is impossible with the conventional manufacturing method, and platinum is contained in the crystal lattice. The metal oxide fine particles containing noble metal elements such as the above have been successfully supported on the carbon support while maintaining the monodispersed state up to the primary particles.

このようにして得られた微粒子担持カーボン粒子は、燃料電池などの電極用触媒に使用できる機能性材料となる。本発明においては、燃料電池の電極用触媒として有効である白金などの貴金属元素が、金属としてではなくイオンの状態で金属酸化物の結晶格子中に含まれることとなり、使用過程において貴金属元素同士が固着、粒成長することなく維持されるため、優れた耐久性を有する電極用触媒となることが期待できる。さらに、助触媒としての機能を持つ特定の金属酸化物を母体に選択することにより、より優れた触媒能の発現が期待できる。   The fine particle-supported carbon particles obtained in this way are functional materials that can be used for electrode catalysts such as fuel cells. In the present invention, a noble metal element such as platinum that is effective as a catalyst for an electrode of a fuel cell is contained in the crystal lattice of the metal oxide in an ionic state rather than as a metal. Since it is maintained without sticking and grain growth, it can be expected to be an electrode catalyst having excellent durability. Furthermore, by selecting a specific metal oxide having a function as a cocatalyst as a base material, more excellent catalytic ability can be expected.

以下、本発明の微粒子担持カーボン粒子の製造方法等について説明する。
まず第一に、貴金属含有金属酸化物〔一般式MOx(x=0.5〜2.0)で表され、このうちの金属元素Mの一部がMとは異種の貴金属元素で置換されている金属酸化物〕を構成する金属の錯イオンを含む溶液を調整する。前記金属酸化物を構成する金属元素Mとしては、セリウム、ジルコニウム、チタン、アルミニウム、マグネシウム、ケイ素等の元素から一種以上を選択するが、貴金属元素を安定に含有し得る元素であれば前記元素に限定されるものではない。ただし、助触媒としての機能を最大限に発現させるために、セリウムを含有させることが好ましい。また、前記貴金属としては、燃料電池用電極としての触媒能を発揮するものであれば貴金属種は限定されることはないが、より良い特性を発揮するために、白金、ルテニウム、パラジウム、金のうちのいずれかを用いることが好ましく、白金を用いることが最も好ましい。なお、金属酸化物中の貴金属元素の含有量は、4〜30at.%とすることが好ましい。貴金属元素量が4at.%より少ないと、触媒としての機能を十分に発揮することができないため、好ましくない。また金属酸化物の結晶格子中に置換させることが可能であれば30at.%より多くてもかまわないが、これよりも多い量の貴金属元素は金属酸化物中に置換されにくく、置換しきれなかった貴金属元素が貴金属粒子として分離析出してしまうおそれがあり、好ましくない。
Hereinafter, a method for producing the fine particle-supported carbon particles of the present invention will be described.
First, a noble metal-containing metal oxide [general formula MOx (x = 0.5 to 2.0), in which a part of the metal element M is substituted with a noble metal element different from M The solution containing the complex ions of the metal constituting the metal oxide] is prepared. The metal element M constituting the metal oxide is selected from one or more elements such as cerium, zirconium, titanium, aluminum, magnesium, and silicon, but any element that can stably contain a noble metal element is included in the element. It is not limited. However, cerium is preferably contained in order to maximize the function as a promoter. Further, as the noble metal, the noble metal species is not limited as long as it exhibits catalytic ability as a fuel cell electrode, but in order to exhibit better characteristics, platinum, ruthenium, palladium, gold Any of them is preferably used, and platinum is most preferably used. The content of the noble metal element in the metal oxide is 4 to 30 at. % Is preferable. The amount of noble metal element is 4 at. If it is less than%, the function as a catalyst cannot be exhibited sufficiently, which is not preferable. If it can be substituted in the crystal lattice of the metal oxide, 30 at. However, a noble metal element in an amount larger than this is difficult to be substituted in the metal oxide, and the noble metal element that could not be substituted may be separated and deposited as noble metal particles, which is not preferable.

次に、前記金属錯体としては、塩化物錯体、硝酸アミン錯体などの無機物錯体、あるいは、クエン酸錯体、リンゴ酸錯体、ピコリン酸錯体などの有機物を含有した錯体が挙げられ、それぞれ使用する金属元素により、溶液中でイオンとして存在し得る最適なものを選択する。ただし、この際、目的とする金属以外の金属が溶液中に含まれることは好ましくなく、例えば既存の錯化合物のうち、ルビジウム塩、セシウム塩などの金属塩錯体を単に溶解させた場合には、目的外の金属元素を溶液中に含むことになり、好ましくない。上記錯体のうちでもクエン酸錯体はカーボン粒子表面に対する吸着効率が良いことから最も好ましい。   Next, examples of the metal complexes include inorganic complexes such as chloride complexes and amine nitrate complexes, and complexes containing organic substances such as citric acid complexes, malic acid complexes, and picolinic acid complexes. To select the optimum that can exist as ions in solution. However, in this case, it is not preferable that a metal other than the target metal is contained in the solution. For example, among existing complex compounds, when a metal salt complex such as a rubidium salt or a cesium salt is simply dissolved, An undesired metal element is contained in the solution, which is not preferable. Among the above complexes, a citric acid complex is most preferable because of its high adsorption efficiency on the surface of carbon particles.

次に、前記金属錯体イオンを含む溶液中に、電気化学工業社製のデンカブラック(登録商標)等のアセチレンブラック、CABOT社製のバルカン(登録商標)等のファーネスカーボン、あるいはケッチェンブラック等のカーボン粒子を分散させる。この際、カーボン粒子の平均粒子径は20〜70nmであることが好ましい。カーボン粒子の平均粒子径が20nm未満でも最終生成物である微粒子担持カーボン粒子の触媒能においては問題ないが、合成過程において粒子径が小さいために凝集が激しく、均一分散することが困難となるため、好ましくない。また、カーボン粒子の平均粒子径が70nmを超えた場合、最終生成物の微粒子担持カーボン粒子の触媒能が完全になくなることはないが、比表面積が小さくなるため触媒能が低下し、好ましくない。   Next, in the solution containing the metal complex ions, acetylene black such as Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd., furnace carbon such as Vulcan (registered trademark) manufactured by CABOT, or ketjen black, etc. Disperse the carbon particles. At this time, the average particle diameter of the carbon particles is preferably 20 to 70 nm. Even if the average particle diameter of the carbon particles is less than 20 nm, there is no problem in the catalytic ability of the fine particle-supporting carbon particles as the final product, but since the particle diameter is small in the synthesis process, the aggregation is intense and it becomes difficult to uniformly disperse. It is not preferable. In addition, when the average particle diameter of the carbon particles exceeds 70 nm, the catalytic activity of the fine particle-supporting carbon particles as the final product is not completely lost, but the specific surface area becomes small, so that the catalytic capability is lowered, which is not preferable.

なお、カーボン粒子の平均粒子径は、透過型電子顕微鏡(TEM)写真で観測される粒子100個の平均から求める。この際、溶液中に含まれる金属元素量を、最終生成物である微粒子担持カーボン粒子中の貴金属含有金属酸化物量が、5〜50重量%となるように、カーボン粒子を分散させる。微粒子担持カーボン粒子中の微粒子担持量が、5重量%より少ないと、例えば触媒として利用する場合に、全体としての貴金属元素量が少なくなるためにその機能が発現しにくくなるおそれがあり、また、50重量%を超えると、貴金属含有金属酸化物の含有量が多くなるためにカーボン粒子表面に単層で被着せずに、貴金属含有金属酸化物微粒子同士が重なり合ったり、または、凝集してしまうおそれがある。   The average particle diameter of the carbon particles is determined from the average of 100 particles observed with a transmission electron microscope (TEM) photograph. At this time, the carbon particles are dispersed so that the amount of the metal element contained in the solution is 5 to 50% by weight of the noble metal-containing metal oxide in the fine particle-supported carbon particles as the final product. If the amount of fine particles supported in the fine particle-supported carbon particles is less than 5% by weight, for example, when used as a catalyst, the amount of noble metal elements as a whole may be reduced, so that the function may be difficult to be expressed. If it exceeds 50% by weight, the content of the noble metal-containing metal oxide is increased, so that the noble metal-containing metal oxide fine particles may overlap or aggregate without being deposited on the carbon particle surface as a single layer. There is.

以上のようにして、カーボン粒子表面に金属の錯イオンを吸着させた後、乾燥することにより、カーボン粒子表面に、貴金属含有金属酸化物の前駆体微粒子を析出させる。カーボン粒子表面に吸着させる金属錯体はイオンの状態であり、溶液中に分子レベルで分散しているため、この分散状態を保持したままカーボンの吸着点に吸着させることができ、これを乾燥させた際には再隣接の錯体同士のみが結晶化し、20nm以下の貴金属含有金属酸化物の前駆体粒子を析出させることができる。乾燥させる雰囲気は、特に限定されるものではないが、空気中乾燥が最も簡便かつ低コストであり好ましい。   As described above, the metal complex ions are adsorbed on the surface of the carbon particles and then dried, thereby precipitating fine particles of the noble metal-containing metal oxide on the surface of the carbon particles. The metal complex adsorbed on the surface of the carbon particles is in an ionic state and is dispersed at a molecular level in the solution, so that it can be adsorbed at the carbon adsorption point while maintaining this dispersed state, and this is dried. In this case, only re-adjacent complexes are crystallized, and precursor particles of noble metal-containing metal oxide having a thickness of 20 nm or less can be precipitated. The atmosphere to be dried is not particularly limited, but in-air drying is the most convenient and low-cost and preferable.

さらに、このようにして得られた微粒子担持カーボンに加熱処理を施す。加熱処理としては、水溶液中で高温・高圧条件下で反応させる水熱処理や、空気中300℃以下の温度での熱処理、あるいは、窒素やアルゴンなどの不活性ガス雰囲気中での熱処理を行うことが好ましい。水熱処理を行う際には、300℃以下の温度で行うことが好ましい。これより温度が高くても問題はないが、高圧になるため特別な装置が必要となり好ましくない。酸素が存在する雰囲気下では、300℃を超えると担体であるカーボン粒子が燃焼してしまうおそれがあり好ましくない。また、還元雰囲気下では吸着された前駆体粒子が酸化物にならない場合があるため適切ではない。不活性ガス雰囲気中での加熱処理温度は200〜1000℃の範囲が好ましい。これらの加熱処理のうち、貴金属含有金属酸化物の前駆体が酸化物となるために最も好ましい加熱処理方法を選択し、場合によっては2種以上の加熱処理を組み合わせて処理する。例えば白金含有酸化セリウム粒子をカーボンに担持させる場合には、180℃で水熱処理を行った後、ろ過、乾燥し、窒素雰囲気下で600℃の熱処理を施す。この場合には、水熱処理を施すことにより白金元素を酸化セリウムの結晶格子中に固溶させやすくなり、その後の加熱処理において結晶化および安定化させるが、特に窒素中800℃以上という高温になると酸化セリウム同士が焼結し、ナノサイズの酸化物粒子を保持するのが難しくなる。このような意味で、それぞれの組成において、最適な条件下で加熱処理することが必要である。   Further, the fine particle-supported carbon thus obtained is subjected to heat treatment. As the heat treatment, hydrothermal treatment in which an aqueous solution is reacted under high temperature and high pressure conditions, heat treatment at a temperature of 300 ° C. or lower in air, or heat treatment in an inert gas atmosphere such as nitrogen or argon is performed. preferable. The hydrothermal treatment is preferably performed at a temperature of 300 ° C. or lower. Even if the temperature is higher than this, there is no problem. In an atmosphere where oxygen is present, if it exceeds 300 ° C., carbon particles as a carrier may be burned, which is not preferable. Further, it is not appropriate because the adsorbed precursor particles may not become oxides in a reducing atmosphere. The heat treatment temperature in an inert gas atmosphere is preferably in the range of 200 to 1000 ° C. Among these heat treatments, the most preferable heat treatment method is selected because the precursor of the noble metal-containing metal oxide becomes an oxide, and in some cases, the heat treatment is performed by combining two or more heat treatments. For example, when platinum-containing cerium oxide particles are supported on carbon, hydrothermal treatment is performed at 180 ° C., followed by filtration and drying, followed by heat treatment at 600 ° C. in a nitrogen atmosphere. In this case, the hydrothermal treatment makes it easy to dissolve the platinum element in the crystal lattice of cerium oxide, and it is crystallized and stabilized in the subsequent heat treatment. Cerium oxides sinter together, making it difficult to hold nano-sized oxide particles. In this sense, each composition needs to be heat-treated under optimum conditions.

以上の方法により、結晶子サイズが1nmから20nmの範囲にあり、かつ、白金元素等の貴金属元素を含有した金属酸化物微粒子を単分散状態で担持した、平均粒子径が20〜90nmの微粒子担持カーボン粒子が得られる。微粒子担持カーボン粒子の平均粒子径は、TEM写真で観測される100個の粒子の平均から求める。この際、担持された貴金属含有金属酸化物粒子の結晶子サイズは1nm未満でも、触媒としての特性上はかまわないと考えられるが、金属酸化物の格子間隔は通常0.5nm(5Å)前後であることが多く、結晶構造上、格子点の数が少なすぎるために安定な結合が起こらず、酸化物の構造を保持することが難しくなると同時に、このような理由により作製すること自体が非常に困難である。また、結晶子サイズが20nmを超えた場合、触媒としての特性が完全に失われることはないが、十分な比表面積が得られないために触媒としての性能が劣化する傾向にある。   By the above method, fine particles having an average particle diameter of 20 to 90 nm, in which the crystallite size is in a range of 1 nm to 20 nm, and metal oxide fine particles containing a noble metal element such as platinum element are supported in a monodispersed state. Carbon particles are obtained. The average particle size of the fine particle-supporting carbon particles is obtained from the average of 100 particles observed in the TEM photograph. At this time, even if the crystallite size of the supported noble metal-containing metal oxide particles is less than 1 nm, the characteristics as a catalyst are considered to be acceptable, but the lattice spacing of the metal oxide is usually around 0.5 nm (5 mm). In many cases, the number of lattice points in the crystal structure is too small, so that stable bonding does not occur, and it is difficult to maintain the oxide structure. Have difficulty. When the crystallite size exceeds 20 nm, the characteristics as a catalyst are not completely lost, but the performance as a catalyst tends to be deteriorated because a sufficient specific surface area cannot be obtained.

以上の理由により、結晶格子中に白金元素等を含む金属酸化物微粒子の結晶子サイズは、1〜20nmとすることが好ましい。この際、20nm未満のような微粒子においては、1つの粒子内で多結晶構造をとることは稀であり、ほとんどの場合に単結晶の粒子となる。したがって、担持された微粒子の平均粒子径は、TEM写真から平均を求める方法の他に、粉末X線回折スペクトルから求められる平均結晶子サイズからも求めることができる。特に、粒子径が数nm以下であるような微粒子の場合には、TEM写真などから目視で粒子径を求める際の測定誤差が大きく、平均結晶子サイズから求めることが好ましい。ただし、多結晶構造を持つ粗大な粒子が存在している場合には、その粗大粒子に含まれる結晶子のサイズを測定している可能性もあるため、平均結晶子サイズから求められた粒子径と、TEMで観察される粒子の大きさに整合性があるかどうかを確認することが必要である。   For the above reasons, the crystallite size of the metal oxide fine particles containing platinum element in the crystal lattice is preferably 1 to 20 nm. At this time, in a fine particle of less than 20 nm, it is rare to take a polycrystalline structure within one particle, and in most cases, it becomes a single crystal particle. Therefore, the average particle diameter of the supported fine particles can be obtained from an average crystallite size obtained from a powder X-ray diffraction spectrum in addition to a method for obtaining an average from a TEM photograph. In particular, in the case of fine particles having a particle diameter of several nanometers or less, the measurement error when the particle diameter is visually determined from a TEM photograph or the like is large, and it is preferable to determine from the average crystallite size. However, if coarse particles with a polycrystalline structure are present, the size of the crystallites contained in the coarse particles may be measured, so the particle diameter determined from the average crystallite size It is necessary to confirm whether or not the particle size observed by the TEM is consistent.

次に、本発明に係る微粒子担持カーボン粒子を電極用触媒として用いた燃料電池用電極の具体例として、該微粒子担持カーボン粒子を用いて作製される燃料電池用の膜電極接合体(MEA)について説明する。   Next, as a specific example of a fuel cell electrode using the fine particle-supported carbon particles according to the present invention as an electrode catalyst, a fuel cell membrane electrode assembly (MEA) produced using the fine particle-supported carbon particles will be described. explain.

図1に、燃料電池用の膜電極接合体(MEA)の断面構造を模式的に示す。この膜電極接合体10は、固体高分子電解質膜1の厚み方向の片側に配置された空気極2と、他の片側に配置された燃料極3と、空気極2の外側に配置された空気極用ガス拡散層4と、燃料極3の外側に配置された燃料極用ガス拡散層5とを有する構成である。このうち、固体高分子電解質膜1としては、ポリパーフルオロスルホン酸樹脂膜、具体的には、デュポン社製の”ナフィオン”(商品名)、旭硝子社製の”フレミオン”(商品名)、旭化成工業社製の”アシプレックス”(商品名)などの膜を使用できる。またガス拡散層4・5としては、多孔質のカーボンクロスあるいはカーボンシートなどを使用できる。この膜電極接合体10の作製方法としては、以下の一般的な方法が適用できる。   FIG. 1 schematically shows a cross-sectional structure of a membrane electrode assembly (MEA) for a fuel cell. The membrane electrode assembly 10 includes an air electrode 2 disposed on one side in the thickness direction of the solid polymer electrolyte membrane 1, a fuel electrode 3 disposed on the other side, and an air disposed outside the air electrode 2. The electrode gas diffusion layer 4 and the fuel electrode gas diffusion layer 5 disposed outside the fuel electrode 3 are provided. Among them, the solid polymer electrolyte membrane 1 is a polyperfluorosulfonic acid resin membrane, specifically, “Nafion” (trade name) manufactured by DuPont, “Flemion” (trade name) manufactured by Asahi Glass Co., Ltd., Asahi Kasei. A membrane such as “Aciplex” (trade name) manufactured by Kogyo Co., Ltd. can be used. As the gas diffusion layers 4 and 5, porous carbon cloth or carbon sheet can be used. As a manufacturing method of the membrane electrode assembly 10, the following general methods can be applied.

エタノール、プロパノールなどの低級アルコールを主成分とする溶媒に、触媒担持カーボン粒子、高分子材料、さらに必要に応じてバインダなどを混合し、マグネチックスターラー、ボールミル、超音波分散機などの一般的な分散器具を用いて分散させて、触媒塗料を作製する。この際、塗料の粘度を塗布方法に応じて最適なものとすべく、溶媒量を調整する。次に、得られた触媒塗料を用いて空気極2あるいは燃料極3を形成していくが、この後の手順としては、一般的には下記の3種の方法(1)〜(3)が挙げられる。本発明の微粒子担持カーボン粒子の評価手段としてはいずれを用いてもかまわないが、比較評価を行う際には作製方法をいずれか一つに統一して評価することが重要である。   General solvents such as magnetic stirrers, ball mills, ultrasonic dispersers, etc. are mixed with catalyst-supporting carbon particles, polymer materials, and binders as necessary in solvents based on lower alcohols such as ethanol and propanol. A catalyst paint is produced by dispersing using a dispersing device. At this time, the amount of the solvent is adjusted so that the viscosity of the paint is optimized in accordance with the application method. Next, the air electrode 2 or the fuel electrode 3 is formed by using the obtained catalyst paint, and the following three methods (1) to (3) are generally used as the subsequent procedure. Can be mentioned. Any means may be used as the means for evaluating the fine particle-supporting carbon particles of the present invention, but it is important that the production methods are unified and evaluated when performing comparative evaluation.

(1) 得られた触媒塗料を、バーコータなどを用いて、ポリテトラフルオロエチレン(PTFE)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、PTFEコートポリイミドフィルム、PTFEコートシリコンシート、PTFEコートガラスクロスなどの離型性基板上に均一塗布し、乾燥させて、離型性基板上に電極膜を形成する。この電極膜を剥し取り、所定の電極サイズに裁断する。このような電極膜を2種作製し、それぞれを空気極および燃料極として用いる。その後、上記電極膜を固体高分子電解質膜の両面に、ホットプレスあるいはホットロールプレスにより接合させた後、空気極および燃料極の両側にガス拡散層をそれぞれ配置し、ホットプレスして一体化させ、膜電極接合体を作製する。   (1) Using the obtained catalyst paint, a polytetrafluoroethylene (PTFE) film, a polyethylene terephthalate (PET) film, a polyimide film, a PTFE-coated polyimide film, a PTFE-coated silicon sheet, a PTFE-coated glass cloth, etc. An electrode film is formed on the releasable substrate by uniformly coating on the releasable substrate and drying. The electrode film is peeled off and cut into a predetermined electrode size. Two kinds of such electrode films are produced and used as an air electrode and a fuel electrode, respectively. Thereafter, the electrode membrane is bonded to both sides of the solid polymer electrolyte membrane by hot pressing or hot roll pressing, and then gas diffusion layers are arranged on both sides of the air electrode and the fuel electrode, and are integrated by hot pressing. A membrane electrode assembly is produced.

(2) 得られた触媒塗料を、空気極用ガス拡散層および燃料極用ガス拡散層にそれぞれ塗布し、乾燥させて、空気極および燃料極を形成する。この際、塗布方法は、スプレー塗布やスクリーン印刷などの方法がとられる。次に、これらの電極膜が形成されたガス拡散層で、固体高分子電解質膜を挟み、ホットプレスして一体化させ、膜電極接合体を作製する。   (2) The obtained catalyst paint is applied to the air electrode gas diffusion layer and the fuel electrode gas diffusion layer, respectively, and dried to form the air electrode and the fuel electrode. At this time, the application method is a spray application method or a screen printing method. Next, the polymer electrolyte membrane is sandwiched between the gas diffusion layers on which these electrode membranes are formed and integrated by hot pressing to produce a membrane electrode assembly.

(3) 得られた触媒塗料を、固体高分子電解質膜の両面に、スプレー塗布などの方法を用いて塗布し、乾燥させて、空気極および燃料極を形成する。その後、空気極および燃料極の両側にガス拡散層を配置し、ホットプレスして一体化させ、膜電極接合体を作製する。   (3) The obtained catalyst paint is applied to both surfaces of the solid polymer electrolyte membrane by a method such as spray coating and dried to form an air electrode and a fuel electrode. Thereafter, gas diffusion layers are arranged on both sides of the air electrode and the fuel electrode and integrated by hot pressing to produce a membrane electrode assembly.

以上のようにして得られた図1に示すごとき膜電極接合体10において、空気極2側および燃料極3側のそれぞれに集電板(図示せず)を設けて電気的な接続を行い、燃料極3に水素を、空気極2に空気(酸素)をそれぞれ供給することにより、燃料電池として作用させることができる。   In the membrane electrode assembly 10 as shown in FIG. 1 obtained as described above, a current collector plate (not shown) is provided on each of the air electrode 2 side and the fuel electrode 3 side for electrical connection, By supplying hydrogen to the fuel electrode 3 and air (oxygen) to the air electrode 2, the fuel cell can be operated.

《白金置換酸化セリウム(Pt5%)・20重量%担持》
塩化セリウム七水和物2.53gを水100mlに溶解し、セリウムに対して3当量のクエン酸を加え、セリウムのクエン酸錯イオンを含む水溶液を調整した。この水溶液に、5gのバルカンXC−72(登録商標、CABOT社製のカーボンブラック、平均粒子径30nm)を加え、超音波で分散させた後、2時間攪拌し、前記錯イオンを前記バルカン表面に吸着させた。その後、180℃で5時間の水熱処理を施し、90℃で乾燥させ、セリウムの化合物を担持したカーボン粒子を得た。
<< Platinum-substituted cerium oxide (Pt5%), 20wt% supported >>
2.53 g of cerium chloride heptahydrate was dissolved in 100 ml of water, and 3 equivalents of citric acid was added to cerium to prepare an aqueous solution containing a citrate complex ion of cerium. To this aqueous solution, 5 g of Vulcan XC-72 (registered trademark, carbon black manufactured by CABOT, average particle size 30 nm) was added and dispersed with ultrasonic waves, followed by stirring for 2 hours to allow the complex ions to adhere to the Vulcan surface. Adsorbed. Thereafter, hydrothermal treatment was performed at 180 ° C. for 5 hours and dried at 90 ° C. to obtain carbon particles carrying a cerium compound.

次に、塩化白金酸六水和物0.19gをエタノール30gに溶解し、白金のエタノール溶液を調整した。このエタノール溶液を、先に得られたセリウム化合物を担持したカーボン粒子(粉末)に含浸させ、60℃で乾燥させた後、このカーボン粒子を窒素中600℃で加熱処理し、白金で一部を置換した酸化セリウム粒子(Ce0.95Pt0.05)O2 担持カーボン粒子を得た。 Next, 0.19 g of chloroplatinic acid hexahydrate was dissolved in 30 g of ethanol to prepare an ethanol solution of platinum. This ethanol solution is impregnated into the carbon particles (powder) supporting the cerium compound obtained above and dried at 60 ° C., and then the carbon particles are heat-treated at 600 ° C. in nitrogen, and a part thereof is made of platinum. Substituted cerium oxide particles (Ce 0.95 Pt 0.05 ) O 2 -supported carbon particles were obtained.

このようにして得られた(Ce0.95Pt0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、図2に示すように酸化セリウム構造の明確な単一相のピークが現れていることが確認された。このように、白金元素が含まれているにもかかわらず白金単体に起因する構造を表すピークが現れなかったことから、白金元素は酸化セリウムの結晶格子内に取り込まれていることがわかる。この際、回折ピークの半値幅から求めた平均結晶子サイズは6.2nmであった。また、TEM観察を行った結果、図3に示すように、約5〜8nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the (Ce 0.95 Pt 0.05 ) O 2 -supported carbon particles obtained in this way, a single-phase peak with a clear cerium oxide structure appears as shown in FIG. It was confirmed that Thus, since the peak representing the structure due to platinum alone did not appear despite the inclusion of platinum element, it can be seen that platinum element was taken into the crystal lattice of cerium oxide. At this time, the average crystallite size obtained from the half width of the diffraction peak was 6.2 nm. As a result of TEM observation, it was confirmed that composite metal oxide particles of about 5 to 8 nm were supported on the carbon particle surfaces as shown in FIG.

《白金置換酸化セリウム(Pt40%)・20重量%担持》
塩化セリウム七水和物1.44gおよび塩化白金酸六水和物1.33gを水100mlに溶解し、セリウムイオンおよび白金イオンに対して当量のクエン酸を加え、セリウムおよび白金のクエン酸錯イオンを含む水溶液を調整した。
<< Platinum-substituted cerium oxide (Pt 40%), 20 wt% supported >>
Dissolve 1.44 g of cerium chloride heptahydrate and 1.33 g of chloroplatinic acid hexahydrate in 100 ml of water, add an equivalent amount of citric acid to cerium ion and platinum ion, and citrate complex ion of cerium and platinum An aqueous solution containing was prepared.

次に、5gのバルカンXC−72(登録商標、CABOT社製のカーボンブラック、平均粒子径30nm)に対して、上記クエン酸錯イオンを含む水溶液を含浸させて、前記錯イオンを前記バルカン表面に吸着させ、90℃で乾燥させた後、窒素中700℃で加熱処理を施し、白金置換酸化セリウム粒子(Ce0.6 Pt0.4 )O2 担持カーボン粒子を得た。 Next, 5 g of Vulcan XC-72 (registered trademark, carbon black manufactured by CABOT, average particle diameter of 30 nm) is impregnated with the aqueous solution containing the citric acid complex ion, and the complex ion is applied to the surface of the Vulcan. After adsorption and drying at 90 ° C., heat treatment was performed at 700 ° C. in nitrogen to obtain platinum-substituted cerium oxide particles (Ce 0.6 Pt 0.4 ) O 2 -supported carbon particles.

このようにして得られた(Ce0.6 Pt0.4 )O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、白金が多量に置換されたことによるピーク位置のずれは生じるものの、実施例1と同様に酸化セリウム構造の明確な単一相のピークが現れていることが確認され、白金元素は酸化セリウムの格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは17.9nmであった。また、TEM観察を行った結果、約15〜18nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 The (Ce 0.6 Pt 0.4 ) O 2 -supported carbon particles thus obtained were subjected to powder X-ray diffraction spectrum measurement. As a result, the peak position was shifted due to the large amount of platinum being substituted. It was confirmed that a clear single-phase peak having a cerium oxide structure appeared as in 1 and that platinum element was incorporated in the lattice of cerium oxide. At this time, the average crystallite size obtained from the half width of the diffraction peak was 17.9 nm. As a result of TEM observation, it was confirmed that about 15 to 18 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《ルテニウム置換酸化セリウム(Ru5%)・20重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、実施例1と同様にセリウム化合物を担持したカーボン粒子を得た後、塩化ルテニウム三水和物0.09gを水30gに溶解し、このルテニウム水溶液を前記セリウム化合物担持カーボン粒子に含浸させた以外は、実施例1と同様にして、ルテニウム置換酸化セリウム粒子(Ce0.95Ru0.05)O2 担持カーボン粒子を得た。
<Ruthenium-substituted cerium oxide (Ru 5%), 20% by weight supported>
In the method for producing the fine particle-supported carbon particles of Example 1, carbon particles carrying a cerium compound were obtained in the same manner as in Example 1, and then 0.09 g of ruthenium chloride trihydrate was dissolved in 30 g of water. In the same manner as in Example 1, except that the cerium compound-supported carbon particles were impregnated, ruthenium-substituted cerium oxide particles (Ce 0.95 Ru 0.05 ) O 2 -supported carbon particles were obtained.

このようにして得られた(Ce0.95Ru0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様、酸化セリウム構造の明確な単一相のピークが現れていることが確認され、ルテニウム元素は酸化セリウムの結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは11.4nmであった。また、TEM観察を行った結果、約10nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of powder X-ray diffraction spectrum measurement of the (Ce 0.95 Ru 0.05 ) O 2 -supported carbon particles obtained in this way, a single-phase peak with a clear cerium oxide structure appeared as in Example 1. It was confirmed that the ruthenium element was incorporated in the crystal lattice of cerium oxide. At this time, the average crystallite size obtained from the half width of the diffraction peak was 11.4 nm. As a result of TEM observation, it was confirmed that about 10 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《白金置換酸化チタン(Pt5%)・20重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、塩化セリウム七水和物を用いる代わりに、四塩化チタン1.29gを水100mlに溶解した以外は、実施例1と同様にして、白金置換酸化チタン粒子(Ti0.95Pt0.05)O2 担持カーボン粒子を得た。
<< Platinum-substituted titanium oxide (Pt5%), 20wt% supported >>
In the method for producing the fine particle-supporting carbon particles of Example 1, instead of using cerium chloride heptahydrate, platinum substitution oxidation was performed in the same manner as in Example 1 except that 1.29 g of titanium tetrachloride was dissolved in 100 ml of water. Titanium particles (Ti 0.95 Pt 0.05 ) O 2 -supported carbon particles were obtained.

このようにして得られた(Ti0.95Pt0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化チタンのルチル型構造の明確な単一相のピークが現れていることが確認され、白金元素は酸化チタンの結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは10.1nmであった。また、TEM観察を行った結果、約10nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the (Ti 0.95 Pt 0.05 ) O 2 -supported carbon particles obtained in this way, a clear single-phase peak of the rutile structure of titanium oxide appears. It was confirmed that platinum element was incorporated in the crystal lattice of titanium oxide. At this time, the average crystallite size obtained from the half width of the diffraction peak was 10.1 nm. As a result of TEM observation, it was confirmed that about 10 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《白金・ルテニウム置換酸化セリウム(Pt10%、Ru5%)・20重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、実施例1と同様にセリウム化合物担持カーボン粒子を得た後、塩化白金酸六水和物0.41gおよび塩化ルテニウム三水和物0.10gを水40gに溶解し、この水溶液を前記セリウム化合物担持カーボン粒子に含浸させた以外は、実施例1と同様にして、白金・ルテニウム置換酸化セリウム粒子(Ce0.85Pt0.1 Ru0.05)O2 担持カーボン粒子を得た。
<< Platinum / Ruthenium-Substituted Cerium Oxide (Pt10%, Ru5%), 20wt% supported >>
In the method for producing the fine particle-carrying carbon particles of Example 1, after obtaining cerium compound-carrying carbon particles as in Example 1, 0.41 g of chloroplatinic acid hexahydrate and 0.10 g of ruthenium chloride trihydrate were added. Platinum / ruthenium-substituted cerium oxide particles (Ce 0.85 Pt 0.1 Ru 0.05 ) O 2 -supported carbon particles in the same manner as in Example 1 except that the cerium compound-supported carbon particles were impregnated with 40 g of water. Got.

このようにして得られた(Ce0.85Pt0.1 Ru0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様、酸化セリウム構造の明確な単一相のピークが現れていることが確認され、白金およびルテニウム元素は酸化セリウムの結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは14.7nmであった。また、TEM観察を行った結果、約10nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of powder X-ray diffraction spectrum measurement of the (Ce 0.85 Pt 0.1 Ru 0.05 ) O 2 -supported carbon particles obtained in this way, as in Example 1, a single-phase peak with a clear cerium oxide structure was obtained. It was confirmed that platinum and ruthenium elements were incorporated in the crystal lattice of cerium oxide. At this time, the average crystallite size obtained from the half width of the diffraction peak was 14.7 nm. As a result of TEM observation, it was confirmed that about 10 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《白金置換酸化ジルコニウム(Pt5%)・20重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、塩化セリウム七水和物を用いる代わりに、塩化ジルコニウム1.58gを水100mlに溶解した以外は、実施例1と同様にして、白金置換酸化ジルコニウム粒子(Zr0.95Pt0.05)O2 担持カーボン粒子を得た。
<< Platinum-substituted zirconium oxide (Pt5%), 20wt% supported >>
Platinum-substituted zirconium oxide was prepared in the same manner as in Example 1 except that 1.58 g of zirconium chloride was dissolved in 100 ml of water instead of using cerium chloride heptahydrate in the method for producing fine particle-supported carbon particles of Example 1. Particle (Zr 0.95 Pt 0.05 ) O 2 -supported carbon particles were obtained.

このようにして得られた(Zr0.95Pt0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、正方晶酸化ジルコニウム構造の明確な単一相のピークが現れていることが確認され、白金元素は酸化ジルコニウムの結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは8.5nmであった。また、TEM観察を行った結果、約8〜10nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of powder X-ray diffraction spectrum measurement of the (Zr 0.95 Pt 0.05 ) O 2 -supported carbon particles obtained in this way, a clear single-phase peak with a tetragonal zirconium oxide structure appears. As a result, it was found that the platinum element was incorporated in the crystal lattice of zirconium oxide. At this time, the average crystallite size obtained from the half width of the diffraction peak was 8.5 nm. As a result of TEM observation, it was confirmed that about 8 to 10 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《パラジウム置換酸化セリウム(Pd5%)・20重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、実施例1と同様にセリウム化合物を担持したカーボン粒子を得た後、塩化パラジウム酸カリウム0.14gを水30gに溶解し、このパラジウム水溶液を前記セリウム化合物担持カーボン粒子に含浸させた以外は、実施例1と同様にして、パラジウム置換酸化セリウム粒子(Ce0.95Pd0.05)O2 担持カーボン粒子を得た。
<< Palladium-substituted cerium oxide (Pd 5%), 20% by weight supported >>
In the method for producing fine particle-supporting carbon particles of Example 1, after obtaining carbon particles supporting a cerium compound as in Example 1, 0.14 g of potassium chloropalladate was dissolved in 30 g of water, Palladium-substituted cerium oxide particles (Ce 0.95 Pd 0.05 ) O 2 -supported carbon particles were obtained in the same manner as in Example 1 except that the cerium compound-supported carbon particles were impregnated.

このようにして得られた(Ce0.95Pd0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様、酸化セリウム構造の明確な単一相のピークが現れていることが確認され、パラジウム元素は酸化セリウムの結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは12.7nmであった。また、TEM観察を行った結果、約10〜15nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of measuring the powder X-ray diffraction spectrum of the (Ce 0.95 Pd 0.05 ) O 2 -supported carbon particles obtained in this way, a single-phase peak with a clear cerium oxide structure appeared as in Example 1. It was confirmed that palladium element was incorporated in the crystal lattice of cerium oxide. At this time, the average crystallite size obtained from the half width of the diffraction peak was 12.7 nm. As a result of TEM observation, it was confirmed that about 10 to 15 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《白金置換セリウム−ジルコニウム酸化物(Pt5%)・40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、2.22gの塩化セリウム七水和物と0.48gの酸塩化ジルコニウム八水和物を水50mlに溶解した後クエン酸を加え、セリウムとジルコニウムのクエン酸錯イオンを含む水溶液を調整し、この水溶液に、2gのバルカンXC−72を加え分散させ、実施例1と同様にしてセリウムとジルコニウムの化合物を担持したカーボン粒子を得た後、塩化白金酸六水和物0.20gをエタノール30gに溶解し、白金のエタノール溶液を調整した以外は、実施例1と同様にして、白金置換セリウム−ジルコニウム酸化物粒子(Ce0.76Zr0.19Pt0.05)O2 担持カーボン粒子を得た。
<< Platinum-substituted cerium-zirconium oxide (Pt5%), 40wt% supported >>
In the method for producing fine particle-supporting carbon particles of Example 1, 2.22 g of cerium chloride heptahydrate and 0.48 g of zirconium oxychloride octahydrate were dissolved in 50 ml of water, and then citric acid was added, and cerium and zirconium were added. An aqueous solution containing citrate complex ions was prepared, and 2 g of Vulcan XC-72 was added and dispersed in this aqueous solution to obtain carbon particles carrying a compound of cerium and zirconium in the same manner as in Example 1. Platinum-substituted cerium-zirconium oxide particles (Ce 0.76 Zr 0.19 Pt 0.05 ) in the same manner as in Example 1 except that 0.20 g of platinic acid hexahydrate was dissolved in 30 g of ethanol and an ethanol solution of platinum was prepared. O 2 -supported carbon particles were obtained.

このようにして得られた(Ce0.76Zr0.19Pt0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化セリウム構造を有するセリウム−ジルコニウム複合酸化物の明確な単一相のピークが現れていることが確認され、白金元素は酸化セリウム構造の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは3nmであった。また、TEM観察を行った結果、約2〜4nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。この際のX線回折スペクトルを図4に示す。 The obtained (Ce 0.76 Zr 0.19 Pt 0.05 ) O 2 -supported carbon particles were subjected to powder X-ray diffraction spectrum measurement. As a result, a clear single phase of a cerium-zirconium composite oxide having a cerium oxide structure was obtained. It was confirmed that the platinum peak was taken in, and the platinum element was taken into the crystal lattice of the cerium oxide structure. At this time, the average crystallite size obtained from the half width of the diffraction peak was 3 nm. As a result of TEM observation, it was confirmed that about 2 to 4 nm of composite metal oxide particles were supported on the carbon particle surfaces. The X-ray diffraction spectrum at this time is shown in FIG.

《白金置換セリウム−ジルコニウム酸化物(Pt25%)・40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、1.62gの塩化セリウム七水和物と0.35gの塩化酸化ジルコニウム八水和物を水50mlに溶解した後クエン酸を加え、セリウムとジルコニウムのクエン酸錯イオンを含む水溶液を調整し、この水溶液に、2gのバルカンXC−72を加え分散させ、実施例1と同様にしてセリウムとジルコニウムの化合物を担持したカーボン粒子を得た後、塩化白金酸六水和物0.94gをエタノール30gに溶解し、白金のエタノール溶液を調整した以外は、実施例1と同様にして、白金置換セリウム−ジルコニウム酸化物粒子(Ce0.6 Zr0.15Pt0.25)O2 担持カーボン粒子を得た。
<< Platinum-substituted cerium-zirconium oxide (Pt25%), 40 wt% supported >>
In the method for producing the fine particle-supporting carbon particles of Example 1, 1.62 g of cerium chloride heptahydrate and 0.35 g of chlorinated zirconium oxide octahydrate were dissolved in 50 ml of water, citric acid was added, and cerium and zirconium were added. An aqueous solution containing citrate complex ions was prepared, and 2 g of Vulcan XC-72 was added and dispersed in this aqueous solution to obtain carbon particles carrying a compound of cerium and zirconium in the same manner as in Example 1. Platinum-substituted cerium-zirconium oxide particles (Ce 0.6 Zr 0.15 Pt 0.25 ) were prepared in the same manner as in Example 1 except that 0.94 g of platinic acid hexahydrate was dissolved in 30 g of ethanol to prepare an ethanol solution of platinum. O 2 -supported carbon particles were obtained.

このようにして得られた(Ce0.6 Zr0.15Pt0.25)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化セリウム構造を有するセリウム−ジルコニウム複合酸化物構造の明確な単一相のピークが現れていることが確認され、白金元素は酸化セリウム構造の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは7.6nmであった。また、TEM観察を行った結果、約7〜8nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement for the (Ce 0.6 Zr 0.15 Pt 0.25 ) O 2 -supported carbon particles obtained in this way, a single cerium-zirconium composite oxide structure having a cerium oxide structure was obtained. It was confirmed that a phase peak appeared, and it was found that platinum element was incorporated in the crystal lattice of the cerium oxide structure. At this time, the average crystallite size obtained from the half width of the diffraction peak was 7.6 nm. As a result of TEM observation, it was confirmed that the composite metal oxide particles of about 7 to 8 nm were supported on the carbon particle surfaces.

《白金ルテニウム置換セリウム−ジルコニウム酸化物(Pt3%、Ru3%)・40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、2.22gの塩化セリウム七水和物と0.48gの塩化酸化ジルコニウム八水和物を水50mlに溶解した後クエン酸を加え、セリウムとジルコニウムのクエン酸錯イオンを含む水溶液を調整し、この水溶液に、2gのバルカンXC−72を加え分散させ、実施例1と同様にしてセリウムとジルコニウムの化合物を担持したカーボン粒子を得た後、塩化白金酸六水和物0.12gと塩化ルテニウム三水和物0.06gをエタノール30gに溶解し、白金とルテニウムのエタノール溶液を調整した以外は、実施例1と同様にして、白金ルテニウム置換セリウム−ジルコニウム酸化物粒子(Ce0.75Zr0.19Pt0.03Ru0.03)O2 担持カーボン粒子を得た。
<Platinum ruthenium-substituted cerium-zirconium oxide (Pt 3%, Ru 3%), 40% by weight supported>
In the method for producing the fine particle-supporting carbon particles of Example 1, 2.22 g of cerium chloride heptahydrate and 0.48 g of zirconium chloride oxide octahydrate were dissolved in 50 ml of water, citric acid was added, and cerium and zirconium were added. An aqueous solution containing citrate complex ions was prepared, and 2 g of Vulcan XC-72 was added and dispersed in this aqueous solution to obtain carbon particles carrying a compound of cerium and zirconium in the same manner as in Example 1. Platinum ruthenium-substituted cerium in the same manner as in Example 1 except that 0.12 g of platinum acid hexahydrate and 0.06 g of ruthenium chloride trihydrate were dissolved in 30 g of ethanol and an ethanol solution of platinum and ruthenium was prepared. -Zirconium oxide particles (Ce 0.75 Zr 0.19 Pt 0.03 Ru 0.03 ) O 2 -supported carbon particles were obtained.

このようにして得られた(Ce0.75Zr0.19Pt0.03Ru0.03)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化セリウム構造を有するセリウム−ジルコニウム複合酸化物構造の明確な単一相のピークが現れていることが確認され、白金およびルテニウム元素は酸化セリウム構造の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは15.9nmであった。また、TEM観察を行った結果、約15nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 The obtained (Ce 0.75 Zr 0.19 Pt 0.03 Ru 0.03 ) O 2 -supported carbon particles were subjected to powder X-ray diffraction spectrum measurement. As a result, a cerium-zirconium composite oxide structure having a cerium oxide structure was clearly observed. It was confirmed that a single-phase peak appeared, and it was found that platinum and ruthenium elements were incorporated in the crystal lattice of the cerium oxide structure. At this time, the average crystallite size obtained from the half width of the diffraction peak was 15.9 nm. As a result of TEM observation, it was confirmed that about 15 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《白金ルテニウム置換セリウム−ジルコニウム酸化物(Pt20%、Ru5%)・40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、1.67gの塩化セリウム七水和物と0.36gの塩化酸化ジルコニウム八水和物を水50mlに溶解した後クエン酸を加え、セリウムとジルコニウムのクエン酸錯イオンを含む水溶液を調整し、この水溶液に、2gのバルカンXC−72を加え分散させ、実施例1と同様にしてセリウムとジルコニウムの化合物を担持したカーボン粒子を得た後、塩化白金酸六水和物0.77gと塩化ルテニウム三水和物0.10gをエタノール30gに溶解し、白金とルテニウムのエタノール溶液を調整した以外は、実施例1と同様にして、白金ルテニウム置換セリウム−ジルコニウム酸化物粒子(Ce0.6 Zr0.15Pt0.2 Ru0.05)O2 担持カーボン粒子を得た。
<< Platinum ruthenium substituted cerium-zirconium oxide (Pt20%, Ru5%) and 40 wt% supported >>
In the method for producing fine particle-supporting carbon particles of Example 1, 1.67 g of cerium chloride heptahydrate and 0.36 g of zirconium chloride octahydrate were dissolved in 50 ml of water, and then citric acid was added. An aqueous solution containing citrate complex ions was prepared, and 2 g of Vulcan XC-72 was added and dispersed in this aqueous solution to obtain carbon particles carrying a compound of cerium and zirconium in the same manner as in Example 1. Platinum ruthenium substituted cerium in the same manner as in Example 1 except that 0.77 g of platinum acid hexahydrate and 0.10 g of ruthenium chloride trihydrate were dissolved in 30 g of ethanol and an ethanol solution of platinum and ruthenium was prepared. - zirconium oxide particles (Ce 0.6 Zr 0.15 Pt 0.2 Ru 0.05) to give the O 2 carrying carbon particles.

このようにして得られた(Ce0.6 Zr0.15Pt0.2 Ru0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化セリウム構造を有するセリウム−ジルコニウム複合酸化物構造の明確な単一相のピークが現れていることが確認され、白金およびルテニウム元素は酸化セリウム構造の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは9.7nmであった。また、TEM観察を行った結果、約10nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the (Ce 0.6 Zr 0.15 Pt 0.2 Ru 0.05 ) O 2 -supported carbon particles obtained in this way, the cerium-zirconium composite oxide structure having a cerium oxide structure was clearly shown. It was confirmed that a single-phase peak appeared, and it was found that platinum and ruthenium elements were incorporated in the crystal lattice of the cerium oxide structure. At this time, the average crystallite size obtained from the half width of the diffraction peak was 9.7 nm. As a result of TEM observation, it was confirmed that about 10 nm of composite metal oxide particles were supported on the carbon particle surfaces.

《白金置換チタン−ジルコニウム酸化物(Pt5%)・40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、塩化セリウム七水和物を溶解する代わりに1.96gの四塩化チタンと0.83gの塩化酸化ジルコニウムを水50mlに溶解した後クエン酸を加え、チタンとジルコニウムのクエン酸錯イオンを含む水溶液を調整し、この水溶液に、2gのバルカンXC−72を加え分散させ、実施例1と同様にしてチタンとジルコニウムの化合物を担持したカーボン粒子を得た後、塩化白金酸六水和物0.35gをエタノール30gに溶解し、白金のエタノール溶液を調整した以外は、実施例1と同様にして、白金置換チタン−ジルコニウム酸化物粒子(Ti0.76Zr0.19Pt0.05)O2 担持カーボン粒子を得た。
<< Platinum-substituted titanium-zirconium oxide (Pt5%), 40 wt% supported >>
In the method for producing the fine particle-supporting carbon particles of Example 1, 1.96 g of titanium tetrachloride and 0.83 g of zirconium chloride were dissolved in 50 ml of water instead of dissolving cerium chloride heptahydrate, and citric acid was added. Then, an aqueous solution containing titanium and zirconium citrate complex ions was prepared, and 2 g of Vulcan XC-72 was added and dispersed in this aqueous solution to obtain carbon particles carrying a titanium and zirconium compound in the same manner as in Example 1. Thereafter, platinum-substituted titanium-zirconium oxide particles (Ti 0.76 Zr) were prepared in the same manner as in Example 1 except that 0.35 g of chloroplatinic acid hexahydrate was dissolved in 30 g of ethanol to prepare an ethanol solution of platinum. 0.19 Pt 0.05 ) O 2 -supported carbon particles were obtained.

このようにして得られた(Ti0.76Zr0.19Pt0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化チタン構造の明確な単一相のピークが現れていることが確認され、ジルコニウムおよび白金元素は酸化チタンと固溶し、結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅から求めた平均結晶子サイズは19.3nmであった。また、TEM観察を行った結果、約20nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 As a result of powder X-ray diffraction spectrum measurement of the (Ti 0.76 Zr 0.19 Pt 0.05 ) O 2 -supported carbon particles obtained in this way, a clear single-phase peak with a titanium oxide structure appears. It was confirmed that zirconium and platinum elements were dissolved in titanium oxide and incorporated in the crystal lattice. At this time, the average crystallite size obtained from the half width of the diffraction peak was 19.3 nm. As a result of TEM observation, it was confirmed that about 20 nm of composite metal oxide particles were supported on the carbon particle surfaces.

[比較例1]
《白金置換酸化セリウム(Pt5%)・20重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、実施例1と同様にしてセリウム化合物担持カーボン粒子を得、これに白金のエタノール溶液を含浸させた後、60℃で乾燥させ、空気中270℃で加熱処理を施し、白金置換酸化セリウム粒子(Ce0.95Pt0.05)O2 担持カーボン粒子を得た。
[Comparative Example 1]
<< Platinum-substituted cerium oxide (Pt5%), 20wt% supported >>
In the method for producing the fine particle-carrying carbon particles of Example 1, cerium compound-carrying carbon particles were obtained in the same manner as in Example 1, impregnated with an ethanol solution of platinum, dried at 60 ° C., and 270 ° C. in air. Then, heat treatment was performed to obtain platinum-substituted cerium oxide particles (Ce 0.95 Pt 0.05 ) O 2 -supported carbon particles.

このようにして得られた(Ce0.95Pt0.05)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化セリウムおよび酸化白金PtO2 の非常にブロードなアモルファスライクなピークが現れていることが確認され、酸化セリウムの結晶格子内に取り込まれなかった白金元素が酸化白金として分離析出していることがわかった。 As a result of the powder X-ray diffraction spectrum measurement for the (Ce 0.95 Pt 0.05 ) O 2 -supported carbon particles obtained in this way, a very broad amorphous-like peak of cerium oxide and platinum oxide PtO 2 appeared. It was confirmed that the platinum element that was not taken into the crystal lattice of cerium oxide was separated and deposited as platinum oxide.

[比較例2]
《白金ルテニウム置換セリウム−ジルコニウム酸化物(Pt3%、Ru3%)・40重量%担持》
実施例10の微粒子担持カーボン粒子の作製方法において、窒素中600℃で加熱処理を行う代わりに、窒素中1200℃/1時間の加熱処理を行った以外は、実施例10と同様にして、白金ルテニウム置換セリウム−ジルコニウム酸化物粒子(Ce0.75Zr0.19Pt0.03Ru0.03)O2 担持カーボン粒子を得た。
[Comparative Example 2]
<Platinum ruthenium-substituted cerium-zirconium oxide (Pt 3%, Ru 3%), 40% by weight supported>
In the method for producing the particulate-supporting carbon particles of Example 10, platinum was prepared in the same manner as in Example 10 except that heat treatment was performed in nitrogen at 1200 ° C./1 hour instead of heat treatment at 600 ° C. Ruthenium-substituted cerium-zirconium oxide particles (Ce 0.75 Zr 0.19 Pt 0.03 Ru 0.03 ) O 2 -supported carbon particles were obtained.

このようにして得られた(Ce0.75Zr0.19Pt0.03Ru0.03)O2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化セリウム構造を有するセリウム−ジルコニウム複合酸化物構造の明確な単一相のピークが現れていることが確認され、白金およびルテニウム元素は酸化セリウム構造の結晶格子内に取り込まれていることがわかった。この際、回折ピークの半値幅からは、平均結晶子サイズが100nm以上であり同定できなかった。また、TEM観察を行った結果、約150nmの複合金属酸化物粒子とカーボン粒子が確認された。 The obtained (Ce 0.75 Zr 0.19 Pt 0.03 Ru 0.03 ) O 2 -supported carbon particles were subjected to powder X-ray diffraction spectrum measurement. As a result, a cerium-zirconium composite oxide structure having a cerium oxide structure was clearly observed. It was confirmed that a single-phase peak appeared, and it was found that platinum and ruthenium elements were incorporated in the crystal lattice of the cerium oxide structure. At this time, from the half width of the diffraction peak, the average crystallite size was 100 nm or more and could not be identified. As a result of TEM observation, about 150 nm of composite metal oxide particles and carbon particles were confirmed.

[比較例3]
《CeO2 ・20重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、実施例1と同様にセリウム化合物を担持したカーボン粒子を得た後、白金処理を行わずに窒素中600℃で加熱処理を施し、酸化セリウム粒子CeO2 担持カーボン粒子を得た。
[Comparative Example 3]
"CeO 2 · 20% by weight-bearing"
In the method for producing the fine particle-carrying carbon particles of Example 1, after obtaining carbon particles carrying a cerium compound as in Example 1, heat treatment was performed at 600 ° C. in nitrogen without performing platinum treatment. CeO 2 -supported carbon particles were obtained.

このようにして得られたCeO2 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様に、酸化セリウム構造の明確なピークが確認された。この際、回折ピークの半値幅から求めた平均結晶子サイズは5.8nmであった。また、TEM観察を行った結果、約5〜7nmの複合金属酸化物粒子がカーボン粒子表面に担持されていることが確認された。 The CeO 2 -supported carbon particles thus obtained were subjected to powder X-ray diffraction spectrum measurement. As a result, a clear peak of the cerium oxide structure was confirmed as in Example 1. At this time, the average crystallite size obtained from the half width of the diffraction peak was 5.8 nm. As a result of TEM observation, it was confirmed that about 5 to 7 nm of composite metal oxide particles were supported on the carbon particle surfaces.

[比較例4]
《Pt10重量%+CeO2 ・20重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、セリウムの錯イオンを、バルカン表面に吸着させずに、あらかじめカーボンに対して10重量%の白金粒子を担持した白金担持カーボン粒子(白金粒子の平均粒子径5nm)表面に吸着させた以外は、実施例1と同様にしてセリウム化合物と白金粒子を担持したカーボン粒子(粉末)を得た後、実施例1の白金処理を行わずに窒素中600℃で加熱処理し、酸化セリウム粒子CeO2 および白金粒子を担持したカーボン粒子を得た。
[Comparative Example 4]
"Pt10 weight% + CeO 2 · 20% by weight-bearing"
In the method for producing the fine particle-supported carbon particles of Example 1, platinum-supported carbon particles in which platinum particles of 10% by weight with respect to carbon were previously supported without adsorbing the complex ions of cerium on the Vulcan surface (average of platinum particles). After obtaining carbon particles (powder) carrying a cerium compound and platinum particles in the same manner as in Example 1 except that the particles were adsorbed on the surface (particle size: 5 nm), 600 in nitrogen without performing the platinum treatment in Example 1 was obtained. Heat treatment was performed at 0 ° C. to obtain carbon particles carrying cerium oxide particles CeO 2 and platinum particles.

このようにして得られた微粒子担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化セリウム構造のピークおよび金属白金のピークが確認された。この際、回折ピークの半値幅から求めた平均結晶子サイズは、それぞれ7.6nmおよび5.6nmであった。また、TEM観察を行った結果、約8nmの複合金属酸化物粒子および約5nmの白金粒子がカーボン粒子表面に担持された微粒子担持カーボン粒子が確認された。   As a result of measuring the powder X-ray diffraction spectrum of the fine particle-supported carbon particles obtained in this manner, a peak of a cerium oxide structure and a peak of platinum metal were confirmed. At this time, the average crystallite sizes determined from the half width of the diffraction peak were 7.6 nm and 5.6 nm, respectively. As a result of TEM observation, fine particle-supported carbon particles in which about 8 nm of composite metal oxide particles and about 5 nm of platinum particles were supported on the carbon particle surfaces were confirmed.

[比較例5]
《PtO・10重量%担持》
塩化白金酸六水和物2.70gをエタノール200mlに溶解し、白金イオンを含むエタノール溶液を調整した。この白金エタノール溶液を10gのバルカンXC−72に含浸させ、60℃で乾燥させた後、空気中270℃で加熱処理し、酸化白金粒子PtO担持カーボン粒子を得た。
[Comparative Example 5]
<< PtO and 10 wt% loading >>
2.70 g of chloroplatinic acid hexahydrate was dissolved in 200 ml of ethanol to prepare an ethanol solution containing platinum ions. This platinum ethanol solution was impregnated with 10 g of Vulcan XC-72, dried at 60 ° C., and then heat-treated at 270 ° C. in air to obtain platinum oxide particles PtO-supported carbon particles.

このようにして得られたPtO担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、酸化白金の明確な単一相のピークが現れることが確認された。この際、回折ピークの半値幅から求めた平均結晶子サイズは5.2nmであった。また、TEM観察を行った結果、約5nmの酸化白金粒子がカーボン粒子表面に担持されていることが確認された。   As a result of measuring the powder X-ray diffraction spectrum of the PtO-supported carbon particles obtained in this way, it was confirmed that a clear single-phase peak of platinum oxide appeared. At this time, the average crystallite size obtained from the half width of the diffraction peak was 5.2 nm. As a result of TEM observation, it was confirmed that about 5 nm of platinum oxide particles were supported on the carbon particle surfaces.

表1に、以上の各実施例および各比較例で得られた微粒子担持カーボン粒子の組成・特性等をまとめ示す。なお、担持粒子径は平均結晶子サイズから求めた担持酸化物の粒子径を、TEM観察粒子径はTEM観察によって目視で確認された担持酸化物のおおよその粒子径を、平均粒子径はTEM写真に写された粒子100個の平均から求めた微粒子担持カーボン粒子の平均粒子径を、それぞれ示す。   Table 1 summarizes the composition, characteristics, etc. of the fine particle-supported carbon particles obtained in each of the above Examples and Comparative Examples. The supported particle size is the particle size of the supported oxide obtained from the average crystallite size, the TEM observation particle size is the approximate particle size of the supported oxide visually confirmed by TEM observation, and the average particle size is a TEM photograph. The average particle diameters of the fine particle-supporting carbon particles determined from the average of 100 particles imaged in FIG.

Figure 2007115668
Figure 2007115668

次に、上述の各実施例および比較例で得られた微粒子担持カーボン粒子の触媒特性を評価するため、燃料電池用の膜電極接合体(MEA)を作製し、それを用いて燃料電池としての出力特性を調べた。膜電極接合体(MEA)を構成する電極に上記のような微粒子担持カーボン粒子を使用する場合、空気極と燃料極とでは、最大の効果が得られる微粒子担持カーボン粒子の酸化物組成(カーボン粒子に担持されている酸化物微粒子の組成)が異なる。そこで、本実施例では、一律に評価を行うために、燃料極に微粒子担持カーボン粒子電極膜を用い、空気極には以下に示す標準電極膜を用いた。   Next, in order to evaluate the catalytic characteristics of the fine particle-supported carbon particles obtained in each of the above-described examples and comparative examples, a membrane electrode assembly (MEA) for a fuel cell was produced and used as a fuel cell. The output characteristics were examined. When the fine particle-supported carbon particles as described above are used for the electrodes constituting the membrane electrode assembly (MEA), the oxide composition of the fine particle-supported carbon particles (carbon particles) that can achieve the maximum effect between the air electrode and the fuel electrode. The composition of the oxide fine particles supported on the particles is different. Therefore, in this example, in order to perform uniform evaluation, a particulate-supported carbon particle electrode film was used for the fuel electrode, and a standard electrode film shown below was used for the air electrode.

〈微粒子担持カーボン粒子電極膜〉
上記各実施例および比較例で得られた微粒子担持カーボン粒子1質量部を、ポリパーフルオロスルホン酸樹脂の5質量%溶液であるアルドリッチ(Aldrich)社製の”ナフィオン (Nafion)”(商品名、EW=1000)溶液9.72質量部およびポリパーフルオロスルホン酸樹脂の20質量%溶液であるデュポン社製の”ナフィオン(Nafion)”(商品名)2.52質量部および水1質量部に添加し、均一に分散するよう混合液を充分に攪拌することで触媒塗料を調製した。次に、PTFEフィルム上に前記触媒塗料を、白金担持量が0.03mg/cm2 となるように塗布し、乾燥した後剥がし取り、微粒子担持カーボン粒子電極膜を得た。
<Fine particle supported carbon electrode film>
1 part by weight of the fine particle-supported carbon particles obtained in each of the above Examples and Comparative Examples was replaced with “Nafion” (trade name, manufactured by Aldrich) which is a 5% by mass solution of polyperfluorosulfonic acid resin. (EW = 1000) 9.72 parts by mass of a solution and 20% by mass solution of polyperfluorosulfonic acid resin “Nafion” (trade name) made by DuPont 2.52 parts by mass and added to 1 part by mass of water Then, a catalyst coating material was prepared by sufficiently stirring the mixed solution so as to disperse uniformly. Next, the catalyst paint was applied onto a PTFE film so that the platinum carrying amount was 0.03 mg / cm 2 , dried and peeled off to obtain a fine particle carrying carbon particle electrode film.

〈標準電極膜〉
標準電極としては、白金を50質量%担持させた田中貴金属工業社製の白金担持カーボン”10E50E”(商品名)を用いて、上記と同様にして触媒塗料を調整した後、PTFEフィルム上に、白金担持量が0.5mg/cm2 となるように塗布し、乾燥した後剥し取り、標準電極膜を得た。
<Standard electrode membrane>
As a standard electrode, a platinum-supported carbon “10E50E” (trade name) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. supporting 50% by mass of platinum was used, and after adjusting the catalyst paint in the same manner as described above, on the PTFE film, It was applied so that the amount of platinum supported was 0.5 mg / cm 2 , dried and then peeled off to obtain a standard electrode film.

〈膜電極接合体〉
固体高分子電解質膜としては、デュポン(DuPont)社製のポリパーフルオロスルホン酸樹脂膜”Nafion112”(商品名)を所定のサイズに切り出して用いた。この固体高分子電解質膜の両面に、先に作製した微粒子担持カーボン粒子電極膜と標準電極膜とを重ね合わせ、温度160℃、圧力4.4MPaの条件でホットプレスを行い、これらを接合した。次に、あらかじめ撥水処理を施したカーボン不織布(東レ社製、TGP−H−120)と、両面に電極膜を形成した固体高分子電解質膜とをホットプレスで接合し、膜電極接合体を作製した。
<Membrane electrode assembly>
As the solid polymer electrolyte membrane, a polyperfluorosulfonic acid resin film “Nafion 112” (trade name) manufactured by DuPont was cut into a predetermined size and used. The fine particle-supporting carbon particle electrode film prepared above and the standard electrode film were superposed on both surfaces of the solid polymer electrolyte membrane, and hot pressing was performed under the conditions of a temperature of 160 ° C. and a pressure of 4.4 MPa, and these were joined. Next, a carbon non-woven fabric (TGP-H-120, manufactured by Toray Industries, Inc.) that has been subjected to water repellent treatment in advance and a solid polymer electrolyte membrane having electrode films formed on both sides thereof are joined by hot pressing to form a membrane electrode assembly. Produced.

〔出力特性評価〕
以上のようにして得られた膜電極接合体を用いて、燃料電池としての出力特性(ここでは、単位白金量あたりの最大出力密度)を測定した。測定の際には、膜電極接合体を含む測定系を60℃に保持し、燃料極側に60℃の加湿・加温した水素ガスを供給し、空気極側に60℃の加湿・加温した空気を供給して測定を行った。先の表1に、その測定結果をまとめて示す。
(Output characteristic evaluation)
Using the membrane electrode assembly obtained as described above, output characteristics as a fuel cell (here, maximum output density per unit platinum amount) were measured. In the measurement, the measurement system including the membrane electrode assembly is held at 60 ° C., 60 ° C. humidified / heated hydrogen gas is supplied to the fuel electrode side, and 60 ° C. humidified / heated is supplied to the air electrode side. The measurement was performed with the supplied air supplied. Table 1 summarizes the measurement results.

〔酸化に対する耐性評価〕
微粒子担持カーボン粒子の空気中での酸化に対する耐性を評価するために、代表的な組成を有するものとして、ここでは実施例11および比較例4で得られた各微粒子担持カーボン粒子を選択し、これらの空気中での物性変化を測定した。測定に際しては、それぞれ、前もって空気中150℃/48時間の酸化処理を行った。
[Evaluation of resistance to oxidation]
In order to evaluate the resistance of the fine particle-supported carbon particles to oxidation in air, the fine particle-supported carbon particles obtained in Example 11 and Comparative Example 4 are selected as those having typical compositions, and these Changes in the physical properties of these were measured in air. In the measurement, each was previously oxidized in air at 150 ° C. for 48 hours.

上記処理後の各微粒子担持カーボン粒子について、粉末X線回折スペクトルを測定し、結晶構造を調べたところ、実施例11の微粒子担持カーボン粒子では酸化セリウム構造が現れ、処理前と比較して変化がなかった。一方、比較例4の微粒子担持カーボン粒子では、処理前は「酸化セリウム構造+金属白金構造」の2相であったが、処理後には「酸化セリウム構造+金属白金構造+酸化白金(PtO)」の3相が観測された。   About each fine particle carrying | support carbon particle after the said process, when a powder X-ray-diffraction spectrum was measured and the crystal structure was investigated, the cerium oxide structure appeared in the fine particle carrying | support carbon particle of Example 11, and a change compared with before a process. There wasn't. On the other hand, the fine particle-supported carbon particles of Comparative Example 4 had two phases of “cerium oxide structure + metal platinum structure” before the treatment, but after the treatment, “cerium oxide structure + metal platinum structure + platinum oxide (PtO)”. The following three phases were observed.

さらに、それぞれの粒子についてTEM観察を行ったところ、実施例11の微粒子担持カーボン粒子では約8nmの粒子がカーボン粒子上に担持されている様子が観測され、処理前と比較して、粒子径にほぼ変化はなかった。一方、比較例4の白金担持カーボン粒子では、約8nmの酸化物粒子および約8〜9nmの白金粒子がカーボン粒子上に担持されている様子が観測され、処理前の約5nmの白金粒子と比較して、粒子径が増大したことが認められた。   Further, when TEM observation was performed on each particle, it was observed that the particle-supported carbon particles of Example 11 had about 8 nm particles supported on the carbon particles, and the particle diameter was smaller than that before the treatment. There was almost no change. On the other hand, in the platinum-supported carbon particles of Comparative Example 4, it was observed that about 8 nm of oxide particles and about 8-9 nm of platinum particles were supported on the carbon particles, which was compared with about 5 nm of platinum particles before treatment. Thus, it was observed that the particle size was increased.

次に、酸化処理後の各微粒子担持カーボン粒子を用いて、実施例13と同様にして膜電極接合体を作製し、出力特性の評価を行った。その結果、実施例1の微粒子担持カーボン粒子を用いた場合では、その最大出力が182mWであり、比較例4では93mWであった。   Next, using each particulate-supported carbon particle after the oxidation treatment, a membrane / electrode assembly was produced in the same manner as in Example 13, and the output characteristics were evaluated. As a result, when the fine particle-supporting carbon particles of Example 1 were used, the maximum output was 182 mW, and in Comparative Example 4, it was 93 mW.

表2に、これらの酸化に対する耐性評価および出力特性評価の結果をまとめて示す。   Table 2 summarizes the results of resistance evaluation against these oxidations and output characteristic evaluation.

Figure 2007115668
Figure 2007115668

先の表1から明らかなように、各実施例で得られた微粒子担持カーボン粒子においては、いずれの場合も金属酸化物の結晶構造の単一相が現れており、その結晶子サイズは20nm以下となっていることがわかる。一方、比較例1、2においては加熱処理条件が適切でなかったために、白金元素が酸化セリウム内に取り込まれず酸化白金が析出したり、金属酸化物の粒子径が100nm以上の粗大粒子となりカーボンに担持されていないものとなっている。   As is clear from Table 1 above, in the fine particle-supported carbon particles obtained in each Example, a single phase of a metal oxide crystal structure appears in each case, and the crystallite size is 20 nm or less. It turns out that it is. On the other hand, in Comparative Examples 1 and 2, since the heat treatment conditions were not appropriate, platinum element was not taken into cerium oxide and platinum oxide was precipitated, or the particle diameter of the metal oxide became coarse particles of 100 nm or more and became carbon. It is not carried.

次に、燃料電池用燃料極としての特性評価の結果、各実施例で得られた微粒子担持カーボン粒子を用いた場合には、明らかな発電特性が現れている。一方で、比較例1・2などのように結晶構成が目的のものからずれた場合には、その出力特性は著しく低下していることがわかる。また、比較例3からは、酸化セリウム粒子のみをカーボン上に担持させても出力特性が全く得られないことがわかり、実施例において現れた特性が酸化物起因のものではないことがわかる。さらに比較例5に示したように、酸化白金PtOのみをカーボン粒子上に担持させた場合にも十分な出力特性が現れず、従来考えられている通りに、単純な酸化白金の状態では触媒能をほとんど持たないことがわかる。   Next, as a result of characteristic evaluation as a fuel electrode for a fuel cell, when the fine particle-supported carbon particles obtained in each example are used, clear power generation characteristics appear. On the other hand, when the crystal structure deviates from the target as in Comparative Examples 1 and 2, the output characteristics are remarkably deteriorated. Further, it can be seen from Comparative Example 3 that no output characteristics can be obtained even when only cerium oxide particles are supported on carbon, and the characteristics appearing in the examples are not attributable to oxides. Furthermore, as shown in Comparative Example 5, when only platinum oxide PtO is supported on the carbon particles, sufficient output characteristics do not appear, and as is conventionally considered, catalytic activity is obtained in a simple platinum oxide state. It turns out that it has almost no.

また、比較例4では燃料電池用燃料極としての特性評価の際には、各実施例と比較して優れた特性を示している。一方で、表2に示したように、空気中での酸化を経た後には、実施例1では結晶構造、平均粒子径ともにほぼ変化がないのに対して、比較例4の白金粒子を担持したカーボン粒子では、結晶構造が「金属白金」から「金属白金+酸化白金」へと変化し、平均粒子径も増大していることがわかり、それに伴い出力特性は著しく低下していることがわかる。   Moreover, in the comparative example 4, in the characteristic evaluation as a fuel electrode for fuel cells, the characteristic excellent compared with each Example is shown. On the other hand, as shown in Table 2, after undergoing oxidation in the air, the crystal structure and the average particle diameter in Example 1 were not substantially changed, whereas the platinum particles of Comparative Example 4 were supported. In the case of carbon particles, it can be seen that the crystal structure has changed from “metal platinum” to “metal platinum + platinum oxide”, the average particle diameter has increased, and the output characteristics have been significantly reduced accordingly.

以上のように、白金元素は酸化状態にある場合には、それ以上の酸化による劣化が起こり得ず、白金−白金間の金属結合が存在しないために凝着による粒子の粗大化による劣化も起こり得ないという点で、本発明は、触媒の劣化を防ぎ、耐久性を高めることにより触媒使用量を減らすという課題に対して、その解決策を与える重要な糸口となる。   As described above, when the platinum element is in an oxidized state, deterioration due to further oxidation cannot occur, and since there is no metal bond between platinum and platinum, deterioration due to coarsening of particles due to adhesion also occurs. However, the present invention is an important clue that provides a solution to the problem of reducing the amount of catalyst used by preventing deterioration of the catalyst and enhancing durability.

固体電解質型燃料電池用の膜電極接合体(MEA)の一般的な構造を模式的に示す断面図である。It is sectional drawing which shows typically the general structure of the membrane electrode assembly (MEA) for solid oxide fuel cells. 実施例1で得られた、約7nmの(Ce0.95Pt0.05)O2 粒子を担持したカーボン粒子の粉末X線回折スペクトルを示す図である。 2 is a graph showing a powder X-ray diffraction spectrum of carbon particles carrying about 7 nm of (Ce 0.95 Pt 0.05 ) O 2 particles obtained in Example 1. FIG. 実施例1で得られた、約7nmの(Ce0.95Pt0.05)O2 粒子を担持したカーボン粒子のTEM写真(倍率:300万倍)を示す図である。1 is a diagram showing a TEM photograph (magnification: 3 million times) of carbon particles carrying about 7 nm of (Ce 0.95 Pt 0.05 ) O 2 particles obtained in Example 1. FIG. 実施例8で得られた、約3nmの(Ce0.76Zr0.19Pt0.05)O2 粒子を担持したカーボン粒子の粉末X線回折スペクトルを示す図である。6 is a graph showing a powder X-ray diffraction spectrum of carbon particles carrying about 3 nm of (Ce 0.76 Zr 0.19 Pt 0.05 ) O 2 particles obtained in Example 8. FIG.

符号の説明Explanation of symbols

1 固体高分子電解質膜
2 空気極
3 燃料極
4 空気極用ガス拡散層
5 燃料極用ガス拡散層
10 膜電極接合体(MEA)
DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte membrane 2 Air electrode 3 Fuel electrode 4 Gas diffusion layer for air electrodes 5 Gas diffusion layer for fuel electrodes 10 Membrane electrode assembly (MEA)

Claims (9)

結晶子サイズが1〜20nmであり、一般式MOx(x=0.5〜2.0)で表され、且つ、このうちの金属元素Mの一部がMとは異種の貴金属元素で置換されている金属酸化物微粒子が、カーボン粒子に担持されていることを特徴とする微粒子担持カーボン粒子。   The crystallite size is 1 to 20 nm, represented by the general formula MOx (x = 0.5 to 2.0), and a part of the metal element M is replaced with a noble metal element different from M Fine particle-supporting carbon particles, wherein the fine metal oxide particles are supported on carbon particles. 金属酸化物微粒子を構成する金属元素Mが、セリウム(Ce)、ジルコニウム(Zr)、チタン(Ti)、アルミニウム(Al)、マグネシウム(Mg)、ケイ素(Si)のうちの一種以上の元素である、請求項1記載の微粒子担持カーボン粒子。   The metal element M constituting the metal oxide fine particles is one or more elements of cerium (Ce), zirconium (Zr), titanium (Ti), aluminum (Al), magnesium (Mg), and silicon (Si). The fine particle-supported carbon particles according to claim 1. 貴金属元素が、白金(Pt)、ルテニウム(Ru)、パラジウム(Pd)、金(Au)から選ばれる一種以上の元素であり、当該貴金属元素の総含有量が、金属酸化物微粒子を構成する全金属元素Mに対して4〜30at.%である、請求項1または2記載の微粒子担持カーボン粒子。   The noble metal element is one or more elements selected from platinum (Pt), ruthenium (Ru), palladium (Pd), and gold (Au), and the total content of the noble metal element is the total content of the metal oxide fine particles. 4 to 30 at. The fine particle-supported carbon particles according to claim 1, wherein the fine particle-supported carbon particles are%. 微粒子担持カーボン粒子中の金属酸化物微粒子の担持量が、重量比(「金属酸化物微粒子の重量」/「当該微粒子担持カーボン粒子全体の重量」)で、5〜50%である、請求項1ないし3のいずれかに記載の微粒子担持カーボン粒子。   The supported amount of metal oxide fine particles in the fine particle-supported carbon particles is 5 to 50% in a weight ratio ("weight of metal oxide fine particles" / "weight of the whole fine particle-supported carbon particles"). 4. The fine particle-supported carbon particles according to any one of 3 to 3. 金属酸化物微粒子を担持するカーボン粒子の平均粒子径が20〜70nmである、請求項1ないし4のいずれかに記載の微粒子担持カーボン粒子。   The fine particle-carrying carbon particles according to any one of claims 1 to 4, wherein an average particle size of the carbon particles carrying the metal oxide fine particles is 20 to 70 nm. 金属酸化物微粒子を担持した微粒子担持カーボン粒子の平均粒子径が20〜90nmである、請求項1ないし5のいずかに記載の微粒子担持カーボン粒子。   The fine particle-carrying carbon particles according to any one of claims 1 to 5, wherein the fine particle-carrying carbon particles carrying the metal oxide fine particles have an average particle diameter of 20 to 90 nm. 請求項1に記載した微粒子担持カーボン粒子を製造するにあたり、
まず、金属酸化物微粒子を構成する金属の錯イオンを含む溶液を調整し、
次いで、得られた溶液中にカーボン粒子を分散させて、前記金属の錯イオンをカーボン粒子に吸着させることを特徴とする微粒子担持カーボン粒子の製造方法。
In producing the particulate-supported carbon particles according to claim 1,
First, prepare a solution containing the complex ions of the metal constituting the metal oxide fine particles,
Next, carbon particles are dispersed in the obtained solution, and the metal complex ions are adsorbed onto the carbon particles.
請求項1に記載した微粒子担持カーボン粒子を製造するにあたり、
まず、金属酸化物微粒子を構成する金属の錯イオンを含む溶液を調整し、
次いで、得られた溶液中にカーボン粒子を分散させて、前記金属の錯イオンをカーボン粒子に吸着させた後、水熱処理することにより、結晶格子中に貴金属元素を含有する金属酸化物微粒子をカーボン粒子表面に析出させて担持させることを特徴とする微粒子担持カーボン粒子の製造方法。
In producing the particulate-supported carbon particles according to claim 1,
First, prepare a solution containing the complex ions of the metal constituting the metal oxide fine particles,
Next, carbon particles are dispersed in the obtained solution, and the metal complex ions are adsorbed on the carbon particles, followed by hydrothermal treatment, whereby the metal oxide fine particles containing the noble metal element in the crystal lattice are carbonized. A method for producing fine particle-supporting carbon particles, wherein the fine particles are supported by depositing on the surface of the particles.
請求項1ないし6のいずれかに記載の微粒子担持カーボン粒子を電極用触媒に用いてなる燃料電池用電極。   A fuel cell electrode comprising the particulate-supported carbon particles according to claim 1 as an electrode catalyst.
JP2006242367A 2005-09-26 2006-09-07 Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode Withdrawn JP2007115668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242367A JP2007115668A (en) 2005-09-26 2006-09-07 Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005277024 2005-09-26
JP2005277022 2005-09-26
JP2006242367A JP2007115668A (en) 2005-09-26 2006-09-07 Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode

Publications (1)

Publication Number Publication Date
JP2007115668A true JP2007115668A (en) 2007-05-10

Family

ID=38097643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242367A Withdrawn JP2007115668A (en) 2005-09-26 2006-09-07 Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode

Country Status (1)

Country Link
JP (1) JP2007115668A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869697B1 (en) 2007-05-28 2008-11-21 고려대학교 산학협력단 Au-pd electrocatalysts for direct borohydrides fuel cell
JP2010192172A (en) * 2009-02-16 2010-09-02 Noritake Co Ltd Method of manufacturing alloy catalyst electrode for fuel cell
WO2010126119A1 (en) * 2009-04-27 2010-11-04 ジャパンゴアテックス株式会社 Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer-type fuel cell
JP2013151398A (en) * 2012-01-26 2013-08-08 Dowa Electronics Materials Co Ltd Method for reducing graphene oxide, and method for producing electrode material using the method
JP2014105133A (en) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center Method for producing ceria-zirconia composite oxide material and ceria-zirconia composite oxide material obtained thereby

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869697B1 (en) 2007-05-28 2008-11-21 고려대학교 산학협력단 Au-pd electrocatalysts for direct borohydrides fuel cell
JP2010192172A (en) * 2009-02-16 2010-09-02 Noritake Co Ltd Method of manufacturing alloy catalyst electrode for fuel cell
WO2010126119A1 (en) * 2009-04-27 2010-11-04 ジャパンゴアテックス株式会社 Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer-type fuel cell
JP2013151398A (en) * 2012-01-26 2013-08-08 Dowa Electronics Materials Co Ltd Method for reducing graphene oxide, and method for producing electrode material using the method
JP2014105133A (en) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center Method for producing ceria-zirconia composite oxide material and ceria-zirconia composite oxide material obtained thereby

Similar Documents

Publication Publication Date Title
JP4875410B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
JP4713959B2 (en) Fuel cell supported catalyst and fuel cell
JP5214117B2 (en) Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst materials, fuel cell electrodes
US8007691B2 (en) Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
JP5822834B2 (en) Catalyst with metal oxide doping for fuel cells
JP4901143B2 (en) Electrode catalyst, electrode for fuel electrode, fuel cell device, and method for producing electrode catalyst
JP4879658B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
WO2009096356A1 (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
JP2008181696A (en) Catalyst for fuel cell and its manufacturing method
US20090068546A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2007115668A (en) Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode
JP2008123860A (en) Metal oxide-carrying carbon and fuel cell electrode employing it
EP1938896A1 (en) Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cells
JP2009176649A (en) Proton conductive inorganic material used for fuel cell, and anode for fuel cell using it
EP1941943A1 (en) Microparticle-supported carbon particle, method for production thereof, and fuel cell electrode
JP2007194138A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell
JP2010238546A (en) Fine particle carrying metal oxide catalyst, its manufacturing method, and electrode for fuel cell
JP2007194139A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell
JP2007194140A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell
JP5217235B2 (en) Fuel cell catalyst containing RuTe2, electrode material for fuel cell and fuel cell using the fuel cell catalyst
Du Robert One-dimensional nanostructured electrocatalysts for
Lu et al. One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells-a

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110524

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120404