JP2008181696A - Catalyst for fuel cell and its manufacturing method - Google Patents

Catalyst for fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2008181696A
JP2008181696A JP2007012678A JP2007012678A JP2008181696A JP 2008181696 A JP2008181696 A JP 2008181696A JP 2007012678 A JP2007012678 A JP 2007012678A JP 2007012678 A JP2007012678 A JP 2007012678A JP 2008181696 A JP2008181696 A JP 2008181696A
Authority
JP
Japan
Prior art keywords
catalyst
metal
metal oxide
fine particles
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007012678A
Other languages
Japanese (ja)
Inventor
Masaru Yoshitake
優 吉武
Klitzpera Thomas
クリッツペラ トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007012678A priority Critical patent/JP2008181696A/en
Publication of JP2008181696A publication Critical patent/JP2008181696A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide catalyst of high activity as one for a solid polymer fuel cell, and its manufacturing method and a membrane electrode assembly using it. <P>SOLUTION: The catalyst for a fuel cell has metal oxide fine particles and platinum system metal catalyst fine particles carried by a carbon carrier, with a mean particle diameter of the metal oxide fine particles measured by an X-ray diffraction method of 20 nm or less. The manufacturing method of the catalyst for a fuel cell having the carbon carrier carry metal oxide and platinum system metal catalyst fine particles comprises a process 1 of having the carbon carrier carry a metal compound to be metal oxide by calcining and calcine it at 300°C or less and at a temperature at which the metal compound turns to be metal oxide, and a process 2 of having the carrier thus obtained in the process 1 carry platinum system catalyst fine particles. The membrane electrode assembly has the above catalyst contained at least in either of the electrode catalyst layers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭素担体に金属酸化物と白金系金属触媒微粒子とを担持した燃料電池用触媒に関する。   The present invention relates to a fuel cell catalyst in which a metal oxide and platinum-based metal catalyst fine particles are supported on a carbon support.

近年、固体高分子形燃料電池は高性能化が進み、電気自動車用電源、家庭用コージェネレーション、携帯機器用電源などへの応用が期待され開発が加速している。しかし、本格的な実用化のためには一層の効率向上、小型化、低コスト化および信頼性向上などが求められている。とりわけ、空気極に用いる酸素還元用触媒はいずれの用途においても、白金触媒や白金合金触媒(以下これらを白金系金属触媒という)が最も活性が高く、且つ耐久性に優れるものとして殆どの発電システムに用いられている。しかし、白金は埋蔵量に限りのある希少資源であり、燃料電池の本格的な商業化のためには白金系金属触媒のより一層の活性向上並びに使用量低減が求められている。   In recent years, solid polymer fuel cells have been improved in performance, and their development has been accelerated with the expectation that they will be applied to power sources for electric vehicles, household cogeneration, portable devices and the like. However, for full-scale practical application, further efficiency improvement, downsizing, cost reduction, and reliability improvement are required. In particular, as a catalyst for oxygen reduction used for the air electrode, most power generation systems are platinum catalysts and platinum alloy catalysts (hereinafter referred to as platinum-based metal catalysts) having the highest activity and excellent durability in any application. It is used for. However, platinum is a scarce resource with limited reserves, and for the full-scale commercialization of fuel cells, further improvement in activity and reduction in the amount of platinum-based metal catalysts are required.

上述の白金系触媒は通常導電性で且つ高比表面積のカーボンブラックに担持された状態で、且つ電極触媒層の厚さを薄くしてガス拡散性を確保するため、30%以上の極めて高い担持率のものが多い。従って、高温環境下では触媒金属微粒子が凝集しやすく、また、特に低加湿下では触媒層上での反応に起因して発生するラジカルにより担体そのものが酸化劣化することが報告されている。更には自動車用の場合、燃料電池停止時には電池内水素を空気でパージするため、起動停止を頻繁に繰り返すと触媒が激しく劣化することが報告されており、触媒の耐久性向上も大きな課題となっている。担体の酸化については触媒微粒子自身が触媒作用を示すことが報告されており、担体の耐酸化性向上対策が必要となっている。   The above platinum-based catalyst is usually in an electrically conductive and high specific surface area carbon black, and the electrode catalyst layer is thinned to ensure gas diffusibility. Many of the rates. Accordingly, it has been reported that the catalyst metal fine particles are likely to aggregate under a high temperature environment, and that the carrier itself is oxidatively deteriorated by radicals generated due to the reaction on the catalyst layer particularly under low humidification. Furthermore, in the case of automobiles, hydrogen in the battery is purged with air when the fuel cell is stopped, and it has been reported that the catalyst deteriorates drastically if the start and stop are repeated frequently, and improving the durability of the catalyst is also a major issue. ing. Regarding the oxidation of the carrier, it has been reported that the catalyst fine particles themselves exhibit a catalytic action, and measures for improving the oxidation resistance of the carrier are required.

非特許文献1〜3にはカーボン担体の腐食が固体高分子形燃料電池の高電位における性能劣化の大きな原因となっていることが示されている。Ptと担体劣化の関係についても言及されている。非特許文献4には固体高分子形燃料電池において自動車用燃料電池で想定される頻繁な起動停止により発生するカソード側の酸素発生やカーボン劣化に関するモデルが議論されている。非特許文献5には担体としてのカーボンブラックとカーボンナノファイバーとの比較が示されており、前者は後者に比較してPt触媒の劣化が大きいことが報告されている。   Non-Patent Documents 1 to 3 show that the corrosion of the carbon support is a major cause of the performance deterioration of the polymer electrolyte fuel cell at a high potential. The relationship between Pt and carrier deterioration is also mentioned. Non-Patent Document 4 discusses a model relating to oxygen generation and carbon deterioration on the cathode side that occurs due to frequent start and stop in a fuel cell for an automobile in a polymer electrolyte fuel cell. Non-Patent Document 5 shows a comparison between carbon black as a carrier and carbon nanofibers, and it is reported that the former has a greater deterioration of the Pt catalyst than the latter.

M. Roen, C.H. Paik, T.D. Jarvi, Electhrochem. Solid−State Lett. 7, A19(2004).M.M. Roen, C.I. H. Paik, T .; D. Jarvi, Electrochem. Solid-State Lett. 7, A19 (2004). J.P. Meyers and R.M. Darling, J. of the Electrochem. Soc., 153, A1432(2006).J. et al. P. Meyers and R.M. M.M. Darling, J.M. of the Electrochem. Soc. , 153, A1432 (2006). Z. Siroma, K. Ishii, K. Yasuda, Y. Miyazaki, M. Inaba, A. Tasaka, Electrochem. Commun., 7, 1153(2005).Z. Siroma, K.M. Ishii, K .; Yasuda, Y. et al. Miyazaki, M .; Inaba, A.M. Tasaka, Electrochem. Commun. , 7, 1153 (2005). D.A. Stevens, M.T. Hicks, G.M. Haugen and J.R. Dahn, J. of the Electrochem. Soc., 152, A2309(2005).D. A. Stevens, M.M. T.A. Hicks, G. M.M. Haugen and J.H. R. Dahn, J. et al. of the Electrochem. Soc. , 152, A2309 (2005). Y. Shao, G. Yin, Y. Gao, and P. Shi, J. of the Electrochem. Soc., 153, A1093(2006).Y. Shao, G .; Yin, Y. Gao, and P.M. Shi, J. et al. of the Electrochem. Soc. , 153, A1093 (2006).

本発明は、上記従来技術に鑑みてなされたものであり、従来の炭素担体に担持された白金系触媒に対して、活性が著しく高く、且つ結晶化度の低い担体を用いても触媒の安定性が確保できる技術を提供することを目的とする。   The present invention has been made in view of the above-described conventional technology, and the stability of the catalyst can be improved even when a carrier having a remarkably high activity and a low crystallinity is used, compared to a platinum catalyst supported on a conventional carbon carrier. The purpose is to provide a technology that can ensure safety.

本発明者らは、鋭意検討の結果、炭素担体上に金属酸化物を担持し、さらに、白金系金属触媒微粒子を担持することにより高活性で、高比表面積の炭素担体を用いても安定した特性が得られることを見出し、本発明に至ったものである。   As a result of intensive studies, the present inventors have supported metal oxides on a carbon support, and further supported platinum-based metal catalyst fine particles, so that even if a carbon support having a high activity and a high specific surface area is used, the present invention is stable. The inventors have found that characteristics can be obtained, and have reached the present invention.

本発明は、炭素担体に金属酸化物と白金系金属触媒微粒子が担持された燃料電池用触媒、その製造方法、およびその燃料電池用触媒が使用された膜電極接合体に関する下記発明である。   The present invention relates to a fuel cell catalyst in which metal oxide and platinum-based metal catalyst fine particles are supported on a carbon support, a production method thereof, and a membrane electrode assembly using the fuel cell catalyst.

炭素担体に金属酸化物微粒子と白金系金属触媒微粒子とが担持された燃料電池用触媒であり、X線回折法で測定した該金属酸化物微粒子の平均粒径が20nm以下であることを特徴とする燃料電池用触媒。   A catalyst for fuel cells in which metal oxide fine particles and platinum-based metal catalyst fine particles are supported on a carbon support, wherein the average particle diameter of the metal oxide fine particles measured by X-ray diffraction method is 20 nm or less. Fuel cell catalyst.

炭素担体に金属酸化物と白金系金属触媒微粒子とを担持した燃料電池用触媒の製造方法であって、下記の工程を含む燃料電池用触媒の製造方法。   A method for producing a fuel cell catalyst comprising a carbon support carrying a metal oxide and platinum-based metal catalyst fine particles, the method comprising:

工程1:焼成により金属酸化物となる金属化合物を炭素担体に担持し、300℃以下かつ前記金属化合物が金属酸化物となる温度で焼成する工程。         Step 1: A step of supporting a metal compound that becomes a metal oxide by firing on a carbon support and firing at a temperature of 300 ° C. or less and at which the metal compound becomes a metal oxide.

工程2:前記工程1で得られた担体に白金系金属触媒微粒子を担持する工程。         Step 2: A step of supporting platinum-based metal catalyst fine particles on the support obtained in Step 1 above.

電解質膜と、該電解質膜の両面に設けられた、電解質と触媒とを含む電極触媒層と、該電極触媒層それぞれの外側に設けられたガス拡散層とを有する、固体高分子形燃料電池の膜電極接合体において、少なくとも一方の電極触媒層に含有される触媒が上記燃料電池用触媒であることを特徴とする固体高分子形燃料電池の膜電極接合体。   A polymer electrolyte fuel cell comprising: an electrolyte membrane; an electrode catalyst layer including an electrolyte and a catalyst provided on both surfaces of the electrolyte membrane; and a gas diffusion layer provided outside each of the electrode catalyst layers. A membrane electrode assembly for a polymer electrolyte fuel cell, wherein the catalyst contained in at least one of the electrode catalyst layers is the fuel cell catalyst.

本発明の触媒は、従来の触媒に比較して、活性が著しく高く、且つ結晶化度の低い担体を用いても触媒の安定性が高い触媒であり、自動車用燃料電池などに使用できる触媒である。   The catalyst of the present invention is a catalyst that has a significantly higher activity than conventional catalysts and has high catalyst stability even when a carrier having a low crystallinity is used, and is a catalyst that can be used for fuel cells for automobiles and the like. is there.

本発明の燃料電池用触媒は、カーボンブラックなどの炭素担体に酸化ジルコニウムなどの金属酸化物の微粒子が担持され、さらに白金触媒などの白金系金属触媒微粒子が担持された燃料電池用触媒である。しかも、炭素担体に担持されている該金属酸化物微粒子の粒子径をX線回折法で測定して得られる平均粒径は20nm以下であることを特徴とする。   The fuel cell catalyst of the present invention is a fuel cell catalyst in which fine particles of a metal oxide such as zirconium oxide are supported on a carbon carrier such as carbon black, and further, platinum-based metal catalyst fine particles such as a platinum catalyst are supported. Moreover, the average particle diameter obtained by measuring the particle diameter of the metal oxide fine particles supported on the carbon support by an X-ray diffraction method is 20 nm or less.

本発明の燃料電池用触媒における金属酸化物微粒子の平均粒径はX線回折法で測定して得られる平均粒径である。なお、後述の白金系金属触媒微粒子の平均粒径もまたこの方法で測定して得られる平均粒径である。   The average particle diameter of the metal oxide fine particles in the fuel cell catalyst of the present invention is an average particle diameter obtained by measurement by an X-ray diffraction method. In addition, the average particle diameter of the platinum-based metal catalyst fine particles described later is also an average particle diameter obtained by measurement by this method.

X線回折法(XRD)による微粒子の粒子径の測定は公知であり(例えば、2001年10月(株)フジテクノシステム発行「微粒子工学体系 第I巻 基本技術」333〜335ページ参照)、X線の回折線幅を解析すること(line broadening analysis ;LBA)によって微粒子の大きさを見積もる方法である。微粒子の粒子径と回折線の幅との関係はデバイ・シェラーの式で与えられ、回折線の幅の測定値から微粒子の平均粒子径(体積平均の粒子径)が求められる。本発明におけるこの測定は、以下のように行った。   Measurement of the particle diameter of fine particles by X-ray diffraction (XRD) is known (for example, see “Technology for Fine Particle Engineering Vol. I, Basic Technology”, pages 333 to 335 published by Fuji Techno System Co., Ltd. in October 2001). This is a method of estimating the size of fine particles by analyzing the diffraction line width of a line (line broadening analysis; LBA). The relationship between the particle diameter of the fine particle and the width of the diffraction line is given by the Debye-Scherrer equation, and the average particle diameter (volume average particle diameter) of the fine particle is obtained from the measured value of the width of the diffraction line. This measurement in the present invention was performed as follows.

回折装置には(株)リガク製 RINT−2100を用いた。X線の回折線幅を解析するために、XRDデータ解析ソフトはJADEを用い、得られる主ピークと隣接するピークとが形成する基底ラインをベースラインとして、半価幅を求めた。回折角2θは酸化物に対しては、20〜60°、白金に対しては、34〜46°の範囲で走査した。   RINT-2100 manufactured by Rigaku Corporation was used as the diffraction device. In order to analyze the X-ray diffraction line width, the XRD data analysis software used JADE, and obtained the half-value width using the base line formed by the main peak and the adjacent peak as the base line. The diffraction angle 2θ was scanned in the range of 20 to 60 ° for oxide and 34 to 46 ° for platinum.

本発明において、上記測定方法による金属酸化物微粒子の平均粒径は20nm以下であることが必要である。金属酸化物微粒子の平均粒径が20nmよりも大きくなると燃料電池用触媒としての触媒活性低下する傾向にある。本発明における金属酸化物微粒子は、透過型電子顕微鏡(TEM)や電界放出形走査型電子顕微鏡(FE−SEM)による観察では必ずしも粒子を明確に捉えることができない。また、例えば比表面積の大きな担体(ケッチェンブラック:比表面積800m/g)に、金属酸化物を、金属酸化物と炭素担体の合計量に対して、10〜20質量%担持したものでは、酸化物担持後の比表面積は550m/gが得られることなどから、極めて微細な酸化物微粒子が薄く細孔内部に形成されていると推定される。このような金属酸化物微粒子と白金系金属触媒微粒子が直接接合した状態または近傍に存在する状態において、それらの相互作用により触媒活性に影響が現れたものと推定される。 In the present invention, the average particle diameter of the metal oxide fine particles by the above measuring method needs to be 20 nm or less. When the average particle diameter of the metal oxide fine particles is larger than 20 nm, the catalytic activity as a fuel cell catalyst tends to be lowered. The metal oxide fine particles in the present invention cannot always clearly grasp the particles by observation with a transmission electron microscope (TEM) or a field emission scanning electron microscope (FE-SEM). Further, for example, in a carrier having a large specific surface area (Ketjen Black: specific surface area 800 m 2 / g), the metal oxide is supported by 10 to 20% by mass with respect to the total amount of the metal oxide and the carbon carrier. From the fact that the specific surface area after supporting the oxide is 550 m 2 / g, it is presumed that very fine oxide particles are thinly formed inside the pores. In such a state where the metal oxide fine particles and the platinum-based metal catalyst fine particles are directly joined or in the vicinity thereof, it is presumed that the catalytic activity is influenced by their interaction.

X線回折法で測定して得られる金属酸化物微粒子の平均粒径は、好ましくは15nm以下であり、より好ましくは10nm以下である。また、平均粒径は0.1nm以上であり、より好ましくは1nm以上である。これは金属酸化物の平均粒径が小さいほうが触媒活性が向上する傾向にあるからである。金属酸化物微粒子の形状は不明であるが、その形状が触媒活性に影響することは少ないと推定される。したがって、その形状は、球状、平板状、棒状などいずれでもよく、特に限定はされない。   The average particle diameter of the metal oxide fine particles obtained by measurement by the X-ray diffraction method is preferably 15 nm or less, more preferably 10 nm or less. Moreover, an average particle diameter is 0.1 nm or more, More preferably, it is 1 nm or more. This is because the catalyst activity tends to improve as the average particle size of the metal oxide is smaller. Although the shape of the metal oxide fine particles is unknown, it is presumed that the shape hardly affects the catalyst activity. Therefore, the shape may be any of spherical, flat plate, rod shape, etc., and is not particularly limited.

本発明の燃料電池用触媒において、白金系金属触媒微粒子の平均粒径(X線回折法で測定して得られるもの)は、従来燃料電池用触媒として使用されていた炭素担体担持白金系金属触媒における白金系金属触媒微粒子の平均粒径と同程度のものが採用される。その平均粒子径は1〜10nmが好ましく、特に1〜5nmが好ましい。   In the fuel cell catalyst of the present invention, the average particle diameter of platinum-based metal catalyst fine particles (obtained by measurement by X-ray diffraction method) is a carbon-supported platinum-based metal catalyst conventionally used as a catalyst for fuel cells. The average particle diameter of the platinum-based metal catalyst fine particles in is used. The average particle diameter is preferably 1 to 10 nm, and particularly preferably 1 to 5 nm.

炭素担体としては、カーボンブラックやカーボンナノファイバーなどの電気伝導性材料が望ましい。炭素担体の比表面積は特に限定されず、比表面積が10m/g程度の小さいものでも、比表面積800m/gのものや更に比表面積の大きい炭素担体も使用可能である。比表面積の小さな炭素担体であっても金属酸化物の担持により担体としての比表面積は拡大されると考えられる。炭素担体の比表面積は、800m/gのものや更に大きい炭素担体も使用可能である。しかしながら、触媒金属の担持率を40〜50%以上を想定するPEFC用触媒の場合には炭素担体の比表面積は、5〜1000m/gが適当であり、200〜1000m/gが好ましい。これは比表面積が200m/g未満では触媒金属の微粒子化が難しくなるためである。1000m/g超では酸化物担持による耐酸化性付与の効果があるとはいえ、基本的には担体の耐酸化性が低下する傾向があるためである。なお、本発明における比表面積とは窒素吸着法(窒素BET法)により測定した比表面積(JIS K 6217−2:2001)を意味する。 As the carbon carrier, an electrically conductive material such as carbon black or carbon nanofiber is desirable. The specific surface area of the carbon support is not particularly limited, and a carbon support having a specific surface area of about 10 m 2 / g, a specific surface area of 800 m 2 / g, or a carbon support having a larger specific surface area can be used. Even if the carbon support has a small specific surface area, it is considered that the specific surface area of the support is expanded by supporting the metal oxide. A carbon support having a specific surface area of 800 m 2 / g or a larger carbon support can be used. However, the specific surface area of the carbon support in the case of PEFC catalyst to envisage the loading of catalytic metal than 40-50% is, 5~1000m 2 / g are suitable, 200~1000m 2 / g are preferred. This is because if the specific surface area is less than 200 m 2 / g, it is difficult to make catalyst metal fine particles. This is because, if it exceeds 1000 m 2 / g, the oxidation resistance of the carrier tends to decrease basically, although the oxidation resistance imparting effect by the oxide loading is effective. In addition, the specific surface area in this invention means the specific surface area (JISK6217-2: 2001) measured by the nitrogen adsorption method (nitrogen BET method).

本発明の燃料電池用触媒において、金属酸化物微粒子の担持量は使用される炭素担体にも依存するが、金属酸化物と炭素担体の合計量に対して、金属酸化物の金属元素の量として、1〜50質量%が好ましい。より好ましい担持量は5〜35質量%である。1質量%未満では触媒活性向上効果が充分ではなく、また、50質量%超にすると金属酸化物による電気抵抗の上昇が無視できなくなるため、電極用材料としては望ましくないからである。   In the fuel cell catalyst of the present invention, the supported amount of the metal oxide fine particles depends on the carbon support used, but the amount of the metal element of the metal oxide relative to the total amount of the metal oxide and the carbon support. 1-50 mass% is preferable. A more preferable loading amount is 5 to 35% by mass. If the amount is less than 1% by mass, the effect of improving the catalytic activity is not sufficient, and if it exceeds 50% by mass, the increase in electric resistance due to the metal oxide cannot be ignored, which is undesirable as an electrode material.

本発明の燃料電池用触媒において、白金系金属触媒微粒子の担持量は使用される炭素担体にも依存するが、炭素担体と金属酸化物粒子と白金系金属触媒粒子の合計量に対して、10〜70質量%が好ましい。より好ましい担持量は25〜60質量%である。10質量%未満では単位体積当たりの触媒活性が充分ではなく、また、70質量%超にすると白金触媒微粒子の形成が困難になるとともに、また、使用に伴う微粒子の凝集・特性劣化が起こりやすくなるため、燃料電池用電極材料としては望ましくないからである。   In the fuel cell catalyst of the present invention, the supported amount of platinum-based metal catalyst fine particles depends on the carbon support used, but is 10% relative to the total amount of carbon support, metal oxide particles, and platinum-based metal catalyst particles. -70 mass% is preferable. A more preferable loading is 25 to 60% by mass. If it is less than 10% by mass, the catalytic activity per unit volume is not sufficient, and if it exceeds 70% by mass, formation of platinum catalyst fine particles becomes difficult, and aggregation and characteristic deterioration of the fine particles easily occur with use. Therefore, it is not desirable as a fuel cell electrode material.

本発明における金属酸化物としては、4族(Ti、Zr、Hf)および5族(V、Nb、Ta)から選ばれる金属元素を含む金属酸化物が好ましく、特に、酸化ジルコニウムが好ましい。金属酸化物は2種以上の金属元素を含む金属酸化物であってもよく、その場合も4族および5族から選ばれる金属元素の2種以上の組合せ、または、4族および5族から選ばれる金属元素の1種以上と他の金属元素の組合せ、からなる2種以上の金属元素を含む金属酸化物が好ましい。特に、Zrと他の金属元素少なくとも1種を含む金属酸化物が好ましい。2種以上の金属元素を含む金属酸化物としては、複合金属酸化物が好ましいが、それぞれ別個の金属酸化物の混合物であってもよい。   As the metal oxide in the present invention, a metal oxide containing a metal element selected from Group 4 (Ti, Zr, Hf) and Group 5 (V, Nb, Ta) is preferable, and zirconium oxide is particularly preferable. The metal oxide may be a metal oxide containing two or more metal elements, and in that case, a combination of two or more metal elements selected from Group 4 and Group 5, or a group selected from Group 4 and Group 5 A metal oxide containing two or more metal elements composed of a combination of one or more metal elements and another metal element is preferable. In particular, a metal oxide containing Zr and at least one other metal element is preferable. The metal oxide containing two or more metal elements is preferably a composite metal oxide, but may be a mixture of separate metal oxides.

本発明において好ましい金属酸化物は、金属元素として実質的にZrのみを含む金属酸化物(酸化ジルコニウム)、および、Zrと他の金属元素を含みかつZrを主成分とする金属酸化物、である。Zrと組み合わされる金属元素としては、Ti、Y、Nb、Sn、Ta、W、Mo、V、AlおよびCeからなる群から選ばれる少なくとも1種であることが好ましい。このような金属元素の併用することで、金属酸化物の耐酸性や等電点等の特性を調整することができ、またZr単独の場合に比較して触媒活性や安定性が向上する場合がある。しかし、他の金属元素の割合が高くなりすぎると金属酸化物の耐酸性が低下するおそれがあるので、金属酸化物中のZr原子の数は他の金属原子の数よりも多いほうが好ましい。また、耐酸性の面からは、他の金属元素はW、Sn、Tiが好ましい。Zr以外の金属元素を含んでいてもよい酸化ジルコニウムにおける全金属原子に対するZr原子の数の割合は、50〜100%が好ましく、特に70〜100%が好ましい。なお、耐酸性は、金属酸化物担持炭素担体を10%硫酸中、80℃、5日間保持した後の溶出金属イオンの量から判断したものである。   Preferred metal oxides in the present invention are metal oxides (zirconium oxide) containing substantially only Zr as a metal element, and metal oxides containing Zr and other metal elements and mainly containing Zr. . The metal element combined with Zr is preferably at least one selected from the group consisting of Ti, Y, Nb, Sn, Ta, W, Mo, V, Al, and Ce. By using such a metal element in combination, it is possible to adjust the acid resistance and isoelectric point of the metal oxide, and the catalytic activity and stability may be improved as compared to the case of Zr alone. is there. However, since the acid resistance of the metal oxide may be lowered if the proportion of other metal elements is too high, the number of Zr atoms in the metal oxide is preferably larger than the number of other metal atoms. In terms of acid resistance, the other metal elements are preferably W, Sn, and Ti. The ratio of the number of Zr atoms to the total metal atoms in zirconium oxide which may contain a metal element other than Zr is preferably 50 to 100%, particularly preferably 70 to 100%. In addition, acid resistance is judged from the amount of eluted metal ions after holding the metal oxide-supported carbon support in 10% sulfuric acid at 80 ° C. for 5 days.

本発明における微粒子状の白金系金属触媒は、実質的に白金のみからなる触媒ほか、白金を含む2種以上の金属の合金、固溶体、金属間化合物の他、成分元素の酸化物が一部含まれていても良い。白金系金属触媒微粒子は、実質的にPtのみからなる白金触媒微粒子であるか、または、Cr、Fe、Co、Ni、Ru、Rh、Pd、Re、Ir、Cu、AgおよびAuからなる群から選ばれる少なくとも1種とPtとからなる金属触媒微粒子であることが好ましい。白金系金属触媒微粒子における全金属原子に対するPt原子の数の割合は、1〜100%が好ましく、特に10〜100%が好ましい。   The particulate platinum-based metal catalyst in the present invention includes a catalyst composed essentially of only platinum, an alloy of two or more metals including platinum, a solid solution, an intermetallic compound, and a part of oxides of component elements. It may be. The platinum-based metal catalyst fine particles are platinum catalyst fine particles substantially consisting of only Pt, or from the group consisting of Cr, Fe, Co, Ni, Ru, Rh, Pd, Re, Ir, Cu, Ag and Au. Metal catalyst fine particles comprising at least one selected from Pt are preferable. The ratio of the number of Pt atoms to the total metal atoms in the platinum-based metal catalyst fine particles is preferably 1 to 100%, particularly preferably 10 to 100%.

本発明の燃料電池用触媒の製造法は、炭素担体に金属酸化物を担持する工程1と金属酸化物が担持された炭素担体に白金系金属触媒微粒子を担持する工程2を含む製造方法である。工程1は、焼成により金属酸化物となる金属化合物を炭素担体に担持し、300℃以下かつ前記金属化合物が金属酸化物となる温度で焼成する工程である。工程2は、前記工程1で得られた担体に白金系金属触媒微粒子を担持する工程である。   The method for producing a catalyst for a fuel cell according to the present invention includes a step 1 for supporting a metal oxide on a carbon support and a step 2 for supporting platinum-based metal catalyst fine particles on a carbon support on which the metal oxide is supported. . Step 1 is a step in which a metal compound that becomes a metal oxide by firing is supported on a carbon support and is fired at a temperature of 300 ° C. or less and at which the metal compound becomes a metal oxide. Step 2 is a step of supporting the platinum-based metal catalyst fine particles on the carrier obtained in Step 1 above.

工程1では、まず、焼成により金属酸化物となる金属化合物を炭素担体に担持する。焼成により金属酸化物となる金属化合物としては、比較的低温で酸化物になりやすい性質を備えるものであれば良く、例えば、金属アルコキシド、硝酸金属塩、オキシ硝酸金属塩、金属水酸化物などが好適に用いることができる。特に好ましい金属化合物は金属アルコキシドとオキシ硝酸金属塩である。金属化合物は300℃以下の焼成温度で金属酸化物となりうるものを使用する。金属酸化物を形成する温度は高すぎると生成する金属酸化物の粒径が大きくなる傾向があり、粒径の大きな金属酸化物が存在すると触媒活性が低下しやすい。また、この金属化合物は水や有機溶媒などの溶媒に溶解しやすい化合物であることが好ましい。   In step 1, first, a metal compound that becomes a metal oxide by firing is supported on a carbon support. The metal compound that becomes a metal oxide by firing may be any metal compound that has the property of easily becoming an oxide at a relatively low temperature. For example, metal alkoxide, metal nitrate, metal oxynitrate, metal hydroxide, and the like. It can be used suitably. Particularly preferred metal compounds are metal alkoxides and metal oxynitrates. A metal compound that can be converted into a metal oxide at a firing temperature of 300 ° C. or lower is used. If the temperature at which the metal oxide is formed is too high, the particle size of the generated metal oxide tends to increase, and if a metal oxide having a large particle size is present, the catalytic activity tends to decrease. The metal compound is preferably a compound that is easily dissolved in a solvent such as water or an organic solvent.

本発明における金属化合物としてのジルコニウム化合物としては、オキシ硝酸ジルコニウムなどのジルコニウム硝酸塩、ジルコニウムエトキシド(テトラエトキシジルコニウムに同じ)、ジルコニウム−n−プロポキシド、ジルコニウム−n−ブトキシジルコニウムなどのジルコニウムアルコキシド、などが好ましい。チタン化合物としては、チタンエトキシド(テトラエトキシチタンに同じ)、チタン−i−プロポキシド、チタン−n−ブトキシなどのチタンアルコキシド、ジ−i−プロポキシビス(エチルアセトアセテート)チタンなどのチタンキレート化合物、などが好ましい。他の金属化合物としては金属アルコキシドが好ましい。   Examples of the zirconium compound as the metal compound in the present invention include zirconium nitrates such as zirconium oxynitrate, zirconium ethoxide (same as tetraethoxyzirconium), zirconium alkoxides such as zirconium-n-propoxide, zirconium-n-butoxyzirconium, and the like. Is preferred. Titanium compounds such as titanium ethoxide (same as tetraethoxy titanium), titanium alkoxides such as titanium-i-propoxide, titanium-n-butoxy, titanium chelate compounds such as di-i-propoxybis (ethylacetoacetate) titanium Are preferable. As another metal compound, a metal alkoxide is preferable.

金属化合物の溶液を炭素担体と接触させて金属化合物を炭素担体に付着させ、その後溶媒を除去することにより、炭素担体に金属化合物を担持させる。金属化合物の溶液と炭素担体と接触は、炭素担体の細孔内まで該溶液を充分に浸透させて金属化合物を吸着させるように、接触時間、撹拌条件等の処理条件を調節する。接触時間は20時間以上が好ましく、特に40時間以上が好ましい。撹拌は充分激しいほど好ましい。また、溶液中の金属化合物を安定化させるために溶液のpHを調整することが好ましい。例えば、オキシ硝酸塩水溶液の場合は硝酸を添加して酸性水溶液とすることが好ましい。金属アルコキシド水溶液や有機溶媒(アルコールなど)溶液の場合は、中性付近が好ましい。また、炭素担体と溶液との濡れ性を向上させるために、水溶液の場合はアルコールなどの有機溶媒を添加することが好ましい。   A metal compound solution is brought into contact with the carbon support to attach the metal compound to the carbon support, and then the solvent is removed to support the metal compound on the carbon support. In the contact between the metal compound solution and the carbon support, the processing conditions such as contact time and stirring conditions are adjusted so that the metal compound is adsorbed by sufficiently penetrating the solution into the pores of the carbon support. The contact time is preferably 20 hours or longer, and particularly preferably 40 hours or longer. Stirring is preferably as intense as possible. In addition, it is preferable to adjust the pH of the solution in order to stabilize the metal compound in the solution. For example, in the case of an oxynitrate aqueous solution, it is preferable to add nitric acid to make an acidic aqueous solution. In the case of a metal alkoxide aqueous solution or an organic solvent (alcohol or the like) solution, a neutral vicinity is preferable. In order to improve the wettability between the carbon carrier and the solution, it is preferable to add an organic solvent such as alcohol in the case of an aqueous solution.

金属化合物の溶液と炭素担体とを充分接触させた後、溶媒を除去して金属化合物を炭素担体に付着させる。溶媒の除去は、通常濾過分離や蒸発乾燥によって行う。溶媒の除去の前に、金属化合物を炭素担体表面に定着させる処理を行うことが好ましい。例えば、オキシ硝酸塩の酸性水溶液を使用した場合、アンモニアなどのアルカリで酸を中和しさらにアルカリ性にすることによりオキシ硝酸塩の一部が酸化物に変換され、これにより炭素担体表面への付着性が向上する。   After sufficiently bringing the metal compound solution into contact with the carbon support, the solvent is removed and the metal compound is attached to the carbon support. The removal of the solvent is usually performed by filtration separation or evaporation drying. Before removing the solvent, it is preferable to perform a treatment for fixing the metal compound on the surface of the carbon support. For example, when an acidic aqueous solution of oxynitrate is used, a part of the oxynitrate is converted into an oxide by neutralizing the acid with an alkali such as ammonia to make it more alkaline, thereby improving the adhesion to the surface of the carbon support. improves.

炭素担体に金属化合物を担持した後、焼成して炭素担体上に金属酸化物を形成させる。焼成温度は300℃以下であり、焼成温度がこの温度よりも高いと平均粒子径の大きな金属酸化物微粒子が生成しやすい。金属化合物の種類にもよるが、この焼成温度を調整することにより生成する金属酸化物の平均粒径を制御することができる。焼成温度の下限は、金属化合物が金属酸化物になりうる限り特に制限はないが、焼成温度が低すぎると金属水和物を多く含む金属酸化物となり、触媒活性低下のおそれが生じる。焼成温度の下限は200℃が好ましい。好ましい焼成温度は200〜260℃である。   After the metal compound is supported on the carbon support, firing is performed to form a metal oxide on the carbon support. The firing temperature is 300 ° C. or lower, and if the firing temperature is higher than this temperature, metal oxide fine particles having a large average particle diameter are likely to be generated. Although depending on the type of metal compound, the average particle size of the metal oxide produced can be controlled by adjusting the firing temperature. The lower limit of the calcination temperature is not particularly limited as long as the metal compound can be a metal oxide, but if the calcination temperature is too low, a metal oxide containing a large amount of metal hydrate is formed, and the catalytic activity may be lowered. The lower limit of the firing temperature is preferably 200 ° C. A preferable firing temperature is 200 to 260 ° C.

炭素担体に対する金属酸化物の担持量は、前記のように、金属酸化物の金属元素の量として5〜50質量%が好ましく、特に、10〜25質量%が好ましい。金属酸化物の担持量は、炭素担体に対する金属化合物の担持量によって調節できる。炭素担体に対する金属化合物の担持量は、金属化合物の選択、金属化合物溶液の濃度、炭素担体と金属化合物溶液の接触時間、その他の金属化合物担持条件によって調節できる。   As described above, the amount of the metal oxide supported on the carbon support is preferably 5 to 50% by mass, particularly preferably 10 to 25% by mass as the amount of the metal element of the metal oxide. The amount of metal oxide supported can be adjusted by the amount of metal compound supported on the carbon support. The amount of the metal compound supported on the carbon support can be adjusted by selecting the metal compound, the concentration of the metal compound solution, the contact time between the carbon support and the metal compound solution, and other metal compound support conditions.

次に、工程2として前記工程1で得られた金属酸化物担持炭素担体に白金系金属触媒微粒子を担持する工程を行う。白金系金属触媒微粒子を担持する方法は、従来周知ないし公知の白金系金属触媒微粒子を担持した炭素担体を製造する方法を使用できる。例えば、溶媒溶解性の白金化合物を使用し、該白金化合物の溶液と金属酸化物担持炭素担体を接触させて該担体に白金化合物を付着させ、溶媒を除去した後該白金化合物を金属白金に変換させて、該担体上に金属白金の微粒子を形成させる。白金化合物を金属白金に変換する反応は通常還元反応であり、例えば水素含有窒素中で加熱することにより金属微粒子を形成することができる。本発明においてこの還元反応を高温化で行うと金属酸化物粒子が大きくなるおそれがある。したがって、この還元反応は300℃以下で行うことが好ましい。白金化合物とともに他の金属化合物を使用して、同様に白金と他の金属との合金や固溶体などの金属微粒子を形成することができる。金属化合物としては、金属酸、金属酸塩、金属錯体などを使用しうる。例えば、白金化合物の場合、塩化白金酸、塩化白金酸塩、ジニトロジアンミン白金[Pt(NH(NO]などを使用しうる。 Next, as step 2, a step of supporting platinum-based metal catalyst fine particles on the metal oxide-supporting carbon support obtained in step 1 is performed. As a method for supporting the platinum-based metal catalyst fine particles, a conventionally well-known or known method for producing a carbon carrier supporting platinum-based metal catalyst fine particles can be used. For example, using a solvent-soluble platinum compound, bringing the platinum compound solution into contact with a metal oxide-supporting carbon support to attach the platinum compound to the support, removing the solvent, and then converting the platinum compound to metal platinum Thus, fine particles of metallic platinum are formed on the carrier. The reaction for converting a platinum compound into metallic platinum is usually a reduction reaction, and for example, metal fine particles can be formed by heating in hydrogen-containing nitrogen. In the present invention, when this reduction reaction is carried out at a high temperature, the metal oxide particles may become large. Therefore, this reduction reaction is preferably performed at 300 ° C. or lower. Using other metal compounds together with the platinum compound, metal fine particles such as alloys and solid solutions of platinum and other metals can be similarly formed. As the metal compound, a metal acid, a metal acid salt, a metal complex, or the like can be used. For example, in the case of a platinum compound, chloroplatinic acid, chloroplatinate, dinitrodiammine platinum [Pt (NH 2 ) 2 (NO 2 ) 2 ] and the like can be used.

本発明の固体高分子形燃料電池の膜電極接合体は、電解質膜と、該電解質膜の両面に設けられた、電解質と触媒とを含む電極触媒層と、該電極触媒層それぞれの外側に設けられたガス拡散層とを有し、少なくとも一方の電極触媒層に含有される触媒が前記燃料電池用触媒であることを特徴とする膜電極接合体である。2つの電極触媒層の内、前記本発明の燃料電池用触媒を含む電極触媒層は少なくともカソード(空気極)であることが好ましい。加えて、アノードとしても前記本発明の燃料電池用触媒を含む電極触媒層を用いることができる。   The membrane electrode assembly of the polymer electrolyte fuel cell of the present invention is provided with an electrolyte membrane, an electrode catalyst layer including an electrolyte and a catalyst provided on both surfaces of the electrolyte membrane, and outside each of the electrode catalyst layers. The membrane electrode assembly is characterized in that the catalyst contained in at least one of the electrode catalyst layers is the fuel cell catalyst. Of the two electrode catalyst layers, the electrode catalyst layer containing the fuel cell catalyst of the present invention is preferably at least a cathode (air electrode). In addition, an electrode catalyst layer containing the fuel cell catalyst of the present invention can also be used as the anode.

電解質膜と電極触媒層の電解質はプロトン伝導性樹脂からなり、プロトン伝導性樹脂としては、プロトン伝導性フッ素系樹脂、プロトン伝導性炭化水素系樹脂等が挙げられ、耐久性の点から、プロトン伝導性フッ素系樹脂が好ましい。プロトン伝導性樹脂のプロトン伝導性基としてはスルホン酸基が好ましい。   The electrolyte of the electrolyte membrane and the electrode catalyst layer is made of a proton conductive resin. Examples of the proton conductive resin include a proton conductive fluororesin and a proton conductive hydrocarbon resin. From the viewpoint of durability, the proton conductive resin is used. Fluorine-based resin is preferable. The proton conductive group of the proton conductive resin is preferably a sulfonic acid group.

プロトン伝導性フッ素系樹脂としては、スルホン酸基を有する繰り返し単位とパーフルオロオレフィンに基づく繰り返し単位を有するパーフルオロスルホン酸樹脂が好ましい。特に、下記式(1)で表される繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位を有するパーフルオロスルホン酸樹脂が好ましい。
−[CF−CF{(OCFCFX)−Op−(CF)n−SOH}]−・・・(1)
ただし、Xはフッ素原子またはトリフルオロメチル基であり、mは0〜3の整数であり、nは1〜12の整数であり、pは0または1である。
The proton conductive fluorine-based resin is preferably a perfluorosulfonic acid resin having a repeating unit having a sulfonic acid group and a repeating unit based on a perfluoroolefin. In particular, a perfluorosulfonic acid resin having a repeating unit represented by the following formula (1) and a repeating unit based on tetrafluoroethylene is preferable.
- [CF 2 -CF {(OCF 2 CFX) m -Op- (CF 2) n-SO 3 H}] - ··· (1)
However, X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1.

プロトン伝導性炭化水素系樹脂としては、スルホン化ポリアリーレン、スルホン化ポリベンゾオキサゾール、スルホン化ポリベンゾチアゾール、スルホン化ポリベンゾイミダゾール、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリフェニレンスルホン、スルホン化ポリフェニレンオキシド、スルホン化ポリフェニレンスルホキシド、スルホン化ポリフェニレンサルファイド、スルホン化ポリフェニレンスルフィドスルホン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルケトンケトン、スルホン化ポリイミド等が挙げられる。   Proton conductive hydrocarbon resins include sulfonated polyarylene, sulfonated polybenzoxazole, sulfonated polybenzothiazole, sulfonated polybenzimidazole, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, Sulfonated polyphenylene sulfone, sulfonated polyphenylene oxide, sulfonated polyphenylene sulfoxide, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone, sulfonated polyether ketone, sulfonated polyether ether ketone, sulfonated polyether ketone ketone, sulfonated polyimide, etc. Is mentioned.

プロトン伝導性樹脂のイオン交換容量は、0.5〜2.0ミリ当量/グラム乾燥樹脂が好ましく、0.7〜1.6ミリ当量/グラム乾燥樹脂がより好ましい。イオン交換容量が0.5ミリ当量/グラム乾燥樹脂以上であれば、固体高分子電解質膜の電気抵抗を充分に低くできる。イオン交換容量が2.0ミリ当量/グラム乾燥樹脂以下であれば、樹脂の親水性が抑えられ、発電時に電解質膜が溶解することがない。   The ion exchange capacity of the proton conductive resin is preferably 0.5 to 2.0 meq / g dry resin, more preferably 0.7 to 1.6 meq / g dry resin. If the ion exchange capacity is 0.5 meq / g dry resin or more, the electric resistance of the solid polymer electrolyte membrane can be sufficiently lowered. If the ion exchange capacity is 2.0 meq / g dry resin or less, the hydrophilicity of the resin is suppressed, and the electrolyte membrane does not dissolve during power generation.

前記本発明の燃料電池用触媒と電解質とを含む電極触媒層における触媒量は、白金系金属量として0.02〜3mg/cmが好ましく、特に0.05〜0.5mg/cmが好ましい。電極触媒層は従来周知ないし公知の方法で形成できる。例えば、所定量の本発明燃料電池用触媒と電解質と溶媒を含むスラリーをシート状に成形して電極触媒層として使用できるシートにする。このシートを電解質膜やガス拡散層用シート上に形成して一体化し、他の部材と組み合わせて膜電極接合体を組み立てることができる。また、このシート単独を形成した後、このシートを電解質膜とガス拡散層用シートと積層することによって膜電極接合体を組み立てることもできる。 A catalytic amount in the electrode catalyst layer including a fuel cell catalyst and electrolyte of the present invention is preferably 0.02~3mg / cm 2 of platinum-based metal content, in particular 0.05 to 0.5 / cm 2 preferably . The electrode catalyst layer can be formed by a conventionally known or known method. For example, a slurry containing a predetermined amount of the catalyst for the fuel cell of the present invention, an electrolyte, and a solvent is formed into a sheet to obtain a sheet that can be used as an electrode catalyst layer. This sheet can be formed and integrated on an electrolyte membrane or a gas diffusion layer sheet, and a membrane electrode assembly can be assembled by combining with other members. Moreover, after forming this sheet | seat alone, a membrane electrode assembly can also be assembled by laminating | stacking this sheet | seat on the electrolyte membrane and the sheet | seat for gas diffusion layers.

前記本発明の燃料電池用触媒は、活性が高くかつ耐酸化性が良好であることより、カソードの電極触媒層における触媒として適している。しかし、カソードの電極触媒層に限られず、アノードの電極触媒層における触媒としても使用できる。また、カソードとアノードの両電極触媒層における触媒としても使用できる。アノードの電極触媒層における触媒として前記本発明の燃料電池用触媒を使用しない場合は、アノードの電極触媒としては従来公知の炭素担持白金系金属触媒を使用することができる。カソードの電極触媒層における触媒として前記本発明の燃料電池用触媒を使用しない場合も同様である。   The fuel cell catalyst of the present invention is suitable as a catalyst in the electrode catalyst layer of the cathode because of its high activity and good oxidation resistance. However, the catalyst is not limited to the cathode electrode catalyst layer, and can be used as a catalyst in the anode electrode catalyst layer. It can also be used as a catalyst in both the cathode and anode electrode catalyst layers. When the fuel cell catalyst of the present invention is not used as the catalyst in the anode electrode catalyst layer, a conventionally known carbon-supported platinum-based metal catalyst can be used as the anode electrode catalyst. The same applies when the fuel cell catalyst of the present invention is not used as the catalyst in the electrode catalyst layer of the cathode.

ガス拡散層の材料としては多孔質の炭素材料シートが好ましく、特に炭素繊維の不織布や織布が好ましい。ガス拡散層の材料は撥水性付与などの処理を行ったものを使用することもできる。   As a material for the gas diffusion layer, a porous carbon material sheet is preferable, and a carbon fiber nonwoven fabric or woven fabric is particularly preferable. As the material of the gas diffusion layer, a material subjected to treatment such as imparting water repellency can also be used.

膜電極接合体における各層の厚さは、特に限定されるものではないが、電解質膜15〜50μm、電極触媒層(1層)5〜20μm、ガス拡散層(1層)100〜350μmが好ましい。膜電極接合体はこれら以外に他の薄膜層を有していてもよい。例えば、電極触媒層とガス拡散層の間に撥水層を設けることができる。このような薄膜層を含め、膜電極接合体全体の厚さは225〜790μmが好ましい。   The thickness of each layer in the membrane / electrode assembly is not particularly limited, but an electrolyte membrane of 15 to 50 μm, an electrode catalyst layer (one layer) of 5 to 20 μm, and a gas diffusion layer (one layer) of 100 to 350 μm are preferable. The membrane / electrode assembly may have other thin film layers besides these. For example, a water repellent layer can be provided between the electrode catalyst layer and the gas diffusion layer. The total thickness of the membrane electrode assembly including such a thin film layer is preferably 225 to 790 μm.

膜電極接合体には、その両面にセパレータ等の燃料供給系部材や空気等の酸素供給系部材が取付けられて、燃料電池が組み立てられる。   A fuel cell is assembled by attaching a fuel supply system member such as a separator and an oxygen supply system member such as air to both sides of the membrane electrode assembly.

以下、本発明を具体的な実施の形態をもって説明するが、後述する実施の形態に限定されるものではない。例1〜例10は実施例、例11〜例16は比較例である。   Hereinafter, the present invention will be described with specific embodiments, but is not limited to the embodiments described below. Examples 1 to 10 are examples, and examples 11 to 16 are comparative examples.

なお、以下の例における、金属酸化物微粒子および金属微粒子の粒子径は、前記X線解析法(以下、XRD法という)で測定した平均粒子径である。また、BET比表面積は窒素吸着法で測定した比表面積である。また以下の例に使用したパーフルオロスルホン酸樹脂は、イオン交換容量が1.2ミリ当量/グラム乾燥樹脂の、前記式(1)で表される繰り返し単位とテトラフルオロエチレンに基づく繰り返し単位を有する共重合体樹脂である。   In the following examples, the particle diameters of the metal oxide fine particles and the metal fine particles are average particle diameters measured by the X-ray analysis method (hereinafter referred to as XRD method). The BET specific surface area is a specific surface area measured by a nitrogen adsorption method. The perfluorosulfonic acid resin used in the following examples has a repeating unit represented by the above formula (1) and a repeating unit based on tetrafluoroethylene having an ion exchange capacity of 1.2 meq / g dry resin. It is a copolymer resin.

(例1)
オキシ硝酸ジルコニウム6gを純水400cm、およびエタノール40cmを混合し硝酸でpH2に調整した溶液に溶解した。この溶液にカーボンブラック(ケッチェンブラック:BET比表面積800m/g)12.6gを投入し、超音波分散機を10分間使用して、オキシ硝酸ジルコニウムを純水、硝酸およびエタノールを混合した溶液と分散した。その後、さらにカーボンブラック(ケッチェンブラック:BET比表面積800m/g)を投入し、CBC(株)社製レッドデビル攪拌器で強く二日間撹拌した。次いで、アンモニア水溶液を添加し6時間撹拌した後、沈殿を水流ポンプで吸引しながら濾過した。得られた固形物を乾燥後、空気中で230℃で焼成した。得られた酸化ジルコニウム担持カーボンブラックのZr原子の担持率は9.9質量%であり、BET比表面積は524m/gであった。BET比表面積測定するために、堀場製作所社製SA−9600を用いた。また、XRD法により測定した酸化ジルコニウムの粒子径は7nmであった。 得られた酸化ジルコニウム担持カーボンブラックを担体として、ジニトロジアンミン白金を常法によりこの担体に担持し、その後200℃で還元した。得られた酸化ジルコニウムと白金を担持したカーボンブラックは、その全量に対して、白金を38.1質量%担持したものであった。XRD法により測定した白金粒子径は2.5nm、CO吸着法による金属表面積は134m/gであった。
(Example 1)
6 g of zirconium oxynitrate was dissolved in a solution prepared by mixing 400 cm 3 of pure water and 40 cm 3 of ethanol and adjusting the pH to 2 with nitric acid. Carbon black (Ketjen black: BET specific surface area 800 m 2 / g) 12.6 g is added to this solution, and an ultrasonic disperser is used for 10 minutes to mix zirconium oxynitrate with pure water, nitric acid and ethanol. And dispersed. Thereafter, carbon black (Ketjen Black: BET specific surface area 800 m 2 / g) was further added, and the mixture was vigorously stirred for 2 days with a red devil stirrer manufactured by CBC Corporation. Then, after adding an aqueous ammonia solution and stirring for 6 hours, the precipitate was filtered while being sucked by a water pump. The obtained solid was dried and fired at 230 ° C. in air. The obtained zirconium oxide-supported carbon black had a Zr atom support ratio of 9.9% by mass, and a BET specific surface area of 524 m 2 / g. To measure the BET specific surface area, SA-9600 manufactured by Horiba Ltd. was used. The particle diameter of zirconium oxide measured by the XRD method was 7 nm. Using the obtained zirconium oxide-supported carbon black as a carrier, dinitrodiammine platinum was supported on this carrier by a conventional method, and then reduced at 200 ° C. The obtained carbon black carrying zirconium oxide and platinum was one that carried 38.1% by mass of platinum with respect to the total amount. The platinum particle diameter measured by the XRD method was 2.5 nm, and the metal surface area by the CO adsorption method was 134 m 2 / g.

得られた触媒粉末を回転電極に担持して、0.5M硫酸溶液中で酸素還元活性を測定した。また、触媒を担持した電極の電位をRHEを基準として、0.05V〜1.2Vの間で20回繰り返し掃引し、その後の還元活性を測定した。これらの測定結果を表1に示す。   The obtained catalyst powder was supported on a rotating electrode, and the oxygen reduction activity was measured in a 0.5 M sulfuric acid solution. Further, the potential of the electrode supporting the catalyst was repeatedly swept 20 times between 0.05 V and 1.2 V with reference to RHE, and the subsequent reduction activity was measured. These measurement results are shown in Table 1.

田中貴金属(株)社製TEC10E50E(50%白金担持カーボン触媒)とパーフルオロスルホン酸樹脂溶液を用いて水素極用触媒インクを調製した。一方、上記で得られた触媒とパーフルオロスルホン酸樹脂をエタノール/水の混合溶媒(質量比で1/1)中で混合撹拌し、得られる液の固形分(触媒と樹脂の合量)濃度が10質量%となるように調整し、空気極用触媒インクを調製した。   A catalyst electrode for a hydrogen electrode was prepared using TEC10E50E (50% platinum-supported carbon catalyst) manufactured by Tanaka Kikinzoku Co., Ltd. and a perfluorosulfonic acid resin solution. On the other hand, the catalyst obtained above and perfluorosulfonic acid resin are mixed and stirred in a mixed solvent of ethanol / water (1/1 by mass ratio), and the solid content (total amount of catalyst and resin) of the resulting liquid is concentrated. Was adjusted to be 10% by mass to prepare a catalyst ink for an air electrode.

パーフルオロスルホン酸膜(膜厚20ミクロン)の両側に、これらのインクを用いた触媒層を形成した後、厚さ300μmのカーボンクロスからなるガス拡散層2枚の間に挟んで膜電極接合体を作製し、電極作用面積25cmの単セルにセットし、セル温度80℃、露点80℃で加湿した水素および空気を用い、常圧の条件でセル特性を測定した。結果を図1に示す。 After a catalyst layer using these inks is formed on both sides of a perfluorosulfonic acid film (film thickness: 20 microns), the membrane electrode assembly is sandwiched between two gas diffusion layers made of carbon cloth having a thickness of 300 μm. Was set in a single cell having an electrode action area of 25 cm 2 , and cell characteristics were measured under normal pressure conditions using hydrogen and air humidified at a cell temperature of 80 ° C. and a dew point of 80 ° C. The results are shown in FIG.

(例2)
ジルコニウムエトキシドを3.3gをエタノール300cmに投入後、ケッチェンブラック7gを加え、マグネティックスターラーで4時間撹拌した。それにエタノールと等量の純水を加え、加水分解して沈殿を析出させた。濾過後、80℃で一晩乾燥した後、300℃で焼成して酸化ジルコニウム担持カーボンブラックを調製した。Zr原子の担持率は10.1質量%であり、BET比表面積は550m/gであった。これを担体として、例1と同様に41.5質量%担持した触媒を得た。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 2)
After adding 3.3 g of zirconium ethoxide to 300 cm 3 of ethanol, 7 g of ketjen black was added and stirred with a magnetic stirrer for 4 hours. Ethanol and an equivalent amount of pure water were added thereto and hydrolyzed to precipitate a precipitate. After filtration, the film was dried at 80 ° C. overnight and then fired at 300 ° C. to prepare zirconium oxide-supported carbon black. The supporting rate of Zr atoms was 10.1% by mass, and the BET specific surface area was 550 m 2 / g. Using this as a carrier, a catalyst supporting 41.5% by mass was obtained in the same manner as in Example 1. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例3)
ジルコニウムエトキシドの代わりにジルコニウムエトキシドとチタンエトキシドの混合物(モル比で8:2)を用いる以外は例2と同様にして、担体を調製した。Zr原子とTi原子合計の担持率は12.1質量%であり、BET比表面積は530m/gであった。これを担体として例1と同様に白金を41.5質量%担持した触媒を得た。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 3)
A support was prepared in the same manner as in Example 2 except that a mixture of zirconium ethoxide and titanium ethoxide (molar ratio 8: 2) was used instead of zirconium ethoxide. The total loading of Zr atoms and Ti atoms was 12.1% by mass, and the BET specific surface area was 530 m 2 / g. Using this as a carrier, a catalyst supporting 41.5% by mass of platinum was obtained in the same manner as in Example 1. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例4)
ジルコニウムエトキシドの代わりにジルコニウムエトキシドとニオビウムエトキシドの混合物(モル比で8:2)を用いる以外は例2と同様にして、担体を調製した。Zr原子とNb原子合計の担持率は30.2質量%であり、BET比表面積は510m/gであった。これを担体として例1と同様に白金を42.5質量%担持した触媒を得た。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 4)
A support was prepared in the same manner as in Example 2 except that a mixture of zirconium ethoxide and niobium ethoxide (8: 2 in molar ratio) was used instead of zirconium ethoxide. The total loading of Zr atoms and Nb atoms was 30.2% by mass, and the BET specific surface area was 510 m 2 / g. Using this as a carrier, a catalyst supporting 42.5% by mass of platinum was obtained in the same manner as in Example 1. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例5)
ジルコニウムエトキシドの代わりにジルコニウムエトキシドとタンタルエトキシドの混合物(モル比で8:2)を用いる以外は例2と同様にして、担体を調製した。Zr原子とTa原子合計の担持率は22.1質量%であり、BET比表面積は490m/gであった。これを担体として例1と同様に白金を43.3質量%担持した触媒を得た。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 5)
A support was prepared in the same manner as in Example 2 except that a mixture of zirconium ethoxide and tantalum ethoxide (8: 2 in molar ratio) was used instead of zirconium ethoxide. The total loading of Zr atoms and Ta atoms was 22.1% by mass, and the BET specific surface area was 490 m 2 / g. Using this as a carrier, a catalyst carrying 43.3% by mass of platinum was obtained in the same manner as in Example 1. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例6)
ジルコニウムエトキシドの代わりにジルコニウムエトキシドとスズエトキシドの混合物(モル比で8:2)を用いる以外は例2と同様にして、担体を調製した。Zr原子とSn原子合計の担持率は18.3質量%であり、BET比表面積は560m/gであった。これを担体として例1と同様に白金を42.4質量%担持した触媒を得た。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 6)
A support was prepared in the same manner as in Example 2 except that a mixture of zirconium ethoxide and tin ethoxide (molar ratio 8: 2) was used instead of zirconium ethoxide. The total loading of Zr atoms and Sn atoms was 18.3% by mass, and the BET specific surface area was 560 m 2 / g. Using this as a carrier, a catalyst carrying 42.4% by mass of platinum was obtained in the same manner as in Example 1. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例7)
ジルコニウムエトキシドの代わりにジルコニウムエトキシドとアルミニウムエトキシドの混合物(モル比で9:1)を用いる以外は例2と同様にして、担体を調製した。ZrとAl原子合計の担持率は19.1質量%であり、BET比表面積は570m/gであった。これを担体として例1と同様に、白金を41.4質量%担持した触媒を得た。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 7)
A support was prepared in the same manner as in Example 2 except that a mixture of zirconium ethoxide and aluminum ethoxide (9: 1 molar ratio) was used instead of zirconium ethoxide. The total loading of Zr and Al atoms was 19.1% by mass, and the BET specific surface area was 570 m 2 / g. Using this as a carrier, a catalyst carrying 41.4% by mass of platinum was obtained in the same manner as in Example 1. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例8)
ジルコニウムエトキシドの代わりにジルコニウムエトキシドとセリウムエトキシドの混合物(モル比で9:1)を用いる以外は例2と同様にして、担体を調製した。ZrとCe原子合計の担持率は20.1質量%であり、BET比表面積は565m/gであった。これを担体として例1と同様に白金を41.4質量%担持した触媒を得た。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 8)
A support was prepared in the same manner as in Example 2 except that a mixture of zirconium ethoxide and cerium ethoxide (9: 1 molar ratio) was used instead of zirconium ethoxide. The total loading of Zr and Ce atoms was 20.1% by mass, and the BET specific surface area was 565 m 2 / g. Using this as a carrier, a catalyst carrying 41.4% by mass of platinum was obtained in the same manner as in Example 1. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例9)
白金系金属触媒原料としてジニトロジアンミン白金(硝酸溶液)と塩化コバルトを用いる以外は例1と同様にして触媒を調製した。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 9)
A catalyst was prepared in the same manner as in Example 1 except that dinitrodiammine platinum (nitric acid solution) and cobalt chloride were used as the platinum-based metal catalyst raw material. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例10)
白金系金属触媒原料としてジニトロジアンミン白金(硝酸溶液)とジニトロジアンミンパラジウム(硝酸溶液)を用いる以外は実施例1と同様にして触媒を調製した。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 10)
A catalyst was prepared in the same manner as in Example 1 except that dinitrodiammine platinum (nitric acid solution) and dinitrodiammine palladium (nitric acid solution) were used as the platinum-based metal catalyst raw material. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例11)
例1と同じカーボンブラック(ケッチェンブラック:BET比表面積800m/g)を担体とし、金属酸化物を担持せず、ジニトロジアンミン白金(硝酸溶液)を用いて例1と同じ方法で白金を38.1質量%担持した触媒を得た。XRD法により測定した白金粒子径は2.5nm、CO吸着法による白金の比表面積は134m/gであった。この触媒粉末を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 11)
The same carbon black as in Example 1 (Ketjen Black: BET specific surface area 800 m 2 / g) was used as a carrier, metal oxide was not supported, and dinitrodiammine platinum (nitric acid solution) was used to form platinum in the same manner as in Example 1. A catalyst supporting 1% by mass was obtained. The platinum particle diameter measured by the XRD method was 2.5 nm, and the specific surface area of platinum by the CO adsorption method was 134 m 2 / g. When this catalyst powder was supported on a rotating electrode and the oxygen reduction activity was measured in a sulfuric acid solution, the results shown in Table 1 were obtained.

(例12)
ケッチェンブラックを担体とする、石福金属(株)社製IFPC40−II(白金担持量40質量%)を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。本触媒を用いて、膜電極接合体を例1と同様にして作製し、電流電圧曲線を測定した。結果を図1に示す。
(Example 12)
IFPC40-II (platinum supported amount: 40% by mass) manufactured by Ishifuku Metal Co., Ltd., which uses ketjen black as a carrier, was supported on a rotating electrode, and the oxygen reduction activity was measured in a sulfuric acid solution. The result was obtained. Using this catalyst, a membrane electrode assembly was prepared in the same manner as in Example 1, and the current-voltage curve was measured. The results are shown in FIG.

(例13)
ケッチェンブラックを担体とする、石福金属(株)社製IFPC40−III(白金担持量40質量%)を回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 13)
IFPC40-III (platinum supported amount: 40% by mass) manufactured by Ishifuku Metal Co., Ltd. using ketjen black as a carrier was supported on a rotating electrode, and the oxygen reduction activity was measured in a sulfuric acid solution. The result was obtained.

(例14)
例1と同じカーボンブラック(ケッチェンブラック:BET比表面積800m/g)を担体とし、金属酸化物を担持せず、例9と同様にして白金系触媒を担持した。回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 14)
The same carbon black as in Example 1 (Ketjen Black: BET specific surface area 800 m 2 / g) was used as a carrier, and no platinum oxide was supported in the same manner as in Example 9, except that a metal oxide was not supported. When the oxygen reduction activity was measured in a sulfuric acid solution supported on a rotating electrode, the results shown in Table 1 were obtained.

(例15)
例1と同じカーボンブラック(ケッチェンブラック:BET比表面積800m/g)を担体とし、金属酸化物を担持せず、例10と同様にして白金系触媒を担持した。回転電極に担持して、硫酸溶液中で酸素還元活性を測定したところ、表1の結果を得た。
(Example 15)
The same carbon black as in Example 1 (Ketjen black: BET specific surface area 800 m 2 / g) was used as a carrier, and no platinum oxide was supported in the same manner as in Example 10 except that a metal oxide was not supported. When the oxygen reduction activity was measured in a sulfuric acid solution supported on a rotating electrode, the results shown in Table 1 were obtained.

(例16)
ケッチェンブラックへ担持したオキシ硝酸ジルコニウムの焼成を320℃で焼成する他は例1と同様にして担体を調製した。ジルコニアの粒径は34nmであった。この担体に白金を担持して、触媒を調製して、回転電極による酸素還元活性を測定したところ、表1の結果を得た。
(Example 16)
A carrier was prepared in the same manner as in Example 1 except that the zirconium oxynitrate supported on ketjen black was calcined at 320 ° C. The particle size of zirconia was 34 nm. Platinum was supported on this carrier, a catalyst was prepared, and the oxygen reduction activity by the rotating electrode was measured. The results shown in Table 1 were obtained.

上記触媒を用いて例1と同様にしてMEAを作製して、電圧特性を調べた。出力電圧は例1に対して低めとなり、0.1A/cmで0.78V、0.2A/cmで0.74Vであった。 An MEA was produced in the same manner as in Example 1 using the above catalyst, and the voltage characteristics were examined. The output voltage becomes lower with respect to Example 1, was 0.74V at 0.1 A / cm 2 0.78 V, at 0.2 A / cm 2.

Figure 2008181696
Figure 2008181696

表1に単位白金系金属量当たりの電流値として質量活性を求めたものを示すように、本発明の触媒は、カーボンブラックに直接白金を担持した触媒に比較して顕著な活性向上効果が得られることが確認された。また、例12や例13の従来触媒に対して優れた電流電圧特性が得られることが確認された。   As shown in Table 1, the mass activity obtained as the current value per unit platinum-based metal amount is shown, the catalyst of the present invention has a remarkable activity improvement effect as compared with the catalyst in which platinum is directly supported on carbon black. It was confirmed that Further, it was confirmed that excellent current-voltage characteristics were obtained with respect to the conventional catalysts of Examples 12 and 13.

本発明の燃料電池用触媒の製造方法から作製される燃料電池用触媒は極めて高い活性を有している。したがって、本発明の燃料電池用触媒を備える固体高分子型燃料電池は、高い電流電圧特性を有し、燃料電池自動車などに使用できる。   The fuel cell catalyst produced from the method for producing a fuel cell catalyst of the present invention has extremely high activity. Therefore, the polymer electrolyte fuel cell comprising the fuel cell catalyst of the present invention has high current-voltage characteristics and can be used for fuel cell automobiles and the like.

例1および例12における膜電極接合体の電流電圧特性を示すグラフ。The graph which shows the current-voltage characteristic of the membrane electrode assembly in Example 1 and Example 12.

Claims (12)

炭素担体に金属酸化物微粒子と白金系金属触媒微粒子とが担持された燃料電池用触媒であり、X線回折法で測定した該金属酸化物微粒子の平均粒径が20nm以下であることを特徴とする燃料電池用触媒。   A catalyst for fuel cells in which metal oxide fine particles and platinum-based metal catalyst fine particles are supported on a carbon support, wherein the average particle diameter of the metal oxide fine particles measured by X-ray diffraction method is 20 nm or less. Fuel cell catalyst. 前記金属酸化物微粒子の担持量が、当該金属酸化物微粒子の金属原子の量として、金属酸化物と炭素担体の合計量に対して1〜50質量%である、請求項1に記載の燃料電池用触媒。   2. The fuel cell according to claim 1, wherein the amount of the metal oxide fine particles supported is 1 to 50 mass% with respect to the total amount of the metal oxide and the carbon support as the amount of metal atoms of the metal oxide fine particles. Catalyst. 前記金属酸化物微粒子における金属元素が、Zrからなるか、または、Ti、Y、Nb、Sn、Ta、W、Mo、V、AlおよびCeからなる群から選ばれる少なくとも1種とZrとからなる、請求項1または2に記載の燃料電池用触媒。   The metal element in the metal oxide fine particles is composed of Zr, or composed of Zr and at least one selected from the group consisting of Ti, Y, Nb, Sn, Ta, W, Mo, V, Al, and Ce. The catalyst for fuel cells according to claim 1 or 2. 前記白金系金属触媒微粒子における金属元素が、Ptからなるか、または、Cr、Fe、Co、Ni、Ru、Rh、Pd、Re、Ir、Cu、AgおよびAuからなる群から選ばれる少なくとも1種とPtとからなる、請求項1、2または3に記載の燃料電池用触媒。   The metal element in the platinum-based metal catalyst fine particles is composed of Pt, or at least one selected from the group consisting of Cr, Fe, Co, Ni, Ru, Rh, Pd, Re, Ir, Cu, Ag, and Au. The catalyst for a fuel cell according to claim 1, comprising Pt and Pt. 前記炭素担体がカーボンブラックである、請求項1〜4のいずれかに記載の燃料電池用触媒。   The fuel cell catalyst according to any one of claims 1 to 4, wherein the carbon support is carbon black. 炭素担体に金属酸化物と白金系金属触媒微粒子とを担持した燃料電池用触媒の製造方法であって、下記の工程を含む燃料電池用触媒の製造方法。
工程1:焼成により金属酸化物となる金属化合物を炭素担体に担持し、300℃以下かつ前記金属化合物が金属酸化物となる温度で焼成する工程。
工程2:前記工程1で得られた担体に白金系金属触媒微粒子を担持する工程。
A method for producing a fuel cell catalyst comprising a carbon support carrying a metal oxide and platinum-based metal catalyst fine particles, the method comprising:
Step 1: A step of supporting a metal compound that becomes a metal oxide by firing on a carbon support and firing at a temperature of 300 ° C. or less and at which the metal compound becomes a metal oxide.
Step 2: A step of supporting platinum-based metal catalyst fine particles on the support obtained in Step 1 above.
前記金属酸化物の担持量が、当該金属酸化物の金属原子の量として、前記工程1で得られた金属酸化物担持炭素担体に対して1〜50質量%である、請求項6に記載の製造方法。   The amount of the metal oxide supported is 1 to 50% by mass with respect to the metal oxide-supported carbon support obtained in the step 1 as the amount of metal atoms of the metal oxide. Production method. 燃料電池用触媒中の前記金属酸化物が、X線回折法で測定した平均粒径が20nm以下の微粒子形状をなしている、請求項6または7に記載の製造方法。   The production method according to claim 6 or 7, wherein the metal oxide in the fuel cell catalyst has a fine particle shape having an average particle diameter of 20 nm or less as measured by an X-ray diffraction method. 前記金属酸化物における金属元素が、Zrからなるか、または、Ti、Y、Nb、Sn、Ta、W、Mo、V、AlおよびCeからなる群から選ばれる少なくとも1種とZrとからなる、請求項6、7または8に記載の製造方法。   The metal element in the metal oxide is composed of Zr, or composed of Zr and at least one selected from the group consisting of Ti, Y, Nb, Sn, Ta, W, Mo, V, Al, and Ce. The manufacturing method according to claim 6, 7 or 8. 前記白金系金属触媒微粒子における金属元素が、Ptからなるか、または、Cr、Fe、Co、Ni、Ru、Rh、Pd、Re、Ir、Cu、AgおよびAuからなる群から選ばれる少なくとも1種とPtとからなる、請求項6〜9のいずれかに記載の製造方法。   The metal element in the platinum-based metal catalyst fine particles is composed of Pt, or at least one selected from the group consisting of Cr, Fe, Co, Ni, Ru, Rh, Pd, Re, Ir, Cu, Ag, and Au. The manufacturing method in any one of Claims 6-9 which consists of and Pt. 前記炭素担体がカーボンブラックである、請求項6〜10のいずれかに記載の製造方法。   The production method according to claim 6, wherein the carbon support is carbon black. 電解質膜と、該電解質膜の両面に設けられた、電解質と触媒とを含む電極触媒層と、該電極触媒層それぞれの外側に設けられたガス拡散層とを有する、固体高分子形燃料電池の膜電極接合体において、少なくとも一方の電極触媒層に含有される触媒が請求項1〜5のいずれかに記載の燃料電池用触媒であることを特徴とする固体高分子形燃料電池の膜電極接合体。   A polymer electrolyte fuel cell comprising: an electrolyte membrane; an electrode catalyst layer including an electrolyte and a catalyst provided on both surfaces of the electrolyte membrane; and a gas diffusion layer provided outside each of the electrode catalyst layers. A membrane electrode assembly for a polymer electrolyte fuel cell, wherein the catalyst contained in at least one of the electrode catalyst layers in the membrane electrode assembly is the fuel cell catalyst according to any one of claims 1 to 5. body.
JP2007012678A 2007-01-23 2007-01-23 Catalyst for fuel cell and its manufacturing method Withdrawn JP2008181696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012678A JP2008181696A (en) 2007-01-23 2007-01-23 Catalyst for fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012678A JP2008181696A (en) 2007-01-23 2007-01-23 Catalyst for fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008181696A true JP2008181696A (en) 2008-08-07

Family

ID=39725435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012678A Withdrawn JP2008181696A (en) 2007-01-23 2007-01-23 Catalyst for fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008181696A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129397A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Electrode for fuel cell
JP2011023300A (en) * 2009-07-17 2011-02-03 Hosokawa Micron Corp Electrode catalyst for fuel cell, and manufacturing method thereof
JP2013059741A (en) * 2011-09-14 2013-04-04 Toyota Motor Corp Catalyst-supporting carrier and method for manufacturing the same
JP2013103216A (en) * 2011-11-16 2013-05-30 Nippon Shokubai Co Ltd Method of producing composite and composite produced by the same
JP2013126651A (en) * 2011-11-17 2013-06-27 Nippon Shokubai Co Ltd Catalyst for electrode, and method for manufacturing the same
EP2680350A1 (en) * 2012-06-26 2014-01-01 Samsung SDI Co., Ltd. Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell, and fuel cell system including same
WO2014010278A1 (en) * 2012-07-11 2014-01-16 昭和電工株式会社 Method for operating fuel cell, and electric-power generating device
US8980786B2 (en) 2011-03-24 2015-03-17 Shinshu University Metal oxide-platinum compound catalyst and method for producing same
WO2017208761A1 (en) * 2016-06-03 2017-12-07 日産自動車株式会社 Electrode catalyst, method for manufacturing same, and electrode catalyst layer using electrode catalyst
CN109994749A (en) * 2014-04-15 2019-07-09 丰田自动车株式会社 Electrode catalyst and preparation method thereof for fuel cell, and the cathode comprising electrode catalyst, anode and fuel cell
WO2020250898A1 (en) * 2019-06-12 2020-12-17 国立大学法人横浜国立大学 Oxygen reduction catalyst, fuel cell, air cell, and method for producing oxygen reduction catalyst
CN115084561A (en) * 2021-03-11 2022-09-20 丰田自动车株式会社 Electrode catalyst for fuel cell, method for selecting same, and fuel cell provided with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034779A (en) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd Electrode catalyst and its production method
JP2005056746A (en) * 2003-08-06 2005-03-03 Taki Chem Co Ltd Method for manufacturing electrocatalyst for direct methanol fuel cells
JP2005270864A (en) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd Fuel cell electrode catalyst and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034779A (en) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd Electrode catalyst and its production method
JP2005056746A (en) * 2003-08-06 2005-03-03 Taki Chem Co Ltd Method for manufacturing electrocatalyst for direct methanol fuel cells
JP2005270864A (en) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd Fuel cell electrode catalyst and manufacturing method therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129397A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Electrode for fuel cell
JP2011023300A (en) * 2009-07-17 2011-02-03 Hosokawa Micron Corp Electrode catalyst for fuel cell, and manufacturing method thereof
US8980786B2 (en) 2011-03-24 2015-03-17 Shinshu University Metal oxide-platinum compound catalyst and method for producing same
JP2013059741A (en) * 2011-09-14 2013-04-04 Toyota Motor Corp Catalyst-supporting carrier and method for manufacturing the same
JP2013103216A (en) * 2011-11-16 2013-05-30 Nippon Shokubai Co Ltd Method of producing composite and composite produced by the same
JP2013126651A (en) * 2011-11-17 2013-06-27 Nippon Shokubai Co Ltd Catalyst for electrode, and method for manufacturing the same
US9343750B2 (en) 2012-06-26 2016-05-17 Samsung Sdi Co., Ltd. Supporter for fuel cell, and electrode for fuel cell, membrane-electrode assembly for a fuel cell, and fuel cell system including same
JP2014007158A (en) * 2012-06-26 2014-01-16 Samsung Sdi Co Ltd Supporter for fuel cell, and electrode for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system which include the same
CN103515621A (en) * 2012-06-26 2014-01-15 三星Sdi株式会社 Supporter for fuel cell, electrode for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system
EP2680350A1 (en) * 2012-06-26 2014-01-01 Samsung SDI Co., Ltd. Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell, and fuel cell system including same
WO2014010278A1 (en) * 2012-07-11 2014-01-16 昭和電工株式会社 Method for operating fuel cell, and electric-power generating device
CN109994749A (en) * 2014-04-15 2019-07-09 丰田自动车株式会社 Electrode catalyst and preparation method thereof for fuel cell, and the cathode comprising electrode catalyst, anode and fuel cell
CN109314249A (en) * 2016-06-03 2019-02-05 日产自动车株式会社 Electrode catalyst and its manufacturing method and the electrode catalyst layer for using the electrode catalyst
KR20190004324A (en) * 2016-06-03 2019-01-11 닛산 지도우샤 가부시키가이샤 Electrode catalyst, method for producing the same, and electrode catalyst layer using the electrode catalyst
JPWO2017208761A1 (en) * 2016-06-03 2019-04-18 日産自動車株式会社 Electrode catalyst, method for producing the same, and electrode catalyst layer using the electrode catalyst
WO2017208761A1 (en) * 2016-06-03 2017-12-07 日産自動車株式会社 Electrode catalyst, method for manufacturing same, and electrode catalyst layer using electrode catalyst
US10411268B2 (en) 2016-06-03 2019-09-10 Nissan Motor Co., Ltd. Electrode catalyst, method for producing the same, and electrode catalyst layer using electrode catalyst
KR102103098B1 (en) * 2016-06-03 2020-04-21 닛산 지도우샤 가부시키가이샤 Electrode catalyst, manufacturing method thereof, and electrode catalyst layer using the electrode catalyst
CN109314249B (en) * 2016-06-03 2020-11-06 日产自动车株式会社 Electrode catalyst, method for producing same, and electrode catalyst layer using same
WO2020250898A1 (en) * 2019-06-12 2020-12-17 国立大学法人横浜国立大学 Oxygen reduction catalyst, fuel cell, air cell, and method for producing oxygen reduction catalyst
CN114008828A (en) * 2019-06-12 2022-02-01 国立大学法人横滨国立大学 Oxygen reduction catalyst, fuel cell, air cell, and method for producing oxygen reduction catalyst
CN115084561A (en) * 2021-03-11 2022-09-20 丰田自动车株式会社 Electrode catalyst for fuel cell, method for selecting same, and fuel cell provided with same

Similar Documents

Publication Publication Date Title
JP2008181696A (en) Catalyst for fuel cell and its manufacturing method
JP6387431B2 (en) Carbon supported catalyst
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
EP2634850B1 (en) Composite, catalyst including the same, fuel cell and lithium air battery including the same
JP6628867B2 (en) Electrode catalyst, membrane electrode assembly and fuel cell using the electrode catalyst
JP4901143B2 (en) Electrode catalyst, electrode for fuel electrode, fuel cell device, and method for producing electrode catalyst
JP5217434B2 (en) Fuel cell, its catalyst and its electrode
JP6172281B2 (en) Catalyst particles and electrode catalyst, electrolyte membrane-electrode assembly and fuel cell using the same
JP5214117B2 (en) Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst materials, fuel cell electrodes
JP7101119B2 (en) catalyst
JP6495249B2 (en) catalyst
WO2007145216A1 (en) Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP6603396B2 (en) Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly and fuel cell using carbon powder for fuel cell
KR20210114052A (en) Fluid for fuel cells
JP2005149742A (en) Catalyst-carrying electrode for fuel cell and its manufacturing method
KR20100093957A (en) Fuel electrode material, process for preparing composite and solid oxide fuel cells using composite
CN116600892A (en) Iridium-containing oxide, method for producing same, and catalyst containing iridium-containing oxide
JP5367313B2 (en) Cathode for fuel cell
JP4789179B2 (en) Electrode catalyst and method for producing the same
JP5283913B2 (en) Proton-conducting inorganic material used in fuel cells and anode for fuel cells using the same
JP2008123860A (en) Metal oxide-carrying carbon and fuel cell electrode employing it
WO2016152506A1 (en) Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP2007115668A (en) Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode
JP6721679B2 (en) Electrode catalyst, method for producing the same, and electrode catalyst layer using the electrode catalyst
JP2006294601A (en) Electrocatalyst for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120319