WO2015118922A1 - Electrode catalyst and method for producing same - Google Patents

Electrode catalyst and method for producing same Download PDF

Info

Publication number
WO2015118922A1
WO2015118922A1 PCT/JP2015/050968 JP2015050968W WO2015118922A1 WO 2015118922 A1 WO2015118922 A1 WO 2015118922A1 JP 2015050968 W JP2015050968 W JP 2015050968W WO 2015118922 A1 WO2015118922 A1 WO 2015118922A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
catalyst
carbon material
platinum
carbon
Prior art date
Application number
PCT/JP2015/050968
Other languages
French (fr)
Japanese (ja)
Inventor
允宣 内村
伊藤 仁
京谷 隆
洋知 西原
弘行 糸井
Original Assignee
日産自動車株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 国立大学法人東北大学 filed Critical 日産自動車株式会社
Publication of WO2015118922A1 publication Critical patent/WO2015118922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode catalyst and a method for producing the same. More specifically, the present invention relates to a technique for improving the catalytic activity of an electrode catalyst used in a fuel cell.
  • a solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
  • an electrode catalyst for a fuel cell which is obtained by heat-treating a carbon support in an ammonia gas atmosphere, contacting the carbon support with a platinum salt solution, and heat-treating the obtained carbon support in an inert gas atmosphere.
  • a manufacturing method is disclosed. According to this document, a functional group capable of adsorbing a platinum salt on the surface of a carbon carrier is introduced by heat treatment in an ammonia gas atmosphere, and platinum is uniformly dispersed and distributed on the surface of the carrier. Thereby, the reduction
  • the particle size of the noble metal in the electrode catalyst can be reduced, but a sufficient amount of the noble metal cannot be supported on the carbon material and has a desired catalytic activity. There was a problem that an electrode catalyst could not be obtained.
  • an object of the present invention is to provide a fuel cell electrode catalyst having a desired catalytic activity.
  • the electrode catalyst of the present invention is an electrode catalyst in which a noble metal is supported on a carbon material, the average particle diameter of the noble metal is 1 nm or less, and the noble metal loading density is an electrode catalyst. It is characterized by being 5 to 60% by mass with respect to the mass of.
  • FIG. 3 is a graph showing the results of CO stripping for Catalysts 1 and 2 and Comparative Catalyst 1.
  • FIG. 3 is a graph showing the relationship between the specific surface area of platinum particles and the particle diameter for Catalysts 1 and 2 and Comparative Catalyst 1.
  • 2 is a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) photograph of Comparative Catalyst 1.
  • FIG. 2 is a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) photograph of Comparative Catalyst 1.
  • FIG. 2 is a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) photograph of Comparative Catalyst 1.
  • FIG. 2 is a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) photograph of Comparative Catalyst 1.
  • FIG. 2 is a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) photograph of Comparative Catalyst 1.
  • FIG. 1 is a high angle scattering dark field scanning transmission electron microscope
  • the electrode catalyst according to an embodiment of the present invention is formed by supporting a noble metal on a carbon material.
  • the average particle diameter of the noble metal is 1 nm or less, and the loading density of the noble metal is 5 to 60% by mass with respect to the mass of the electrode catalyst.
  • fine noble metal particles are supported on the carbon material at a high support density, so that the surface area of the noble metal involved in the reaction is larger than that of the conventional electrode catalyst. Therefore, the electrode catalyst of this embodiment can exhibit excellent catalytic activity.
  • the electrode catalyst of this embodiment will be described.
  • the “electrode catalyst” is also simply referred to as “catalyst”.
  • the carbon material has a role as a carrier for supporting a noble metal and a role of conducting generated electric energy to an external circuit.
  • a carbon material is not particularly limited, and is not particularly limited as long as it has a specific surface area sufficient to support a noble metal in a dispersed state and sufficient conductivity.
  • Ketjen Black registered trademark
  • ZTC zeolite template carbon
  • these carbon materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the BET specific surface area of the carbon material is not particularly limited, but is preferably 900 m 2 / g or more, more preferably 1000 to 3000 m 2 / g, and further preferably 1100 to 1800 m 2 / g. With the specific surface area as described above, a sufficient amount of noble metal can be supported and good gas transportability in the catalyst layer can be achieved. In addition, the BET specific surface area (m 2 / g) of the catalyst can be obtained by a nitrogen adsorption method described in Examples described later.
  • the particle size (average primary particle size) of the carbon material is not particularly limited, but is preferably 10 to 100 nm.
  • the particle diameter (average primary particle diameter) of the carbon material is preferably 15 to 80 nm, more preferably 20 to 60 nm. Within such a range, the mechanical strength of the carbon material can be maintained, and the later-described catalyst layer can be controlled within an appropriate range.
  • the value of “particle diameter of carbon material” the average particle diameter of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). A value calculated as a value is adopted.
  • the “particle diameter” means the maximum distance among the distances between any two points passing through the center of the particle and on the particle outline.
  • the carbon material in this form does not necessarily need to have a porous particulate form as described above, and is not a non-porous carbon material, carbon fiber, a nonwoven fabric made of carbon fiber, carbon paper, carbon A cloth or the like may be used.
  • the noble metal functions as a catalyst such as an electrochemical reaction.
  • the noble metal used for the anode catalyst layer functions as a catalyst for hydrogen oxidation reaction
  • the noble metal used for the cathode catalyst layer functions as a catalyst for oxygen reduction reaction.
  • Specific examples of noble metals include platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), osmium (Os), gold (Au), silver (Ag), and these.
  • An alloy containing at least one of these elements can be used.
  • platinum or a platinum-containing alloy is preferably used as the noble metal from the viewpoint of excellent catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and high catalytic activity.
  • the composition of the alloy depends on the type of metal to be alloyed, but the platinum content is 30 to 90 atomic%, and the metal content to be alloyed with platinum is 10 to 70 atoms. % Is good.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal.
  • a eutectic alloy which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal.
  • the noble metal has an average particle diameter of 1 nm or less.
  • the lower limit of the average particle diameter is not particularly limited and may be 2.6 mm or more, but is usually 0.5 nm or more, preferably 0.7 nm or more, more preferably 0.8 nm or more, and further preferably Is 0.85 nm or more, most preferably 0.9 nm or more.
  • the specific surface area of the noble metal is measured by an electrochemical evaluation method by CO stripping described in Examples described later, and the average particle diameter is calculated from the specific surface area.
  • the specific surface area is 280 m 2 / g or more, it is considered that the average particle diameter of the noble metal is 1 nm or less.
  • the loading density of the noble metal is 5 to 60% by mass, preferably 8 to 50% by mass, more preferably 10 to 30% by mass with respect to the mass of the electrode catalyst.
  • the mass of the noble metal in the electrode catalyst when calculating the loading density of the noble metal is determined by the method described in Examples described later. More specifically, after the fully dried electrode catalyst is alkali-melted to form a solution, an inductively coupled plasma (ICP) emission spectroscopic analyzer (SPS-manufactured by SII Nano Technology Co., Ltd.) is added to the noble metal contained in the solution. 3500 type), and this is defined as the mass of the noble metal in the electrode catalyst.
  • ICP inductively coupled plasma
  • SPS-manufactured by SII Nano Technology Co., Ltd. is added to the noble metal contained in the solution. 3500 type), and this is defined as the mass of the noble metal in the electrode catalyst.
  • the method for producing an electrode catalyst according to another aspect of the present invention includes a step of bringing a carbon material and a gaseous organic noble metal complex into contact with each other and supporting the organic noble metal complex on the carbon material (hereinafter simply referred to as “supporting step”). And a step of reducing the organic noble metal complex supported on the carbon material (hereinafter also simply referred to as “reduction step”).
  • supporting step a step of bringing a carbon material and a gaseous organic noble metal complex into contact with each other and supporting the organic noble metal complex on the carbon material
  • reduction step a step of reducing the organic noble metal complex supported on the carbon material
  • fine noble metal particles can be supported on the carbon material at a high supporting density, which is suitable as a method for manufacturing the above-described electrode catalyst of the present embodiment.
  • the manufacturing method of the electrode catalyst of this form is demonstrated.
  • the organic noble metal complex serves as a raw material (noble metal source) for the above-mentioned electrode catalyst.
  • An organic noble metal complex generally has a lower melting point than the noble metal itself, and can therefore become a gas at a relatively low temperature under reduced pressure conditions.
  • the organic noble metal complex is not particularly limited, and specifically, 1,5-cyclooctadiene dimethyl platinum complex, ethylene bis (triphenylphosphine) platinum (0), tetrakis (triphenylphosphine) platinum (0), Bis (tri-tert-butylphosphine) platinum (0), (trimethyl) cyclopentadienylplatinum (IV), platinum (II) cyanide, (trimethyl) methylcyclopentadienylplatinum (IV), (trimethyl) penta And methylcyclopentadienylplatinum (IV).
  • These organic noble metal complexes may be used alone or in combination of two or more.
  • the amount used (preparation amount) of the organic noble metal complex is not particularly limited, but is preferably 30 to 150% by mass, more preferably 40 to 80% by mass with respect to the mass of the carbon material. With such an amount, a sufficient organic noble metal complex can be supported on the carbon material.
  • the carbon material it is preferable to dry the carbon material under reduced pressure conditions before bringing the carbon material into contact with the gaseous organic noble metal complex.
  • the decompression conditions are not particularly limited and can be appropriately set by those skilled in the art, but are preferably 1.0 ⁇ 10 ⁇ 7 to 1.0 ⁇ 10 ⁇ 2 Pa, more preferably 1.0 ⁇ 10 6. -7 to 1.0 ⁇ 10 ⁇ 4 Pa.
  • the temperature at the time of drying is not particularly limited, and can be appropriately set by those skilled in the art. Drying may be performed under heating conditions as long as the carbon material is not adversely affected.
  • the temperature at which the carbon material and the gaseous organic noble metal complex are brought into contact with each other is not particularly limited, but is preferably 40 to 200 ° C, more preferably 60 to 150 ° C. By setting it as the said range, an organic noble metal complex can fully be vaporized, suppressing the thermal decomposition etc. of an organic noble metal complex.
  • the time for contacting the carbon material and the gaseous organic noble metal complex is not particularly limited, but is preferably 1 to 72 hours, more preferably 6 to 48 hours. By setting it as the above range, the particle diameter of the organic noble metal complex after being supported on the carbon material does not become too large, and a sufficient amount of the organic noble metal complex can be supported.
  • the supporting step in this embodiment is not particularly limited as long as the carbon material and the gaseous organic noble metal complex can be brought into contact with each other, as long as the other conditions, the apparatus to be used, and the operation method are used.
  • a glass tube A containing an organic noble metal complex and a carbon material are placed in a glass tube B, sealed under reduced pressure, and the glass tube B is heated as in the examples described later.
  • the organic noble metal complex in the glass tube A becomes a gas and fills the glass tube B, and the organic noble metal complex is supported on the carbon material by contacting with the carbon material.
  • the method for reducing the organic noble metal complex supported on the carbon material is not particularly limited, and a known method can be appropriately employed.
  • a method of reducing an organic noble metal complex by heat-treating a carbon material carrying the organic noble metal complex under reduced pressure conditions hereinafter also simply referred to as “thermal reduction method” as in the examples described later.
  • this method is not limited only to the reduced pressure condition, and heat treatment may be performed in an inert atmosphere or a hydrogen atmosphere.
  • the heat treatment conditions in the thermal reduction method are not particularly limited, but preferable conditions are as follows.
  • the temperature during the heat treatment is preferably 150 to 400 ° C, more preferably 200 to 300 ° C.
  • the atmospheric pressure during the heat treatment is preferably 1.0 ⁇ 10 ⁇ 2 Pa or less, more preferably 1.0 ⁇ 10 ⁇ 7 to 1.0 ⁇ 10 ⁇ 4 Pa.
  • the heat treatment time is preferably 0.5 to 48 hours, more preferably 1 to 12 hours. Within the above range, the organic noble metal complex supported on the carbon material can be sufficiently reduced.
  • a method of reducing the organic noble metal complex by treating the carbon material carrying the organic noble metal complex with hydrogen (hereinafter also simply referred to as “hydrogen reduction method”) may be used.
  • the conditions in the hydrogen reduction method are also not particularly limited, but are preferably brought into contact with a carbon material carrying an organic noble metal complex under a temperature condition of 25 to 100 ° C., preferably for 30 minutes or more. Thereby, similarly to the case of the thermal reduction method, the organic noble metal complex supported on the carbon material can be sufficiently reduced.
  • ⁇ Fuel cell> In the electrode catalyst according to the present invention described above, since the fine noble metal particles are supported on the carbon material at a higher support density than the conventional electrode catalyst, the specific surface area of the noble metal involved in the reaction is higher than that of the conventional one. As a result, excellent catalytic activity can be exhibited. Therefore, the power generation performance of the fuel cell can be improved by using the electrode catalyst in the catalyst layer of the fuel cell. Therefore, according to another aspect of the present invention, there is provided a fuel cell including an electrode catalyst layer having the electrode catalyst. Hereinafter, the fuel cell of this embodiment will be described.
  • a fuel cell generally includes a pair of separators comprising a membrane electrode assembly (MEA), an anode separator having a fuel gas passage through which fuel gas flows, and a cathode separator having an oxidant gas passage through which oxidant gas flows. It consists of.
  • MEA membrane electrode assembly
  • anode separator having a fuel gas passage through which fuel gas flows
  • a cathode separator having an oxidant gas passage through which oxidant gas flows. It consists of.
  • FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
  • the PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
  • the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
  • GDL gas diffusion layers
  • the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
  • MEA membrane electrode assembly
  • the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
  • the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC.
  • the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured.
  • a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path.
  • a fuel gas for example, hydrogen
  • an oxidant gas for example, air
  • the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
  • a refrigerant for example, water
  • the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
  • the separators (5a, 5c) are formed in an uneven shape.
  • the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
  • the fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance.
  • the type of the fuel cell is not particularly limited.
  • the solid polymer fuel cell has been described as an example.
  • an alkaline fuel cell and a direct methanol fuel cell are used.
  • a micro fuel cell in addition to the above, an alkaline fuel cell and a direct methanol fuel cell are used. And a micro fuel cell.
  • a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • the fuel used when operating the fuel cell is not particularly limited.
  • hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
  • hydrogen and methanol are preferably used in that high output is possible.
  • the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
  • the electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
  • the catalyst layer includes the above-described electrode catalyst and electrolyte according to the present invention.
  • the above-described electrode catalyst according to the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, or may be present in both. From the viewpoint of oxygen reduction activity, the above-described electrode catalyst according to the present invention is preferably present in the anode catalyst layer.
  • the electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
  • S-PES sulfonated polyethersulfone
  • S-PEEK ether ketone
  • S-PPP sulfonated polyphenylene
  • the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
  • the catalyst layer of this embodiment preferably has an EW of 1500 g / eq.
  • the following polymer electrolyte is contained, More preferably, it is 1200 g / eq.
  • the following polymer electrolyte is included, and particularly preferably 1000 g / eq.
  • the following polymer electrolytes are included.
  • the EW of the polymer electrolyte is preferably 600 or more.
  • EW Equivalent Weight
  • the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
  • the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
  • the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
  • the EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
  • the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the channel length. It is desirable to use it in the range area.
  • the catalyst layer of this embodiment may include a liquid proton conductive material that can connect the catalyst and the polymer electrolyte (solid proton conductive material) in a proton conductive state between the catalyst and the polymer electrolyte.
  • a liquid proton conductive material that can connect the catalyst and the polymer electrolyte (solid proton conductive material) in a proton conductive state between the catalyst and the polymer electrolyte.
  • the liquid proton conductive material only needs to be interposed between the catalyst and the polymer electrolyte, and the pores (secondary pores) between the porous carriers in the catalyst layer and the pores (micropores) in the porous carrier. Or mesopores: primary vacancies).
  • the liquid proton conductive material is not particularly limited as long as it has ion conductivity and can exhibit a function of forming a proton transport path between the catalyst and the polymer electrolyte.
  • Specific examples include water, protic ionic liquid, aqueous perchloric acid solution, aqueous nitric acid solution, aqueous formic acid solution, and aqueous acetic acid solution.
  • the liquid proton conductive material When water is used as the liquid proton conductive material, water as the liquid proton conductive material is introduced into the catalyst layer by moistening the catalyst layer with a small amount of liquid water or humidified gas before starting power generation. Can do. Moreover, the water produced by the electrochemical reaction during the operation of the fuel cell can be used as the liquid proton conductive material. Therefore, it is not always necessary to hold the liquid proton conductive material when the fuel cell is in operation.
  • the surface distance between the catalyst and the electrolyte is preferably 0.28 nm or more, which is the diameter of oxygen ions constituting water molecules.
  • water liquid proton conductive material
  • the polymer electrolyte liquid conductive material holding part
  • a material other than water such as an ionic liquid
  • An ionic liquid may be added when applying to the layer substrate.
  • a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary.
  • a thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
  • the thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m.
  • the said thickness is applied to both a cathode catalyst layer and an anode catalyst layer.
  • the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
  • the electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG.
  • the solid polymer electrolyte membrane 2 has a function of selectively permeating protons generated in the anode catalyst layer 3a during operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction.
  • the solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
  • the thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
  • the thickness of the electrolyte layer is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the gas diffusion layers are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
  • the material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
  • MPL microporous layer
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
  • the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
  • the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
  • each of the separators is preferably provided with a gas flow path and a cooling flow path.
  • a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
  • the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
  • the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
  • a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • the PEFC and membrane electrode assembly of the present embodiment described above can exhibit excellent power generation performance because the electrode catalyst layer according to the present invention is used for the catalyst layer. Therefore, the PEFC of this embodiment and the fuel cell stack using the PEFC can be mounted on a vehicle as a driving power source, for example.
  • room temperature means (25 ° C.).
  • Example 1 80 mg of 1,5-cyclooctadiene dimethylplatinum complex was placed in a glass tube A, and quartz wool was filled in the mouth of the glass tube.
  • the glass tube A is put into a glass tube B containing 200 mg of a carbon material (Ketjen Black (registered trademark) ECP600JP, manufactured by Ketjen Black International), and the inside of the glass tube B is reduced in pressure using an oil pump (1 0.0 ⁇ 10 ⁇ 2 Pa), only the carbon carrier contained in the glass tube B is vacuum-heated and dried, and the glass tube A is removed from the glass tube B so that the complex contained in the glass tube A does not decompose during that time.
  • a carbon material Ketjen Black (registered trademark) ECP600JP, manufactured by Ketjen Black International
  • the carbon material adsorbed with the 1,5-cyclooctadiene dimethylplatinum complex obtained above is put into a glass tube C, and the inside of the glass tube C is reduced under pressure (1.0 ⁇ 10 ⁇ 4 Pa) using a turbomolecular pump.
  • the glass tube C was heated from room temperature to 300 ° C. at a rate of 5 ° C./min, and then kept at 300 ° C. for 1 hour. Thereafter, the glass tube C was naturally cooled to room temperature, and the catalyst 1 was taken out from the glass tube C.
  • Example 2 160 mg of 1,5-cyclooctadiene dimethylplatinum complex was placed in a glass tube A, and quartz wool was filled in the mouth of the glass tube.
  • the glass tube A is put into a glass tube B containing 200 mg of a carbon material (Ketjen Black (registered trademark) ECP600JP, manufactured by Ketjen Black International), and the inside of the glass tube B is reduced in pressure using an oil pump (1 0.0 ⁇ 10 ⁇ 2 Pa), only the carbon support contained in the glass tube B is vacuum-heated and dried, and during this time, the glass tube A is heated to the glass tube B so that the complex contained in the glass tube A is not decomposed. It was put on the part of the handle that was not done.
  • a carbon material Ketjen Black (registered trademark) ECP600JP, manufactured by Ketjen Black International
  • the carbon support After drying the carbon support under vacuum heating, the carbon support was allowed to cool, the glass tube A was moved to the side of the glass tube B containing the carbon support, and the glass tube B was sealed with a gas burner. Next, the said glass tube B which enclosed the glass tube A was hold
  • the carbon material adsorbed with the 1,5-cyclooctadiene dimethylplatinum complex obtained above is placed in a glass tube C, and the inside of the glass tube C is reduced under reduced pressure (1.0 ⁇ 10 ⁇ 4 Pa) using a turbomolecular pump.
  • the glass tube C was heated from room temperature to 300 ° C. at a rate of 5 ° C./min, and then kept at 300 ° C. for 1 hour. Thereafter, the glass tube C was naturally cooled to room temperature, and the catalyst 2 was taken out from the glass tube C.
  • the platinum loading density in each catalyst obtained above was measured by the following method. First, in order to remove the water adsorbed on the catalyst, vacuum heat drying treatment was performed at 100 ° C. for 6 hours. Thereafter, about 5 mg of the catalyst is weighed in a glove box, and this is converted into a solution, and platinum contained in the obtained solution is converted into an inductively coupled plasma (ICP) emission spectroscopic analyzer (manufactured by SII Nano Technology, SPS-3500 type) ). And based on the following formula 1, the carrying density of platinum in the catalyst was calculated. The results are shown in Table 1.
  • ICP inductively coupled plasma
  • X-ray diffraction (XRD) measurement was performed on the catalyst 1, the blank (only Ketjen Black) obtained above, and a commercially available platinum-supported carbon catalyst (manufactured by Tanaka Kikinzoku Kogyo, TEC10E50E).
  • X-ray diffraction measurement was performed using an XRD-6100 manufactured by Shimadzu Corporation, and the radiation source was Cu-K ⁇ , a voltage of 30 kV, and a current of 20 mA. The results are shown in FIG.
  • the catalysts 1 and 2 and the comparative catalyst 1 obtained above were subjected to electrochemical evaluation by the following method.
  • Catalysts 1 and 2 and Comparative Catalyst 1 were weighed 11.4 mg, 12.8 mg, and 10.4 mg, respectively, and dispersed in a mixed solution of 19 mL of water and 6 mL of isopropanol, and Nafion solution (DE521CS, 5 wt%, manufactured by Aldrich) ) 100 ⁇ L was added to prepare a catalyst ink. Thereafter, ultrasonic dispersion was performed for 1 hour or longer.
  • Electrochemical measurement was performed with a normal three-chamber cell (Mick Lab).
  • 0.1 M perchloric acid Ultrapur, manufactured by Kanto Chemical Co., Inc.
  • the counter electrode was a Pt line
  • the reference electrode was a reversible hydrogen electrode (RHE).
  • Potential control was performed using HZ-5000 (manufactured by Hokuto Denko).
  • HR-301 manufactured by Hokuto Denko
  • the cell temperature was controlled to 25 ° C. ( ⁇ 1 ° C.) using an external circulation thermostat (CHL300, manufactured by YAMATO).
  • CO Ar balance gas manufactured by Taiyo Nippon Sanso
  • a range of 0 to 1.2 V was scanned for 20 cycles at 100 mV / s, and then measurements such as cyclic voltammetry (results are shown in FIG. 3) and convective voltammetry were performed.
  • the electrode was held at 0.05 V for 30 minutes in an electrolyte solution saturated with 1% CO gas while rotating the electrode at 400 rpm. It was confirmed that the CO adsorption amount reached saturation under these conditions. After the CO gas in the solution was completely replaced with nitrogen, CV measurement was performed for 3 cycles from 0.05 V to 1.2 V at 20 mV / s. The CVs in the second and third cycles were observed with a clear overlap.
  • the amount of electricity at the CO stripping peak is calculated from the difference between the response currents after the first cycle and the second cycle, and the maximum Pt coverage by CO is assumed to be 0.68, and the conversion factor is 285.6 ⁇ C ⁇ cmPt ⁇ 2 was applied to calculate the electrochemically active surface area.
  • the electrochemical area (ECA) was calculated by assigning this by the amount of platinum (the result is shown in FIG. 4A).
  • the specific surface area of the platinum particles is 290 m 2 / g in catalyst 1 299m 2 / g, the catalyst 2 337m 2 / g, with comparative catalyst 1 I understood. This value means that when the platinum particles are assumed to be spheres, the average particle diameter is 1 nm or less (see FIG. 4B).
  • HAADF-STEM High-angle scattering dark field scanning transmission electron microscope
  • Nitrogen adsorption / desorption measurements were performed on the catalysts 1 and 2 and the blank (carbon material only) obtained above. Nitrogen adsorption / desorption measurement was performed using BELSORP mini manufactured by Nippon Bell Co., Ltd., and a multipoint method was performed at a temperature of ⁇ 196 ° C. The BET specific surface area (S BET ) was determined from the adsorption isotherm in the range of 0.01 ⁇ P / P 0 ⁇ 0.05. The total pore volume (V total ) was determined from the volume of adsorbed N 2 at a relative pressure of 0.96.
  • S BET specific surface area
  • the micropore volume (V micro ) was calculated by the Dubinin-Radushkevich (DR) equation using the respective nitrogen adsorption isotherm data.
  • the mesopore volume (V meso ) was determined by subtracting the micropore volume (V micro ) from the total pore volume. The results when each value in the blank is set to 1.00 are shown in Table 2 below.
  • PEFC Polymer electrolyte fuel cell
  • 2 solid polymer electrolyte membrane 3 catalyst layer, 3a anode catalyst layer, 3c cathode catalyst layer, 4a Anode gas diffusion layer, 4c cathode gas diffusion layer, 5 separator, 5a anode separator, 5c cathode separator, 6a Anode gas flow path, 6c cathode gas flow path, 7 Refrigerant flow path, 10 Membrane electrode assembly (MEA).
  • MEA Membrane electrode assembly

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

[Problem] The purpose of the present invention is to provide an electrode catalyst which has desired catalytic activity. [Solution] An electrode catalyst according to the present invention is obtained by having a carbon material loaded with a noble metal, and is characterized in that the noble metal has an average particle diameter of 1 nm or less and the loading density of the noble metal is 5-60% by mass relative to the mass of the electrode catalyst.

Description

電極触媒およびその製造方法Electrode catalyst and method for producing the same
 本発明は、電極触媒およびその製造方法に関する。より詳細には、本発明は、燃料電池に用いられる電極触媒の触媒活性を向上させるための技術に関する。 The present invention relates to an electrode catalyst and a method for producing the same. More specifically, the present invention relates to a technique for improving the catalytic activity of an electrode catalyst used in a fuel cell.
 プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。 A solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
 このような固体高分子形燃料電池には、一般的に、Pt(白金)やPt合金に代表される高価な貴金属触媒が用いられており、このような燃料電池の高価格要因となっている。このため、貴金属触媒の使用量を低減して、燃料電池の低コスト化が可能な技術の開発が求められている。 In such a polymer electrolyte fuel cell, generally, an expensive noble metal catalyst represented by Pt (platinum) or a Pt alloy is used, which is a high cost factor of such a fuel cell. . For this reason, development of a technique capable of reducing the cost of fuel cells by reducing the amount of noble metal catalyst used is required.
 特許文献1では、カーボン担体をアンモニアガス雰囲気下で熱処理した後、当該カーボン担体を白金塩溶液と接触させ、得られたカーボン担体を不活性ガス雰囲気下で熱処理してなる、燃料電池用電極触媒の製造方法が開示されている。当該文献によれば、アンモニアガス雰囲気下での熱処理により、カーボン担体表面に白金塩を吸着することができる官能基が導入され、白金が担体表面に均一に分散・分布される。これにより、凝集やシンタリングによる白金粒子の比表面積の減少が抑制され、微小な白金粒子が担持された電極触媒が得られる。その結果、燃料電池において、白金使用量を削減しながらも高い発電効率が得られる、としている。 In Patent Document 1, an electrode catalyst for a fuel cell, which is obtained by heat-treating a carbon support in an ammonia gas atmosphere, contacting the carbon support with a platinum salt solution, and heat-treating the obtained carbon support in an inert gas atmosphere. A manufacturing method is disclosed. According to this document, a functional group capable of adsorbing a platinum salt on the surface of a carbon carrier is introduced by heat treatment in an ammonia gas atmosphere, and platinum is uniformly dispersed and distributed on the surface of the carrier. Thereby, the reduction | decrease of the specific surface area of the platinum particle by aggregation and sintering is suppressed, and the electrode catalyst with which the fine platinum particle was carry | supported is obtained. As a result, in the fuel cell, high power generation efficiency can be obtained while reducing the amount of platinum used.
国際公開第2010/143311号International Publication No. 2010/14311
 しかしながら、上記特許文献1に記載の方法によると、電極触媒における貴金属の粒子サイズは小さくすることができるが、炭素材料に十分な量の貴金属を担持させることができず、所望の触媒活性を有する電極触媒が得られない、という問題点を有していた。 However, according to the method described in Patent Document 1, the particle size of the noble metal in the electrode catalyst can be reduced, but a sufficient amount of the noble metal cannot be supported on the carbon material and has a desired catalytic activity. There was a problem that an electrode catalyst could not be obtained.
 そこで、本発明は、所望の触媒活性を有する燃料電池用電極触媒を提供することを目的とする。 Accordingly, an object of the present invention is to provide a fuel cell electrode catalyst having a desired catalytic activity.
 上記課題を解決するための、本発明の電極触媒は、炭素材料に貴金属が担持されてなる電極触媒であって、貴金属の平均粒子径は、1nm以下であり、貴金属の担持密度は、電極触媒の質量に対し、5~60質量%であることを特徴とする。 In order to solve the above problems, the electrode catalyst of the present invention is an electrode catalyst in which a noble metal is supported on a carbon material, the average particle diameter of the noble metal is 1 nm or less, and the noble metal loading density is an electrode catalyst. It is characterized by being 5 to 60% by mass with respect to the mass of.
本発明の一実施形態に係る固体高分子形燃料電池の基本構成を示す概略断面図である。It is a schematic sectional drawing which shows the basic composition of the polymer electrolyte fuel cell which concerns on one Embodiment of this invention. 触媒1、ブランク(ケッチェンブラックのみ)、市販の白金担持カーボン触媒(田中貴金属工業製、TEC10E50E)についてのX線回折(XRD)パターンを表すグラフである。It is a graph showing the X-ray-diffraction (XRD) pattern about the catalyst 1, blank (only ketjen black), and a commercially available platinum carrying | support carbon catalyst (the Tanaka Kikinzoku Kogyo make, TEC10E50E). 触媒1および2ならびに比較触媒1についての電気化学的評価を行った際のサイクリックボルタモグラムを表すグラフである。It is a graph showing the cyclic voltammogram at the time of performing electrochemical evaluation about the catalysts 1 and 2 and the comparative catalyst 1. FIG. 触媒1および2ならびに比較触媒1についてのCOストリッピングの結果を表すグラフである。3 is a graph showing the results of CO stripping for Catalysts 1 and 2 and Comparative Catalyst 1. 触媒1および2ならびに比較触媒1についての白金粒子の比表面積と粒子径との関係を表すグラフである。3 is a graph showing the relationship between the specific surface area of platinum particles and the particle diameter for Catalysts 1 and 2 and Comparative Catalyst 1. 比較触媒1の高角度散乱暗視野走査透過電子顕微鏡(HAADF-STEM)写真である。2 is a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) photograph of Comparative Catalyst 1. FIG. 比較触媒1の高角度散乱暗視野走査透過電子顕微鏡(HAADF-STEM)写真である。2 is a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) photograph of Comparative Catalyst 1. FIG. 比較触媒1の高角度散乱暗視野走査透過電子顕微鏡(HAADF-STEM)写真である。2 is a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) photograph of Comparative Catalyst 1. FIG. 比較触媒1の高角度散乱暗視野走査透過電子顕微鏡(HAADF-STEM)写真である。2 is a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) photograph of Comparative Catalyst 1. FIG.
 <電極触媒>
 本発明の一形態に係る電極触媒は、炭素材料に貴金属が担持されてなる。そして、貴金属の平均粒子径は、1nm以下であり、貴金属の担持密度は、電極触媒の質量に対し、5~60質量%であることを特徴とする。本形態の電極触媒は、従来の電極触媒と比較して、微細な貴金属粒子が高い担持密度で炭素材料に担持されているため、反応に関与する貴金属の表面積が、従来よりも大きい。よって、本形態の電極触媒は、優れた触媒活性を発揮することができる。以下、本形態の電極触媒について説明する。なお、本明細書では、「電極触媒」を、単に「触媒」とも称する。
<Electrocatalyst>
The electrode catalyst according to an embodiment of the present invention is formed by supporting a noble metal on a carbon material. The average particle diameter of the noble metal is 1 nm or less, and the loading density of the noble metal is 5 to 60% by mass with respect to the mass of the electrode catalyst. In the electrode catalyst of this embodiment, compared with the conventional electrode catalyst, fine noble metal particles are supported on the carbon material at a high support density, so that the surface area of the noble metal involved in the reaction is larger than that of the conventional electrode catalyst. Therefore, the electrode catalyst of this embodiment can exhibit excellent catalytic activity. Hereinafter, the electrode catalyst of this embodiment will be described. In the present specification, the “electrode catalyst” is also simply referred to as “catalyst”.
 [炭素材料]
 本形態の電極触媒において、炭素材料は、貴金属を担持するための担体としての役割、発生した電気エネルギーを外部回路へと伝導する役割を有する。このような炭素材料は、特に限定されないが、貴金属を分散状態で担持させるのに十分な比表面積と、十分な導電性とを有するものであれば特に制限されない。具体的には、天然黒鉛、人造黒鉛、コークス、炭素繊維、グラッシーカーボン、活性炭、活性炭素繊維、カーボンブラック(ケッチェンブラック(登録商標)、ガスファーネスブラック(例えば、バルカン)、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなど)、還元酸化黒鉛、還元酸化グラフェン、カーボンゲル、特開2010-208887号公報や国際公開第2009/75264号公報等に記載される方法によって製造されるナノサイズの帯状グラフェンが3次元状に規則的に連結した構造を有するゼオライト鋳型炭素(ZTC)が挙げられる。なかでも、高い担持密度で貴金属を担持させる観点から、比表面積の大きな、ケッチェンブラック(登録商標)、ゼオライト鋳型炭素(ZTC)であることが好ましい。なお、これらの炭素材料は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。
[Carbon material]
In the electrode catalyst of this embodiment, the carbon material has a role as a carrier for supporting a noble metal and a role of conducting generated electric energy to an external circuit. Such a carbon material is not particularly limited, and is not particularly limited as long as it has a specific surface area sufficient to support a noble metal in a dispersed state and sufficient conductivity. Specifically, natural graphite, artificial graphite, coke, carbon fiber, glassy carbon, activated carbon, activated carbon fiber, carbon black (Ketjen Black (registered trademark), gas furnace black (for example, Vulcan), oil furnace black, channel Black, lamp black, thermal black, acetylene black, etc.), reduced graphite oxide, reduced graphene oxide, carbon gel, manufactured by the method described in JP 2010-208887 A, International Publication No. 2009/75264, etc. Zeolite-templated carbon (ZTC) having a structure in which nano-sized band-shaped graphene is regularly connected in a three-dimensional manner is exemplified. Of these, Ketjen Black (registered trademark) and zeolite template carbon (ZTC) having a large specific surface area are preferable from the viewpoint of supporting a noble metal at a high support density. In addition, these carbon materials may be used individually by 1 type, and may be used in combination of 2 or more type.
 炭素材料のBET比表面積は、特に制限されないが、好ましくは900m/g以上、より好ましくは1000~3000m/g、さらに好ましくは1100~1800m/gである。上記したような比表面積であれば、十分な量の貴金属を担持させることができるとともに、触媒層における良好なガス輸送性を達成することができる。なお、触媒のBET比表面積(m/g)は、後述の実施例に記載の窒素吸着法により求めることができる。 The BET specific surface area of the carbon material is not particularly limited, but is preferably 900 m 2 / g or more, more preferably 1000 to 3000 m 2 / g, and further preferably 1100 to 1800 m 2 / g. With the specific surface area as described above, a sufficient amount of noble metal can be supported and good gas transportability in the catalyst layer can be achieved. In addition, the BET specific surface area (m 2 / g) of the catalyst can be obtained by a nitrogen adsorption method described in Examples described later.
 炭素材料の粒子径(平均一次粒子径)は、特に制限されないが、10~100nmであることが好ましい。または、担持の容易さ、触媒利用率などの観点から、炭素材料の粒子径(平均一次粒子径)は、好ましくは15~80nm、より好ましくは20~60nmである。かような範囲であれば、炭素材料の機械的強度が維持され、かつ、後述の触媒層を適切な範囲で制御することができる。「炭素材料の粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。また、「粒子径」とは、粒子の中心を通りかつ粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。 The particle size (average primary particle size) of the carbon material is not particularly limited, but is preferably 10 to 100 nm. Alternatively, from the viewpoint of ease of loading, catalyst utilization, etc., the particle diameter (average primary particle diameter) of the carbon material is preferably 15 to 80 nm, more preferably 20 to 60 nm. Within such a range, the mechanical strength of the carbon material can be maintained, and the later-described catalyst layer can be controlled within an appropriate range. As the value of “particle diameter of carbon material”, the average particle diameter of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). A value calculated as a value is adopted. The “particle diameter” means the maximum distance among the distances between any two points passing through the center of the particle and on the particle outline.
 なお、本形態における炭素材料は、必ずしも上述のような多孔質の粒子状の形態を有して必要はなく、非多孔質の炭素材料や、炭素繊維、炭素繊維から成る不織布、カーボンペーパー、カーボンクロスなどを使用しても構わない。 In addition, the carbon material in this form does not necessarily need to have a porous particulate form as described above, and is not a non-porous carbon material, carbon fiber, a nonwoven fabric made of carbon fiber, carbon paper, carbon A cloth or the like may be used.
 [貴金属]
 本形態において、貴金属は、電気的化学反応等の触媒として機能する。燃料電池においては、アノード触媒層に用いられる貴金属は、水素の酸化反応の触媒として機能し、カソード触媒層に用いられる貴金属は、酸素の還元反応の触媒として機能する。貴金属としては、具体的には、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)、金(Au)、銀(Ag)およびこれらの元素を少なくとも1種含有する合金が挙げられる。
[Precious metal]
In this embodiment, the noble metal functions as a catalyst such as an electrochemical reaction. In the fuel cell, the noble metal used for the anode catalyst layer functions as a catalyst for hydrogen oxidation reaction, and the noble metal used for the cathode catalyst layer functions as a catalyst for oxygen reduction reaction. Specific examples of noble metals include platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), osmium (Os), gold (Au), silver (Ag), and these. An alloy containing at least one of these elements can be used.
 なかでも、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性に優れ、高い触媒活性を発揮することができるといった観点から、貴金属として、白金または白金含有合金を用いることが好ましい。上記白金含有合金の場合の当該合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがある。本形態においては、それらのいずれであってもよい。 Among these, platinum or a platinum-containing alloy is preferably used as the noble metal from the viewpoint of excellent catalytic activity, poisoning resistance to carbon monoxide, heat resistance, and high catalytic activity. In the case of the platinum-containing alloy, the composition of the alloy depends on the type of metal to be alloyed, but the platinum content is 30 to 90 atomic%, and the metal content to be alloyed with platinum is 10 to 70 atoms. % Is good. In general, an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties. The alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal. There are things that are forming. In the present embodiment, any of them may be used.
 本形態の電極触媒において、貴金属は、平均粒子径が1nm以下であることを特徴とする。なお、当該平均粒子径の下限値は、特に制限されず、2.6Å以上であればよいが、通常は0.5nm以上、好ましくは0.7nm以上、より好ましくは0.8nm以上、さらに好ましくは0.85nm以上、最も好ましくは0.9nm以上である。貴金属の粒子サイズをこのように小さくすることによって、貴金属の比表面積が大きくなるため、より高い触媒活性を発揮させることが可能となる。なお、貴金属の平均粒子径が1nm以下と小さいと、その平均粒子径を直接測定することは困難である。よって、本明細書では、後述の実施例に記載のCOストリッピングによる電気化学的な評価方法により貴金属の比表面積を測定し、当該比表面積から平均粒子径を算出するものとする。特に、当該比表面積が280m/g以上である場合に、貴金属の平均粒子径が1nm以下であるとみなす。 In the electrode catalyst of the present embodiment, the noble metal has an average particle diameter of 1 nm or less. The lower limit of the average particle diameter is not particularly limited and may be 2.6 mm or more, but is usually 0.5 nm or more, preferably 0.7 nm or more, more preferably 0.8 nm or more, and further preferably Is 0.85 nm or more, most preferably 0.9 nm or more. By reducing the particle size of the noble metal in this way, the specific surface area of the noble metal is increased, so that higher catalytic activity can be exhibited. If the average particle diameter of the noble metal is as small as 1 nm or less, it is difficult to directly measure the average particle diameter. Therefore, in this specification, the specific surface area of the noble metal is measured by an electrochemical evaluation method by CO stripping described in Examples described later, and the average particle diameter is calculated from the specific surface area. In particular, when the specific surface area is 280 m 2 / g or more, it is considered that the average particle diameter of the noble metal is 1 nm or less.
 本形態の電極触媒において、貴金属の担持密度は、電極触媒の質量に対し、5~60質量%であり、好ましくは8~50質量%、より好ましくは10~30質量%である。担持密度を上記範囲とすることにより、触媒のコストを抑えつつも十分な触媒活性を有する電極触媒とすることができる。なお、本明細書において、貴金属の担持密度を算出する際の、電極触媒中の貴金属の質量は、後述の実施例に記載の方法により求める。より詳細には、十分に乾燥させた電極触媒をアルカリ融解し、溶液化した後に、当該溶液中に含まれる貴金属を誘導結合プラズマ(ICP)発光分光分析装置(エスアイアイナノテクノロジー社製、SPS-3500型)を用いて定量し、これを電極触媒中の貴金属の質量とする。 In the electrode catalyst of this embodiment, the loading density of the noble metal is 5 to 60% by mass, preferably 8 to 50% by mass, more preferably 10 to 30% by mass with respect to the mass of the electrode catalyst. By setting the loading density in the above range, an electrode catalyst having sufficient catalytic activity can be obtained while suppressing the cost of the catalyst. In the present specification, the mass of the noble metal in the electrode catalyst when calculating the loading density of the noble metal is determined by the method described in Examples described later. More specifically, after the fully dried electrode catalyst is alkali-melted to form a solution, an inductively coupled plasma (ICP) emission spectroscopic analyzer (SPS-manufactured by SII Nano Technology Co., Ltd.) is added to the noble metal contained in the solution. 3500 type), and this is defined as the mass of the noble metal in the electrode catalyst.
 <電極触媒の製造方法>
 上述の本発明に係る電極触媒の製造方法は、特に制限されないが、一例として、以下の貴金属源として有機貴金属錯体を用いた新規な製造方法が挙げられる。すなわち、本発明の他の一形態に係る電極触媒の製造方法は、炭素材料と気体状の有機貴金属錯体とを接触させて、有機貴金属錯体を炭素材料に担持させる工程(以下、単に「担持工程」とも称する)と、炭素材料に担持された有機貴金属錯体を還元する工程(以下、単に「還元工程」とも称する)とを含む。この新規な製造方法によれば、微細な貴金属粒子を高い担持密度で炭素材料に担持させることができるため、上述の本形態の電極触媒の製造方法として好適である。以下、本形態の電極触媒の製造方法について説明する。
<Method for producing electrode catalyst>
Although the manufacturing method of the electrode catalyst which concerns on the above-mentioned this invention is not restrict | limited in particular, The novel manufacturing method using an organic noble metal complex as the following noble metal source is mentioned as an example. That is, the method for producing an electrode catalyst according to another aspect of the present invention includes a step of bringing a carbon material and a gaseous organic noble metal complex into contact with each other and supporting the organic noble metal complex on the carbon material (hereinafter simply referred to as “supporting step”). And a step of reducing the organic noble metal complex supported on the carbon material (hereinafter also simply referred to as “reduction step”). According to this novel manufacturing method, fine noble metal particles can be supported on the carbon material at a high supporting density, which is suitable as a method for manufacturing the above-described electrode catalyst of the present embodiment. Hereinafter, the manufacturing method of the electrode catalyst of this form is demonstrated.
 [担持工程]
 担持工程では、炭素材料と気体状の有機貴金属錯体とを接触させて、有機貴金属錯体を炭素材料に担持させる。
[Supporting process]
In the supporting step, the carbon material and the gaseous organic noble metal complex are brought into contact with each other to support the organic noble metal complex on the carbon material.
 本形態で用いられる炭素材料は、上述の電極触媒における炭素材料と同じなので、ここでは詳細な説明を省略する。 Since the carbon material used in this embodiment is the same as the carbon material in the above-described electrode catalyst, detailed description is omitted here.
 有機貴金属錯体は、上述の電極触媒の貴金属の原料(貴金属源)となるものである。有機貴金属錯体は、貴金属そのものよりも一般的に融点が低いため、減圧条件下において比較的低温で気体となり得る。有機貴金属錯体としては、特に制限されないが、具体的には、1,5-シクロオクタジエンジメチル白金錯体、エチレンビス(トリフェニルホスフィン)白金(0)、テトラキス(トリフェニルホスフィン)白金(0)、ビス(トリ-tert-ブチルホスフィン)白金(0)、(トリメチル)シクロペンタジエニル白金(IV)、シアン化白金(II)、(トリメチル)メチルシクロペンタジエニル白金(IV)、(トリメチル)ペンタメチルシクロペンタジエニル白金(IV)が挙げられる。なお、これらの有機貴金属錯体は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。 The organic noble metal complex serves as a raw material (noble metal source) for the above-mentioned electrode catalyst. An organic noble metal complex generally has a lower melting point than the noble metal itself, and can therefore become a gas at a relatively low temperature under reduced pressure conditions. The organic noble metal complex is not particularly limited, and specifically, 1,5-cyclooctadiene dimethyl platinum complex, ethylene bis (triphenylphosphine) platinum (0), tetrakis (triphenylphosphine) platinum (0), Bis (tri-tert-butylphosphine) platinum (0), (trimethyl) cyclopentadienylplatinum (IV), platinum (II) cyanide, (trimethyl) methylcyclopentadienylplatinum (IV), (trimethyl) penta And methylcyclopentadienylplatinum (IV). These organic noble metal complexes may be used alone or in combination of two or more.
 有機貴金属錯体の使用量(仕込み量)は、特に制限されないが、炭素材料の質量に対し、好ましくは30~150質量%であり、より好ましくは40~80質量%である。このような量であれば、炭素材料に十分な有機貴金属錯体を担持させることができる。 The amount used (preparation amount) of the organic noble metal complex is not particularly limited, but is preferably 30 to 150% by mass, more preferably 40 to 80% by mass with respect to the mass of the carbon material. With such an amount, a sufficient organic noble metal complex can be supported on the carbon material.
 本形態の製造方法では、炭素材料と気体状の有機貴金属錯体とを接触させる前に、炭素材料を減圧条件下で乾燥させることが好ましい。当該減圧条件は、特に制限されず、当業者が適宜設定することができるが、好ましくは1.0×10-7~1.0×10-2Paであり、より好ましくは1.0×10-7~1.0×10-4Paである。なお、乾燥の際の温度も特に制限されず、当業者が適宜設定することができ、炭素材料に悪影響を及ぼさない範囲においては、加熱条件下で乾燥させても構わない。 In the production method of the present embodiment, it is preferable to dry the carbon material under reduced pressure conditions before bringing the carbon material into contact with the gaseous organic noble metal complex. The decompression conditions are not particularly limited and can be appropriately set by those skilled in the art, but are preferably 1.0 × 10 −7 to 1.0 × 10 −2 Pa, more preferably 1.0 × 10 6. -7 to 1.0 × 10 −4 Pa. In addition, the temperature at the time of drying is not particularly limited, and can be appropriately set by those skilled in the art. Drying may be performed under heating conditions as long as the carbon material is not adversely affected.
 炭素材料と気体状の有機貴金属錯体とを接触させる際の温度は、特に制限されないが、好ましくは40~200℃であり、より好ましくは60~150℃である。上記範囲とすることにより、有機貴金属錯体の熱分解等を抑制しつつ、有機貴金属錯体を十分に気化させることができる。 The temperature at which the carbon material and the gaseous organic noble metal complex are brought into contact with each other is not particularly limited, but is preferably 40 to 200 ° C, more preferably 60 to 150 ° C. By setting it as the said range, an organic noble metal complex can fully be vaporized, suppressing the thermal decomposition etc. of an organic noble metal complex.
 炭素材料と気体状の有機貴金属錯体とを接触させる時間も、特に制限されないが、好ましくは1~72時間であり、より好ましくは6~48時間である。上記範囲とすることにより、炭素材料に担持された後の有機貴金属錯体の粒径が大きくなり過ぎず、十分な量の有機貴金属錯体を担持させることができる。 The time for contacting the carbon material and the gaseous organic noble metal complex is not particularly limited, but is preferably 1 to 72 hours, more preferably 6 to 48 hours. By setting it as the above range, the particle diameter of the organic noble metal complex after being supported on the carbon material does not become too large, and a sufficient amount of the organic noble metal complex can be supported.
 本形態における担持工程は、炭素材料と気体状の有機貴金属錯体とを接触させることができれば、その他の条件、使用する装置、操作方法等は、特に制限されない。一例を挙げると、後述の実施例のように、有機貴金属錯体を入れたガラス管Aと炭素材料とをガラス管Bに入れて減圧下で封じ、当該ガラス管Bを加熱する方法が挙げられる。これにより、ガラス管A内の有機貴金属錯体が気体状となってガラス管Bに充満し、炭素材料と接触することによって有機貴金属錯体が炭素材料に担持される。 The supporting step in this embodiment is not particularly limited as long as the carbon material and the gaseous organic noble metal complex can be brought into contact with each other, as long as the other conditions, the apparatus to be used, and the operation method are used. As an example, a glass tube A containing an organic noble metal complex and a carbon material are placed in a glass tube B, sealed under reduced pressure, and the glass tube B is heated as in the examples described later. Thereby, the organic noble metal complex in the glass tube A becomes a gas and fills the glass tube B, and the organic noble metal complex is supported on the carbon material by contacting with the carbon material.
 [還元工程]
 本形態の製造方法では、上記担持工程の後、炭素材料に担持された有機貴金属錯体を還元し、炭素材料に貴金属が担持された電極触媒を得る。
[Reduction process]
In the production method of this embodiment, after the supporting step, the organic noble metal complex supported on the carbon material is reduced to obtain an electrode catalyst in which the noble metal is supported on the carbon material.
 本工程において、炭素材料に担持された有機貴金属錯体を還元する方法は特に制限されず、公知の方法を適宜採用することができる。一例を挙げると、後述の実施例のように、有機貴金属錯体が担持された炭素材料を減圧条件下で熱処理することによって有機貴金属錯体を還元する方法(以下、単に「熱還元法」とも称する)が挙げられる。ただし、この方法は減圧条件下のみに限定されるわけではなく、不活性雰囲気や水素雰囲気で熱処理してもよい。熱還元法における熱処理条件は、特に制限されないが、好ましい条件は以下の通りである。熱処理の際の温度は、好ましくは150~400℃であり、より好ましくは200~300℃である。熱処理の際の気圧は、好ましくは1.0×10-2Pa以下であり、より好ましくは1.0×10-7~1.0×10-4Paである。熱処理の時間は、好ましくは0.5~48時間であり、より好ましくは1~12時間である。上記範囲内であれば、炭素材料に担持された有機貴金属錯体を十分に還元することができる。 In this step, the method for reducing the organic noble metal complex supported on the carbon material is not particularly limited, and a known method can be appropriately employed. As an example, a method of reducing an organic noble metal complex by heat-treating a carbon material carrying the organic noble metal complex under reduced pressure conditions (hereinafter also simply referred to as “thermal reduction method”) as in the examples described later. Is mentioned. However, this method is not limited only to the reduced pressure condition, and heat treatment may be performed in an inert atmosphere or a hydrogen atmosphere. The heat treatment conditions in the thermal reduction method are not particularly limited, but preferable conditions are as follows. The temperature during the heat treatment is preferably 150 to 400 ° C, more preferably 200 to 300 ° C. The atmospheric pressure during the heat treatment is preferably 1.0 × 10 −2 Pa or less, more preferably 1.0 × 10 −7 to 1.0 × 10 −4 Pa. The heat treatment time is preferably 0.5 to 48 hours, more preferably 1 to 12 hours. Within the above range, the organic noble metal complex supported on the carbon material can be sufficiently reduced.
 また、上記熱還元法以外に、有機貴金属錯体が担持された炭素材料を水素処理することによって有機貴金属錯体を還元する方法(以下、単に「水素還元法」とも称する)を用いてもよい。水素還元法における条件も、特に制限されないが、好ましくは25~100℃の温度条件下で、好ましくは30分間以上、有機貴金属錯体が担持された炭素材料と接触させる。これにより、熱還元法の場合と同様に、炭素材料に担持された有機貴金属錯体を十分に還元することができる。 In addition to the thermal reduction method described above, a method of reducing the organic noble metal complex by treating the carbon material carrying the organic noble metal complex with hydrogen (hereinafter also simply referred to as “hydrogen reduction method”) may be used. The conditions in the hydrogen reduction method are also not particularly limited, but are preferably brought into contact with a carbon material carrying an organic noble metal complex under a temperature condition of 25 to 100 ° C., preferably for 30 minutes or more. Thereby, similarly to the case of the thermal reduction method, the organic noble metal complex supported on the carbon material can be sufficiently reduced.
 <燃料電池>
 上述の本発明に係る電極触媒は、従来の電極触媒と比較して、微細な貴金属粒子が高い担持密度で炭素材料に担持されているため、反応に関与する貴金属の比表面積が、従来よりも大きく、その結果、優れた触媒活性を発揮することができる。そのため、上記電極触媒を燃料電池の触媒層に使用することにより、燃料電池の発電性能を向上させることが可能である。よって、本発明の他の一形態によると、上記電極触媒を有する電極触媒層を備えた燃料電池が提供される。以下、本形態の燃料電池について説明する。
<Fuel cell>
In the electrode catalyst according to the present invention described above, since the fine noble metal particles are supported on the carbon material at a higher support density than the conventional electrode catalyst, the specific surface area of the noble metal involved in the reaction is higher than that of the conventional one. As a result, excellent catalytic activity can be exhibited. Therefore, the power generation performance of the fuel cell can be improved by using the electrode catalyst in the catalyst layer of the fuel cell. Therefore, according to another aspect of the present invention, there is provided a fuel cell including an electrode catalyst layer having the electrode catalyst. Hereinafter, the fuel cell of this embodiment will be described.
 燃料電池は、一般に、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとから構成される。 A fuel cell generally includes a pair of separators comprising a membrane electrode assembly (MEA), an anode separator having a fuel gas passage through which fuel gas flows, and a cathode separator having an oxidant gas passage through which oxidant gas flows. It consists of.
 図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。 FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention. The PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane. The laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c). Thus, the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
 PEFC1において、MEA10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。 In PEFC1, the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c). In FIG. 1, the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10. However, in a fuel cell stack in which a plurality of MEAs are stacked, the separator is generally used as a separator for an adjacent PEFC (not shown). In other words, in the fuel cell stack, the MEAs are sequentially stacked via the separator to form a stack. In an actual fuel cell stack, a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC. These descriptions are omitted in FIG.
 セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。 The separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment. The convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured. Further, a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path. Specifically, a fuel gas (for example, hydrogen) is circulated through the gas flow path 6a of the anode separator 5a, and an oxidant gas (for example, air) is circulated through the gas flow path 6c of the cathode separator 5c.
 一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。 On the other hand, the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1. . Further, the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
 なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。 In the embodiment shown in FIG. 1, the separators (5a, 5c) are formed in an uneven shape. However, the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
 上記のような、本発明のMEAを有する燃料電池は、優れた発電性能を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では固体高分子形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、固体高分子形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。 The fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance. Here, the type of the fuel cell is not particularly limited. In the above description, the solid polymer fuel cell has been described as an example. However, in addition to the above, an alkaline fuel cell and a direct methanol fuel cell are used. And a micro fuel cell. Among them, a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output. The fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited. Among them, it is particularly preferable to use as a power source for a mobile body such as an automobile that requires a high output voltage after a relatively long time of operation stop.
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。 The fuel used when operating the fuel cell is not particularly limited. For example, hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used. Of these, hydrogen and methanol are preferably used in that high output is possible.
 また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜-電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。 Further, the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle. The electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
 以下、本形態の燃料電池を構成する部材について簡単に説明するが、本発明の技術的範囲は下記の形態のみに制限されない。 Hereinafter, although the members constituting the fuel cell of the present embodiment will be briefly described, the technical scope of the present invention is not limited only to the following embodiments.
 [触媒層]
 触媒層は、上述の本発明に係る電極触媒および電解質を含む。本形態の燃料電池では、上述の本発明に係る電極触媒は、カソード触媒層またはアノード触媒層のいずれか一方に存在していればよく、両方に存在していても構わない。酸素還元活性の観点から、上述の本発明に係る電極触媒は、アノード触媒層に存在していることが好ましい。
[Catalyst layer]
The catalyst layer includes the above-described electrode catalyst and electrolyte according to the present invention. In the fuel cell of the present embodiment, the above-described electrode catalyst according to the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, or may be present in both. From the viewpoint of oxygen reduction activity, the above-described electrode catalyst according to the present invention is preferably present in the anode catalyst layer.
 電解質は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。 The electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
 当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。 The polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to. Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
 フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。 Examples of ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. Perfluorocarbon sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
 炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。 Specific examples of the hydrocarbon electrolyte include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP). These hydrocarbon polymer electrolytes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the selectivity of the material is high. In addition, as for the ion exchange resin mentioned above, only 1 type may be used independently and 2 or more types may be used together. Moreover, it is not restricted only to the material mentioned above, Other materials may be used.
 プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の高分子電解質を含み、より好ましくは1200g/eq.以下の高分子電解質を含み、特に好ましくは1000g/eq.以下の高分子電解質を含む。 Proton conductivity is important in polymer electrolytes responsible for proton transmission. Here, when the EW of the polymer electrolyte is too large, the ionic conductivity in the entire catalyst layer is lowered. Therefore, it is preferable that the catalyst layer of this embodiment contains a polymer electrolyte having a small EW. Specifically, the catalyst layer of this embodiment preferably has an EW of 1500 g / eq. The following polymer electrolyte is contained, More preferably, it is 1200 g / eq. The following polymer electrolyte is included, and particularly preferably 1000 g / eq. The following polymer electrolytes are included.
 一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq」の単位で表される。 On the other hand, if the EW is too small, the hydrophilicity is too high and it becomes difficult to smoothly move water. From such a viewpoint, the EW of the polymer electrolyte is preferably 600 or more. Note that EW (Equivalent Weight) represents an equivalent weight of an exchange group having proton conductivity. The equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
 また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/eq.以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。 Further, the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface. At this time, the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved. The EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
 さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。 Furthermore, it is desirable to use a polymer electrolyte with the lowest EW in a region higher than the average temperature of the cooling water inlet and outlet. As a result, the resistance value is reduced regardless of the current density region, and the battery performance can be further improved.
 さらには、燃料電池システムの抵抗値を小さくするとする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガスおよび酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。 Furthermore, from the viewpoint of reducing the resistance value of the fuel cell system, the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the channel length. It is desirable to use it in the range area.
 本形態の触媒層は、触媒と高分子電解質との間に、触媒と高分子電解質(固体プロトン伝導材)とをプロトン伝導可能な状態に連結しうる液体プロトン伝導材を含んでもよい。液体プロトン伝導材が導入されることによって、触媒と高分子電解質との間に、液体プロトン伝導材を介したプロトン輸送経路が確保され、発電に必要なプロトンを効率的に触媒表面へ輸送することが可能となる。これにより、触媒の利用効率が向上するため、発電性能を維持しながら触媒の使用量を低減することが可能となる。この液体プロトン伝導材は触媒と高分子電解質との間に介在していればよく、触媒層内の多孔質担体間の空孔(二次空孔)や多孔質担体内の空孔(ミクロ孔またはメソ孔:一次空孔)内に配置されうる。 The catalyst layer of this embodiment may include a liquid proton conductive material that can connect the catalyst and the polymer electrolyte (solid proton conductive material) in a proton conductive state between the catalyst and the polymer electrolyte. By introducing a liquid proton conductive material, a proton transport path through the liquid proton conductive material is secured between the catalyst and the polymer electrolyte, and protons necessary for power generation are efficiently transported to the catalyst surface. Is possible. Thereby, since the utilization efficiency of a catalyst improves, it becomes possible to reduce the usage-amount of a catalyst, maintaining electric power generation performance. The liquid proton conductive material only needs to be interposed between the catalyst and the polymer electrolyte, and the pores (secondary pores) between the porous carriers in the catalyst layer and the pores (micropores) in the porous carrier. Or mesopores: primary vacancies).
 液体プロトン伝導材としては、イオン伝導性を有し、触媒と高分子電解質と間のプロトン輸送経路を形成する機能を発揮しうる限り、特に限定されることはない。具体的には水、プロトン性イオン液体、過塩素酸水溶液、硝酸水溶液、ギ酸水溶液、酢酸水溶液などを挙げることができる。 The liquid proton conductive material is not particularly limited as long as it has ion conductivity and can exhibit a function of forming a proton transport path between the catalyst and the polymer electrolyte. Specific examples include water, protic ionic liquid, aqueous perchloric acid solution, aqueous nitric acid solution, aqueous formic acid solution, and aqueous acetic acid solution.
 液体プロトン伝導材として水を使用する場合には、発電を開始する前に少量の液水か加湿ガスにより触媒層を湿らせることによって、触媒層内に液体プロトン伝導材としての水を導入することができる。また、燃料電池の作動時における電気化学反応によって生じた生成水を液体プロトン伝導材として利用することもできる。したがって、燃料電池の運転開始の状態においては、必ずしも液体プロトン伝導材が保持されている必要はない。例えば、触媒と電解質との表面距離を、水分子を構成する酸素イオン径である0.28nm以上とすることが望ましい。このような距離を保持することによって、触媒と高分子電解質との非接触状態を保持しながら、触媒と高分子電解質の間(液体伝導材保持部)に水(液体プロトン伝導材)を介入させることができ、両者間の水によるプロトン輸送経路が確保されることになる。 When water is used as the liquid proton conductive material, water as the liquid proton conductive material is introduced into the catalyst layer by moistening the catalyst layer with a small amount of liquid water or humidified gas before starting power generation. Can do. Moreover, the water produced by the electrochemical reaction during the operation of the fuel cell can be used as the liquid proton conductive material. Therefore, it is not always necessary to hold the liquid proton conductive material when the fuel cell is in operation. For example, the surface distance between the catalyst and the electrolyte is preferably 0.28 nm or more, which is the diameter of oxygen ions constituting water molecules. By maintaining such a distance, water (liquid proton conductive material) is interposed between the catalyst and the polymer electrolyte (liquid conductive material holding part) while maintaining a non-contact state between the catalyst and the polymer electrolyte. Therefore, a proton transport route by water between them can be secured.
 イオン性液体など、水以外のものを液体プロトン伝導材として使用する場合には、触媒インク作製時に、イオン性液体と高分子電解質と触媒とを溶液中に分散させることが望ましいが、触媒を触媒層基材に塗布する際にイオン性液体を添加してもよい。 When a material other than water, such as an ionic liquid, is used as the liquid proton conducting material, it is desirable to disperse the ionic liquid, the polymer electrolyte, and the catalyst in the solution when preparing the catalyst ink. An ionic liquid may be added when applying to the layer substrate.
 触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。 For the catalyst layer, a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary. ), A thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
 触媒層の厚み(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらに好ましくは2~15μmである。なお、上記厚みは、カソード触媒層およびアノード触媒層双方に適用される。しかし、カソード触媒層およびアノード触媒層の厚みは、同じであってもあるいは異なってもよい。 The thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 μm, more preferably 1 to 20 μm, still more preferably 2 to 15 μm. In addition, the said thickness is applied to both a cathode catalyst layer and an anode catalyst layer. However, the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
 [電解質膜]
 電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
[Electrolyte membrane]
The electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG. The solid polymer electrolyte membrane 2 has a function of selectively permeating protons generated in the anode catalyst layer 3a during operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction. The solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
 固体高分子電解質膜2を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、先に高分子電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いた高分子電解質と必ずしも同じものを用いる必要はない。 The electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to. For example, the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
 電解質層の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5~300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性および使用時の出力特性のバランスが適切に制御されうる。 The thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited. The thickness of the electrolyte layer is usually about 5 to 300 μm. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
 [ガス拡散層]
 ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
[Gas diffusion layer]
The gas diffusion layers (anode gas diffusion layer 4a, cathode gas diffusion layer 4c) are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
 ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。 The material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably. For example, a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used. The thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 μm. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。 The gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding. The water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。 In order to further improve the water repellency, the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。 The carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area. The average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。 Examples of the water repellent used for the carbon particle layer include the same water repellents as described above. Among these, fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。 The mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good. In addition, there is no restriction | limiting in particular also about the thickness of a carbon particle layer, What is necessary is just to determine suitably in consideration of the water repellency of the gas diffusion layer obtained.
 [セパレータ]
 セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
[Separator]
The separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack. The separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other. In order to secure these flow paths, as described above, each of the separators is preferably provided with a gas flow path and a cooling flow path. As a material constituting the separator, conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation. The thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。 The manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。 Furthermore, a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage. The shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
 上述した本形態のPEFCや膜電極接合体は、触媒層に上述の本発明に係る電極触媒層を用いているため、優れた発電性能を発揮することができる。したがって、本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。 The PEFC and membrane electrode assembly of the present embodiment described above can exhibit excellent power generation performance because the electrode catalyst layer according to the present invention is used for the catalyst layer. Therefore, the PEFC of this embodiment and the fuel cell stack using the PEFC can be mounted on a vehicle as a driving power source, for example.
 本発明を、以下の実施例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、以下において、室温とは(25℃)を意味する。 The present invention will be described in further detail using the following examples. However, the technical scope of the present invention is not limited only to the following examples. In the following, room temperature means (25 ° C.).
 <電極触媒の製造>
 [実施例1]
 1,5-シクロオクタジエンジメチル白金錯体80mgをガラス管Aに入れ、ガラス管の口に石英ウールを詰めた。当該ガラス管Aを、炭素材料(ケッチェンブラック(登録商標)ECP600JP、ケッチェン・ブラック・インターナショナル社製)200mgを入れたガラス管Bに入れ、オイルポンプを用いてガラス管B内を減圧下(1.0×10-2Pa)としたままガラス管Bに入っている炭素担体のみを真空加熱乾燥し、その間はガラス管Aに入っている錯体が分解しないようにガラス管Aをガラス管Bの加熱されていない柄の部分に寄せておいた。炭素担体を真空加熱乾燥後、炭素担体を放冷させてからガラス管Aをガラス管Bの炭素担体が入っている側に移動させ、ガスバーナーでガラス管Bを封じた。次に、ガラス管Aを封入した当該ガラス管Bを、オイルバス中で100℃、28時間保持した。これにより、1,5-シクロオクタジエンジメチル白金錯体が昇華し、炭素材料と接触した。その後、ガラス管Bを室温まで自然放冷し、ガラス管Bから1,5-シクロオクタジエンジメチル白金錯体が吸着した炭素材料を取り出した。
<Manufacture of electrode catalyst>
[Example 1]
80 mg of 1,5-cyclooctadiene dimethylplatinum complex was placed in a glass tube A, and quartz wool was filled in the mouth of the glass tube. The glass tube A is put into a glass tube B containing 200 mg of a carbon material (Ketjen Black (registered trademark) ECP600JP, manufactured by Ketjen Black International), and the inside of the glass tube B is reduced in pressure using an oil pump (1 0.0 × 10 −2 Pa), only the carbon carrier contained in the glass tube B is vacuum-heated and dried, and the glass tube A is removed from the glass tube B so that the complex contained in the glass tube A does not decompose during that time. It was put on the part of the handle which was not heated. After drying the carbon support under vacuum heating, the carbon support was allowed to cool, the glass tube A was moved to the side of the glass tube B containing the carbon support, and the glass tube B was sealed with a gas burner. Next, the said glass tube B which enclosed the glass tube A was hold | maintained for 28 hours at 100 degreeC in the oil bath. As a result, the 1,5-cyclooctadiene dimethyl platinum complex sublimated and contacted the carbon material. Thereafter, the glass tube B was naturally allowed to cool to room temperature, and the carbon material adsorbed with the 1,5-cyclooctadiene dimethyl platinum complex was taken out of the glass tube B.
 上記で得られた1,5-シクロオクタジエンジメチル白金錯体が吸着した炭素材料をガラス管Cに入れ、ターボモレキュラーポンプを用いてガラス管C内を減圧下(1.0×10-4Pa)としたまま、当該ガラス管Cを室温から300℃まで5℃/分で昇温させ、その後300℃で1時間保持した。その後、ガラス管Cを室温まで自然放冷し、ガラス管Cから触媒1を取り出した。 The carbon material adsorbed with the 1,5-cyclooctadiene dimethylplatinum complex obtained above is put into a glass tube C, and the inside of the glass tube C is reduced under pressure (1.0 × 10 −4 Pa) using a turbomolecular pump. The glass tube C was heated from room temperature to 300 ° C. at a rate of 5 ° C./min, and then kept at 300 ° C. for 1 hour. Thereafter, the glass tube C was naturally cooled to room temperature, and the catalyst 1 was taken out from the glass tube C.
 [実施例2]
 1,5-シクロオクタジエンジメチル白金錯体160mgをガラス管Aに入れ、ガラス管の口に石英ウールを詰めた。当該ガラス管Aを、炭素材料(ケッチェンブラック(登録商標)ECP600JP、ケッチェン・ブラック・インターナショナル社製)200mgを入れたガラス管Bに入れ、オイルポンプを用いてガラス管B内を減圧下(1.0×10-2Pa)としたままガラス管Bに入っている炭素担体のみを真空加熱乾燥し、その間はガラス管Aに入っている錯体が分解しないようにガラス管Aをガラス管Bの加熱されていない柄の部分に寄せておいた。炭素担体を真空加熱乾燥後、炭素担体を放冷させてからガラス管Aをガラス管Bの炭素担体が入っている側に移動させ、ガスバーナーでガラス管Bを封じた。次に、ガラス管Aを封入した当該ガラス管Bを、オイルバス中で150℃、24時間保持した。これにより、1,5-シクロオクタジエンジメチル白金錯体が昇華し、炭素材料と接触した。その後、ガラス管Bを室温まで自然放冷し、ガラス管Bから1,5-シクロオクタジエンジメチル白金錯体が吸着した炭素材料を取り出した。
[Example 2]
160 mg of 1,5-cyclooctadiene dimethylplatinum complex was placed in a glass tube A, and quartz wool was filled in the mouth of the glass tube. The glass tube A is put into a glass tube B containing 200 mg of a carbon material (Ketjen Black (registered trademark) ECP600JP, manufactured by Ketjen Black International), and the inside of the glass tube B is reduced in pressure using an oil pump (1 0.0 × 10−2 Pa), only the carbon support contained in the glass tube B is vacuum-heated and dried, and during this time, the glass tube A is heated to the glass tube B so that the complex contained in the glass tube A is not decomposed. It was put on the part of the handle that was not done. After drying the carbon support under vacuum heating, the carbon support was allowed to cool, the glass tube A was moved to the side of the glass tube B containing the carbon support, and the glass tube B was sealed with a gas burner. Next, the said glass tube B which enclosed the glass tube A was hold | maintained for 24 hours at 150 degreeC in the oil bath. As a result, the 1,5-cyclooctadiene dimethyl platinum complex sublimated and contacted the carbon material. Thereafter, the glass tube B was naturally allowed to cool to room temperature, and the carbon material adsorbed with the 1,5-cyclooctadiene dimethyl platinum complex was taken out of the glass tube B.
 上記で得られた1,5-シクロオクタジエンジメチル白金錯体が吸着した炭素材料をガラス管Cに入れ、ターボモレキュラーポンプを用いてガラス管C内を減圧下(1.0×10-4Pa)としたまま、当該ガラス管Cを室温から300℃まで5℃/分で昇温させ、その後300℃で1時間保持した。その後、ガラス管Cを室温まで自然放冷し、ガラス管Cから触媒2を取り出した。 The carbon material adsorbed with the 1,5-cyclooctadiene dimethylplatinum complex obtained above is placed in a glass tube C, and the inside of the glass tube C is reduced under reduced pressure (1.0 × 10 −4 Pa) using a turbomolecular pump. The glass tube C was heated from room temperature to 300 ° C. at a rate of 5 ° C./min, and then kept at 300 ° C. for 1 hour. Thereafter, the glass tube C was naturally cooled to room temperature, and the catalyst 2 was taken out from the glass tube C.
 [比較例1]
 炭素材料(ケッチェンブラック(登録商標)ECP600JP、ケッチェン・ブラック・インターナショナル社製)0.5014gをマグネチックスターラーバーとともに100mlの二口ナス型フラスコに入れた。そして、150℃で6時間、真空加熱乾燥を行った後、自然放冷した。続いて255mgの1,5-シクロオクタジエンジメチル白金錯体を溶解させた25mlのアセトニトリルを、炭素材料の入ったフラスコにシリンジを用いて真空含浸させ、その後室温で10分間撹拌した。そして、6時間還流を行った後(還流の際のオイルバスの温度は110℃)、放冷させ、25mlのアセトニトリルを加え、溶液をメンブレンフィルターで濾過した。さらに50mlのアセトニトリルで試料を洗浄し、100℃で6時間、真空加熱乾燥し、比較触媒1を得た(収量0.5357g)。
[Comparative Example 1]
0.5014 g of carbon material (Ketjen Black (registered trademark) ECP600JP, manufactured by Ketjen Black International Co., Ltd.) was placed in a 100 ml two-necked eggplant type flask together with a magnetic stirrer bar. And after performing vacuum heating drying at 150 degreeC for 6 hours, it stood to cool naturally. Subsequently, 25 ml of acetonitrile in which 255 mg of 1,5-cyclooctadienedimethylplatinum complex was dissolved was vacuum impregnated into the flask containing the carbon material using a syringe, and then stirred at room temperature for 10 minutes. After refluxing for 6 hours (the temperature of the oil bath during reflux was 110 ° C.), the mixture was allowed to cool, 25 ml of acetonitrile was added, and the solution was filtered through a membrane filter. Further, the sample was washed with 50 ml of acetonitrile, and dried under vacuum heating at 100 ° C. for 6 hours to obtain a comparative catalyst 1 (yield: 0.5357 g).
 <白金担持密度の測定>
 上記で得られた各触媒における白金の担持密度を下記の方法で測定した。まず、触媒に吸着した水を取り除くために、100℃で6時間、真空加熱乾燥処理を行った。その後、触媒をグローブボックス内で5mg程度秤量し、これを溶液化し、得られた溶液中に含まれる白金を誘導結合プラズマ(ICP)発光分光分析装置(エスアイアイナノテクノロジー社製、SPS-3500型)を用いて定量した。そして、下記式1に基づき、触媒における白金の担持密度を算出した。結果を表1に示す。
<Measurement of platinum loading density>
The platinum loading density in each catalyst obtained above was measured by the following method. First, in order to remove the water adsorbed on the catalyst, vacuum heat drying treatment was performed at 100 ° C. for 6 hours. Thereafter, about 5 mg of the catalyst is weighed in a glove box, and this is converted into a solution, and platinum contained in the obtained solution is converted into an inductively coupled plasma (ICP) emission spectroscopic analyzer (manufactured by SII Nano Technology, SPS-3500 type) ). And based on the following formula 1, the carrying density of platinum in the catalyst was calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の結果より、本発明に係る触媒1および2は、従来の液相担持方法によって得られた比較触媒1よりも、白金の担持密度が高いことが示された。 From the results of Table 1, it was shown that the catalysts 1 and 2 according to the present invention have a higher platinum loading density than the comparative catalyst 1 obtained by the conventional liquid phase loading method.
 <X線回折(XRD)測定>
 上記で得られた触媒1、ブランク(ケッチェンブラックのみ)、市販の白金担持カーボン触媒(田中貴金属工業製、TEC10E50E)についてX線回折測定を行った。X線回折測定は、島津製作所製XRD-6100を用いて行い、線源はCu-Kα、電圧30kV、電流20mAで行った。結果を図2に示す。
<X-ray diffraction (XRD) measurement>
X-ray diffraction measurement was performed on the catalyst 1, the blank (only Ketjen Black) obtained above, and a commercially available platinum-supported carbon catalyst (manufactured by Tanaka Kikinzoku Kogyo, TEC10E50E). X-ray diffraction measurement was performed using an XRD-6100 manufactured by Shimadzu Corporation, and the radiation source was Cu-Kα, a voltage of 30 kV, and a current of 20 mA. The results are shown in FIG.
 図2より、市販のTEC10E50EのXRDパターンでは、40°付近に白金由来のピークが観測された。しかしながら、触媒1のXRDパターンでは、40°付近にピークが観察されず、ブランクと同様のパターンを示した。この結果より、触媒1に担持された白金粒子は、市販のTEC10E50Eの白金粒子と比較して、非常に微細であることが示唆された。 2. From FIG. 2, in the XRD pattern of the commercially available TEC10E50E, a peak derived from platinum was observed around 40 °. However, in the XRD pattern of the catalyst 1, no peak was observed in the vicinity of 40 °, and the same pattern as the blank was shown. From this result, it was suggested that the platinum particles supported on the catalyst 1 are very fine compared to the commercially available platinum particles of TEC10E50E.
 <電気化学的評価>
 上記で得られた触媒1および2ならびに比較触媒1について、以下の方法で電気化学的評価を行った。触媒1および2ならびに比較触媒1を、それぞれ11.4mg、12.8mg、10.4mgずつ秤量し、水19mLおよびイソプロパノール6mLの混合液に分散させ、これにナフィオン溶液(DE521CS、5wt%、アルドリッチ製)100μL加えて触媒インクを調製した。その後、1時間以上超音波分散を行った。調製した触媒インク10μLを研磨済みのグラッシーカーボン電極(φ5.0mm、北斗電工製)に塗布し、60℃の乾燥機中で10分間乾燥した。電極の表面塗布状態は顕微鏡観察により確認し、触媒層の塗り残し、はみ出しのない電極を評価に用いた。
<Electrochemical evaluation>
The catalysts 1 and 2 and the comparative catalyst 1 obtained above were subjected to electrochemical evaluation by the following method. Catalysts 1 and 2 and Comparative Catalyst 1 were weighed 11.4 mg, 12.8 mg, and 10.4 mg, respectively, and dispersed in a mixed solution of 19 mL of water and 6 mL of isopropanol, and Nafion solution (DE521CS, 5 wt%, manufactured by Aldrich) ) 100 μL was added to prepare a catalyst ink. Thereafter, ultrasonic dispersion was performed for 1 hour or longer. 10 μL of the prepared catalyst ink was applied to a polished glassy carbon electrode (φ5.0 mm, manufactured by Hokuto Denko), and dried in a dryer at 60 ° C. for 10 minutes. The surface coating state of the electrode was confirmed by microscopic observation, and the electrode without any uncoated catalyst layer and protruding was used for evaluation.
 電気化学測定は通常の三室型セル(ミックラボ製)で行った。電解質溶液は0.1Mの過塩素酸(Ultrapur、関東化学製)を用いた。対極はPt線、参照極は可逆水素電極(RHE)とした。電位制御はHZ-5000(北斗電工製)を用いて行った。回転電極(RDE)装置はHR-301(北斗電工製)を用いた。セル温度は外部循環方式の恒温槽(CHL300、YAMATO製)を用いて25℃(±1℃)に制御した。COストリッピングの測定には1%COのArバランスガス(太陽日酸製)を使用した。全ての計測はドラフト内で実施した。 Electrochemical measurement was performed with a normal three-chamber cell (Mick Lab). As the electrolyte solution, 0.1 M perchloric acid (Ultrapur, manufactured by Kanto Chemical Co., Inc.) was used. The counter electrode was a Pt line, and the reference electrode was a reversible hydrogen electrode (RHE). Potential control was performed using HZ-5000 (manufactured by Hokuto Denko). HR-301 (manufactured by Hokuto Denko) was used as the rotating electrode (RDE) device. The cell temperature was controlled to 25 ° C. (± 1 ° C.) using an external circulation thermostat (CHL300, manufactured by YAMATO). For the measurement of CO stripping, 1% CO Ar balance gas (manufactured by Taiyo Nippon Sanso) was used. All measurements were performed in the draft.
 電極の前処理として0~1.2Vの範囲を100mV/sで20サイクル走査した後、サイクリックボルタンメトリー(結果を図3に示す)や対流ボルタンメトリー等の測定を行った。COストリッピングの測定では、1%COガスが飽和した電解質溶液中で、電極を400rpmで回転させながら0.05Vに30分間保持した。この条件においてCO吸着量が飽和に達することを確認した。溶液中のCOガスを窒素で完全に置換した後、0.05Vから1.2Vまで、20mV/sで3サイクルのCV計測を行った。2サイクル目と3サイクル目のCVはきれいに重なって観察された。1サイクル目と2サイクル目以降の応答電流の差よりCOストリッピングピークの電気量を算出し、COによるPtの最大被覆率が0.68になると仮定し、換算係数285.6μC・cmPt-2を適用して電気化学的に活性な表面積を算出した。電気化学的面積(ECA)はこれを白金量で割り付けることで算出した(結果を図4Aに示す)。 As a pretreatment of the electrodes, a range of 0 to 1.2 V was scanned for 20 cycles at 100 mV / s, and then measurements such as cyclic voltammetry (results are shown in FIG. 3) and convective voltammetry were performed. In the measurement of CO stripping, the electrode was held at 0.05 V for 30 minutes in an electrolyte solution saturated with 1% CO gas while rotating the electrode at 400 rpm. It was confirmed that the CO adsorption amount reached saturation under these conditions. After the CO gas in the solution was completely replaced with nitrogen, CV measurement was performed for 3 cycles from 0.05 V to 1.2 V at 20 mV / s. The CVs in the second and third cycles were observed with a clear overlap. The amount of electricity at the CO stripping peak is calculated from the difference between the response currents after the first cycle and the second cycle, and the maximum Pt coverage by CO is assumed to be 0.68, and the conversion factor is 285.6 μC · cmPt −2 Was applied to calculate the electrochemically active surface area. The electrochemical area (ECA) was calculated by assigning this by the amount of platinum (the result is shown in FIG. 4A).
 図3のサイクリックボルタモグラムに示されるように、いずれの触媒においても白金の存在に由来する水素の発生・酸化による電流が観測された。さらに、白金の担持密度が高くなるにつれて、白金表面への水素の吸脱着と白金の酸化還元による電気量が多くなることが確認された。 As shown in the cyclic voltammogram of FIG. 3, the current due to the generation and oxidation of hydrogen derived from the presence of platinum was observed in any catalyst. Furthermore, it was confirmed that the amount of electricity due to adsorption / desorption of hydrogen on the platinum surface and oxidation / reduction of platinum increases as the platinum loading density increases.
 図4AのCOストリッピングの結果を基に算出した値から、白金粒子の比表面積は、触媒1で299m/g、触媒2で337m/g、比較触媒1で290m/gであることが分かった。この値は、白金粒子を球と仮定した場合、平均粒子径が1nm以下であることを意味する(図4Bを参照)。 From the value calculated based on the results of the CO stripping Figure 4A, the specific surface area of the platinum particles is 290 m 2 / g in catalyst 1 299m 2 / g, the catalyst 2 337m 2 / g, with comparative catalyst 1 I understood. This value means that when the platinum particles are assumed to be spheres, the average particle diameter is 1 nm or less (see FIG. 4B).
 <高角度散乱暗視野走査透過電子顕微鏡(HAADF-STEM)観察>
 比較触媒1について、白金が担持されている様子を観察するため、高角度散乱暗視野走査透過電子顕微鏡(HAADF-STEM)観察を行った。具体的には、株式会社日立ハイテクノロジーズ社製、HD-2700型の走査透過電子顕微鏡(STEM)を用い、加速電圧200kVにて観察した。結果を図5A~5Dに示す。
<High-angle scattering dark field scanning transmission electron microscope (HAADF-STEM) observation>
The comparative catalyst 1 was observed with a high angle scattering dark field scanning transmission electron microscope (HAADF-STEM) in order to observe how platinum was supported. Specifically, the observation was performed using an HD-2700 scanning transmission electron microscope (STEM) manufactured by Hitachi High-Technologies Corporation at an acceleration voltage of 200 kV. The results are shown in FIGS. 5A-5D.
 図5A~5Dの結果より、比較触媒1に担持された白金粒子のほとんどが1nm以下であり、平均粒子径が1nm以下となることが確認された。上述のCOストリッピングの結果を基に算出した白金粒子の比表面積の結果を考慮すると、比較触媒1よりも白金粒子の比表面積が大きい触媒1および2においても白金粒子の平均粒子径が1nm以下となることが示された。 From the results shown in FIGS. 5A to 5D, it was confirmed that most of the platinum particles supported on the comparative catalyst 1 were 1 nm or less and the average particle diameter was 1 nm or less. Considering the result of the specific surface area of the platinum particles calculated based on the result of the above-mentioned CO stripping, the average particle diameter of the platinum particles is 1 nm or less even in the catalysts 1 and 2 having a larger specific surface area of the platinum particles than the comparative catalyst 1 It was shown that
 <窒素吸脱着測定>
 上記で得られた触媒1および2ならびにブランク(炭素材料のみ)について窒素吸脱着測定を行った。窒素吸脱着測定は、日本ベル製BELSORP miniを用いて行い、-196℃の温度で、多点法で行った。0.01<P/P<0.05の相対圧の範囲での吸着等温線よりBET比表面積(SBET)を求めた。全空孔容積(Vtotal)は、0.96の相対圧における吸着Nの容積より求めた。ミクロ孔容積(Vmicro)は、それぞれの窒素吸着等温線のデータを使用してDubinin-Radushkevich(DR)方程式で算出した。メソ孔容積(Vmeso)は、全空孔容積からミクロ孔容積(Vmicro)を差し引いて求めた。ブランクにおける各値を1.00とした場合の結果を下記表2に示す。
<Measurement of nitrogen adsorption / desorption>
Nitrogen adsorption / desorption measurements were performed on the catalysts 1 and 2 and the blank (carbon material only) obtained above. Nitrogen adsorption / desorption measurement was performed using BELSORP mini manufactured by Nippon Bell Co., Ltd., and a multipoint method was performed at a temperature of −196 ° C. The BET specific surface area (S BET ) was determined from the adsorption isotherm in the range of 0.01 <P / P 0 <0.05. The total pore volume (V total ) was determined from the volume of adsorbed N 2 at a relative pressure of 0.96. The micropore volume (V micro ) was calculated by the Dubinin-Radushkevich (DR) equation using the respective nitrogen adsorption isotherm data. The mesopore volume (V meso ) was determined by subtracting the micropore volume (V micro ) from the total pore volume. The results when each value in the blank is set to 1.00 are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示されるように、本発明の触媒1および2は、ブランクと比較して、相対的にメソ孔よりもミクロ孔が減少していることが分かった。この結果より、触媒1および2では、ミクロ孔に白金が多く担持されていることが示唆された。 As shown in Table 2, it was found that in the catalysts 1 and 2 of the present invention, the micropores were relatively smaller than the mesopores compared to the blank. From these results, it was suggested that in Catalysts 1 and 2, a large amount of platinum was supported in the micropores.
 本出願は、2014年2月7日に出願された日本国特許出願第2014-022809号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2014-022809 filed on February 7, 2014, the disclosure of which is incorporated by reference in its entirety.
1 固体高分子形燃料電池(PEFC)、
2 固体高分子電解質膜、
3 触媒層、
3a アノード触媒層、
3c カソード触媒層、
4a アノードガス拡散層、
4c カソードガス拡散層、
5 セパレータ、
5a アノードセパレータ、
5c カソードセパレータ、
6a アノードガス流路、
6c カソードガス流路、
7 冷媒流路、
10 膜電極接合体(MEA)。
1 Polymer electrolyte fuel cell (PEFC),
2 solid polymer electrolyte membrane,
3 catalyst layer,
3a anode catalyst layer,
3c cathode catalyst layer,
4a Anode gas diffusion layer,
4c cathode gas diffusion layer,
5 separator,
5a anode separator,
5c cathode separator,
6a Anode gas flow path,
6c cathode gas flow path,
7 Refrigerant flow path,
10 Membrane electrode assembly (MEA).

Claims (3)

  1.  炭素材料に貴金属が担持されてなる電極触媒であって、
     前記貴金属の平均粒子径は、1nm以下であり、
     前記貴金属の担持密度は、前記電極触媒の質量に対し、5~60質量%である電極触媒。
    An electrode catalyst in which a noble metal is supported on a carbon material,
    The noble metal has an average particle size of 1 nm or less,
    The noble metal loading density is 5 to 60% by mass with respect to the mass of the electrode catalyst.
  2.  炭素材料と気体状の有機貴金属錯体とを接触させて、有機貴金属錯体を炭素材料に担持させる工程と、
     前記炭素材料に担持された有機貴金属錯体を還元する工程と、
    を含む、電極触媒の製造方法。
    Contacting the carbon material with a gaseous organic noble metal complex to support the organic noble metal complex on the carbon material;
    Reducing the organic noble metal complex supported on the carbon material;
    A method for producing an electrode catalyst, comprising:
  3.  前記有機貴金属錯体は、1,5-シクロオクタジエンジメチル白金錯体、エチレンビス(トリフェニルホスフィン)白金(0)、テトラキス(トリフェニルホスフィン)白金(0)、ビス(トリ-tert-ブチルホスフィン)白金(0)、(トリメチル)シクロペンタジエニル白金(IV)、シアン化白金(II)、(トリメチル)メチルシクロペンタジエニル白金(IV)、および(トリメチル)ペンタメチルシクロペンタジエニル白金(IV)からなる群から選択される少なくとも1種を含む、請求項2に記載の電極触媒の製造方法。 The organic noble metal complex includes 1,5-cyclooctadiene dimethylplatinum complex, ethylenebis (triphenylphosphine) platinum (0), tetrakis (triphenylphosphine) platinum (0), bis (tri-tert-butylphosphine) platinum (0), (trimethyl) cyclopentadienylplatinum (IV), platinum (II) cyanide, (trimethyl) methylcyclopentadienylplatinum (IV), and (trimethyl) pentamethylcyclopentadienylplatinum (IV) The method for producing an electrocatalyst according to claim 2, comprising at least one selected from the group consisting of:
PCT/JP2015/050968 2014-02-07 2015-01-15 Electrode catalyst and method for producing same WO2015118922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-022809 2014-02-07
JP2014022809A JP2017060901A (en) 2014-02-07 2014-02-07 Electrode catalyst and method for producing same

Publications (1)

Publication Number Publication Date
WO2015118922A1 true WO2015118922A1 (en) 2015-08-13

Family

ID=53777730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050968 WO2015118922A1 (en) 2014-02-07 2015-01-15 Electrode catalyst and method for producing same

Country Status (2)

Country Link
JP (1) JP2017060901A (en)
WO (1) WO2015118922A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240240A (en) * 1988-06-17 1990-02-09 Canada Catalytic metal cluster and its production
JPH09122478A (en) * 1995-11-07 1997-05-13 Agency Of Ind Science & Technol Ultrafine gold particle fixing substance and manufacture thereof
JP2007134295A (en) * 2005-11-09 2007-05-31 Shin Etsu Chem Co Ltd Electrode catalyst for fuel cell and its manufacturing method
JP2008212918A (en) * 2007-02-06 2008-09-18 National Institute Of Advanced Industrial & Technology Method of manufacturing carbon-supported noble metal nanoparticle catalyst
WO2010098245A1 (en) * 2009-02-27 2010-09-02 日立造船株式会社 Ammonia decomposition catalyst
JP2012515193A (en) * 2009-01-15 2012-07-05 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Metal complexes for chemical vapor deposition of platinum.
JP2013159588A (en) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology Azomethine dendrimer metal nanoparticulate and catalyst comprising the same
JP2013173623A (en) * 2012-01-25 2013-09-05 Nissan Motor Co Ltd Metal-carrying carbon material and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240240A (en) * 1988-06-17 1990-02-09 Canada Catalytic metal cluster and its production
JPH09122478A (en) * 1995-11-07 1997-05-13 Agency Of Ind Science & Technol Ultrafine gold particle fixing substance and manufacture thereof
JP2007134295A (en) * 2005-11-09 2007-05-31 Shin Etsu Chem Co Ltd Electrode catalyst for fuel cell and its manufacturing method
JP2008212918A (en) * 2007-02-06 2008-09-18 National Institute Of Advanced Industrial & Technology Method of manufacturing carbon-supported noble metal nanoparticle catalyst
JP2012515193A (en) * 2009-01-15 2012-07-05 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Metal complexes for chemical vapor deposition of platinum.
WO2010098245A1 (en) * 2009-02-27 2010-09-02 日立造船株式会社 Ammonia decomposition catalyst
JP2013173623A (en) * 2012-01-25 2013-09-05 Nissan Motor Co Ltd Metal-carrying carbon material and method for producing the same
JP2013159588A (en) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology Azomethine dendrimer metal nanoparticulate and catalyst comprising the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHIH, C.-C. ET AL.: "Genesis and growth of platinum subnano-particles on activated-carbon characterized by X-ray absorption spectroscopy: effects of preparation conditions", MATER. CHEM. PHYS., vol. 92, no. 1, 28 January 2005 (2005-01-28), pages 89 - 97, XP027858398 *
SIBURIAN, R. ET AL.: "Formation Process of Pt Subnano-Clusters on Graphene Nanosheets", J. PHYS. CHEM. C, vol. 116, no. 43, 14 October 2012 (2012-10-14), pages 22947 - 22953, XP055218238 *
SIBURIAN, R. ET AL.: "Size Control to a Sub- Nanometer Scale in Platinum Catalysts on Graphene", J. PHYS. CHEM. C, vol. 117, no. 7, 24 January 2013 (2013-01-24), pages 3635 - 3645, XP055218240 *

Also Published As

Publication number Publication date
JP2017060901A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6461805B2 (en) Catalyst carbon powder, catalyst using the catalyst carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP5998277B2 (en) Fuel cell catalyst and fuel cell electrode catalyst layer including the same
CA2910374C (en) Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
JP5998275B2 (en) Fuel cell catalyst, electrode catalyst layer using the fuel cell catalyst, membrane electrode assembly, and fuel cell
WO2013073383A1 (en) Electrode catalyst layer for fuel cells
JP6628867B2 (en) Electrode catalyst, membrane electrode assembly and fuel cell using the electrode catalyst
JP6327681B2 (en) FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING THE SAME, ELECTRODE CATALYST FOR FUEL CELL CONTAINING THE CATALYST, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL USING THE CATALYST OR CATALYST
JP6172281B2 (en) Catalyst particles and electrode catalyst, electrolyte membrane-electrode assembly and fuel cell using the same
JP6276870B2 (en) Electrode catalyst layer for fuel cell, membrane electrode assembly for fuel cell and fuel cell using the catalyst layer
JP6323818B2 (en) FUEL CELL ELECTRODE CATALYST, FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLING AND FUEL CELL
JP2016054065A (en) Manufacturing method of electrode catalyst
WO2016152506A1 (en) Carbon powder for fuel cell, catalyst using said carbon powder for fuel cell, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP6672622B2 (en) Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly using the catalyst layer, fuel cell, and vehicle
JP6183120B2 (en) Membrane electrode assembly for fuel cell and fuel cell
JP6862792B2 (en) Method of manufacturing electrode catalyst
JP2017170404A (en) Method for producing catalyst particle and method for producing electrode catalyst
JP6720611B2 (en) Method for manufacturing electrode catalyst
WO2015118922A1 (en) Electrode catalyst and method for producing same
JP6191368B2 (en) Membrane electrode assembly for fuel cell and fuel cell
JP2018181674A (en) Catalyst for fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP