JP2008212918A - Method of manufacturing carbon-supported noble metal nanoparticle catalyst - Google Patents
Method of manufacturing carbon-supported noble metal nanoparticle catalyst Download PDFInfo
- Publication number
- JP2008212918A JP2008212918A JP2007251183A JP2007251183A JP2008212918A JP 2008212918 A JP2008212918 A JP 2008212918A JP 2007251183 A JP2007251183 A JP 2007251183A JP 2007251183 A JP2007251183 A JP 2007251183A JP 2008212918 A JP2008212918 A JP 2008212918A
- Authority
- JP
- Japan
- Prior art keywords
- noble metal
- carbon
- nanoparticle catalyst
- metal nanoparticle
- carbon support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 67
- 239000003054 catalyst Substances 0.000 title claims abstract description 43
- 239000002082 metal nanoparticle Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 36
- 150000004696 coordination complex Chemical class 0.000 claims abstract description 21
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 9
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 8
- 239000010439 graphite Substances 0.000 claims abstract description 8
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 4
- 239000010432 diamond Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000007772 electroless plating Methods 0.000 claims description 7
- 238000007747 plating Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 125000005595 acetylacetonate group Chemical group 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 4
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 abstract description 3
- 239000003610 charcoal Substances 0.000 abstract 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 19
- JKDRQYIYVJVOPF-FDGPNNRMSA-L palladium(ii) acetylacetonate Chemical compound [Pd+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O JKDRQYIYVJVOPF-FDGPNNRMSA-L 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 229910052763 palladium Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000003575 carbonaceous material Substances 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000000859 sublimation Methods 0.000 description 6
- 230000008022 sublimation Effects 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- VEJOYRPGKZZTJW-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;platinum Chemical compound [Pt].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O VEJOYRPGKZZTJW-FDGPNNRMSA-N 0.000 description 3
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 238000007341 Heck reaction Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- YHHMJLSZPPVKKD-UHFFFAOYSA-N [Au+].ClC1=CCCCC1 Chemical compound [Au+].ClC1=CCCCC1 YHHMJLSZPPVKKD-UHFFFAOYSA-N 0.000 description 1
- YTWVBGWDBQPLSQ-UHFFFAOYSA-N [Ir+5].CP(C)C Chemical compound [Ir+5].CP(C)C YTWVBGWDBQPLSQ-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- WLEZSLNXJZXKGT-UHFFFAOYSA-N carbon monoxide;1,2,3,4,5-pentamethylcyclopentane;rhodium Chemical compound [Rh].[O+]#[C-].[O+]#[C-].C[C]1[C](C)[C](C)[C](C)[C]1C WLEZSLNXJZXKGT-UHFFFAOYSA-N 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- -1 chloro (trans-cyclooctene) gold (I) Chemical compound 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、炭素担持貴金属ナノ粒子触媒の新規な製造方法に関する。 The present invention relates to a novel method for producing a carbon-supported noble metal nanoparticle catalyst.
貴金属ナノ粒子は、有機物および金属塩の酸化還元反応に対して高い触媒活性を示すため、有機物の還元工程やプラスティック等の基板の無電解メッキにおいて広く利用されている。 Since noble metal nanoparticles exhibit high catalytic activity for redox reactions of organic substances and metal salts, they are widely used in organic substance reduction processes and electroless plating of substrates such as plastics.
このような貴金属ナノ粒子を有機物の還元触媒として利用するに当たっては、通常、貴金属ナノ粒子を担体の表面に担持した形態が適し、特に比表面積の大きい活性炭などの炭素担体の表面に貴金属ナノ粒子を担持する方法が採られる。 In order to use such noble metal nanoparticles as a reduction catalyst for organic matter, a form in which noble metal nanoparticles are supported on the surface of the support is usually suitable, and in particular, the noble metal nanoparticles are applied to the surface of a carbon support such as activated carbon having a large specific surface area. The method of carrying is taken.
また、無電解メッキや化学蒸着への応用では、メッキまたは蒸着すべき炭素基材等の表面に貴金属ナノ粒子触媒を担持させたものが用いられている。 Further, in applications to electroless plating and chemical vapor deposition, those in which a noble metal nanoparticle catalyst is supported on the surface of a carbon substrate or the like to be plated or vapor deposited are used.
しかしながら、いずれの炭素担持金属触媒の場合も、担体または基材に貴金属塩を含浸付着させた後に、蒸発乾固し、ついで焼成・還元する方法や、またはこの逆の2段階以上の処理が必要とされる(非特許文献1、2)。
特に炭素系物質を担体または基材とする場合には、貴金属塩を均一に付着させることが難しいため、生成する貴金属粒子のサイズが一様とならず、貴金属粒子の凝集により炭素担体表面での貴金属の分布が不均一になることや操作が煩雑となるなど、触媒活性の再現性が得にくいなどの問題があった。
However, any carbon-supported metal catalyst requires a method of impregnating and adhering a noble metal salt to a support or base material, followed by evaporation to dryness, followed by calcination / reduction, or vice versa. (Non-Patent Documents 1 and 2).
In particular, when a carbon-based substance is used as a support or a base material, it is difficult to uniformly deposit the noble metal salt, so that the size of the noble metal particles to be generated is not uniform, and the noble metal particles aggregate on the surface of the carbon support. There have been problems such as non-uniform distribution of precious metals and complicated operation, which makes it difficult to obtain reproducibility of catalytic activity.
なお、本発明者らは、先に、ナイロン、ポリエステルなどの高分子では、そのガラス転移点以上の温度において、窒素またはアルゴンなどの不活性ガス雰囲気中で重金属化合物の蒸気を接触させると、高分子内部に金属ナノ粒子が生成して高分子−金属ナノ粒子複合体が得られることを報告している(特許文献1)。
しかし、この報告書は、非線形光学材料、高弾性率材料、装飾用材料等として有用な、高分子内部に金属ナノ粒子が含有された高分子−金属ナノ粒子複合体を効率的に製造することを目的とするとするものであり、また原料としてガラス転移点を有するナイロンやポリエステルを用い、表面ではなくその内部に金属ナノ粒子を分散させる方法を採るものであって、原料として、そのようなガラス転移温度を持たない無機物質担体殊に炭素系物質を使用すること、および炭素系物質と貴貴金属錯体の蒸気の反応挙動さらにはそのような反応によりどのような生成物が得られるか否かについては何ら教示するものではなかった。
In addition, the present inventors previously described that when a polymer such as nylon or polyester is contacted with a vapor of a heavy metal compound in an inert gas atmosphere such as nitrogen or argon at a temperature equal to or higher than its glass transition point, It has been reported that metal nanoparticles are formed inside a molecule to obtain a polymer-metal nanoparticle composite (Patent Document 1).
However, this report describes the efficient production of polymer-metal nanoparticle composites containing metal nanoparticles inside the polymer, which are useful as nonlinear optical materials, high elastic modulus materials, decorative materials, etc. In addition, nylon or polyester having a glass transition point is used as a raw material, and a method in which metal nanoparticles are dispersed inside rather than on the surface is used. The use of inorganic material carriers that do not have a transition temperature, especially carbon-based materials, and the reaction behavior of vapors of carbon-based materials and precious metal complexes, and what products can be obtained by such reactions. Did not teach anything.
本発明は、上記した従来の担持貴金属触媒の製造方法の欠点を克服し、簡単な1段階の操作により高活性で再現よく炭素担持貴金属触媒を製造する方法を提供することを目的とする。 An object of the present invention is to overcome the above-mentioned disadvantages of the conventional method for producing a supported noble metal catalyst, and to provide a method for producing a carbon-supported noble metal catalyst with high activity and reproducibility by a simple one-step operation.
本発明者等は、上記課題を解決するために鋭意検討した結果、炭素系物質に、好ましくは昇華性の貴金属錯体の蒸気を接触させると、意外にも、炭素系物質の内部には貴金属粒子が形成されないが、表面上に貴金属ナノ粒子が形成されることを見いだし、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have unexpectedly found that when a vapor of a sublimable noble metal complex is brought into contact with a carbon-based material, noble metal particles are unexpectedly placed inside the carbon-based material. However, noble metal nanoparticles were formed on the surface, and the present invention was completed.
すなわち、この出願によれば、以下の発明が提供される。
〈1〉炭素担体に貴金属錯体の蒸気を接触させることを特徴とするその表面に貴金属ナノ粒子が担持された貴金属ナノ粒子触媒の製造方法。
〈2〉その内壁に貴金属錯体が蒸着された反応器中に炭素担体を導入し、ついで加熱することを特徴とする〈1〉に記載の貴金属ナノ粒子触媒の製造方法。
〈3〉貴金属錯体の粉末と炭素担体の混合物を加熱することを特徴とする〈1〉に記載の貴金属ナノ粒子触媒の製造方法。
〈4〉貴金属錯体がアセチルアセトナート錯体であることを特徴とする〈1〉から〈3〉のいずれかに記載の貴金属ナノ粒子触媒の製造方法。
〈5〉炭素担体が、活性炭、不定形炭素、グラファイトおよびダイヤモンドから選ばれた少なくとも1種であることを特徴とする請求項1から4のいずれかに記載の貴金属ナノ粒子触媒の製造方法。
〈6〉炭素担体の形状が、粉末状、粒状、繊維状、塊状又はシート状成形体であることを特徴とする〈1〉から〈5〉のいずれかに記載の貴金属ナノ粒子触媒の製造方法。
〈7〉〈1〉から〈6〉に記載の方法で得られる、その表面に金属ナノ粒子が担持された貴金属ナノ粒子触媒を無電解金属メッキ浴中に浸漬することを特徴とする無電解メッキ方法。
That is, according to this application, the following invention is provided.
<1> A method for producing a noble metal nanoparticle catalyst in which noble metal nanoparticles are supported on a surface thereof, wherein a vapor of a noble metal complex is brought into contact with a carbon support.
<2> The method for producing a noble metal nanoparticle catalyst according to <1>, wherein a carbon support is introduced into a reactor having an inner wall deposited with a noble metal complex and then heated.
<3> The method for producing a noble metal nanoparticle catalyst according to <1>, wherein the mixture of the noble metal complex powder and the carbon support is heated.
<4> The method for producing a noble metal nanoparticle catalyst according to any one of <1> to <3>, wherein the noble metal complex is an acetylacetonate complex.
<5> The method for producing a noble metal nanoparticle catalyst according to any one of claims 1 to 4, wherein the carbon support is at least one selected from activated carbon, amorphous carbon, graphite, and diamond.
<6> The method for producing a noble metal nanoparticle catalyst according to any one of <1> to <5>, wherein the shape of the carbon support is a powder, granule, fiber, block, or sheet-like molded body .
<7> Electroless plating obtained by immersing a noble metal nanoparticle catalyst having metal nanoparticles supported on the surface thereof obtained in the method according to <1> to <6> in an electroless metal plating bath Method.
本発明によれば、簡単な1段階の操作により高活性で再現よく炭素担持金属触媒を製造することができる。
また、本発明方法により得られる炭素担持貴金属触媒は、Heck反応などのカップリング反応、オレフィンなどの不飽和化合物の水素化反応や還元的レトロアミノ化反応などの還元反応、水素―重水素交換反応、および過酸化物の分解反応に高い活性を示す。
また、本発明方法により表面に貴金属ナノ粒子を設けた炭素担持貴金属触媒(炭素基材)は無電解メッキ処理または化学蒸着によって密着性よくムラなく一様に金属メッキ皮膜が形成される。
According to the present invention, a carbon-supported metal catalyst can be produced with high activity and reproducibility by a simple one-step operation.
The carbon-supported noble metal catalyst obtained by the method of the present invention includes a coupling reaction such as a Heck reaction, a reduction reaction such as a hydrogenation reaction of an unsaturated compound such as an olefin or a reductive retroamination reaction, a hydrogen-deuterium exchange reaction. And exhibits high activity in peroxide decomposition reactions.
In addition, the carbon-supported noble metal catalyst (carbon base material) provided with noble metal nanoparticles on the surface by the method of the present invention forms a uniform metal plating film with good adhesion by electroless plating treatment or chemical vapor deposition.
本発明の貴金属ナノ粒子触媒の製造方法は、炭素担体に貴金属錯体の蒸気を接触させるという、簡潔な1工程で、その表面に金属ナノ粒子が担持された貴金属ナノ粒子触媒を製造することを特徴としている。 The method for producing a noble metal nanoparticle catalyst of the present invention is characterized by producing a noble metal nanoparticle catalyst having a metal nanoparticle supported on its surface in a simple one-step process in which a carbon support is brought into contact with vapor of a noble metal complex. It is said.
本発明で用いる炭素担体は、炭素を主成分とする炭素系物質であれば特に制約されず、活性炭、真空蒸着により形成された不定形炭素、グラファイト、ダイヤモンドが用いられる。
炭素担体の形状は特に制約されず、粉末状、粒状、繊維状、塊状、シート状成形体のいずれであってもよい。
The carbon support used in the present invention is not particularly limited as long as it is a carbon-based material containing carbon as a main component, and activated carbon, amorphous carbon formed by vacuum deposition, graphite, and diamond are used.
The shape of the carbon support is not particularly limited, and may be any of powder, granule, fiber, lump, and sheet-like molded body.
また、本発明で用いる貴金属錯体としては、その処理条件下で、安定な蒸気となる、昇華性、揮発性を示す貴金属錯体であれば何れのものも使用できる。
このような貴金属錯体としては、第I族(金、銀、銅)や第VIII族(白金、パラジウム、オスミウム、イリジウム、鉄、コバルト、ニッケル、ルテニウム、ロジウム)の貴金属錯体が例示されるが、好ましくは、白金およびパラジウムが使用される。
In addition, as the noble metal complex used in the present invention, any noble metal complex can be used as long as it is a stable vapor under the treatment conditions and exhibits sublimation and volatility.
Examples of such noble metal complexes include noble metal complexes of Group I (gold, silver, copper) and Group VIII (platinum, palladium, osmium, iridium, iron, cobalt, nickel, ruthenium, rhodium), Preferably, platinum and palladium are used.
このような貴金属錯体としては、例えば、ジカルボニル(ペンタメチルシクロペンタジエニル)ロジウム(I)(昇華80〜85℃/10〜20mmHg)、ペンタヒドリドビス(トリメチルホスフィン)イリジウム(V)(昇華50℃/1mmHg)、η‐シクロペンタジエニル(η‐アリル)白金(昇華25℃/0.01mmHg)、クロロ(trans‐シクロオクテン)金(I)(bp115℃)、クロロ(シクロヘキセン)金(I)(bp60℃)などがある。
特に好ましいのは、アセチルアセトナート錯体、例えばビス(アセチルアセトナート)パラジウム(II)(昇華160℃/0.1mmHg)、ビス(アセチルアセトナート)白金(II)(昇華170℃)である。
Examples of such noble metal complexes include dicarbonyl (pentamethylcyclopentadienyl) rhodium (I) (sublimation 80 to 85 ° C./10 to 20 mmHg), pentahydridobis (trimethylphosphine) iridium (V) (sublimation 50 ° C / 1 mmHg), η-cyclopentadienyl (η-allyl) platinum (sublimation 25 ° C / 0.01 mmHg), chloro (trans-cyclooctene) gold (I) (bp 115 ° C), chloro (cyclohexene) gold (I ) (Bp 60 ° C.).
Particularly preferred are acetylacetonate complexes such as bis (acetylacetonato) palladium (II) (sublimation 160 ° C./0.1 mmHg), bis (acetylacetonato) platinum (II) (sublimation 170 ° C.).
炭素担体と貴金属錯体の使用割合に特別な制限はない。
炭素担体に貴金属錯体を接触させるには、炭素担体の表面に貴金属粒子が析出するように、貴金属錯体の蒸気を炭素担体に接触させればよい。このような態様としては、たとえば反応器の内壁に大過剰の貴金属錯体を蒸着法などにより固定化しておき、ついで、この反応器に炭素担体を導入して加熱する方法があり、塊状またはシート状成形体の炭素担体に適用される。
この他、貴金属錯体の粉末と炭素担体を予め混合しておき、この混合物を加熱する方法などが挙げられ、この方法は、粉体や粒状の炭素担体に適用され、貴金属と炭素担体の重量比を自由に調節できることが特徴である。
また、炭素担体と貴金属錯体の接触させる際には、非酸化性雰囲気、たとえば、窒素、アルゴンのような不活性ガスの雰囲気下で接触させるのが好ましい。この雰囲気は、減圧、常圧、加圧のいずれでもよい。
There are no particular restrictions on the proportion of carbon support and noble metal complex used.
In order to bring the noble metal complex into contact with the carbon support, the vapor of the noble metal complex may be brought into contact with the carbon support so that noble metal particles are deposited on the surface of the carbon support. As such an embodiment, for example, there is a method in which a large excess of a noble metal complex is fixed to the inner wall of the reactor by vapor deposition or the like, and then a carbon support is introduced into the reactor and heated. It is applied to the carbon support of the molded body.
In addition, there is a method in which a powder of a noble metal complex and a carbon support are mixed in advance, and the mixture is heated. This method is applied to a powder or granular carbon support, and the weight ratio of the noble metal to the carbon support. It is a feature that can be adjusted freely.
Further, when the carbon support and the noble metal complex are brought into contact with each other, it is preferable to make the contact in a non-oxidizing atmosphere, for example, an inert gas atmosphere such as nitrogen or argon. This atmosphere may be any of reduced pressure, normal pressure, and increased pressure.
本発明方法における、炭素担体と貴金属錯体蒸気との接触温度は100℃から400℃、好ましくは、120℃から250℃である。
また、その接触時間は、処理温度に依存するが、通常1分間から1時間の範囲内で選ばれる。
In the method of the present invention, the contact temperature between the carbon support and the noble metal complex vapor is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C.
The contact time depends on the treatment temperature, but is usually selected within the range of 1 minute to 1 hour.
本発明方法で得られる炭素担持貴金属ナノ粒子触媒は、種々の反応たとえば、Heck反応などのカップリング反応、オレフィン類の水素化反応や還元的レトロアミノ化反応などの還元反応、水素―重水素交換反応、過酸化水素の分解反応、燃料電池、無電解メッキの触媒として有用なものである。 The carbon-supported noble metal nanoparticle catalyst obtained by the method of the present invention can be used for various reactions such as coupling reactions such as Heck reaction, reduction reactions such as hydrogenation reaction and reductive retroamination reaction of olefins, and hydrogen-deuterium exchange. It is useful as a catalyst for reaction, decomposition reaction of hydrogen peroxide, fuel cell, and electroless plating.
また、本発明に係る、シート状の炭素担体からなる貴金属ナノ粒子触媒(炭素基材)を無電解金属メッキ浴中に浸漬すれば、該炭素基材上にムラなく一様に当該金属メッキ被膜(メッキ)が形成される。
無電解メッキ浴としては、従来公知のものがそのまま使用でき、また、その操作方法も従来どおりでよい。
In addition, when the noble metal nanoparticle catalyst (carbon base material) comprising a sheet-like carbon support according to the present invention is immersed in an electroless metal plating bath, the metal plating film is uniformly applied on the carbon base material. (Plating) is formed.
As the electroless plating bath, a conventionally known one can be used as it is, and its operation method may be the same as before.
さらに、本発明に係る、貴金属ナノ粒子触媒は、種々の気相反応を利用した化学蒸着工程にも適用でき、たとえば、基材表面上にカーボンナノファイバーを成長させる方法や金属皮膜の形成反応等にも利用することができる。 Furthermore, the noble metal nanoparticle catalyst according to the present invention can also be applied to chemical vapor deposition processes utilizing various gas phase reactions, such as a method of growing carbon nanofibers on a substrate surface, a metal film formation reaction, etc. Can also be used.
本発明を以下の実施例により更に詳細に説明する。 The invention is illustrated in more detail by the following examples.
実施例1
側壁にビス(アセチルアセトナート)パラジウム(II)を昇華・凝縮させた円筒形のガラス容器中に、活性炭(和光純薬、3g)を仕込み、ガラス容器内を窒素で置換した。つぎに、容器全体を180℃の油浴中に浸漬して加熱し、発生したビス(アセチルアセトナート)パラジウム(II)の蒸気を活性炭に30分間接触させた。透過型電子顕微鏡による観察で、得られた活性炭の表面には粒径が5〜10nmのパラジウムナノ粒子が凝集することなく一様に分布していることが分かった(図1)。
Example 1
Activated carbon (Wako Pure Chemical, 3 g) was charged into a cylindrical glass container in which bis (acetylacetonato) palladium (II) was sublimated and condensed on the side wall, and the inside of the glass container was replaced with nitrogen. Next, the entire container was immersed in an oil bath at 180 ° C. and heated, and the generated bis (acetylacetonato) palladium (II) vapor was brought into contact with the activated carbon for 30 minutes. Observation with a transmission electron microscope revealed that palladium nanoparticles having a particle size of 5 to 10 nm were uniformly distributed on the surface of the obtained activated carbon without aggregation (FIG. 1).
実施例2
12mm×19mmのマイカ板上に炭素を真空蒸着することにより、表面に不定形炭素の被膜を形成させた。この不定形炭素被覆板に、実施例1と同様にしてビス(アセチルアセトナート)パラジウム(II)の蒸気を30分間接触させた。透過型電子顕微鏡による観察で、得られた不定形炭素被覆板の表面には粒径が5〜10nmのパラジウムナノ粒子が凝集することなく一様に分散していることが分かった(図2)。
Example 2
A carbon film was vacuum-deposited on a 12 mm × 19 mm mica plate to form an amorphous carbon film on the surface. This amorphous carbon-coated plate was contacted with bis (acetylacetonato) palladium (II) vapor for 30 minutes in the same manner as in Example 1. Observation with a transmission electron microscope revealed that palladium nanoparticles having a particle size of 5 to 10 nm were uniformly dispersed on the surface of the obtained amorphous carbon-coated plate without aggregation (FIG. 2). .
実施例3
側壁にビス(アセチルアセトナート)白金(II)を昇華・凝縮させた円筒形のガラス容器中に、実施例2と同様の方法で調製した不定形炭素被覆板を仕込み、ガラス容器内を窒素で置換した。つぎに、容器全体を200℃の油浴中に浸漬して加熱し、発生したビス(アセチルアセトナート)白金(II)の蒸気を活性炭に30分間接触させた。透過型電子顕微鏡による観察で、得られた不定形炭素被覆板の表面には粒径が2〜5nmの白金ナノ粒子が凝集することなく一様に分布していることが分かった(図3)。
この担持触媒は1%過酸化水素水溶液中において酸素を発生させることから過酸化水素の分解反応に活性を示すことが分かった。
Example 3
Into a cylindrical glass container in which bis (acetylacetonato) platinum (II) was sublimated and condensed on the side wall, an amorphous carbon-coated plate prepared in the same manner as in Example 2 was charged, and the inside of the glass container was filled with nitrogen. Replaced. Next, the entire container was immersed in an oil bath at 200 ° C. and heated, and the generated vapor of bis (acetylacetonato) platinum (II) was brought into contact with activated carbon for 30 minutes. Observation with a transmission electron microscope revealed that platinum nanoparticles having a particle size of 2 to 5 nm were uniformly distributed on the surface of the obtained amorphous carbon-coated plate (FIG. 3). .
Since this supported catalyst generates oxygen in a 1% aqueous hydrogen peroxide solution, it was found to be active in the decomposition reaction of hydrogen peroxide.
実施例4
12mm×19mmのグラファイト成形板に、実施例1と同様にしてビス(アセチルアセトナート)パラジウム(II)の蒸気を30分間接触させた。走査型電子顕微鏡による観察で、得られたグラファイト成形板の表面には粒径が3〜7nmのパラジウムナノ粒子が凝集することなく一様に分散していることが分かった(図4)。
Example 4
In the same manner as in Example 1, vapor of bis (acetylacetonato) palladium (II) was brought into contact with a 12 mm × 19 mm graphite molded plate for 30 minutes. Observation by a scanning electron microscope revealed that palladium nanoparticles having a particle size of 3 to 7 nm were uniformly dispersed on the surface of the obtained graphite molded plate without agglomeration (FIG. 4).
実施例5
実施例4で得たグラファイト成形板を無電解ニッケルメッキ液(100ml中、硫酸ニッケル(II)六水塩2.1g、次亜リン酸ナトリウム2.5g、乳酸2.7gおよびプロピオン酸0.22gを含み、水酸化ナトリウムによりpH4.5に調整)中に50℃で30分間浸漬することにより、表面が均一にニッケルメッキされた銀灰色のグラファイト成形板が得られた。
Example 5
The graphite molded plate obtained in Example 4 was subjected to electroless nickel plating solution (2.1 g of nickel (II) sulfate hexahydrate, 2.5 g of sodium hypophosphite, 2.7 g of lactic acid and 0.22 g of propionic acid in 100 ml). And adjusted to pH 4.5 with sodium hydroxide) at 50 ° C. for 30 minutes, a silver gray graphite molded plate having a uniformly nickel-plated surface was obtained.
実施例6
5重量%パラジウム相当量の粉末ビス(アセチルアセトナート)パラジウム(II)と粒状活性炭(クラレコール、GC32/60)を窒素雰囲気下180℃、1時間加熱することにより調製した触媒はXPS分析ではPd(II)のみが含まれ、また実施例1と同様に活性炭の表面には粒径が3〜5nmのパラジウムナノ粒子が凝集することなく一様に分布していることが分かった。
この触媒を、下記のアミノエチルベンゼンの還元的レトロアミノ化反応に用いた。
A catalyst prepared by heating 5% by weight palladium equivalent amount of powdered bis (acetylacetonate) palladium (II) and granular activated carbon (Kuraray Coal, GC32 / 60) at 180 ° C. for 1 hour in a nitrogen atmosphere is XPD analysis. It was found that only (II) was contained, and similarly to Example 1, palladium nanoparticles having a particle diameter of 3 to 5 nm were uniformly distributed on the surface of the activated carbon without aggregation.
This catalyst was used in the following reductive retroamination reaction of aminoethylbenzene.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007251183A JP5142258B2 (en) | 2007-02-06 | 2007-09-27 | Method for producing carbon-supported noble metal nanoparticle catalyst |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007026322 | 2007-02-06 | ||
JP2007026322 | 2007-02-06 | ||
JP2007251183A JP5142258B2 (en) | 2007-02-06 | 2007-09-27 | Method for producing carbon-supported noble metal nanoparticle catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008212918A true JP2008212918A (en) | 2008-09-18 |
JP5142258B2 JP5142258B2 (en) | 2013-02-13 |
Family
ID=39833596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007251183A Expired - Fee Related JP5142258B2 (en) | 2007-02-06 | 2007-09-27 | Method for producing carbon-supported noble metal nanoparticle catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5142258B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015118922A1 (en) * | 2014-02-07 | 2015-08-13 | 日産自動車株式会社 | Electrode catalyst and method for producing same |
US10702920B2 (en) | 2016-06-20 | 2020-07-07 | Othrys Technologies Pty Ltd | Coating of particulate substrates |
US20220258231A1 (en) * | 2019-07-29 | 2022-08-18 | Kyoto University | Alloy nanoparticle, aggregate of alloy nanoparticles, catalyst, and method for producing alloy nanoparticles |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS531192A (en) * | 1976-05-21 | 1978-01-07 | Johnson Matthey Co Ltd | Palladium catalysts and preparation therefor |
JP2000256489A (en) * | 1999-03-10 | 2000-09-19 | Agency Of Ind Science & Technol | Preparation of polymer/metal cluster composite |
JP2002518173A (en) * | 1998-06-23 | 2002-06-25 | アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー | Method for producing coated catalyst by CVD |
JP2006167709A (en) * | 2004-11-17 | 2006-06-29 | Mitsubishi Rayon Co Ltd | Method for manufacturing palladium-containing supported catalyst |
JP2007512127A (en) * | 2003-11-27 | 2007-05-17 | ネステ オイル オサケ ユキチュア ユルキネン | Catalyst and method for producing the same |
-
2007
- 2007-09-27 JP JP2007251183A patent/JP5142258B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS531192A (en) * | 1976-05-21 | 1978-01-07 | Johnson Matthey Co Ltd | Palladium catalysts and preparation therefor |
JP2002518173A (en) * | 1998-06-23 | 2002-06-25 | アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー | Method for producing coated catalyst by CVD |
JP2000256489A (en) * | 1999-03-10 | 2000-09-19 | Agency Of Ind Science & Technol | Preparation of polymer/metal cluster composite |
JP2007512127A (en) * | 2003-11-27 | 2007-05-17 | ネステ オイル オサケ ユキチュア ユルキネン | Catalyst and method for producing the same |
JP2006167709A (en) * | 2004-11-17 | 2006-06-29 | Mitsubishi Rayon Co Ltd | Method for manufacturing palladium-containing supported catalyst |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015118922A1 (en) * | 2014-02-07 | 2015-08-13 | 日産自動車株式会社 | Electrode catalyst and method for producing same |
US10702920B2 (en) | 2016-06-20 | 2020-07-07 | Othrys Technologies Pty Ltd | Coating of particulate substrates |
US20220258231A1 (en) * | 2019-07-29 | 2022-08-18 | Kyoto University | Alloy nanoparticle, aggregate of alloy nanoparticles, catalyst, and method for producing alloy nanoparticles |
Also Published As
Publication number | Publication date |
---|---|
JP5142258B2 (en) | 2013-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Bimetallic cocatalysts for photocatalytic hydrogen production from water | |
Sui et al. | Advanced support materials and interactions for atomically dispersed noble‐metal catalysts: from support effects to design strategies | |
Wang et al. | Formation of hierarchical In2S3–CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction | |
Li et al. | One-dimensional copper-based heterostructures toward photo-driven reduction of CO 2 to sustainable fuels and feedstocks | |
Zhen et al. | Fabrication of low adsorption energy Ni–Mo cluster cocatalyst in metal–organic frameworks for visible photocatalytic hydrogen evolution | |
Chang et al. | The tunable and highly selective reduction products on Ag@ Cu bimetallic catalysts toward CO2 electrochemical reduction reaction | |
Gu et al. | Synergistic catalysis of metal–organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage | |
Ang et al. | Decoration of activated carbon nanotubes with copper and nickel | |
Wang et al. | Large-area synthesis of a Ni2P honeycomb electrode for highly efficient water splitting | |
Zhang et al. | Carbon-based material-supported single-atom catalysts for energy conversion | |
Hou et al. | Porous CuFe for plasmon-assisted N2 photofixation | |
Morshedy et al. | Hydrogen production and in situ storage through process of water splitting using mono/binary metal–organic framework (MOF) structures as new chief photocatalysts | |
Zhang et al. | Highly active and selective electroreduction of N2 by the catalysis of Ga single atoms stabilized on amorphous TiO2 nanofibers | |
HUE028073T2 (en) | Method for preparing pure nanoparticles using a continuous flow system | |
Peng et al. | Enhanced Activity of WO x-Promoted PdNi Nanoclusters Confined by Amino-Modified KIT-6 for Dehydrogenation of Additive-Free Formic Acid | |
Gao et al. | Ag plasmon resonance promoted 2D AgBr-δ-Bi2O3 nanosheets with enhanced photocatalytic ability | |
Ji et al. | A dewetted‐dealloyed nanoporous Pt Co‐catalyst formed on TiO2 nanotube arrays leads to strongly enhanced photocatalytic H2 production | |
CN104540778A (en) | Method of producing graphene | |
CN112609197B (en) | Preparation method of two-dimensional lamellar carbon-based molybdenum carbide composite material | |
Hu et al. | Nitrogen-doped carbon cages encapsulating CuZn alloy for enhanced CO2 reduction | |
CN103007932A (en) | Method for preparing titanium dioxide nanobelt load thermometal integral catalyst | |
Ma et al. | Template-oriented synthesis of Fe–N-codoped graphene nanoshells derived from petroleum pitch for efficient nitroaromatics reduction | |
JP5142258B2 (en) | Method for producing carbon-supported noble metal nanoparticle catalyst | |
Yin et al. | Electro-reduced copper on polymeric C3N4 for photocatalytic reduction of CO2 | |
Long et al. | Steering the reconstruction of oxide-derived Cu by secondary metal for electrosynthesis of n-propanol from CO |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090715 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |