WO2016152506A1 - Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell - Google Patents

Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell Download PDF

Info

Publication number
WO2016152506A1
WO2016152506A1 PCT/JP2016/057207 JP2016057207W WO2016152506A1 WO 2016152506 A1 WO2016152506 A1 WO 2016152506A1 JP 2016057207 W JP2016057207 W JP 2016057207W WO 2016152506 A1 WO2016152506 A1 WO 2016152506A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel cell
carbon powder
carbon
peak
Prior art date
Application number
PCT/JP2016/057207
Other languages
French (fr)
Japanese (ja)
Inventor
允宣 内村
徹也 眞塩
大間 敦史
森下 隆広
善夫 初代
Original Assignee
日産自動車株式会社
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 東洋炭素株式会社 filed Critical 日産自動車株式会社
Publication of WO2016152506A1 publication Critical patent/WO2016152506A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon powder for a fuel cell, particularly a carbon powder for a fuel cell catalyst, and a catalyst, an electrode catalyst layer, a membrane electrode assembly, and a fuel cell using the carbon powder for a fuel cell.
  • a polymer electrolyte fuel cell (PEFC) using a proton-conducting polymer electrolyte membrane is lower in temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. Operate. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
  • an expensive metal catalyst represented by Pt (platinum) or a Pt alloy is used.
  • a carrier having a large specific surface area is used as the carrier for supporting the metal catalyst.
  • nano-sized platinum or platinum-containing alloy particles are supported on a support having a specific surface area of 1200 m 2 / g or more in a platinum amount ranging from 56 to 90% by weight with respect to the total weight of the electrode catalyst.
  • a catalyst is described.
  • Patent Document 1 the surface area of platinum particles that can contribute to the reaction on the support (support) is increased by highly supporting and highly dispersing the catalyst particles on the support having a large surface area, and the maximum of the catalytic reaction active region is maximized. It is described that it can be realized (improvement of fuel cell performance).
  • Patent Document 1 Although the catalyst described in Patent Document 1 is excellent in performance, it has a problem that it is inferior in durability.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a carbon powder for a fuel cell capable of improving durability.
  • Another object of the present invention is to provide a carbon powder for a fuel cell that can exhibit high catalytic activity when a catalytic metal is supported.
  • Another object of the present invention is to provide a catalyst, an electrode catalyst layer, a membrane electrode assembly and a fuel cell which are excellent in durability and power generation performance.
  • FIG. 1 is a polymer electrolyte fuel cell (PEFC); 2 is a solid polymer electrolyte membrane; 3a is an anode catalyst layer; 3c is a cathode catalyst layer; 4a is an anode gas diffusion layer; Cathode gas diffusion layer; 5a anode separator; 5c cathode separator; 6a anode gas channel; 6c cathode gas channel; 7 refrigerant channel; and 10 membrane electrode assembly (MEA) ) Respectively.
  • PEFC polymer electrolyte fuel cell
  • 2 is a solid polymer electrolyte membrane
  • 3a is an anode catalyst layer
  • 3c is a cathode catalyst layer
  • 4a is an anode gas diffusion layer
  • Cathode gas diffusion layer 5a anode separator; 5c cathode separator; 6a anode gas channel; 6c cathode gas channel; 7 refrigerant channel; and 10 membrane electrode assembly (MEA)
  • the carbon powder for fuel cells of the present invention contains carbon as a main component.
  • “mainly composed of carbon” is a concept including both carbon and substantially carbon, and elements other than carbon may be included.
  • “Substantially consists of carbon” means that 98% by weight or more, preferably 99.5% by weight or more (upper limit: less than 100% by weight) of the whole is composed of carbon.
  • the BET specific surface area per weight by nitrogen adsorption is also simply referred to as “BET specific surface area”.
  • the ratio of the area B to the area A is also referred to as “B / A” or “B / A ratio”.
  • the support (carrier) described in Patent Document 1 has a large specific surface area. For this reason, the catalyst using such a support (support) can improve the performance because the effective surface area of the platinum or platinum-containing alloy particles is increased. However, on the other hand, since the carbon corrosion deterioration is proportional to the specific surface area of the support, the support having a large specific surface area has low carbon corrosion durability. For this reason, the durability of the electrode catalyst using such a support, and further the membrane electrode assembly (MEA) is lowered.
  • MEA membrane electrode assembly
  • the carbon powder according to the present invention satisfies the above (a). Since the carbon powder for fuel cells having the configuration (a) has a large specific surface area, the electric double layer capacity is large. Further, when the catalyst metal is supported on the carbon powder, the catalyst metal can be highly dispersed on the carbon powder by suppressing aggregation of the catalyst metal. For this reason, the catalyst formed by supporting the catalytic metal on the carbon powder of the present invention can exhibit high catalytic activity.
  • the carbon powder according to the present invention satisfies the above (b). The carbon powder for fuel cells having the above-described configuration (b) has high crystallinity, and therefore has excellent electrochemical corrosion resistance (not easily corroded). For this reason, the catalyst which carries
  • the carbon powder for a fuel cell of the present invention is excellent in durability, and can exhibit high catalytic activity when the catalytic metal is supported and can maintain the activity. Further, by using the carbon powder of the present invention as a carrier, a catalyst having excellent catalytic activity and durability, and an electrochemical device (for example, MEA, capacitor) having high performance and high durability can be provided. For this reason, the carbon powder for fuel cells of the present invention can be suitably used as a support for a catalyst, particularly a catalyst for a fuel cell. That is, the present invention includes a fuel cell catalyst in which a catalyst metal is supported on the fuel cell carbon powder of the present invention.
  • the carbon powder (support) for a fuel cell of the present invention has a high specific surface area.
  • the dispersibility of the catalyst can be improved, and the electric double layer capacity (electrochemical reaction area) can be increased, that is, the power generation performance can be improved.
  • the carbon powder (support) for a fuel cell of the present invention has high crystallinity (small amount of carbon edge). For this reason, according to the fuel cell catalyst of the present invention, it is possible to suppress / prevent performance degradation due to carbon corrosion, that is, to improve durability.
  • the fuel cell catalyst in which the catalyst metal is supported on the fuel cell carbon powder of the present invention is excellent in durability, can exhibit high catalytic activity (can promote catalytic reaction), and can maintain the activity.
  • the present invention provides a fuel cell electrode catalyst layer containing the catalyst and electrolyte, a fuel cell membrane electrode assembly including the fuel cell electrode catalyst layer, and a fuel cell including the fuel cell membrane electrode assembly. I will provide a.
  • X to Y indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • a fuel cell includes a membrane electrode assembly (MEA), a pair of separators including an anode side separator having a fuel gas flow path through which fuel gas flows and a cathode side separator having an oxidant gas flow path through which oxidant gas flows.
  • MEA membrane electrode assembly
  • the fuel cell of this embodiment is excellent in durability and can exhibit high power generation performance.
  • FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
  • the PEFC 1 first has a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
  • the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
  • GDL gas diffusion layers
  • the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
  • MEA membrane electrode assembly
  • MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
  • the separators (5 a, 5 c) are illustrated so as to be located at both ends of the illustrated MEA 10.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2 or between PEFC 1 and another adjacent PEFC.
  • the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the convex part seen from the MEA side of the separator (5a, 5c) is in contact with MEA 10. Thereby, the electrical connection with MEA 10 is ensured.
  • a recess (space between the separator and the MEA generated due to the uneven shape of the separator) seen from the MEA side of the separator (5a, 5c) is used for circulating gas during operation of PEFC 1. Functions as a gas flow path.
  • a fuel gas for example, hydrogen
  • an oxidant gas for example, air
  • the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) is a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
  • a refrigerant for example, water
  • the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
  • the separators (5a, 5c) are formed in an uneven shape.
  • the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
  • the fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance and durability.
  • the type of the fuel cell is not particularly limited.
  • the polymer electrolyte fuel cell has been described as an example.
  • an alkaline fuel cell and a direct methanol fuel cell are used.
  • a micro fuel cell is used.
  • a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • the fuel used when operating the fuel cell is not particularly limited.
  • hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
  • hydrogen and methanol are preferably used in that high output is possible.
  • the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
  • the electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
  • the carbon powder since the carbon powder has a sufficient specific surface area, a large electric double layer capacity can be achieved. For this reason, the catalyst which carries
  • the BET specific surface area per weight of the carbon powder is less than 800 m 2 / g, the specific surface area is small, so that it is difficult to carry out high dispersion (high loading) when loading the catalyst metal. For this reason, activity will fall.
  • an electrode catalyst layer is formed using a catalyst in which a catalyst metal is supported on such carbon powder, the catalyst coverage by the electrolyte is increased. For this reason, the gas transport property of an electrode catalyst layer falls, and activity will fall further.
  • the BET specific surface area of the carbon powder is preferably 800 to 3000 m 2 / g, more preferably 850 to 1800 m 2 / g, and 900 to 1500 m 2 / g. It is particularly preferred that
  • BET specific surface area (m 2 / g)” or “BET specific surface area (m 2 / g carrier)” is measured by a nitrogen adsorption method.
  • a sample carbon powder or carrier
  • the sample was evacuated and subjected to deaeration treatment at 300 ° C. for 2 hours.
  • Nitrogen adsorption isotherm was determined by measuring at 77k (-196 ° C) using nitrogen gas as the adsorption gas.
  • an automatic gas / vapor adsorption measuring device BELSORP-18 manufactured by Nippon Bell Co., Ltd. is used.
  • the edge amount of carbon (graphene) that becomes the starting point of electrochemical corrosion can be sufficiently reduced.
  • carbon corrosion can be suppressed, durability can be improved, and a decrease in catalytic activity when a catalytic metal is supported can be effectively suppressed / prevented.
  • the B / A ratio of the carbon powder is less than 0.06, the crystallinity of the carbon powder is lowered and the durability is lowered.
  • the ratio of the area B of the peak 2 to the area A of the peak 1 of the carbon powder (B / A ratio) is preferably 0.06 to 0.40, preferably 0.07 to More preferably, it is 0.35.
  • X-ray diffraction measurement is performed by placing a sample (carbon powder) on a silicon non-reflective plate and using an X-ray diffractometer RINT-TTRIII manufactured by Rigaku Corporation to obtain an XRD pattern.
  • RINT-TTRIII manufactured by Rigaku Corporation
  • the method for producing the carbon powder of the present invention is not particularly limited.
  • this invention is not limited to the following form. That is, (i) an organic material is mixed with a magnesium compound or an alkaline earth metal compound (step (i)), (ii) the mixture obtained in (i) above is heated to produce a carbon material, and then the magnesium compound Alternatively, the alkaline earth metal compound is removed (step (ii)), and (iii) the carbon material obtained in the above (ii) is heat-treated (step (iii)).
  • the steps (i) and (ii) are known methods such as those described in JP-A-2006-062954, JP-A-2012-082134, JP-A-2012-122158, and JP-A 2012-218999.
  • a method using a thermoplastic resin in the method can be applied in the same manner or appropriately modified.
  • the organic material used as the raw material of the carbon powder is not particularly limited, but organic acids such as acetic acid and citric acid or thermoplastic resins can be preferably used.
  • organic acids such as acetic acid and citric acid or thermoplastic resins
  • carbon wall stacking stacking
  • the (002) plane can be grown (the B / A ratio can be increased).
  • thermoplastic resins include, but are not limited to, polyvinyl alcohol, polyester resins (aliphatic and aromatic polyester resins), polyolefin resins, acrylic resins, styrene resins, polyamide resins, polyacrylonitrile resins, polybutadiene and polyisoprene. Main elastomers, natural rubber, petroleum resins and the like can be mentioned.
  • polyvinyl alcohol, a polyester resin, a styrene resin, and a petroleum resin that are substantially composed of only carbon atoms, hydrogen atoms, and oxygen atoms are preferable.
  • the carbon powder has micropores in addition to mesopores.
  • polyethylene terephthalate or hydroxypropylene glycol is used as a raw material for carbon powder, the carbon powder has relatively large mesopores.
  • the organic material may be mixed with the magnesium compound or the alkaline earth metal compound in any form. Specifically, it can be used in a solid form such as a powder, a pellet, or a lump, or in the form of a solution or dispersion dissolved or dispersed in an appropriate solvent.
  • the magnesium compound or alkaline earth metal compound mixed with the organic material is not particularly limited as long as it acts as a template during carbonization of the organic material.
  • examples of the alkaline earth metal include calcium, strontium, and barium. Among these, it is preferable to mix a magnesium compound and a calcium compound with an organic material.
  • the magnesium compound or alkaline earth metal compound may be in any form of magnesium or alkaline earth metal.
  • magnesium compounds or alkaline earth metal compounds include magnesium, alkaline earth metal oxides, hydroxides and carbonates, and acetates, oxalates, citrates, acrylates, and the like.
  • organic acid salts such as methacrylate.
  • an oxide is preferable because it can promote the formation of a porous carbide without deteriorating the heat treatment furnace or generating a polluting gas in the firing step of the next step (ii).
  • the magnesium compound and alkaline earth metal compound may be used alone or in the form of a mixture of two or more. Alternatively, the magnesium compound and the alkaline earth metal compound may be used in appropriate combination.
  • the mixed form of the magnesium compound or alkaline earth metal compound is not particularly limited, and examples thereof include powder, pellets, granules, and pastes. Of these, powder and granule are preferable from the viewpoint of uniform mixing with an organic material and making the carbide porous.
  • the size of the magnesium compound or alkaline earth metal compound is not particularly limited.
  • the pore diameter (especially mesopores) of the carbon material obtained by the next step (ii) can be adjusted by the crystallite size of the magnesium compound or alkaline earth metal compound. That is, when the produced magnesium oxide or alkaline earth metal oxide (crystallite) is eluted with an acid, pores corresponding to the crystallite size of the oxide are produced in the carbon material. For this reason, it is preferable that the average crystallite size is selected according to the desired pore size (particularly mesopores) of the carbon powder. Specifically, the average crystallite size is preferably 5 to 150 nm.
  • crystallite refers to the largest group that can be regarded as a single crystal.
  • the “average crystallite size” employs an average of values measured by X-ray diffraction for statistically significant numbers (for example, 300) unless otherwise specified.
  • crystallite size (diameter) means the maximum distance among the distances between any two points passing through the center of the crystallite and on the contour line of the particle.
  • the mixing ratio of the organic material and the magnesium compound or alkaline earth metal compound is not particularly limited.
  • the organic material is preferably mixed at a ratio of 40 to 700 parts by weight, more preferably 100 to 300 parts by weight, with respect to 100 parts by weight of the magnesium compound or alkaline earth metal compound. With such a mixing ratio, the carbon material can be made sufficiently porous to produce a carbon material having the desired pore size and pore distribution (and hence the carbon powder of the present invention) more efficiently.
  • Step (ii) In this step, the magnesium compound or alkaline earth metal compound is removed after the mixture obtained in (i) above is heated (fired) to produce a carbon material.
  • the organic material is carbonized and made porous, and a carbon material having a desired pore size and pore distribution is obtained.
  • the heating (firing) conditions of the mixture are not particularly limited, and can be performed in an air atmosphere or in an inert gas atmosphere such as argon gas or nitrogen gas.
  • heating (baking) is performed in an inert gas atmosphere.
  • the mixture is charged into a heating apparatus such as an electric furnace, and the inside is replaced with an inert gas such as argon gas or nitrogen gas, and then heated while blowing a non-oxidizing gas into the apparatus. .
  • the organic material is thermally decomposed (carbonized).
  • carbides and magnesium oxide or alkaline earth metal oxides remain after heating.
  • the heating (firing) conditions are not particularly limited. Specifically, the heating (firing) temperature is preferably 500 to 1500 ° C., more preferably 700 to 1200 ° C.
  • the heating (firing) time is preferably about 0.5 to 5 hours, more preferably about 1 to 2 hours.
  • the magnesium compound or the alkaline earth metal compound acts sufficiently effectively on the organic material to promote the carbonization and porosity of the organic material more effectively, and further increase the specific surface area of the carbon material. Can be big.
  • magnesium oxide or alkaline earth metal oxide is thermally stable, and hydroxide, carbonate, and organic acid salt are thermally decomposed during heat treatment to be converted into stable oxides. For this reason, the heat treatment can be performed safely without the deterioration of the lining refractory of the heating furnace or the generation of harmful gas causing environmental pollution even in the heat treatment of the next step (iii).
  • the carbon material obtained after this step coexists with magnesium oxide or alkaline earth metal oxide.
  • a carbon material is isolate
  • the acid used in the acid aqueous solution is not particularly limited as long as it elutes magnesium oxide or alkaline earth metal oxide.
  • Specific examples include mineral acids such as sulfuric acid, nitric acid, and hydrochloric acid, and organic acids such as acetic acid and oxalic acid.
  • the concentration of the aqueous acid solution is not particularly limited as long as it can dissolve magnesium oxide or alkaline earth metal oxide, and can be appropriately selected.
  • the treated product is preferably filtered and washed with water to remove the acid and then dried. By this step, a carbon material substantially free of impurities is obtained.
  • the heat treatment condition of the carbon material is not particularly limited as long as it can achieve the above configurations (a) and (b) or the above configurations (a), (b) and (c).
  • the heat treatment temperature is preferably less than 2000 ° C., more preferably more than 1300 ° C., 1900 ° C., still more preferably 1400-1850 ° C., Particularly preferred is 1500-1800 ° C.
  • the temperature increase rate in the heat treatment is preferably 100 to 1000 ° C./hour, particularly preferably 300 to 800 ° C./hour.
  • the heat treatment time (holding time at a predetermined heat treatment temperature) is not particularly limited, but is particularly preferably 1 minute or more and 60 minutes or less.
  • the heat treatment is performed in an inert gas atmosphere such as argon gas or nitrogen gas. If it is such conditions, the carbon powder which satisfy
  • heat processing conditions are less than the said minimum (heat processing conditions are too gentle)
  • B / A ratio of carbon powder may become too small.
  • the heat treatment condition exceeds the above upper limit (the heat treatment condition is too severe), graphitization proceeds too much and the BET specific surface area of the carbon powder may be too small.
  • the catalyst is composed of the carbon powder (support) and a catalytic metal supported on the carbon powder.
  • Catalyst metal has a function of catalyzing an electrochemical reaction.
  • the catalyst metal used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst metal used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner.
  • metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Can be selected.
  • the catalyst metal is preferably platinum or contains a metal component other than platinum and platinum, and more preferably platinum or a platinum-containing alloy.
  • a catalytic metal can exhibit high activity.
  • the catalyst metal is platinum, platinum having a small particle diameter can be dispersed on the surface of the carbon powder (support), so that the platinum surface area per weight can be maintained even if the amount of platinum used is reduced.
  • a catalyst metal contains metal components other than platinum and platinum, since the usage-amount of expensive platinum can be reduced, it is preferable from a viewpoint of cost.
  • the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be used in the present application.
  • the catalyst metal used for the anode catalyst layer and the catalyst metal used for the cathode catalyst layer can be appropriately selected from the above.
  • the description of the catalyst metal for the anode catalyst layer and the cathode catalyst layer has the same definition for both.
  • the catalyst metals of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
  • the shape and size of the catalyst metal are not particularly limited, and the same shape and size as known catalyst components can be adopted.
  • As the shape for example, a granular shape, a scale shape, a layered shape, and the like can be used, but a granular shape is preferable.
  • the average particle diameter (diameter) of the catalyst metal (catalyst metal particles) is not particularly limited, but is preferably 3 nm or more, more preferably more than 3 nm and not more than 30 nm, particularly preferably more than 3 nm and not more than 10 nm.
  • the catalyst metal is more firmly supported on the carbon powder (for example, in the mesopores of the carbon powder) and more effectively suppresses contact with the electrolyte in the catalyst layer. ⁇ Prevented. Further, when the carbon powder has micropores, the micropores remain without being clogged with the catalytic metal, and a gas transport path can be secured better, and the gas transport resistance can be further reduced. In addition, elution due to potential change can be prevented, and deterioration in performance over time can be suppressed. For this reason, the catalytic activity can be further improved, that is, the catalytic reaction can be promoted more efficiently.
  • the catalyst metal can be supported on the carbon powder (for example, inside the mesopores of the carbon powder) by a simple method, and the electrolyte coverage of the catalyst metal is reduced. can do.
  • the “average particle diameter of the catalytic metal particles” in the present invention is the crystallite diameter determined from the half-value width of the diffraction peak of the catalytic metal component in X-ray diffraction, or the catalytic metal particles examined by a transmission electron microscope (TEM). It can be measured as the average value of the particle diameters.
  • the content (mg / cm 2 ) of the catalyst metal per unit catalyst coating area is not particularly limited as long as sufficient degree of dispersion of the catalyst on the carrier and power generation performance can be obtained. ⁇ 1 mg / cm 2 .
  • the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less.
  • the use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost.
  • the lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more. More preferably, the platinum content is 0.02 to 0.4 mg / cm 2 .
  • the activity per catalyst weight can be improved by controlling the pore structure of the carrier, the amount of expensive catalyst used can be reduced.
  • inductively coupled plasma emission spectroscopy is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”.
  • ICP inductively coupled plasma emission spectroscopy
  • a person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the slurry composition (catalyst concentration) and coating amount. You can adjust the amount.
  • the amount of the catalyst supported on the carrier (sometimes referred to as the loading ratio) is preferably 10 to 80% by weight, more preferably 20 to 70% by weight, based on the total amount of the catalyst carrier (that is, the carrier and the catalyst). % Is good. If the loading is within the above range, it is preferable because a sufficient degree of dispersion of the catalyst components on the carrier, improvement in power generation performance, economic advantages, and catalytic activity per unit weight can be achieved.
  • the structure of the catalyst is not particularly limited as long as the carbon powder satisfies the above (a) and (b). That is, the catalyst can have the same structure as the conventional one except that the carbon powder of the present invention is used as a support.
  • the method for producing the catalyst is not particularly limited.
  • a method of increasing the particle size of the catalyst metal by performing a heat treatment after depositing the catalyst metal on the surface of the catalyst carrier is preferable.
  • the heat treatment is performed after the precipitation to increase the particle shape of the catalyst metal.
  • a catalyst metal having a large particle diameter can be supported inside the pores (particularly mesopores) of the catalyst carrier.
  • the present invention includes (i) a step of depositing a catalyst metal on the surface of the catalyst support (precipitation step), and (ii) a step of performing a heat treatment after the deposition step to increase the particle size of the catalyst metal (heat treatment). And a process for producing the catalyst of the present invention.
  • this invention is not limited to the following form.
  • (I) Deposition step In this step, a catalyst metal is deposited on the surface of the catalyst carrier.
  • This step is a known method. For example, a method in which the catalyst support is immersed in a catalyst metal precursor solution and then reduced is preferably used.
  • the precursor of the catalyst metal is not particularly limited and is appropriately selected depending on the type of the catalyst metal used.
  • Specific examples include chlorides, nitrates, sulfates, chlorides, acetates and amine compounds of catalyst metals such as platinum. More specifically, platinum chloride (hexachloroplatinic acid hexahydrate), palladium chloride, rhodium chloride, ruthenium chloride, cobalt chloride and other nitrates, palladium nitrate, rhodium nitrate, iridium nitrate and other nitrates, palladium sulfate, sulfuric acid Preferred examples include sulfates such as rhodium, acetates such as rhodium acetate, and ammine compounds such as dinitrodiammine platinum and dinitrodiammine palladium.
  • the solvent used for the preparation of the catalyst metal precursor solution is not particularly limited as long as it can dissolve the catalyst metal precursor, and is appropriately selected depending on the type of the catalyst metal precursor used. Specifically, water, an acid, an alkali, an organic solvent, etc. are mentioned.
  • the concentration of the catalyst metal precursor in the catalyst metal precursor solution is not particularly limited, but is preferably 0.1 to 50% by weight, more preferably 0.5 to 20% by weight in terms of metal. .
  • the reducing agent examples include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, formaldehyde, methanol, ethanol, ethylene, carbon monoxide and the like. . Note that a gaseous substance at room temperature such as hydrogen can be supplied by bubbling.
  • the amount of the reducing agent is not particularly limited as long as the catalyst metal precursor can be reduced to the catalyst metal, and known amounts can be similarly applied.
  • the deposition conditions are not particularly limited as long as the catalyst metal can be deposited on the catalyst support.
  • the precipitation temperature is preferably near the boiling point of the solvent, more preferably from room temperature to 100 ° C.
  • the deposition time is preferably 1 to 10 hours, more preferably 2 to 8 hours. In addition, you may perform the said precipitation process, stirring and mixing if necessary.
  • the precursor of the catalyst metal is reduced to the catalyst metal, and the catalyst metal is deposited (supported) on the catalyst carrier.
  • Heat treatment step In this step, heat treatment is performed after the deposition step (i) to increase the particle size of the catalyst metal.
  • the heat treatment conditions are not particularly limited as long as the particle diameter of the catalyst metal can be increased.
  • the heat treatment temperature is preferably 300 to 1200 ° C., more preferably 500 to 1150 ° C., and particularly preferably 700 to 1000 ° C.
  • the heat treatment time is preferably 0.02 to 3 hours, more preferably 0.1 to 2 hours, and particularly preferably 0.2 to 1.5 hours. Note that the heat treatment step may be performed in a hydrogen atmosphere.
  • the catalyst of the present invention can reduce gas transport resistance and exhibit high catalytic activity, that is, promote catalytic reaction. Therefore, the catalyst of the present invention can be suitably used for an electrode catalyst layer for a fuel cell. That is, the present invention also provides a fuel cell electrode catalyst layer comprising the electrode catalyst of the present invention and an electrolyte. The electrode catalyst layer for a fuel cell of the present invention can exhibit high performance and durability.
  • the fuel cell electrode catalyst layer of the present invention can be used in the same manner as in the prior art or appropriately modified except that the carbon powder of the present invention is used as a carrier. For this reason, although the preferable form of a catalyst layer is demonstrated below, this invention is not limited to the following form.
  • the catalyst is coated with the electrolyte, but the electrolyte does not enter the mesopores (and also the micropores) of the catalyst (particularly the support). For this reason, the catalyst metal on the surface of the carrier comes into contact with the electrolyte, but the catalyst metal supported in the mesopores is not in contact with the electrolyte.
  • the catalytic metal in the mesopores forms a three-phase interface between oxygen gas and water in a non-contact state with the electrolyte, thereby ensuring a reaction active area of the catalytic metal.
  • the catalyst of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, but is preferably used in the cathode catalyst layer. As described above, the catalyst of the present invention can effectively use the catalyst by forming a three-phase interface with water without contacting the electrolyte, but water is formed in the cathode catalyst layer. .
  • the electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
  • S-PES sulfonated polyethersulfone
  • S-PEEK ether ketone
  • S-PPP sulfonated polyphenylene
  • the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
  • the catalyst layer of this embodiment preferably has an EW of 1500 g / eq.
  • the following polymer electrolyte is contained, More preferably, it is 1200 g / eq.
  • the following polymer electrolyte is included, and particularly preferably 1000 g / eq.
  • the following polymer electrolytes are included.
  • the EW of the polymer electrolyte is preferably 600 or more.
  • EW Equivalent Weight
  • the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
  • the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
  • the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
  • the EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
  • the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the flow path length. It is desirable to use it in the range area.
  • a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary.
  • a thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
  • the thickness of the catalyst layer (dry film thickness) is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m.
  • the above applies to both the cathode catalyst layer and the anode catalyst layer.
  • the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
  • carbon powder also referred to as “porous support” or “conductive porous support” in this specification
  • a support is prepared. Specifically, as described in the method for producing carbon powder, it may be produced.
  • the catalyst is supported on the porous carrier to obtain catalyst powder.
  • the catalyst can be supported on the porous carrier by a known method.
  • known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
  • a catalyst ink containing catalyst powder, polymer electrolyte, and solvent is prepared.
  • the solvent is not particularly limited, and ordinary solvents used for forming the catalyst layer can be used in the same manner. Specifically, water such as tap water, pure water, ion exchange water, distilled water, cyclohexanol, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, etc. And lower alcohols having 1 to 4 carbon atoms, propylene glycol, benzene, toluene, xylene and the like. Besides these, butyl acetate alcohol, dimethyl ether, ethylene glycol, and the like may be used as a solvent. These solvents may be used alone or in the form of a mixture of two or more.
  • the amount of the solvent constituting the catalyst ink is not particularly limited as long as it is an amount capable of completely dissolving the electrolyte.
  • the solid content concentration of the catalyst powder and the polymer electrolyte is preferably 1 to 50% by weight, more preferably about 5 to 30% by weight in the electrode catalyst ink.
  • additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent
  • these additives may be added to the catalyst ink.
  • the amount of the additive added is not particularly limited as long as it is an amount that does not interfere with the effects of the present invention.
  • the amount of additive added is preferably 5 to 20% by weight with respect to the total weight of the electrode catalyst ink.
  • a catalyst ink is applied to the surface of the substrate.
  • the application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gravure printing method, a die coater method, a screen printing method, or a doctor blade method.
  • a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion substrate (gas diffusion layer) can be used as the substrate on which the catalyst ink is applied.
  • the obtained laminate can be used for the production of the membrane electrode assembly as it is.
  • a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst layer is formed on the substrate, the catalyst layer portion is peeled from the substrate.
  • PTFE polytetrafluoroethylene
  • the coating layer (film) of the catalyst ink is dried at room temperature to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst layer is formed.
  • a fuel cell membrane electrode assembly including the fuel cell electrode catalyst layer and a fuel cell including the fuel cell membrane electrode assembly are provided. That is, the solid polymer electrolyte membrane 2, the cathode catalyst layer disposed on one side of the electrolyte membrane, the anode catalyst layer disposed on the other side of the electrolyte membrane, the electrolyte membrane 2 and the anode catalyst layer There is provided a fuel cell membrane electrode assembly having 3a and a pair of gas diffusion layers (4a, 4c) sandwiching the cathode catalyst layer 3c. In this membrane electrode assembly, at least one of the cathode catalyst layer and the anode catalyst layer is the catalyst layer of the embodiment described above.
  • the cathode catalyst layer may be the catalyst layer of the embodiment described above.
  • the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
  • a fuel cell having the above membrane electrode assembly there is provided a fuel cell having the above membrane electrode assembly. That is, one embodiment of the present invention is a fuel cell having a pair of anode separator and cathode separator that sandwich the membrane electrode assembly of the above-described embodiment.
  • the present invention is characterized by the catalyst layer. Therefore, the specific form of the members other than the catalyst layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
  • the electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG.
  • the solid polymer electrolyte membrane 2 has a function of selectively transmitting protons generated in the anode catalyst layer 3a during the operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction.
  • the solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
  • the thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
  • the thickness of the electrolyte layer is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the gas diffusion layers are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
  • the material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
  • MPL microporous layer
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
  • a method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used.
  • a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing, and this is dried, and a gas diffusion layer is bonded to the gas diffusion layer, or a microporous layer side (a microporous layer is attached to the gas diffusion layer).
  • two gas diffusion electrodes are prepared by applying a catalyst layer on one side of the base material layer in advance and drying, and hot pressing the gas diffusion electrodes on both sides of the solid polymer electrolyte membrane.
  • the application and joining conditions such as hot press are appropriately determined depending on the type of polymer electrolyte in the solid polymer electrolyte membrane or catalyst layer (perfluorosulfonic acid type or hydrocarbon type). Adjust it.
  • the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
  • the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
  • each of the separators is preferably provided with a gas flow path and a cooling flow path.
  • a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
  • the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
  • the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
  • a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • the above-mentioned PEFC and membrane electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and the membrane electrode assembly are excellent in power generation performance and durability.
  • the PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
  • Example 1 Carrier A was prepared as follows.
  • citric acid powder and magnesium oxide powder were mixed at a weight ratio of 3: 1, and then the mixture was heat-treated at 900 ° C. for 1 hour in a nitrogen atmosphere.
  • the mixed powder obtained by the heat treatment was put into a dilute sulfuric acid aqueous solution, sufficiently stirred at room temperature (25 ° C.), filtered, sufficiently washed with water, and dried to produce a carbon material A.
  • the carbon material A was heated to 1500 ° C. in a nitrogen atmosphere, and then heat-treated at 1500 ° C. for 1 hour, thereby preparing a carrier A.
  • the BET specific surface area was measured.
  • the BET specific surface area of the carrier A was 1460 m 2 / g.
  • the ratio of the area B of the peak 1 to the area A of the peak 0 (B / A) of the carrier A thus obtained was 0.06.
  • Example 3 Using the carrier A prepared in Example 1 above, platinum (Pt) having an average particle size of more than 3 nm and not more than 5 nm as a catalyst metal was loaded so that the loading ratio was 30% by weight to obtain catalyst powder A. . That is, 46 g of carrier A was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by weight, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier A. The catalyst powder having a loading rate of 30% by weight was obtained by filtration and drying. Thereafter, in a hydrogen atmosphere, the temperature was maintained at 900 ° C. for 1 hour to obtain catalyst powder A.
  • Example 4 catalyst powder B was obtained in the same manner as in Example 3 except that the carrier B prepared in Example 2 was used instead of the carrier A.
  • ECA effective catalyst surface area
  • the catalyst powders of Examples 3 and 4 have a larger number of cycles in which the reduction current decreases compared to the catalyst powder of Comparative Example 2 in which the BET specific surface area and / or B / A ratio deviates from the present invention. Is shown. From this, it is considered that the catalyst using the carbon powder of the present invention has a small decrease in electric double layer capacity and can maintain a significantly high activity (excellent in durability).
  • PEFC Polymer electrolyte fuel cell
  • 2 Solid polymer electrolyte membrane
  • 3a ... anode catalyst layer
  • 3c ... cathode catalyst layer
  • 4a ... anode gas diffusion layer
  • 4c ... cathode gas diffusion layer
  • 5a ... anode separator
  • 5c ... cathode separator
  • 6a ... anode gas flow path
  • 6c ... cathode gas flow path
  • 7 Refrigerant flow path
  • 10 Membrane electrode assembly (MEA).

Abstract

The present invention provides: a carbon powder with which it is possible to provide a catalyst having excellent durability; and a catalyst. This carbon powder for a fuel cell is a carbon powder having carbon as a main component, wherein the BET specific surface area according to nitrogen adsorption is 800 m2/g or more, and when the area of a peak 0 at a position where 2θ=22.5-25° as observed by XRD analysis is termed A and the area of a peak 1 at a position where 2θ=26° as observed by XRD analysis is termed B, the ratio (B/A) of the area B of peak 1 to the area A of peak 0 is 0.06 or more.

Description

燃料電池用炭素粉末ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly and fuel cell using carbon powder for fuel cell
 本発明は、燃料電池用炭素粉末、特に燃料電池触媒用炭素粉末、ならびに当該燃料電池用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池に関するものである。 The present invention relates to a carbon powder for a fuel cell, particularly a carbon powder for a fuel cell catalyst, and a catalyst, an electrode catalyst layer, a membrane electrode assembly, and a fuel cell using the carbon powder for a fuel cell.
 プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池(PEFC)は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。 A polymer electrolyte fuel cell (PEFC) using a proton-conducting polymer electrolyte membrane is lower in temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. Operate. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
 このような固体高分子形燃料電池には、一般的に、Pt(白金)やPt合金に代表される高価な金属触媒が用いられている。また、金属触媒を担持する担体としては、上記金属触媒を高担持及び高分散させるために比表面積の大きい担体が使用されている。例えば、特許文献1には、比表面積が1200m/g以上の担体に、電極触媒総重量に対して56~90重量%の範囲の白金量で、ナノ寸法の白金または白金含有合金粒子を担持してなる触媒が記載される。特許文献1には、表面積の広い担体上に触媒粒子を高担持及び高分散することにより、支持体(担体)上の反応に寄与可能な白金粒子の表面積を増大し、触媒反応活性領域の最大化(燃料電池の性能向上)を実現することができることが記載される。 In such a polymer electrolyte fuel cell, generally, an expensive metal catalyst represented by Pt (platinum) or a Pt alloy is used. Further, as the carrier for supporting the metal catalyst, a carrier having a large specific surface area is used in order to highly support and disperse the metal catalyst. For example, in Patent Document 1, nano-sized platinum or platinum-containing alloy particles are supported on a support having a specific surface area of 1200 m 2 / g or more in a platinum amount ranging from 56 to 90% by weight with respect to the total weight of the electrode catalyst. A catalyst is described. In Patent Document 1, the surface area of platinum particles that can contribute to the reaction on the support (support) is increased by highly supporting and highly dispersing the catalyst particles on the support having a large surface area, and the maximum of the catalytic reaction active region is maximized. It is described that it can be realized (improvement of fuel cell performance).
特表2008-517426号公報(US 2006/0134506 A1に相当)Special table 2008-517426 (US 2006/0134506 A1)
 特許文献1に記載の触媒は、性能には優れるものの、耐久性に劣るという問題があった。 Although the catalyst described in Patent Document 1 is excellent in performance, it has a problem that it is inferior in durability.
 したがって、本発明は、上記事情を鑑みてなされたものであり、耐久性を向上できる燃料電池用炭素粉末を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a carbon powder for a fuel cell capable of improving durability.
 本発明の他の目的は、触媒金属担持時に高触媒活性を発揮できる燃料電池用炭素粉末を提供することを目的とする。 Another object of the present invention is to provide a carbon powder for a fuel cell that can exhibit high catalytic activity when a catalytic metal is supported.
 本発明の別の目的は、耐久性および発電性能に優れる触媒、電極触媒層、膜電極接合体及び燃料電池を提供することである。 Another object of the present invention is to provide a catalyst, an electrode catalyst layer, a membrane electrode assembly and a fuel cell which are excellent in durability and power generation performance.
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、特定の比表面積および結晶性を有する燃料電池用炭素粉末を担体として使用することによって、上記課題を解決することを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have solved the above problems by using carbon powder for fuel cells having a specific specific surface area and crystallinity as a support. The headline and the present invention were completed.
本発明の一実施形態に係る固体高分子形燃料電池の基本構成を示す概略断面図である。図1中、1は固体高分子形燃料電池(PEFC)を;2は固体高分子電解質膜を;3aはアノード触媒層を;3cはカソード触媒層を;4aはアノードガス拡散層を;4cはカソードガス拡散層を;5aはアノードセパレータを;5cはカソードセパレータを;6aはアノードガス流路を;6cはカソードガス流路を;7は冷媒流路を;および10は膜電極接合体(MEA)を、それぞれ、示す。It is a schematic sectional drawing which shows the basic composition of the polymer electrolyte fuel cell which concerns on one Embodiment of this invention. In FIG. 1, 1 is a polymer electrolyte fuel cell (PEFC); 2 is a solid polymer electrolyte membrane; 3a is an anode catalyst layer; 3c is a cathode catalyst layer; 4a is an anode gas diffusion layer; Cathode gas diffusion layer; 5a anode separator; 5c cathode separator; 6a anode gas channel; 6c cathode gas channel; 7 refrigerant channel; and 10 membrane electrode assembly (MEA) ) Respectively.
 本発明の燃料電池用炭素粉末(本明細書中では、単に「炭素粉末」または「本発明の炭素粉末」とも称する)は、炭素を主成分とする。ここで、「炭素を主成分とする」とは、炭素のみからなる、実質的に炭素からなる、の双方を含む概念であり、炭素以外の元素が含まれていてもよい。「実質的に炭素からなる」とは、全体の98重量%以上、好ましくは全体の99.5重量%以上(上限:100重量%未満)が炭素から構成されることを意味する。 The carbon powder for fuel cells of the present invention (in the present specification, simply referred to as “carbon powder” or “carbon powder of the present invention”) contains carbon as a main component. Here, “mainly composed of carbon” is a concept including both carbon and substantially carbon, and elements other than carbon may be included. “Substantially consists of carbon” means that 98% by weight or more, preferably 99.5% by weight or more (upper limit: less than 100% by weight) of the whole is composed of carbon.
 また、本発明の燃料電池用炭素粉末は、下記構成(a)および(b)を満たす:
 (a)窒素吸着による重量あたりのBET比表面積が800m/g以上である;および
 (b)XRD分析によって観測される2θ=22.5°~25°の位置に存在するピーク0の面積をA、XRD分析によって観測される2θ=26°の位置に存在するピーク1の面積をBとした場合、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)が0.06以上である。当該構成を満たす燃料電池用炭素粉末は、比表面積が大きくかつ結晶性が高いため、電気二重容量が大きくかつ耐腐食性に優れる。ゆえに、本発明の燃料電池用炭素粉末を担体として使用することによって、耐久性及び触媒活性に優れる触媒が提供できる。
Moreover, the carbon powder for fuel cells of the present invention satisfies the following configurations (a) and (b):
(A) the BET specific surface area per weight by nitrogen adsorption is 800 m 2 / g or more; and (b) the area of peak 0 existing at a position of 2θ = 22.5 ° to 25 ° observed by XRD analysis. A, where B is the area of peak 1 existing at 2θ = 26 ° observed by XRD analysis, the ratio of area B of peak 1 to area A of peak 0 (B / A) is 0.06 or more It is. Since the carbon powder for fuel cells satisfying this configuration has a large specific surface area and high crystallinity, it has a large electric double capacity and excellent corrosion resistance. Therefore, a catalyst having excellent durability and catalytic activity can be provided by using the carbon powder for fuel cells of the present invention as a carrier.
 本明細書では、窒素吸着による重量あたりのBET比表面積を単に「BET比表面積」とも称する。また、本明細書において、XRD分析によって観測される2θ=22.5°~25°の位置に存在するピーク0を単に「ピーク0」と、また、当該ピーク0の面積を単に「面積A」とも称する。同様にして、本明細書では、XRD分析によって観測される2θ=26°の位置に存在するピーク1を単に「ピーク1」と、また、当該ピーク1の面積を単に「面積B」とも称する。また、本明細書では、面積Aに対する面積Bの比を「B/A」または「B/A比」とも称する。 In this specification, the BET specific surface area per weight by nitrogen adsorption is also simply referred to as “BET specific surface area”. Further, in this specification, the peak 0 existing at the position of 2θ = 22.5 ° to 25 ° observed by XRD analysis is simply “peak 0”, and the area of the peak 0 is simply “area A”. Also called. Similarly, in this specification, the peak 1 existing at the position of 2θ = 26 ° observed by the XRD analysis is simply referred to as “peak 1”, and the area of the peak 1 is also simply referred to as “area B”. In this specification, the ratio of the area B to the area A is also referred to as “B / A” or “B / A ratio”.
 上記特許文献1に記載の支持体(担体)は、比表面積が大きい。このため、このような支持体(担体)を用いた触媒は白金または白金含有合金粒子の有効表面積が広がるので、性能を向上させることができる。しかしその一方で、カーボン腐食劣化は支持体の比表面積に比例するため、比表面積が大きい支持体はカーボン腐食耐久性が低い。このため、このような支持体を用いてなる電極触媒、さらには膜電極接合体(MEA)の耐久性が低下してしまう。 The support (carrier) described in Patent Document 1 has a large specific surface area. For this reason, the catalyst using such a support (support) can improve the performance because the effective surface area of the platinum or platinum-containing alloy particles is increased. However, on the other hand, since the carbon corrosion deterioration is proportional to the specific surface area of the support, the support having a large specific surface area has low carbon corrosion durability. For this reason, the durability of the electrode catalyst using such a support, and further the membrane electrode assembly (MEA) is lowered.
 これに対して、本発明に係る炭素粉末は、上記(a)を満たす。上記(a)の構成を有する燃料電池用炭素粉末は比表面積が大きいため、電気二重層容量が大きい。また、炭素粉末に触媒金属を担持する場合には、触媒金属の凝集を抑制して、触媒金属を炭素粉末上に高分散できる。このため、本発明の炭素粉末に触媒金属を担持してなる触媒は高い触媒活性を発揮できる。また、本発明に係る炭素粉末は、上記(b)を満たす。上記(b)の構成を有する燃料電池用炭素粉末は結晶性が高いため、電気化学的な耐腐食性に優れる(腐食しにくい)。このため、本発明の炭素粉末に触媒金属を担持してなる触媒は耐久性に優れる。 On the other hand, the carbon powder according to the present invention satisfies the above (a). Since the carbon powder for fuel cells having the configuration (a) has a large specific surface area, the electric double layer capacity is large. Further, when the catalyst metal is supported on the carbon powder, the catalyst metal can be highly dispersed on the carbon powder by suppressing aggregation of the catalyst metal. For this reason, the catalyst formed by supporting the catalytic metal on the carbon powder of the present invention can exhibit high catalytic activity. The carbon powder according to the present invention satisfies the above (b). The carbon powder for fuel cells having the above-described configuration (b) has high crystallinity, and therefore has excellent electrochemical corrosion resistance (not easily corroded). For this reason, the catalyst which carries | supports a catalyst metal on the carbon powder of this invention is excellent in durability.
 したがって、本発明の燃料電池用炭素粉末は、耐久性に優れ、さらに触媒金属を担持した場合には高い触媒活性を発揮でき、かつ当該活性を維持できる。また、本発明の炭素粉末を担体として使用することによって、触媒活性及び耐久性に優れる触媒、さらには高性能及び高耐久性を有する電気化学デバイス(例えば、MEA、キャパシタ)が提供できる。このため、本発明の燃料電池用炭素粉末は、触媒、特に燃料電池用触媒の担体として好適に使用できる。すなわち、本発明は、本発明の燃料電池用炭素粉末に触媒金属が担持されてなる燃料電池用触媒を包含する。本発明の燃料電池用炭素粉末(担体)は比表面積が高い。このため、本発明の燃料電池用触媒によれば、触媒の分散性を向上して、電気二重層容量(電気化学反応面積)を増加できる、即ち、発電性能を向上できる。また、本発明の燃料電池用炭素粉末(担体)は結晶性が高い(カーボンエッジ量が少ない)。このため、本発明の燃料電池用触媒によれば、カーボン腐食による性能低下を抑制・防止できる、即ち、耐久性を向上できる。本発明の燃料電池用炭素粉末に触媒金属が担持されてなる燃料電池用触媒は、耐久性に優れ、高い触媒活性を発揮でき(触媒反応を促進でき)、かつ当該活性を維持できる。このため、このような触媒を用いた触媒層を有する膜電極接合体および燃料電池は、発電性能及び耐久性に優れる。したがって、本発明は、上記触媒および電解質を含む、燃料電池用電極触媒層、当該燃料電池用電極触媒層を含む、燃料電池用膜電極接合体、当該燃料電池用膜電極接合体を含む燃料電池を提供する。 Therefore, the carbon powder for a fuel cell of the present invention is excellent in durability, and can exhibit high catalytic activity when the catalytic metal is supported and can maintain the activity. Further, by using the carbon powder of the present invention as a carrier, a catalyst having excellent catalytic activity and durability, and an electrochemical device (for example, MEA, capacitor) having high performance and high durability can be provided. For this reason, the carbon powder for fuel cells of the present invention can be suitably used as a support for a catalyst, particularly a catalyst for a fuel cell. That is, the present invention includes a fuel cell catalyst in which a catalyst metal is supported on the fuel cell carbon powder of the present invention. The carbon powder (support) for a fuel cell of the present invention has a high specific surface area. Therefore, according to the fuel cell catalyst of the present invention, the dispersibility of the catalyst can be improved, and the electric double layer capacity (electrochemical reaction area) can be increased, that is, the power generation performance can be improved. In addition, the carbon powder (support) for a fuel cell of the present invention has high crystallinity (small amount of carbon edge). For this reason, according to the fuel cell catalyst of the present invention, it is possible to suppress / prevent performance degradation due to carbon corrosion, that is, to improve durability. The fuel cell catalyst in which the catalyst metal is supported on the fuel cell carbon powder of the present invention is excellent in durability, can exhibit high catalytic activity (can promote catalytic reaction), and can maintain the activity. For this reason, the membrane electrode assembly and fuel cell which have a catalyst layer using such a catalyst are excellent in power generation performance and durability. Accordingly, the present invention provides a fuel cell electrode catalyst layer containing the catalyst and electrolyte, a fuel cell membrane electrode assembly including the fuel cell electrode catalyst layer, and a fuel cell including the fuel cell membrane electrode assembly. I will provide a.
 以下、適宜図面を参照しながら、本発明の触媒の一実施形態、並びにこれを使用した触媒層、膜電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態を図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, an embodiment of the catalyst of the present invention, and an embodiment of a catalyst layer, a membrane electrode assembly (MEA) and a fuel cell using the same will be described in detail with reference to the drawings as appropriate. However, the present invention is not limited only to the following embodiments. Each drawing is exaggerated for convenience of explanation, and the dimensional ratio of each component in each drawing may be different from the actual one. Further, in the case where the embodiment of the present invention is described with reference to the drawings, the same reference numerals are given to the same elements in the description of the drawings, and redundant description is omitted.
 また、本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In this specification, “X to Y” indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 [燃料電池]
 燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本形態の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。
[Fuel cell]
A fuel cell includes a membrane electrode assembly (MEA), a pair of separators including an anode side separator having a fuel gas flow path through which fuel gas flows and a cathode side separator having an oxidant gas flow path through which oxidant gas flows. Have. The fuel cell of this embodiment is excellent in durability and can exhibit high power generation performance.
 図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC 1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。 FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention. The PEFC 1 first has a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane. The laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c). Thus, the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
 PEFC1において、MEA 10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA 10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC 1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。 In PEFC1, MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c). In FIG. 1, the separators (5 a, 5 c) are illustrated so as to be located at both ends of the illustrated MEA 10. However, in a fuel cell stack in which a plurality of MEAs are stacked, the separator is generally used as a separator for an adjacent PEFC (not shown). In other words, in the fuel cell stack, the MEAs are sequentially stacked via the separator to form a stack. In an actual fuel cell stack, a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2 or between PEFC 1 and another adjacent PEFC. These descriptions are omitted in FIG.
 セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA 10と接触している。これにより、MEA 10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC 1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。 The separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment. The convex part seen from the MEA side of the separator (5a, 5c) is in contact with MEA 10. Thereby, the electrical connection with MEA 10 is ensured. In addition, a recess (space between the separator and the MEA generated due to the uneven shape of the separator) seen from the MEA side of the separator (5a, 5c) is used for circulating gas during operation of PEFC 1. Functions as a gas flow path. Specifically, a fuel gas (for example, hydrogen) is circulated through the gas flow path 6a of the anode separator 5a, and an oxidant gas (for example, air) is circulated through the gas flow path 6c of the cathode separator 5c.
 一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC 1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。 On the other hand, the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) is a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1. The Further, the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
 なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。 In the embodiment shown in FIG. 1, the separators (5a, 5c) are formed in an uneven shape. However, the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
 上記のような、本発明のMEAを有する燃料電池は、優れた発電性能および耐久性を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。 The fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance and durability. Here, the type of the fuel cell is not particularly limited. In the above description, the polymer electrolyte fuel cell has been described as an example. However, in addition to the above, an alkaline fuel cell and a direct methanol fuel cell are used. And a micro fuel cell. Among them, a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output. The fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited. Among them, it is particularly preferable to use as a power source for a mobile body such as an automobile that requires a high output voltage after a relatively long time of operation stop.
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。 The fuel used when operating the fuel cell is not particularly limited. For example, hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used. Of these, hydrogen and methanol are preferably used in that high output is possible.
 また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜-電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。 Further, the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle. The electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
 以下、本形態の燃料電池を構成する部材について簡単に説明するが、本発明の技術的範囲は下記の形態のみに制限されない。 Hereinafter, although the members constituting the fuel cell of the present embodiment will be briefly described, the technical scope of the present invention is not limited only to the following embodiments.
 [炭素粉末(担体)]
 炭素粉末(担体)は、下記(a)及び(b)を満たす:
 (a)窒素吸着による重量あたりのBET比表面積が800m/g以上である;および
 (b)XRD分析によって観測される2θ=22.5°~25°の位置に存在するピーク0の面積をA、XRD分析によって観測される2θ=26°の位置に存在するピーク1の面積をBとした場合、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)が0.06以上である。
[Carbon powder (carrier)]
The carbon powder (carrier) satisfies the following (a) and (b):
(A) the BET specific surface area per weight by nitrogen adsorption is 800 m 2 / g or more; and (b) the area of peak 0 existing at a position of 2θ = 22.5 ° to 25 ° observed by XRD analysis. A, where B is the area of peak 1 existing at 2θ = 26 ° observed by XRD analysis, the ratio of area B of peak 1 to area A of peak 0 (B / A) is 0.06 or more It is.
 上記(a)により、炭素粉末は十分な比表面積を有するため、大きな電気二重層容量を達成できる。このため、上記(a)を満たす炭素粉末に触媒金属を担持してなる触媒は高活性を発揮できる。一方、炭素粉末の重量あたりのBET比表面積が800m/g未満であると、比表面積が小さいため、触媒金属を担持する際に、高分散(高担持)することが困難である。このため、活性が低下してしまう。また、このような炭素粉末に触媒金属を担持してなる触媒を用いて電極触媒層を形成する際には、電解質による触媒被覆率が高くなる。このため、電極触媒層のガス輸送性が低下し、活性がさらに低下してしまう。電気二重層容量のより向上を考慮すると、炭素粉末のBET比表面積は、800~3000m/gであることが好ましく、850~1800m/gであることがより好ましく、900~1500m/gであることが特に好ましい。 According to the above (a), since the carbon powder has a sufficient specific surface area, a large electric double layer capacity can be achieved. For this reason, the catalyst which carries | supports a catalyst metal on the carbon powder which satisfy | fills said (a) can exhibit high activity. On the other hand, when the BET specific surface area per weight of the carbon powder is less than 800 m 2 / g, the specific surface area is small, so that it is difficult to carry out high dispersion (high loading) when loading the catalyst metal. For this reason, activity will fall. Further, when an electrode catalyst layer is formed using a catalyst in which a catalyst metal is supported on such carbon powder, the catalyst coverage by the electrolyte is increased. For this reason, the gas transport property of an electrode catalyst layer falls, and activity will fall further. Considering further improvement of electric double layer capacity, the BET specific surface area of the carbon powder is preferably 800 to 3000 m 2 / g, more preferably 850 to 1800 m 2 / g, and 900 to 1500 m 2 / g. It is particularly preferred that
 なお、本明細書において、「BET比表面積(m/g)」または「BET比表面積(m/g担体)」は、窒素吸着法により測定される。先ず、密閉された吸着測定用ガラスセル内に試料(炭素粉末または担体)を配置した後、真空化し、300℃で2時間の脱気処理を行った。窒素ガスを吸着ガスとして用い、77k(-196℃)で測定して窒素吸着等温線を求めた。当該測定には、日本ベル株式会社製の自動ガス/蒸気吸着量測定装置BELSORP-18を用いる。BET比表面積は、相対圧(P/P0)=0.05~0.20の範囲の測定点より算出する。 In the present specification, “BET specific surface area (m 2 / g)” or “BET specific surface area (m 2 / g carrier)” is measured by a nitrogen adsorption method. First, after a sample (carbon powder or carrier) was placed in a sealed glass cell for adsorption measurement, the sample was evacuated and subjected to deaeration treatment at 300 ° C. for 2 hours. Nitrogen adsorption isotherm was determined by measuring at 77k (-196 ° C) using nitrogen gas as the adsorption gas. For this measurement, an automatic gas / vapor adsorption measuring device BELSORP-18 manufactured by Nippon Bell Co., Ltd. is used. The BET specific surface area is calculated from measurement points in the range of relative pressure (P / P0) = 0.05 to 0.20.
 また、上記(b)により、炭素粉末は十分な結晶性を有するため、電気化学的腐食の起点となるカーボン(グラフェン)のエッジ量を十分少なくできる。このため、このような炭素粉末を触媒に用いることによって、カーボン腐食を抑制し、耐久性を向上でき、触媒金属を担持した際の触媒活性の低下を効果的に抑制・防止できる。一方、炭素粉末のB/A比が0.06未満であると、炭素粉末の結晶性が低くなり、耐久性が低下してしまう。耐久性のより向上を考慮すると、炭素粉末のピーク1の面積Aに対するピーク2の面積Bの比(B/A比)は、0.06~0.40であることが好ましく、0.07~0.35であることがより好ましい。 In addition, according to the above (b), since the carbon powder has sufficient crystallinity, the edge amount of carbon (graphene) that becomes the starting point of electrochemical corrosion can be sufficiently reduced. For this reason, by using such a carbon powder as a catalyst, carbon corrosion can be suppressed, durability can be improved, and a decrease in catalytic activity when a catalytic metal is supported can be effectively suppressed / prevented. On the other hand, when the B / A ratio of the carbon powder is less than 0.06, the crystallinity of the carbon powder is lowered and the durability is lowered. In consideration of further improvement in durability, the ratio of the area B of the peak 2 to the area A of the peak 1 of the carbon powder (B / A ratio) is preferably 0.06 to 0.40, preferably 0.07 to More preferably, it is 0.35.
 ここで、ピーク0は、XRD分析によって観測される2θ=22.5°~25°の位置に存在するブロードなピークである。ピーク0は、結晶性の低い炭素組織に起因する。また、ピーク1は、XRD分析によって観測される2θ=26°の位置に存在する鋭いピークであり、ピーク2はXRD分析によって観測される2θ=26.5°の位置に存在する鋭いピークである。ピーク1およびピーク2は、炭素の(002)面に由来するピークであり、結晶性の高い炭素組織に起因する。このため、ピーク1の面積Bが大きいことは、炭素の結晶性が高い(電気化学的腐食の起点となるカーボンのエッジ量が少ない)ことを意味する。ゆえに、B/A比を高く設定することにより、炭素粉末の耐久性を向上でき、ゆえに担体として使用した際の触媒の活性の低下を効果的に抑制・防止できる。 Here, peak 0 is a broad peak present at a position of 2θ = 22.5 ° to 25 ° observed by XRD analysis. Peak 0 is attributed to a carbon structure with low crystallinity. Further, peak 1 is a sharp peak existing at a position of 2θ = 26 ° observed by XRD analysis, and peak 2 is a sharp peak existing at a position of 2θ = 26.5 ° observed by XRD analysis. . Peak 1 and peak 2 are peaks derived from the (002) plane of carbon, and are attributed to a highly crystalline carbon structure. For this reason, the large area B of peak 1 means that the crystallinity of carbon is high (the edge amount of carbon that is the starting point of electrochemical corrosion is small). Therefore, by setting the B / A ratio high, it is possible to improve the durability of the carbon powder, and therefore it is possible to effectively suppress / prevent a decrease in the activity of the catalyst when used as a carrier.
 なお、面積AおよびBは、下記方法によって、X線回折装置(XRD)測定により2θ=22.5°~25°の位置に存在するピーク(ピーク0)、2θ=26°の位置に存在するピーク(ピーク1)および2θ=26.5°の位置に存在するピーク(ピーク2)に基づいて求められる。 Areas A and B are present at the positions of 2θ = 22.5 ° to 25 ° (peak 0) and 2θ = 26 ° as measured by X-ray diffractometer (XRD) according to the following method. It is determined based on the peak (Peak 1) and the peak (Peak 2) existing at the position of 2θ = 26.5 °.
 [面積AおよびBの測定方法]
 X線回折測定は、試料(炭素粉末)をシリコン無反射板にサンプルを載せ、株式会社リガク社製X線回折装置RINT-TTRIIIを用いて行い、XRDパターンを得る。なお、X線回折測定では、線源としてCuKα線を用いて行う。
[Measurement method of areas A and B]
X-ray diffraction measurement is performed by placing a sample (carbon powder) on a silicon non-reflective plate and using an X-ray diffractometer RINT-TTRIII manufactured by Rigaku Corporation to obtain an XRD pattern. In the X-ray diffraction measurement, CuKα rays are used as a radiation source.
 得られたXRDパターンにおいて、Voigt関数(フォークト関数)でフィッティングを行い、2θ=22.5°~25°、26°及び26.5°の位置にそれぞれ存在するピーク(ピーク0、ピーク1及びピーク2)の各面積を算出する。次に、上記にて算出されたピーク1の面積(B)をピーク0の面積(A)で除して、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)を求める。 In the obtained XRD pattern, fitting is performed using a Voigt function (forked function), and peaks existing at positions of 2θ = 22.5 ° to 25 °, 26 °, and 26.5 ° (peak 0, peak 1, and peak), respectively. Each area of 2) is calculated. Next, the area (B) of the peak 1 calculated above is divided by the area (A) of the peak 0 to obtain the ratio (B / A) of the area B of the peak 1 to the area A of the peak 0.
 本発明の炭素粉末の製造方法は、特に制限されない。以下、本発明の炭素粉末の製造方法の好ましい形態を説明するが、本発明は下記形態に限定されるものではない。すなわち、(i)有機質材料をマグネシウム化合物またはアルカリ土類金属化合物と混合し(工程(i))、(ii)上記(i)で得られた混合物を加熱して炭素材料を製造した後にマグネシウム化合物またはアルカリ土類金属化合物を除去し(工程(ii))、さらに(iii)上記(ii)で得られた炭素材料を熱処理する(工程(iii))。なお、上記工程(i)及び(ii)は、特開2006-062954号、特開2012-082134号及び特開2014-122158号、ならびに特開2012-218999号等に記載の方法等の公知の方法において熱可塑性樹脂を使用する方法が同様にしてまたは適宜修飾して適用できる。 The method for producing the carbon powder of the present invention is not particularly limited. Hereinafter, although the preferable form of the manufacturing method of the carbon powder of this invention is demonstrated, this invention is not limited to the following form. That is, (i) an organic material is mixed with a magnesium compound or an alkaline earth metal compound (step (i)), (ii) the mixture obtained in (i) above is heated to produce a carbon material, and then the magnesium compound Alternatively, the alkaline earth metal compound is removed (step (ii)), and (iii) the carbon material obtained in the above (ii) is heat-treated (step (iii)). The steps (i) and (ii) are known methods such as those described in JP-A-2006-062954, JP-A-2012-082134, JP-A-2012-122158, and JP-A 2012-218999. A method using a thermoplastic resin in the method can be applied in the same manner or appropriately modified.
 (工程(i))
 本工程では、有機質材料をマグネシウム化合物またはアルカリ土類金属化合物と混合して混合物を調製する。
(Process (i))
In this step, an organic material is mixed with a magnesium compound or an alkaline earth metal compound to prepare a mixture.
 ここで、炭素粉末の原料となる有機質材料は、特に制限されないが、酢酸、クエン酸などの有機酸もしくは熱可塑性樹脂が好ましく使用できる。これらを原料に用いることで、比較的低温でもカーボン壁のスタッキング(積み重なり)を形成して、(002)面を成長できる(B/A比を増加できる)。 Here, the organic material used as the raw material of the carbon powder is not particularly limited, but organic acids such as acetic acid and citric acid or thermoplastic resins can be preferably used. By using these as raw materials, carbon wall stacking (stacking) can be formed even at a relatively low temperature, and the (002) plane can be grown (the B / A ratio can be increased).
 熱可塑性樹脂としては、以下に制限されないが、ポリビニルアルコール、ポリエステル樹脂(脂肪族、芳香族のポリエステル樹脂)、ポリオレフィン樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリアクリロニトリル樹脂、ポリブタジエンやポリイソプレン等を主体とするエラストマー、天然ゴム、石油樹脂などが挙げられる。これらのうち、実質的に炭素原子、水素原子及び酸素原子のみから構成されるポリビニルアルコール、ポリエステル樹脂、スチレン樹脂、石油樹脂が好ましい。特にポリビニルアルコールを炭素粉末の原料として使用する際には、炭素粉末は、メソ孔に加えてミクロ孔を有する。また、ポリエチレンテレフタレートやヒドロキシプロピレングリコールを炭素粉末の原料として使用する際には、炭素粉末は、比較的大きいメソ孔を有する。 Examples of thermoplastic resins include, but are not limited to, polyvinyl alcohol, polyester resins (aliphatic and aromatic polyester resins), polyolefin resins, acrylic resins, styrene resins, polyamide resins, polyacrylonitrile resins, polybutadiene and polyisoprene. Main elastomers, natural rubber, petroleum resins and the like can be mentioned. Among these, polyvinyl alcohol, a polyester resin, a styrene resin, and a petroleum resin that are substantially composed of only carbon atoms, hydrogen atoms, and oxygen atoms are preferable. In particular, when polyvinyl alcohol is used as a raw material for carbon powder, the carbon powder has micropores in addition to mesopores. Further, when polyethylene terephthalate or hydroxypropylene glycol is used as a raw material for carbon powder, the carbon powder has relatively large mesopores.
 また、有機質材料は、いずれの形態でマグネシウム化合物またはアルカリ土類金属化合物と混合してもよい。具体的には、粉末状、ペレット状、塊状などの固体形状で、または適当な溶剤に溶解若しくは分散させた溶液若しくは分散液の形態で使用できる。 Further, the organic material may be mixed with the magnesium compound or the alkaline earth metal compound in any form. Specifically, it can be used in a solid form such as a powder, a pellet, or a lump, or in the form of a solution or dispersion dissolved or dispersed in an appropriate solvent.
 また、上記有機質材料と混合されるマグネシウム化合物またはアルカリ土類金属化合物は、有機質材料の炭化時に鋳型として作用するものであれば、特に制限されない。具体的には、アルカリ土類金属としては、カルシウム、ストロンチウム、バリウムなどが挙げられる。これらのうち、マグネシウム化合物、カルシウム化合物を有機質材料と混合することが好ましい。 The magnesium compound or alkaline earth metal compound mixed with the organic material is not particularly limited as long as it acts as a template during carbonization of the organic material. Specifically, examples of the alkaline earth metal include calcium, strontium, and barium. Among these, it is preferable to mix a magnesium compound and a calcium compound with an organic material.
 また、マグネシウム化合物またはアルカリ土類金属化合物は、マグネシウムまたはアルカリ土類金属のいずれの形態であってもよい。具体的には、マグネシウム化合物またはアルカリ土類金属化合物としては、マグネシウムまたはアルカリ土類金属の、酸化物、水酸化物及び炭酸塩、ならびに酢酸塩、シュウ酸塩、クエン酸塩、アクリル酸塩及びメタクリル酸塩等の有機酸塩などが好ましく挙げられる。これらのうち、次工程(ii)の焼成工程で熱処理炉を劣化させたり汚染性ガスを発生したりすることなく、炭化物の多孔質化を促進できるため、酸化物が好ましい。 The magnesium compound or alkaline earth metal compound may be in any form of magnesium or alkaline earth metal. Specifically, magnesium compounds or alkaline earth metal compounds include magnesium, alkaline earth metal oxides, hydroxides and carbonates, and acetates, oxalates, citrates, acrylates, and the like. Preferred are organic acid salts such as methacrylate. Among these, an oxide is preferable because it can promote the formation of a porous carbide without deteriorating the heat treatment furnace or generating a polluting gas in the firing step of the next step (ii).
 上記マグネシウム化合物及びアルカリ土類金属化合物は、それぞれ、単独して使用してもあるいは2種以上の混合物の形態で使用してもよい。または、上記マグネシウム化合物及びアルカリ土類金属化合物を適宜組み合わせて使用してもよい。 The magnesium compound and alkaline earth metal compound may be used alone or in the form of a mixture of two or more. Alternatively, the magnesium compound and the alkaline earth metal compound may be used in appropriate combination.
 また、マグネシウム化合物またはアルカリ土類金属化合物の混合形態は、特に制限されず、粉末状、ペレット状、顆粒状、ペースト状などが挙げられる。これらのうち、有機質材料との均一混合性、炭化物の多孔質化などの観点から、粉末状、顆粒状が好ましい。 Further, the mixed form of the magnesium compound or alkaline earth metal compound is not particularly limited, and examples thereof include powder, pellets, granules, and pastes. Of these, powder and granule are preferable from the viewpoint of uniform mixing with an organic material and making the carbide porous.
 マグネシウム化合物またはアルカリ土類金属化合物の大きさは特に制限されない。次工程(ii)により得られる炭素材料の細孔(特にメソ孔)の空孔径は、マグネシウム化合物またはアルカリ土類金属化合の結晶子サイズによって調整されうる。すなわち、生成した酸化マグネシウムまたはアルカリ土類金属の酸化物(結晶子)を酸で溶出すると、上記酸化物の結晶子の大きさに対応した細孔が炭素材料中に生成する。このため、平均結晶子サイズは、炭素粉末の所望の孔(特にメソ孔)の大きさに応じて選択されることが好ましい。具体的には、平均結晶子サイズは、好ましくは5~150nmである。このような結晶子サイズであれば、得られる炭素材料(ゆえに、本発明の炭素粉末)の細孔サイズや細孔分布を適切な範囲に調整できる。ここで、「結晶子」は、単結晶とみなせる最大の集まりをいう。また、「平均結晶子サイズ」は、特に言及のない限り、統計学的に有意な数(例えば、300個)についてX線回折によって測定した値の平均を採用する。また、「結晶子サイズ(直径)」とは、結晶子の中心を通りかつ粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。 The size of the magnesium compound or alkaline earth metal compound is not particularly limited. The pore diameter (especially mesopores) of the carbon material obtained by the next step (ii) can be adjusted by the crystallite size of the magnesium compound or alkaline earth metal compound. That is, when the produced magnesium oxide or alkaline earth metal oxide (crystallite) is eluted with an acid, pores corresponding to the crystallite size of the oxide are produced in the carbon material. For this reason, it is preferable that the average crystallite size is selected according to the desired pore size (particularly mesopores) of the carbon powder. Specifically, the average crystallite size is preferably 5 to 150 nm. With such a crystallite size, the pore size and pore distribution of the obtained carbon material (and hence the carbon powder of the present invention) can be adjusted to an appropriate range. Here, “crystallite” refers to the largest group that can be regarded as a single crystal. The “average crystallite size” employs an average of values measured by X-ray diffraction for statistically significant numbers (for example, 300) unless otherwise specified. The “crystallite size (diameter)” means the maximum distance among the distances between any two points passing through the center of the crystallite and on the contour line of the particle.
 有機質材料と、マグネシウム化合物またはアルカリ土類金属化合物と、の混合比は特に制限されない。有機質材料を、マグネシウム化合物またはアルカリ土類金属化合物100重量部に対して、40~700重量部、より好ましくは100~300重量部の割合で、混合することが好ましい。このような混合比であれば、炭素材料を十分多孔質化して、所望の細孔サイズ及び細孔分布を有する炭素材料(ゆえに本発明の炭素粉末)をより効率よく製造できる。 The mixing ratio of the organic material and the magnesium compound or alkaline earth metal compound is not particularly limited. The organic material is preferably mixed at a ratio of 40 to 700 parts by weight, more preferably 100 to 300 parts by weight, with respect to 100 parts by weight of the magnesium compound or alkaline earth metal compound. With such a mixing ratio, the carbon material can be made sufficiently porous to produce a carbon material having the desired pore size and pore distribution (and hence the carbon powder of the present invention) more efficiently.
 (工程(ii))
 本工程では、上記(i)で得られた混合物を加熱(焼成)して炭素材料を製造した後にマグネシウム化合物またはアルカリ土類金属化合物を除去する。当該工程により、有機質材料が炭化・多孔質化して、所望の細孔サイズ及び細孔分布を有する炭素材料が得られる。
(Step (ii))
In this step, the magnesium compound or alkaline earth metal compound is removed after the mixture obtained in (i) above is heated (fired) to produce a carbon material. By this process, the organic material is carbonized and made porous, and a carbon material having a desired pore size and pore distribution is obtained.
 ここで、混合物の加熱(焼成)条件は、特に制限されず、空気雰囲気下でも、あるいはアルゴンガスや窒素ガス等の不活性ガス雰囲気下でも行うことができる。好ましくは、不活性ガス雰囲気下で加熱(焼成)することが好ましい。より具体的には、上記混合物を電気炉などの加熱装置へ装入し、内部をアルゴンガスや窒素ガス等の不活性ガスで置換した後、該装置内へ非酸化性ガスを吹き込みながら加熱する。当該操作により、有機質材料が熱分解(炭化)する。ゆえに、加熱後には、炭化物及び酸化マグネシウムまたはアルカリ土類金属酸化物が残る。 Here, the heating (firing) conditions of the mixture are not particularly limited, and can be performed in an air atmosphere or in an inert gas atmosphere such as argon gas or nitrogen gas. Preferably, heating (baking) is performed in an inert gas atmosphere. More specifically, the mixture is charged into a heating apparatus such as an electric furnace, and the inside is replaced with an inert gas such as argon gas or nitrogen gas, and then heated while blowing a non-oxidizing gas into the apparatus. . By this operation, the organic material is thermally decomposed (carbonized). Thus, carbides and magnesium oxide or alkaline earth metal oxides remain after heating.
 加熱(焼成)条件は特に制限されない。具体的には、加熱(焼成)温度は、好ましくは500~1500℃、より好ましくは700~1200℃である。また、加熱(焼成)時間は、好ましくは0.5~5時間、より好ましくは1~2時間程度である。このような条件であれば、マグネシウム化合物またはアルカリ土類金属化合物が有機質材料に十分有効に作用して、有機質材料の炭化及び多孔質化をより有効に促進すると共に、炭素材料の比表面積をさらに大きくできる。なお、酸化マグネシウムまたはアルカリ土類金属酸化物は熱的に安定であり、また水酸化物や炭酸塩、有機酸塩は、加熱処理中に熱分解して安定な酸化物に変わる。このため、次工程(iii)の熱処理でも加熱炉の内張り耐火物を劣化させたり環境汚染の原因となる有害ガスを生じたりすることもなく、安全に熱処理を行うことができる。 The heating (firing) conditions are not particularly limited. Specifically, the heating (firing) temperature is preferably 500 to 1500 ° C., more preferably 700 to 1200 ° C. The heating (firing) time is preferably about 0.5 to 5 hours, more preferably about 1 to 2 hours. Under such conditions, the magnesium compound or the alkaline earth metal compound acts sufficiently effectively on the organic material to promote the carbonization and porosity of the organic material more effectively, and further increase the specific surface area of the carbon material. Can be big. Note that magnesium oxide or alkaline earth metal oxide is thermally stable, and hydroxide, carbonate, and organic acid salt are thermally decomposed during heat treatment to be converted into stable oxides. For this reason, the heat treatment can be performed safely without the deterioration of the lining refractory of the heating furnace or the generation of harmful gas causing environmental pollution even in the heat treatment of the next step (iii).
 上述したように、本工程後で得られる炭素材料は、酸化マグネシウムまたはアルカリ土類金属酸化物と共存する。このため、本工程(ii)の生成物を、酸水溶液で処理することによって、炭素材料を分離する。ここで、酸水溶液に使用される酸は、酸化マグネシウムまたはアルカリ土類金属酸化物を溶出するものであれば特に制限されない。具体的には、硫酸、硝酸、塩酸等の鉱酸、酢酸、シュウ酸等の有機酸などが挙げられる。また、酸水溶液の濃度もまた、酸化マグネシウムまたはアルカリ土類金属酸化物を溶できる濃度であれば特に制限されず、適宜選択できる。また、上記酸水溶液処理後は、処理物を濾過・水洗して酸を除去した後、乾燥することが好ましい。当該工程により、実質的に不純物を含まない炭素材料が得られる。 As described above, the carbon material obtained after this step coexists with magnesium oxide or alkaline earth metal oxide. For this reason, a carbon material is isolate | separated by processing the product of this process (ii) with an acid aqueous solution. Here, the acid used in the acid aqueous solution is not particularly limited as long as it elutes magnesium oxide or alkaline earth metal oxide. Specific examples include mineral acids such as sulfuric acid, nitric acid, and hydrochloric acid, and organic acids such as acetic acid and oxalic acid. The concentration of the aqueous acid solution is not particularly limited as long as it can dissolve magnesium oxide or alkaline earth metal oxide, and can be appropriately selected. In addition, after the treatment with the acid aqueous solution, the treated product is preferably filtered and washed with water to remove the acid and then dried. By this step, a carbon material substantially free of impurities is obtained.
 (工程(iii))
 本工程では、上記(ii)で得られた炭素材料を熱処理する。当該工程によって、本発明の炭素粉末が得られる。
(Process (iii))
In this step, the carbon material obtained in the above (ii) is heat-treated. By the said process, the carbon powder of this invention is obtained.
 ここで、炭素材料の熱処理条件は、上記構成(a)及び(b)または上記構成(a)、(b)及び(c)を達成できる条件であれば特に制限されない。具体的には、有機質材料が熱可塑性樹脂である際には、熱処理温度は、2000℃未満であることが好ましく、より好ましくは1300℃を超えて1900℃、さらにより好ましくは1400~1850℃、特に好ましくは1500~1800℃である。熱処理における昇温速度は、100~1000℃/時間であることが好ましく、300~800℃/時間であることが特に好ましい。熱処理時間(所定の熱処理温度での保持時間)は、特に制限されないが、1分以上60分以下であることが特に好ましい。なお、熱処理は、アルゴンガスや窒素ガス等の不活性ガス雰囲気下で行う。このような条件であれば、上記構成(a)及び(b)または上記構成(a)、(b)及び(c)を満たす炭素粉末が簡便に得られる。なお、熱処理条件が上記下限を下回る(熱処理条件が緩やかすぎる)場合には、炭素粉末のB/A比が小さくなりすぎる可能性がある。逆に、熱処理条件が上記上限を超える(熱処理条件が厳しすぎる)場合には、黒鉛化が進みすぎて、炭素粉末のBET比表面積が小さくなりすぎる可能性がある。 Here, the heat treatment condition of the carbon material is not particularly limited as long as it can achieve the above configurations (a) and (b) or the above configurations (a), (b) and (c). Specifically, when the organic material is a thermoplastic resin, the heat treatment temperature is preferably less than 2000 ° C., more preferably more than 1300 ° C., 1900 ° C., still more preferably 1400-1850 ° C., Particularly preferred is 1500-1800 ° C. The temperature increase rate in the heat treatment is preferably 100 to 1000 ° C./hour, particularly preferably 300 to 800 ° C./hour. The heat treatment time (holding time at a predetermined heat treatment temperature) is not particularly limited, but is particularly preferably 1 minute or more and 60 minutes or less. Note that the heat treatment is performed in an inert gas atmosphere such as argon gas or nitrogen gas. If it is such conditions, the carbon powder which satisfy | fills the said structure (a) and (b) or the said structure (a), (b) and (c) will be obtained simply. In addition, when heat processing conditions are less than the said minimum (heat processing conditions are too gentle), B / A ratio of carbon powder may become too small. On the other hand, when the heat treatment condition exceeds the above upper limit (the heat treatment condition is too severe), graphitization proceeds too much and the BET specific surface area of the carbon powder may be too small.
 [触媒(電極触媒)]
 触媒(電極触媒)は、上記炭素粉末(担体)および上記炭素粉末に担持される触媒金属から構成される。
[Catalyst (Electrocatalyst)]
The catalyst (electrode catalyst) is composed of the carbon powder (support) and a catalytic metal supported on the carbon powder.
 触媒金属は、電気的化学反応の触媒作用をする機能を有する。アノード触媒層に用いられる触媒金属は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード触媒層に用いられる触媒金属もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。 Catalyst metal has a function of catalyzing an electrochemical reaction. The catalyst metal used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner. The catalyst metal used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner. Specifically, metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Can be selected.
 これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。すなわち、触媒金属は、白金であるまたは白金と白金以外の金属成分を含むことが好ましく、白金または白金含有合金であることがより好ましい。このような触媒金属は、高い活性を発揮できる。特に触媒金属が白金である場合には、小粒径の白金を炭素粉末(担体)表面に分散できるため、白金使用量を低減しても重量あたりの白金表面積を維持できる。また、触媒金属が白金と白金以外の金属成分を含む場合には、高価な白金の使用量を低減できるため、コストの観点から好ましい。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒金属およびカソード触媒層に用いられる触媒金属は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノード触媒層用およびカソード触媒層用の触媒金属についての説明は、両者について同様の定義である。しかしながら、アノード触媒層およびカソード触媒層の触媒金属は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。 Among these, those containing at least platinum are preferably used in order to improve catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and the like. That is, the catalyst metal is preferably platinum or contains a metal component other than platinum and platinum, and more preferably platinum or a platinum-containing alloy. Such a catalytic metal can exhibit high activity. In particular, when the catalyst metal is platinum, platinum having a small particle diameter can be dispersed on the surface of the carbon powder (support), so that the platinum surface area per weight can be maintained even if the amount of platinum used is reduced. Moreover, when a catalyst metal contains metal components other than platinum and platinum, since the usage-amount of expensive platinum can be reduced, it is preferable from a viewpoint of cost. Although the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%. In general, an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties. The alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There is what is formed, and any may be used in the present application. At this time, the catalyst metal used for the anode catalyst layer and the catalyst metal used for the cathode catalyst layer can be appropriately selected from the above. In the present specification, unless otherwise specified, the description of the catalyst metal for the anode catalyst layer and the cathode catalyst layer has the same definition for both. However, the catalyst metals of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
 触媒金属(触媒成分)の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。形状としては、例えば、粒状、鱗片状、層状などのものが使用できるが、好ましくは粒状である。この際、触媒金属(触媒金属粒子)の平均粒径(直径)は、特に制限されないが、3nm以上、より好ましくは3nm超30nm以下、特に好ましくは3nm超10nm以下であることが好ましい。触媒金属の平均粒径が3nm以上であれば、触媒金属が炭素粉末(例えば、炭素粉末のメソ孔内)に比較的強固に担持され、触媒層内で電解質と接触するのをより有効に抑制・防止される。また、炭素粉末がミクロ孔を有する場合には、ミクロ孔が触媒金属で塞がれずに残存し、ガスの輸送パスがより良好に確保されて、ガス輸送抵抗をより低減できる。また、電位変化による溶出を防止し、経時的な性能低下をも抑制できる。このため、触媒活性をより向上できる、すなわち、触媒反応をより効率的に促進できる。一方、触媒金属粒子の平均粒径が30nm以下であれば、炭素粉末(例えば、炭素粉末のメソ孔内部)に触媒金属を簡便な方法で担持することができ、触媒金属の電解質被覆率を低減することができる。なお、本発明における「触媒金属粒子の平均粒径」は、X線回折における触媒金属成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)より調べられる触媒金属粒子の粒子径の平均値として測定されうる。 The shape and size of the catalyst metal (catalyst component) are not particularly limited, and the same shape and size as known catalyst components can be adopted. As the shape, for example, a granular shape, a scale shape, a layered shape, and the like can be used, but a granular shape is preferable. At this time, the average particle diameter (diameter) of the catalyst metal (catalyst metal particles) is not particularly limited, but is preferably 3 nm or more, more preferably more than 3 nm and not more than 30 nm, particularly preferably more than 3 nm and not more than 10 nm. If the average particle diameter of the catalyst metal is 3 nm or more, the catalyst metal is more firmly supported on the carbon powder (for example, in the mesopores of the carbon powder) and more effectively suppresses contact with the electrolyte in the catalyst layer.・ Prevented. Further, when the carbon powder has micropores, the micropores remain without being clogged with the catalytic metal, and a gas transport path can be secured better, and the gas transport resistance can be further reduced. In addition, elution due to potential change can be prevented, and deterioration in performance over time can be suppressed. For this reason, the catalytic activity can be further improved, that is, the catalytic reaction can be promoted more efficiently. On the other hand, if the average particle diameter of the catalyst metal particles is 30 nm or less, the catalyst metal can be supported on the carbon powder (for example, inside the mesopores of the carbon powder) by a simple method, and the electrolyte coverage of the catalyst metal is reduced. can do. The “average particle diameter of the catalytic metal particles” in the present invention is the crystallite diameter determined from the half-value width of the diffraction peak of the catalytic metal component in X-ray diffraction, or the catalytic metal particles examined by a transmission electron microscope (TEM). It can be measured as the average value of the particle diameters.
 本形態において、単位触媒塗布面積当たりの触媒金属の含有量(mg/cm)は、十分な触媒の担体上での分散度、発電性能が得られる限り特に制限されず、例えば、0.01~1mg/cmである。ただし、触媒が白金または白金含有合金を含む場合、単位触媒塗布面積当たりの白金含有量が0.5mg/cm以下であることが好ましい。白金(Pt)や白金合金に代表される高価な貴金属触媒の使用は燃料電池の高価格要因となっている。したがって、高価な白金の使用量(白金含有量)を上記範囲まで低減し、コストを削減することが好ましい。下限値は発電性能が得られる限り特に制限されず、例えば、0.01mg/cm以上である。より好ましくは、当該白金含有量は0.02~0.4mg/cmである。本形態では、担体の空孔構造を制御することにより、触媒重量あたりの活性を向上させることができるため、高価な触媒の使用量を低減することが可能となる。 In this embodiment, the content (mg / cm 2 ) of the catalyst metal per unit catalyst coating area is not particularly limited as long as sufficient degree of dispersion of the catalyst on the carrier and power generation performance can be obtained. ˜1 mg / cm 2 . However, when the catalyst contains platinum or a platinum-containing alloy, the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less. The use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost. The lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more. More preferably, the platinum content is 0.02 to 0.4 mg / cm 2 . In this embodiment, since the activity per catalyst weight can be improved by controlling the pore structure of the carrier, the amount of expensive catalyst used can be reduced.
 なお、本明細書において、「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」の測定(確認)には、誘導結合プラズマ発光分光法(ICP)を用いる。所望の「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」にせしめる方法も当業者であれば容易に行うことができ、スラリーの組成(触媒濃度)と塗布量を制御することで量を調整することができる。 In this specification, inductively coupled plasma emission spectroscopy (ICP) is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”. A person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the slurry composition (catalyst concentration) and coating amount. You can adjust the amount.
 また、担体における触媒の担持量(担持率とも称する場合がある)は、触媒担持体(つまり、担体および触媒)の全量に対して、好ましくは10~80重量%、より好ましくは20~70重量%とするのがよい。担持量が前記範囲であれば、十分な触媒成分の担体上での分散度、発電性能の向上、経済上での利点、単位重量あたりの触媒活性が達成できるため好ましい。 The amount of the catalyst supported on the carrier (sometimes referred to as the loading ratio) is preferably 10 to 80% by weight, more preferably 20 to 70% by weight, based on the total amount of the catalyst carrier (that is, the carrier and the catalyst). % Is good. If the loading is within the above range, it is preferable because a sufficient degree of dispersion of the catalyst components on the carrier, improvement in power generation performance, economic advantages, and catalytic activity per unit weight can be achieved.
 なお、炭素粉末が上記(a)及び(b)を満たすものであれば触媒の構造は特に制限されない。すなわち、触媒は、担体として本発明の炭素粉末を使用する以外は、従来と同様の構造をとりうる。 The structure of the catalyst is not particularly limited as long as the carbon powder satisfies the above (a) and (b). That is, the catalyst can have the same structure as the conventional one except that the carbon powder of the present invention is used as a support.
 また、触媒の製造方法(炭素粉末への触媒金属の担持方法)は、特に制限されない。好ましくは、触媒担体の表面に触媒金属を析出させた後、熱処理を行い、触媒金属の粒径を増大させる方法が好ましい。上記方法は、析出後に熱処理を施して触媒金属の粒形を増大させる。このため、触媒担体の空孔(特にメソ孔)内部に粒子径の大きな触媒金属を担持することができる。すなわち、本発明は、(i)触媒担体の表面に触媒金属を析出させる工程(析出工程)、および(ii)前記析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる工程(熱処理工程)を含む本発明の触媒の製造方法をも提供する。以下、上記方法を説明するが、本発明は、下記形態に限定されない。 Further, the method for producing the catalyst (method for supporting the catalytic metal on the carbon powder) is not particularly limited. Preferably, a method of increasing the particle size of the catalyst metal by performing a heat treatment after depositing the catalyst metal on the surface of the catalyst carrier is preferable. In the above method, the heat treatment is performed after the precipitation to increase the particle shape of the catalyst metal. For this reason, a catalyst metal having a large particle diameter can be supported inside the pores (particularly mesopores) of the catalyst carrier. That is, the present invention includes (i) a step of depositing a catalyst metal on the surface of the catalyst support (precipitation step), and (ii) a step of performing a heat treatment after the deposition step to increase the particle size of the catalyst metal (heat treatment). And a process for producing the catalyst of the present invention. Hereinafter, although the said method is demonstrated, this invention is not limited to the following form.
 以下、上記触媒の製造方法の好ましい形態を説明するが、本発明は下記形態に限定されない。 Hereinafter, although the preferable form of the manufacturing method of the said catalyst is demonstrated, this invention is not limited to the following form.
 (i)析出工程
 本工程では、触媒担体の表面に触媒金属を析出させる。本工程は、既知の方法であり、例えば、触媒金属の前駆体溶液に、触媒担体を浸漬した後、還元する方法が好ましく使用される。
(I) Deposition step In this step, a catalyst metal is deposited on the surface of the catalyst carrier. This step is a known method. For example, a method in which the catalyst support is immersed in a catalyst metal precursor solution and then reduced is preferably used.
 ここで、触媒金属の前駆体としては、特に制限されず、使用される触媒金属の種類によって適宜選択される。具体的には、上記白金等の触媒金属の塩化物、硝酸塩、硫酸塩、塩化物、酢酸塩およびアミン化合物などが例示できる。より具体的には、塩化白金(ヘキサクロロ白金酸六水和物)、塩化パラジウム、塩化ロジウム、塩化ルテニウム、塩化コバルトなどの塩化物、硝酸パラジウム、硝酸ロジウム、硝酸イリジウムなどの硝酸塩、硫酸パラジウム、硫酸ロジウムなどの硫酸塩、酢酸ロジウムなどの酢酸塩、ジニトロジアンミン白金、ジニトロジアンミンパラジウムなどのアンミン化合物などが好ましく、例示される。また、触媒金属の前駆体溶液の調製に使用される溶媒は、触媒金属の前駆体を溶解できるものであれば特に制限されず、使用される触媒金属の前駆体の種類によって適宜選択される。具体的には、水、酸、アルカリ、有機溶媒などが挙げられる。触媒金属の前駆体溶液中の触媒金属の前駆体の濃度は、特に制限されないが、金属換算で0.1~50重量%であることが好ましく、より好ましくは0.5~20重量%である。 Here, the precursor of the catalyst metal is not particularly limited and is appropriately selected depending on the type of the catalyst metal used. Specific examples include chlorides, nitrates, sulfates, chlorides, acetates and amine compounds of catalyst metals such as platinum. More specifically, platinum chloride (hexachloroplatinic acid hexahydrate), palladium chloride, rhodium chloride, ruthenium chloride, cobalt chloride and other nitrates, palladium nitrate, rhodium nitrate, iridium nitrate and other nitrates, palladium sulfate, sulfuric acid Preferred examples include sulfates such as rhodium, acetates such as rhodium acetate, and ammine compounds such as dinitrodiammine platinum and dinitrodiammine palladium. The solvent used for the preparation of the catalyst metal precursor solution is not particularly limited as long as it can dissolve the catalyst metal precursor, and is appropriately selected depending on the type of the catalyst metal precursor used. Specifically, water, an acid, an alkali, an organic solvent, etc. are mentioned. The concentration of the catalyst metal precursor in the catalyst metal precursor solution is not particularly limited, but is preferably 0.1 to 50% by weight, more preferably 0.5 to 20% by weight in terms of metal. .
 還元剤としては、水素、ヒドラジン、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L-アスコルビン酸、水素化ホウ素ナトリウム、ホルムアルデヒド、メタノール、エタノール、エチレン、一酸化炭素等が挙げられる。なお、水素などの常温でガス状の物質は、バブリングで供給することもできる。還元剤の量は、上記触媒金属の前駆体を触媒金属に還元できる量であれば特に制限されず、公知の量を同様にして適用できる。 Examples of the reducing agent include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, formaldehyde, methanol, ethanol, ethylene, carbon monoxide and the like. . Note that a gaseous substance at room temperature such as hydrogen can be supplied by bubbling. The amount of the reducing agent is not particularly limited as long as the catalyst metal precursor can be reduced to the catalyst metal, and known amounts can be similarly applied.
 析出条件は、触媒金属が触媒担体に析出できる条件であれば特に制限されない。例えば、析出温度は、溶媒の沸点付近の温度、より好ましくは室温~100℃であることが好ましい。また、析出時間は、1~10時間、より好ましくは2~8時間であることが好ましい。なお、上記析出工程は、必要であれば、撹拌・混合しながら行ってもよい。 The deposition conditions are not particularly limited as long as the catalyst metal can be deposited on the catalyst support. For example, the precipitation temperature is preferably near the boiling point of the solvent, more preferably from room temperature to 100 ° C. The deposition time is preferably 1 to 10 hours, more preferably 2 to 8 hours. In addition, you may perform the said precipitation process, stirring and mixing if necessary.
 これにより、触媒金属の前駆体が触媒金属に還元されて、触媒金属が触媒担体に析出(担持)する。 Thereby, the precursor of the catalyst metal is reduced to the catalyst metal, and the catalyst metal is deposited (supported) on the catalyst carrier.
 (ii)熱処理工程
 本工程では、上記(i)析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる。
(Ii) Heat treatment step In this step, heat treatment is performed after the deposition step (i) to increase the particle size of the catalyst metal.
 熱処理条件は、触媒金属の粒径が増大できる条件であれば特に制限されない。例えば、熱処理温度は、300~1200℃、より好ましくは500~1150℃、特に好ましくは700~1000℃であることが好ましい。また、熱処理時間は、0.02~3時間、より好ましくは0.1~2時間、特に好ましくは0.2~1.5時間であることが好ましい。なお、熱処理工程は、水素雰囲気で行われてもよい。 The heat treatment conditions are not particularly limited as long as the particle diameter of the catalyst metal can be increased. For example, the heat treatment temperature is preferably 300 to 1200 ° C., more preferably 500 to 1150 ° C., and particularly preferably 700 to 1000 ° C. The heat treatment time is preferably 0.02 to 3 hours, more preferably 0.1 to 2 hours, and particularly preferably 0.2 to 1.5 hours. Note that the heat treatment step may be performed in a hydrogen atmosphere.
 これにより、触媒金属は、触媒担体で(特に触媒担体のメソ孔内で)粒径を増大させる。このため、触媒金属粒子は、系外に(触媒担体から)脱離しにくくなる。また、触媒金属より触媒担体表面付近に存在するミクロ孔が存在すると、機械的ストレス下であってもより大きな触媒金属粒子が触媒担体から脱離することをより効果的に抑制・防止する。ゆえに、触媒をより有効に利用できる。 This causes the catalyst metal to increase in particle size at the catalyst support (especially within the mesopores of the catalyst support). For this reason, it becomes difficult for catalyst metal particles to be detached from the system (from the catalyst carrier). In addition, if there are micropores present near the catalyst support surface than the catalyst metal, it is possible to more effectively suppress / prevent the larger catalyst metal particles from detaching from the catalyst support even under mechanical stress. Therefore, the catalyst can be used more effectively.
 [触媒層]
 上述したように、本発明の触媒は、ガス輸送抵抗を低減し、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。したがって、本発明の触媒は、燃料電池用の電極触媒層に好適に使用できる。すなわち、本発明は、本発明の電極触媒および電解質を含む、燃料電池用電極触媒層をも提供する。本発明の燃料電池用電極触媒層は、高い性能および耐久性を発揮できる。
[Catalyst layer]
As described above, the catalyst of the present invention can reduce gas transport resistance and exhibit high catalytic activity, that is, promote catalytic reaction. Therefore, the catalyst of the present invention can be suitably used for an electrode catalyst layer for a fuel cell. That is, the present invention also provides a fuel cell electrode catalyst layer comprising the electrode catalyst of the present invention and an electrolyte. The electrode catalyst layer for a fuel cell of the present invention can exhibit high performance and durability.
 なお、本発明の燃料電池用電極触媒層は、担体として本発明の炭素粉末を使用すること以外は従来と同様にしてあるいは適宜修飾して使用できる。このため、以下には触媒層の好ましい形態を説明するが、本発明は下記形態に限定されない。 The fuel cell electrode catalyst layer of the present invention can be used in the same manner as in the prior art or appropriately modified except that the carbon powder of the present invention is used as a carrier. For this reason, although the preferable form of a catalyst layer is demonstrated below, this invention is not limited to the following form.
 触媒層内では、触媒は電解質で被覆されているが、電解質は、触媒(特に担体)のメソ孔(さらにはミクロ孔)内には侵入しない。このため、担体表面の触媒金属は電解質と接触するが、メソ孔内部に担持された触媒金属は電解質と非接触状態である。メソ孔内の触媒金属が、電解質と非接触状態で酸素ガスと水との三相界面を形成することにより、触媒金属の反応活性面積を確保できる。 In the catalyst layer, the catalyst is coated with the electrolyte, but the electrolyte does not enter the mesopores (and also the micropores) of the catalyst (particularly the support). For this reason, the catalyst metal on the surface of the carrier comes into contact with the electrolyte, but the catalyst metal supported in the mesopores is not in contact with the electrolyte. The catalytic metal in the mesopores forms a three-phase interface between oxygen gas and water in a non-contact state with the electrolyte, thereby ensuring a reaction active area of the catalytic metal.
 本発明の触媒は、カソード触媒層またはアノード触媒層のいずれに存在してもいてもよいが、カソード触媒層で使用されることが好ましい。上述したように、本発明の触媒は、電解質と接触しなくても、水との三相界面を形成することによって、触媒を有効に利用できるが、カソード触媒層で水が形成するからである。 The catalyst of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, but is preferably used in the cathode catalyst layer. As described above, the catalyst of the present invention can effectively use the catalyst by forming a three-phase interface with water without contacting the electrolyte, but water is formed in the cathode catalyst layer. .
 電解質は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。 The electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
 当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。 The polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to. Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
 フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。 Examples of ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. Perfluorocarbon sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
 炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。 Specific examples of the hydrocarbon electrolyte include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP). These hydrocarbon polymer electrolytes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the selectivity of the material is high. In addition, as for the ion exchange resin mentioned above, only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
 プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の高分子電解質を含み、より好ましくは1200g/eq.以下の高分子電解質を含み、特に好ましくは1000g/eq.以下の高分子電解質を含む。 Proton conductivity is important in polymer electrolytes responsible for proton transmission. Here, when the EW of the polymer electrolyte is too large, the ionic conductivity in the entire catalyst layer is lowered. Therefore, it is preferable that the catalyst layer of this embodiment contains a polymer electrolyte having a small EW. Specifically, the catalyst layer of this embodiment preferably has an EW of 1500 g / eq. The following polymer electrolyte is contained, More preferably, it is 1200 g / eq. The following polymer electrolyte is included, and particularly preferably 1000 g / eq. The following polymer electrolytes are included.
 一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq」の単位で表される。 On the other hand, if the EW is too small, the hydrophilicity is too high and it becomes difficult to smoothly move water. From such a viewpoint, the EW of the polymer electrolyte is preferably 600 or more. Note that EW (Equivalent Weight) represents an equivalent weight of an exchange group having proton conductivity. The equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
 また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/eq.以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。 Further, the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface. At this time, the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved. The EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
 さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。 Furthermore, it is desirable to use a polymer electrolyte with the lowest EW in a region higher than the average temperature of the cooling water inlet and outlet. As a result, the resistance value is reduced regardless of the current density region, and the battery performance can be further improved.
 さらには、燃料電池システムの抵抗値を小さくするとする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガス及び酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。 Furthermore, from the viewpoint of reducing the resistance value of the fuel cell system, the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the flow path length. It is desirable to use it in the range area.
 触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。 For the catalyst layer, a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary. ), A thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
 触媒層の厚さ(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらに好ましくは2~15μmである。なお、上記は、カソード触媒層およびアノード触媒層双方に適用される。しかし、カソード触媒層及びアノード触媒層の厚さは、同じであってもあるいは異なってもよい。 The thickness of the catalyst layer (dry film thickness) is preferably 0.05 to 30 μm, more preferably 1 to 20 μm, still more preferably 2 to 15 μm. The above applies to both the cathode catalyst layer and the anode catalyst layer. However, the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
 (触媒層の製造方法)
 以下、触媒層を製造するための好ましい実施形態を記載するが、本発明の技術的範囲は下記の形態のみには限定されない。また、触媒層の各構成要素の材質などの諸条件については、上述した通りであるため、ここでは説明を省略する。
(Method for producing catalyst layer)
Hereinafter, although preferable embodiment for manufacturing a catalyst layer is described, the technical scope of this invention is not limited only to the following form. Further, since various conditions such as the material of each component of the catalyst layer are as described above, description thereof is omitted here.
 まず、担体としての炭素粉末(本明細書では、「多孔質担体」または「導電性多孔質担体」とも称する)を準備する。具体的には、上記炭素粉末の製造方法で説明したように、作製すればよい。 First, carbon powder (also referred to as “porous support” or “conductive porous support” in this specification) as a support is prepared. Specifically, as described in the method for producing carbon powder, it may be produced.
 次いで、多孔質担体に触媒を担持させて、触媒粉末とする。多孔質担体への触媒の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。 Next, the catalyst is supported on the porous carrier to obtain catalyst powder. The catalyst can be supported on the porous carrier by a known method. For example, known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
 続いて、触媒粉末、高分子電解質、および溶剤を含む触媒インクを作製する。溶剤としては、特に制限されず、触媒層を形成するのに使用される通常の溶媒が同様にして使用できる。具体的には、水道水、純水、イオン交換水、蒸留水等の水、シクロヘキサノール、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール、及びtert-ブタノール等の炭素数1~4の低級アルコール、プロピレングリコール、ベンゼン、トルエン、キシレンなどが挙げられる。これらの他にも、酢酸ブチルアルコール、ジメチルエーテル、エチレングリコール、などが溶媒として用いられてもよい。これらの溶剤は、1種を単独で使用してもあるいは2種以上の混合液の状態で使用してもよい。 Subsequently, a catalyst ink containing catalyst powder, polymer electrolyte, and solvent is prepared. The solvent is not particularly limited, and ordinary solvents used for forming the catalyst layer can be used in the same manner. Specifically, water such as tap water, pure water, ion exchange water, distilled water, cyclohexanol, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, etc. And lower alcohols having 1 to 4 carbon atoms, propylene glycol, benzene, toluene, xylene and the like. Besides these, butyl acetate alcohol, dimethyl ether, ethylene glycol, and the like may be used as a solvent. These solvents may be used alone or in the form of a mixture of two or more.
 触媒インクを構成する溶剤の量は、電解質を完全に溶解できる量であれば特に制限されない。具体的には、触媒粉末および高分子電解質などを合わせた固形分の濃度が、電極触媒インク中、1~50重量%、より好ましくは5~30重量%程度とするのが好ましい。 The amount of the solvent constituting the catalyst ink is not particularly limited as long as it is an amount capable of completely dissolving the electrolyte. Specifically, the solid content concentration of the catalyst powder and the polymer electrolyte is preferably 1 to 50% by weight, more preferably about 5 to 30% by weight in the electrode catalyst ink.
 なお、撥水剤、分散剤、増粘剤、造孔剤等の添加剤を使用する場合には、触媒インクにこれらの添加剤を添加すればよい。この際、添加剤の添加量は、本発明の上記効果を妨げない程度の量であれば特に制限されない。例えば、添加剤の添加量は、それぞれ、電極触媒インクの全重量に対して、好ましくは5~20重量%である。 In addition, when additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent are used, these additives may be added to the catalyst ink. At this time, the amount of the additive added is not particularly limited as long as it is an amount that does not interfere with the effects of the present invention. For example, the amount of additive added is preferably 5 to 20% by weight with respect to the total weight of the electrode catalyst ink.
 次に、基材の表面に触媒インクを塗布する。基材への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、グラビア印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法など、公知の方法を用いて行うことができる。 Next, a catalyst ink is applied to the surface of the substrate. The application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gravure printing method, a die coater method, a screen printing method, or a doctor blade method.
 この際、触媒インクを塗布する基材としては、固体高分子電解質膜(電解質層)やガス拡散基材(ガス拡散層)を使用することができる。かような場合には、固体高分子電解質膜(電解質層)またはガス拡散基材(ガス拡散層)の表面に触媒層を形成した後、得られた積層体をそのまま膜電極接合体の製造に利用することができる。あるいは、基材としてポリテトラフルオロエチレン(PTFE)[テフロン(登録商標)]シート等の剥離可能な基材を使用し、基材上に触媒層を形成した後に基材から触媒層部分を剥離することにより、触媒層を得てもよい。 At this time, a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion substrate (gas diffusion layer) can be used as the substrate on which the catalyst ink is applied. In such a case, after forming the catalyst layer on the surface of the solid polymer electrolyte membrane (electrolyte layer) or the gas diffusion base material (gas diffusion layer), the obtained laminate can be used for the production of the membrane electrode assembly as it is. Can be used. Alternatively, a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst layer is formed on the substrate, the catalyst layer portion is peeled from the substrate. Thus, a catalyst layer may be obtained.
 最後に、触媒インクの塗布層(膜)を、空気雰囲気下あるいは不活性ガス雰囲気下、室温~150℃で、1~60分間、乾燥する。これにより、触媒層が形成される。 Finally, the coating layer (film) of the catalyst ink is dried at room temperature to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst layer is formed.
 (膜電極接合体/燃料電池)
 本発明のさらなる実施形態によれば、上記燃料電池用電極触媒層を含む、燃料電池用膜電極接合体および当該燃料電池用膜電極接合体を含む燃料電池が提供される。すなわち、固体高分子電解質膜2、前記電解質膜の一方の側に配置されたカソード触媒層と、前記電解質膜の他方の側に配置されたアノード触媒層と、前記電解質膜2並びに前記アノード触媒層3a及び前記カソード触媒層3cを挟持する一対のガス拡散層(4a,4c)とを有する燃料電池用膜電極接合体が提供される。そしてこの膜電極接合体において、前記カソード触媒層およびアノード触媒層の少なくとも一方が上記に記載した実施形態の触媒層である。
(Membrane electrode assembly / fuel cell)
According to a further embodiment of the present invention, a fuel cell membrane electrode assembly including the fuel cell electrode catalyst layer and a fuel cell including the fuel cell membrane electrode assembly are provided. That is, the solid polymer electrolyte membrane 2, the cathode catalyst layer disposed on one side of the electrolyte membrane, the anode catalyst layer disposed on the other side of the electrolyte membrane, the electrolyte membrane 2 and the anode catalyst layer There is provided a fuel cell membrane electrode assembly having 3a and a pair of gas diffusion layers (4a, 4c) sandwiching the cathode catalyst layer 3c. In this membrane electrode assembly, at least one of the cathode catalyst layer and the anode catalyst layer is the catalyst layer of the embodiment described above.
 ただし、プロトン伝導性の向上および反応ガス(特にO)の輸送特性(ガス拡散性)の向上の必要性を考慮すると、少なくともカソード触媒層が上記に記載した実施形態の触媒層であることが好ましい。ただし、上記形態に係る触媒層は、アノード触媒層として用いてもよいし、カソード触媒層およびアノード触媒層双方として用いてもよいなど、特に制限されるものではない。 However, in consideration of the necessity for improvement of proton conductivity and improvement of transport characteristics (gas diffusibility) of the reaction gas (especially O 2 ), at least the cathode catalyst layer may be the catalyst layer of the embodiment described above. preferable. However, the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
 本発明のさらなる実施形態によれば、上記形態の膜電極接合体を有する燃料電池が提供される。すなわち、本発明の一実施形態は、上記形態の膜電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する燃料電池である。 According to a further embodiment of the present invention, there is provided a fuel cell having the above membrane electrode assembly. That is, one embodiment of the present invention is a fuel cell having a pair of anode separator and cathode separator that sandwich the membrane electrode assembly of the above-described embodiment.
 以下、図1を参照しつつ、上記実施形態の触媒層を用いたPEFC 1の構成要素について説明する。ただし、本発明は触媒層に特徴を有するものである。よって、燃料電池を構成する触媒層以外の部材の具体的な形態については、従来公知の知見を参照しつつ、適宜、改変が施されうる。 Hereinafter, the components of PEFC 1 using the catalyst layer of the above embodiment will be described with reference to FIG. However, the present invention is characterized by the catalyst layer. Therefore, the specific form of the members other than the catalyst layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
 (電解質膜)
 電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC 1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
(Electrolyte membrane)
The electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG. The solid polymer electrolyte membrane 2 has a function of selectively transmitting protons generated in the anode catalyst layer 3a during the operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction. The solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
 固体高分子電解質膜2を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、先に高分子電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いた高分子電解質と必ずしも同じものを用いる必要はない。 The electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to. For example, the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
 電解質層の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5~300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性及び使用時の出力特性のバランスが適切に制御されうる。 The thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited. The thickness of the electrolyte layer is usually about 5 to 300 μm. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
 (ガス拡散層)
 ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
(Gas diffusion layer)
The gas diffusion layers (anode gas diffusion layer 4a, cathode gas diffusion layer 4c) are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
 ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。 The material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably. For example, a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used. The thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 μm. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。 The gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding. The water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。 In order to further improve the water repellency, the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。 The carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area. The average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。 Examples of the water repellent used for the carbon particle layer include the same water repellents as described above. Among these, fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。 The mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good. In addition, there is no restriction | limiting in particular also about the thickness of a carbon particle layer, What is necessary is just to determine suitably in consideration of the water repellency of the gas diffusion layer obtained.
 (膜電極接合体の製造方法)
 膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、固体高分子電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
(Method for producing membrane electrode assembly)
A method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used. For example, a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing, and this is dried, and a gas diffusion layer is bonded to the gas diffusion layer, or a microporous layer side (a microporous layer is attached to the gas diffusion layer). When not included, two gas diffusion electrodes (GDE) are prepared by applying a catalyst layer on one side of the base material layer in advance and drying, and hot pressing the gas diffusion electrodes on both sides of the solid polymer electrolyte membrane. The application and joining conditions such as hot press are appropriately determined depending on the type of polymer electrolyte in the solid polymer electrolyte membrane or catalyst layer (perfluorosulfonic acid type or hydrocarbon type). Adjust it.
 (セパレータ)
 セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
(Separator)
The separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack. The separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other. In order to secure these flow paths, as described above, each of the separators is preferably provided with a gas flow path and a cooling flow path. As a material constituting the separator, conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation. The thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。 The manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。 Furthermore, a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage. The shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
 上述したPEFCや膜電極接合体は、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや膜電極接合体は発電性能および耐久性に優れる。 The above-mentioned PEFC and membrane electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and the membrane electrode assembly are excellent in power generation performance and durability.
 本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。 The PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 実施例1
 以下により、担体Aを調製した。
Example 1
Carrier A was prepared as follows.
 具体的には、クエン酸粉末および酸化マグネシウム粉末を3:1の重量比で混合した後、この混合物を窒素雰囲気900℃で1時間熱処理した。熱処理により得られた混合粉末を希硫酸水溶液に投入して室温(25℃)で十分に撹拌した後濾過し、さらに十分に水洗してから、乾燥することによって、炭素材料Aを製造した。 Specifically, citric acid powder and magnesium oxide powder were mixed at a weight ratio of 3: 1, and then the mixture was heat-treated at 900 ° C. for 1 hour in a nitrogen atmosphere. The mixed powder obtained by the heat treatment was put into a dilute sulfuric acid aqueous solution, sufficiently stirred at room temperature (25 ° C.), filtered, sufficiently washed with water, and dried to produce a carbon material A.
 次に、この炭素材料Aを、窒素雰囲気下で、1500℃にまで加熱した後、1500℃で1時間熱処理することによって、担体Aを作製した。このようにして得られた担体Aについて、BET比表面積を測定した。その結果、担体AのBET比表面積が1460m/gであった。また、このようにして得られた担体Aについて、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)を測定したところ、0.06であった。なお、2θ=23.92°に観察されるピークをピーク0としてその面積(面積A)を算出した。 Next, the carbon material A was heated to 1500 ° C. in a nitrogen atmosphere, and then heat-treated at 1500 ° C. for 1 hour, thereby preparing a carrier A. For the carrier A thus obtained, the BET specific surface area was measured. As a result, the BET specific surface area of the carrier A was 1460 m 2 / g. The ratio of the area B of the peak 1 to the area A of the peak 0 (B / A) of the carrier A thus obtained was 0.06. The area (area A) was calculated with the peak observed at 2θ = 23.92 ° as the peak 0.
 実施例2
 実施例1において、炭素材料Aを、窒素雰囲気下で、1800℃で1時間熱処理した以外は、実施例1と同様の方法に従って、担体Bを作製した。このようにして得られた担体Bについて、BET比表面積を測定した。その結果、担体BのBET比表面積が950m/gであった。また、このようにして得られた担体Bについて、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)を測定したところ、0.16であった。なお、2θ=24.32°に観察されるピークをピーク0としてその面積(面積A)を算出した。
Example 2
In Example 1, Support B was produced in the same manner as in Example 1 except that the carbon material A was heat-treated at 1800 ° C. for 1 hour in a nitrogen atmosphere. For the carrier B thus obtained, the BET specific surface area was measured. As a result, the BET specific surface area of the carrier B was 950 m 2 / g. The ratio of the area B of peak 1 to the area A of peak 0 (B / A) of the carrier B thus obtained was 0.16. The area (area A) was calculated with the peak observed at 2θ = 24.32 ° as the peak 0.
 比較例1
 実施例1において、炭素材料Aを熱処理しなかった以外は、実施例1と同様の方法に従って、担体Cを作製した。このようにして得られた担体Cについて、BET比表面積を測定した。その結果、担体CのBET比表面積が1550m/gであった。また、このようにして得られた担体Cについて、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)を測定したところ、0であった。なお、2θ=22.70°に観察されるピークをピーク0としてその面積(面積A)を算出した。
Comparative Example 1
A carrier C was produced in the same manner as in Example 1 except that the carbon material A was not heat-treated in Example 1. With respect to the carrier C thus obtained, the BET specific surface area was measured. As a result, the BET specific surface area of the carrier C was 1550 m 2 / g. Further, the ratio of the area B of the peak 1 to the area A of the peak 0 (B / A) of the carrier C thus obtained was 0. The area (area A) was calculated with the peak observed at 2θ = 22.70 ° as the peak 0.
 実施例3
 上記実施例1で作製した担体Aを用い、これに触媒金属として平均粒径3nm超5nm以下の白金(Pt)を担持率が30重量%となるように担持させて、触媒粉末Aを得た。すなわち、白金濃度4.6重量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体Aを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Aに担持させた。そして、濾過、乾燥することにより、担持率が30重量%の触媒粉末を得た。その後、水素雰囲気において、温度900℃に1時間保持し、触媒粉末Aを得た。
Example 3
Using the carrier A prepared in Example 1 above, platinum (Pt) having an average particle size of more than 3 nm and not more than 5 nm as a catalyst metal was loaded so that the loading ratio was 30% by weight to obtain catalyst powder A. . That is, 46 g of carrier A was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by weight, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier A. The catalyst powder having a loading rate of 30% by weight was obtained by filtration and drying. Thereafter, in a hydrogen atmosphere, the temperature was maintained at 900 ° C. for 1 hour to obtain catalyst powder A.
 実施例4
 実施例3において、担体Aの代わりに、上記実施例2で作製した担体Bを使用した以外は、実施例3と同様の操作を行い、触媒粉末Bを得た。
Example 4
In Example 3, catalyst powder B was obtained in the same manner as in Example 3 except that the carrier B prepared in Example 2 was used instead of the carrier A.
 比較例2
 実施例3において、担体Aの代わりに、上記比較例1で作製した担体Cを使用した以外は、実施例3と同様の操作を行い、触媒粉末Cを得た。
Comparative Example 2
In Example 3, catalyst powder C was obtained in the same manner as in Example 3 except that the carrier C prepared in Comparative Example 1 was used instead of the carrier A.
 実験1:耐久性の評価
 上記実施例3~4で作製した触媒粉末A及びBならびに上記比較例2で作製した触媒粉末Cについて、下記方法に従って、耐久性を評価した。結果を下記表1に示す。
Experiment 1: Evaluation of durability The durability of the catalyst powders A and B prepared in Examples 3 to 4 and the catalyst powder C prepared in Comparative Example 2 were evaluated according to the following method. The results are shown in Table 1 below.
 すなわち、三電極式の電気化学セルを用い、ポテンショスタットとして、北斗電工社製電気化学システムHZ-5000+HR301を用いた。作用極として、グラッシーカーボン回転電極(GC-RDE)(φ(直径)=5mm)を用い、実施例および比較例で作製した各触媒粉末を分散媒としての水と1-プロパノール混合溶媒に分散させたインクを乾燥膜厚が1μmとなるようにコーティングして乾燥させた電極を用いた。対極にカーボン、参照電極には可逆水素電極(RHE)を使用した。電解液は、0.1M 過塩素酸を用い、Oで飽和させた。測定は60℃(液温)で行なった。 That is, a three-electrode electrochemical cell was used, and Hokuto Denko's electrochemical system HZ-5000 + HR301 was used as a potentiostat. Using a glassy carbon rotating electrode (GC-RDE) (φ (diameter) = 5 mm) as a working electrode, each catalyst powder produced in Examples and Comparative Examples was dispersed in water and 1-propanol mixed solvent as a dispersion medium. An electrode was used that was coated with dried ink to a dry film thickness of 1 μm and dried. Carbon was used as the counter electrode, and a reversible hydrogen electrode (RHE) was used as the reference electrode. The electrolyte was saturated with O 2 using 0.1M perchloric acid. The measurement was performed at 60 ° C. (liquid temperature).
 触媒有効表面積(ECA)の算出は、サイクリックボルタムメトリ(CV)により実施した。測定実施前に、1.0Vの電位で30秒間、電位走査を実施した。その後、1.0~1.5Vの電位範囲を0.5V/sの電位掃引速度で上昇(1秒)下降(1秒)し、これを1サイクル(2秒/サイクル)とした。この電位サイクルを繰り返すと、電位サイクルの増加とともに、サイクリックボルタムメトリ法で計測される0.6V付近のキノン-ハイドロキノン還元電流のピーク電位が低電位側にシフトする。この還元電流の変化からカーボンの状態を見積もった。具体的には、還元電流の電位が0.5V以下となるまでに繰り返すことができたサイクル数を耐久性の指標とした。 The calculation of the effective catalyst surface area (ECA) was performed by cyclic voltammetry (CV). Prior to the measurement, a potential scan was performed at a potential of 1.0 V for 30 seconds. Thereafter, the potential range of 1.0 to 1.5 V was increased (1 second) and decreased (1 second) at a potential sweep rate of 0.5 V / s, and this was defined as 1 cycle (2 seconds / cycle). When this potential cycle is repeated, the peak potential of the quinone-hydroquinone reduction current near 0.6 V measured by the cyclic voltammetry method shifts to the lower potential side as the potential cycle increases. The state of carbon was estimated from the change in the reduction current. Specifically, the number of cycles that could be repeated until the potential of the reduction current became 0.5 V or less was used as an index of durability.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例3、4の触媒粉末は、BET比表面積および/またはB/A比が本発明から外れる比較例2の触媒粉末に比べて、還元電流の低下するサイクル数が大きいことが示される。これから、本発明の炭素粉末を用いた触媒は、電気二重層容量の低下が小さく、有意に高い活性を維持できる(耐久性に優れる)と、考察される。 From the results shown in Table 1, the catalyst powders of Examples 3 and 4 have a larger number of cycles in which the reduction current decreases compared to the catalyst powder of Comparative Example 2 in which the BET specific surface area and / or B / A ratio deviates from the present invention. Is shown. From this, it is considered that the catalyst using the carbon powder of the present invention has a small decrease in electric double layer capacity and can maintain a significantly high activity (excellent in durability).
 本出願は、2015年3月23日に出願された日本特許出願番号2015-059040号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2015-059040 filed on March 23, 2015, the disclosure content of which is referenced and incorporated as a whole.
  1…固体高分子形燃料電池(PEFC)、
  2…固体高分子電解質膜、
  3a…アノード触媒層、
  3c…カソード触媒層、
  4a…アノードガス拡散層、
  4c…カソードガス拡散層、
  5a…アノードセパレータ、
  5c…カソードセパレータ、
  6a…アノードガス流路、
  6c…カソードガス流路、
  7…冷媒流路、
  10…膜電極接合体(MEA)。
1 ... Polymer electrolyte fuel cell (PEFC),
2 ... Solid polymer electrolyte membrane,
3a ... anode catalyst layer,
3c ... cathode catalyst layer,
4a ... anode gas diffusion layer,
4c ... cathode gas diffusion layer,
5a ... anode separator,
5c ... cathode separator,
6a ... anode gas flow path,
6c ... cathode gas flow path,
7: Refrigerant flow path,
10: Membrane electrode assembly (MEA).

Claims (6)

  1.  炭素を主成分とする炭素粉末であって、
     窒素吸着によるBET比表面積が800m/g以上であり、かつ
     XRD分析によって観測される2θ=22.5°~25°の位置に存在するピーク0の面積をA、XRD分析によって観測される2θ=26°の位置に存在するピーク1の面積をBとした場合、ピーク0の面積Aに対するピーク1の面積Bの比(B/A)が0.06以上である、燃料電池用炭素粉末。
    A carbon powder mainly composed of carbon,
    The BET specific surface area by nitrogen adsorption is 800 m 2 / g or more, and the area of peak 0 existing at a position of 2θ = 22.5 ° to 25 ° observed by XRD analysis is A, 2θ observed by XRD analysis = The carbon powder for a fuel cell, wherein the ratio of the area B of the peak 1 to the area A of the peak 0 (B / A) is 0.06 or more when the area of the peak 1 existing at the position of 26 ° is B.
  2.  請求項1に記載の燃料電池用炭素粉末に触媒金属が担持されてなる燃料電池用触媒。 A fuel cell catalyst comprising a catalytic metal supported on the fuel cell carbon powder according to claim 1.
  3.  前記触媒金属は、白金であるまたは白金と白金以外の金属成分を含む、請求項2に記載の燃料電池用触媒。 The fuel cell catalyst according to claim 2, wherein the catalyst metal is platinum or contains a metal component other than platinum and platinum.
  4.  請求項2または3に記載の燃料電池用触媒および電解質を含む、燃料電池用電極触媒層。 A fuel cell electrode catalyst layer comprising the fuel cell catalyst according to claim 2 or 3 and an electrolyte.
  5.  請求項4に記載の燃料電池用電極触媒層を含む、燃料電池用膜電極接合体。 A fuel cell membrane electrode assembly comprising the fuel cell electrode catalyst layer according to claim 4.
  6.  請求項5に記載の燃料電池用膜電極接合体を含む燃料電池。 A fuel cell comprising the fuel cell membrane electrode assembly according to claim 5.
PCT/JP2016/057207 2015-03-23 2016-03-08 Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell WO2016152506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015059040A JP2018081740A (en) 2015-03-23 2015-03-23 Carbon powder for fuel cell, catalyst arranged by use thereof, electrode catalyst layer, membrane-electrode assembly and fuel cell
JP2015-059040 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016152506A1 true WO2016152506A1 (en) 2016-09-29

Family

ID=56979261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057207 WO2016152506A1 (en) 2015-03-23 2016-03-08 Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell

Country Status (2)

Country Link
JP (1) JP2018081740A (en)
WO (1) WO2016152506A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154359A1 (en) * 2016-03-11 2017-09-14 日産自動車株式会社 Carbon powder for fuel cells, catalyst using said carbon powder for fuel cells, electrode catalyst layer, membrane electrode assembly and fuel cell
CN116063877A (en) * 2021-10-29 2023-05-05 未势能源科技有限公司 Carbon powder ink for debugging membrane electrode coating equipment and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116918109A (en) 2021-11-22 2023-10-20 东洋炭素株式会社 Carbon support for fuel cell catalyst and catalyst for fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012449A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Membrane electrode junction body and solid polymer fuel cell using above
JP2011115760A (en) * 2009-12-07 2011-06-16 Nisshinbo Holdings Inc Carrier for supporting catalyst, catalyst carrier, electrode, and battery
WO2014129597A1 (en) * 2013-02-21 2014-08-28 新日鉄住金化学株式会社 Carbon material for use as catalyst carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012449A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Membrane electrode junction body and solid polymer fuel cell using above
JP2011115760A (en) * 2009-12-07 2011-06-16 Nisshinbo Holdings Inc Carrier for supporting catalyst, catalyst carrier, electrode, and battery
WO2014129597A1 (en) * 2013-02-21 2014-08-28 新日鉄住金化学株式会社 Carbon material for use as catalyst carrier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154359A1 (en) * 2016-03-11 2017-09-14 日産自動車株式会社 Carbon powder for fuel cells, catalyst using said carbon powder for fuel cells, electrode catalyst layer, membrane electrode assembly and fuel cell
JPWO2017154359A1 (en) * 2016-03-11 2019-01-31 日産自動車株式会社 Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly and fuel cell using carbon powder for fuel cell
US10675611B2 (en) 2016-03-11 2020-06-09 Nissan Motor Co., Ltd. Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder for fuel cell
EP3429003B1 (en) * 2016-03-11 2021-04-14 Nissan Motor Co., Ltd. Carbon powder for fuel cells, catalyst using said carbon powder for fuel cells, electrode catalyst layer, membrane electrode assembly and fuel cell
CN116063877A (en) * 2021-10-29 2023-05-05 未势能源科技有限公司 Carbon powder ink for debugging membrane electrode coating equipment and preparation method thereof
CN116063877B (en) * 2021-10-29 2023-12-08 未势能源科技有限公司 Carbon powder ink for debugging membrane electrode coating equipment and preparation method thereof

Also Published As

Publication number Publication date
JP2018081740A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6461805B2 (en) Catalyst carbon powder, catalyst using the catalyst carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP5998277B2 (en) Fuel cell catalyst and fuel cell electrode catalyst layer including the same
CA2910237C (en) Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
CA3021498C (en) High activity alloy-based electrode catalyst, and membrane electrode assembly and fuel cell using high activity alloy-based electrode catalyst
JP2007307554A (en) Supported catalyst, its manufacturing method, electrode using this, and fuel cell
JP6276870B2 (en) Electrode catalyst layer for fuel cell, membrane electrode assembly for fuel cell and fuel cell using the catalyst layer
JP6327681B2 (en) FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING THE SAME, ELECTRODE CATALYST FOR FUEL CELL CONTAINING THE CATALYST, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL USING THE CATALYST OR CATALYST
JP6603396B2 (en) Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly and fuel cell using carbon powder for fuel cell
CA2910374A1 (en) Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
WO2017042919A1 (en) Electrode catalyst layer for fuel cell, method for manufacturing same, membrane electrode assembly in which said catalyst layer is used, fuel cell, and vehicle
WO2016152506A1 (en) Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP2008047472A (en) Electrode catalyst
JP6862792B2 (en) Method of manufacturing electrode catalyst
JP2017018909A (en) Catalyst mixture, manufacturing method therefor, electrode catalyst layer using catalyst mixture, membrane electrode joint body and fuel cell
JP6183120B2 (en) Membrane electrode assembly for fuel cell and fuel cell
JP6846210B2 (en) Electrode catalyst and membrane electrode assembly and fuel cell using the electrode catalyst
JP6191368B2 (en) Membrane electrode assembly for fuel cell and fuel cell
WO2015118922A1 (en) Electrode catalyst and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16768409

Country of ref document: EP

Kind code of ref document: A1