JP2005056746A - Method for manufacturing electrocatalyst for direct methanol fuel cells - Google Patents
Method for manufacturing electrocatalyst for direct methanol fuel cells Download PDFInfo
- Publication number
- JP2005056746A JP2005056746A JP2003287851A JP2003287851A JP2005056746A JP 2005056746 A JP2005056746 A JP 2005056746A JP 2003287851 A JP2003287851 A JP 2003287851A JP 2003287851 A JP2003287851 A JP 2003287851A JP 2005056746 A JP2005056746 A JP 2005056746A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- titanium oxide
- electrode
- direct methanol
- methanol fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 239000000446 fuel Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title abstract description 15
- 239000010411 electrocatalyst Substances 0.000 title abstract description 3
- 239000003054 catalyst Substances 0.000 claims abstract description 98
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 78
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 78
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 24
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002253 acid Substances 0.000 claims abstract description 8
- 150000007513 acids Chemical class 0.000 claims abstract description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 12
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 6
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 6
- 239000001630 malic acid Substances 0.000 claims description 6
- 235000011090 malic acid Nutrition 0.000 claims description 6
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 5
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 239000011975 tartaric acid Substances 0.000 claims description 5
- 235000002906 tartaric acid Nutrition 0.000 claims description 5
- 235000015165 citric acid Nutrition 0.000 claims description 2
- 231100000572 poisoning Toxicity 0.000 abstract description 13
- 230000000607 poisoning effect Effects 0.000 abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 9
- 238000000576 coating method Methods 0.000 abstract description 9
- 239000011248 coating agent Substances 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 239000006185 dispersion Substances 0.000 abstract description 5
- 238000003411 electrode reaction Methods 0.000 abstract description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 19
- 239000000725 suspension Substances 0.000 description 17
- 238000001132 ultrasonic dispersion Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 229910021642 ultra pure water Inorganic materials 0.000 description 9
- 239000012498 ultrapure water Substances 0.000 description 9
- 229910002848 Pt–Ru Inorganic materials 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- -1 titanium oxide compound Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、直接メタノール型燃料電池用電極触媒の製造方法に関し、特に、高効率で安価な直接メタノール型燃料電池用電極触媒の製造方法に関する。 The present invention relates to a method for producing a direct methanol fuel cell electrode catalyst, and more particularly to a highly efficient and inexpensive method for producing a direct methanol fuel cell electrode catalyst.
従来の石油や石炭等を原料とする内燃機関発電方式は、化学エネルギーを一度機械エネルギーに変換したのち電気エネルギーに変換するため、エネルギーの変換効率が低いだけでなく、原料燃焼時に発生する有害ガスによる大気汚染やCO2ガスによる地球温暖化等の問題があり、次世代エネルギーシステムの構築が今や必須となっている。
燃料電池は、2つの電極にそれぞれ燃料となる水素と酸素を供給し、触媒を使って反応させ、燃料の持つ化学エネルギーを直接電気エネルギーに変換する電気化学的変換装置であり、高効率、低公害を併せ持つ発電システムとして近年注目されている。
The conventional internal combustion engine power generation method using petroleum or coal as raw material converts chemical energy into mechanical energy and then converts it into electrical energy, so it not only has low energy conversion efficiency but also harmful gas generated during combustion of the raw material. Due to air pollution caused by CO2 and global warming due to CO 2 gas, construction of next-generation energy systems is now essential.
A fuel cell is an electrochemical conversion device that supplies hydrogen and oxygen as fuel to two electrodes, reacts using a catalyst, and converts the chemical energy of the fuel directly into electrical energy. In recent years, it has attracted attention as a power generation system that also has pollution.
この様な燃料電池は、使用される電解質等の違いによりいくつかの種類があり、燐酸型(PAFC)、溶融炭酸塩型(MCFC)、固体酸化物型(SOFC)、固体高分子型(PEFC)、直接メタノール型燃料電池(DMFC)等があり、それぞれ作動温度、発電効率、生産性、サイズ等の特長を考慮し用途開発が進められている。
これらの内、PEFCは小型、軽量、扱い易さ等の特長から、自動車用、家庭用コージェネレーションシステムや電子端末機器電源等への実用化に向けた開発が進められている。
There are several types of such fuel cells depending on the electrolyte used, and the phosphoric acid type (PAFC), molten carbonate type (MCFC), solid oxide type (SOFC), and solid polymer type (PEFC). ), Direct methanol fuel cells (DMFC), etc., and application development is being promoted taking into consideration features such as operating temperature, power generation efficiency, productivity, and size.
Among these, PEFC is being developed for practical use in automobiles, household cogeneration systems, electronic terminal equipment power supplies, etc. due to its small size, light weight, and ease of handling.
このような中で、比較的安価で取り扱いの容易なメタノールを燃料に用いる直接メタノール型燃料電池は、燃料改質器が不要であるため、電池全体の小型、軽量化が可能であり、特に、携帯用電源として注目されている。
直接メタノール型燃料電池の電極反応に関しては、以下の通りである。
Under such circumstances, a direct methanol fuel cell that uses methanol, which is relatively inexpensive and easy to handle, as a fuel does not require a fuel reformer, so that the entire cell can be reduced in size and weight. It is attracting attention as a portable power source.
The electrode reaction of the direct methanol fuel cell is as follows.
CH3OH+H2O→CO2+6H++6e−(燃料極:アノード極)
3/2O2+6H++6e−→3H2O (空気極:カソード極)
この様な反応に使用される電極材料には、特にアノード極におけるメタノール酸化反応を効率よく進行させるため、白金または白金とルテニウムを担持したカーボン粉体を使用するが一般的である。しかしながら、直接メタノール型燃料電池は電極表面で直接メタノールを酸化させるため、反応過程で生じるCOによって触媒表面が覆われ電極性能が低下するという触媒被毒の問題があり、この問題を回避し、メタノールを効率良く酸化させることができる触媒の開発が急務となっている。
CH 3 OH + H 2 O → CO 2 + 6H + + 6e − (fuel electrode: anode electrode)
3 / 2O 2 + 6H + + 6e − → 3H 2 O (Air electrode: cathode electrode)
As the electrode material used for such a reaction, platinum or carbon powder carrying platinum and ruthenium is generally used in order to efficiently promote the methanol oxidation reaction particularly at the anode electrode. However, since direct methanol fuel cells directly oxidize methanol on the electrode surface, there is a problem of catalyst poisoning in which the catalyst surface is covered with CO generated in the reaction process and the electrode performance deteriorates. There is an urgent need to develop a catalyst that can efficiently oxidize the catalyst.
高活性化燃料電池用電極触媒として、導電性カーボン粉末担体上にNb、Ni、Sn、Ta、Ti、およびZrの中から選択された元素とSiとを含む酸化物または水酸化物からなる化合物が被着されたPt材料からなる燃料電池用電極触媒が知られている。(例えば、特許文献1参照。)
しかしながら、このような金属酸化物または水酸化物を添加する効果は、カソード極での触媒活性金属の溶出やシンタリングを抑制する効果であり、触媒被毒の問題については解決されていない。
As an electrode catalyst for highly activated fuel cells, a compound comprising an oxide or hydroxide containing Si and an element selected from Nb, Ni, Sn, Ta, Ti, and Zr on a conductive carbon powder carrier There is known a fuel cell electrode catalyst made of a Pt material to which is deposited. (For example, refer to
However, the effect of adding such a metal oxide or hydroxide is an effect of suppressing elution and sintering of the catalytically active metal at the cathode electrode, and the problem of catalyst poisoning has not been solved.
また別の技術として、貴金属系の金属からなる触媒と、二酸化チタンのような光を照射することにより活性化する光触媒とを備えた燃料電池用の電極に関する技術も開示されている。(例えば、特許文献2参照。)
しかし、この技術は固体高分子型燃料電池で、汎用的に使用できる電極に関する技術であって、直接メタノール型燃料電池についての記載は皆無であり、電極の触媒被毒については全く言及されていない。
As another technique, a technique related to an electrode for a fuel cell including a catalyst made of a noble metal metal and a photocatalyst activated by irradiation with light such as titanium dioxide is also disclosed. (For example, see
However, this technology is a technology for electrodes that can be used for general purposes in a polymer electrolyte fuel cell, and there is no description of a direct methanol fuel cell, and no mention is made of catalyst poisoning of the electrode. .
この様な状況の中で、本発明者らの一人は、直接メタノール型燃料電池用触媒として、白金等の電極触媒に酸化チタンのコロイド溶液を混合し、酸化チタンを白金に担持させることによりCO被毒の問題を解消する方法を試み、その技術を開示した。(例えば、非特許文献1)
しかし、この非特許文献1に記載した酸化チタンでは、CO被毒を解消する傾向はある程度見られたものの、未だその効果が充分でなく、更なる改良が必要であった。
In such a situation, one of the inventors of the present invention directly mixed a colloidal solution of titanium oxide with an electrode catalyst such as platinum as a catalyst for a direct methanol fuel cell, and supported the titanium oxide on platinum. Attempts were made to solve the poisoning problem and the technology was disclosed. (For example, Non-Patent Document 1)
However, although the titanium oxide described in
このように、直接メタノール型燃料電池用電極触媒として、白金触媒のCO被毒の問題を解決する方法としては、未だ優れた解決技術が見出されていないのが現状である。 Thus, as an electrode catalyst for direct methanol fuel cells, no excellent solution technology has yet been found as a method for solving the problem of CO poisoning of platinum catalysts.
このように、燃料電池用電極触媒の活性を向上させる方法として各種の提案はされているものの、現実では直接メタノール型燃料電池用電極触媒に要求される性能や寿命の要求度を達成するまでには至っていない。
そこで本発明者らは、比較的安価に製造可能であり、またその普及が促進されると考えられる直接メタノール型燃料電池に使用される電極触媒について、従来より問題となっていた白金等触媒へのCO被毒の問題を解決する方法について鋭意検討を重ねた。
その結果、ヒドロキシカルボン酸で分散安定化された酸化チタンゾルで白金等の電極触媒を被覆処理して得られた触媒電極が、従来技術で開示されているような酸化チタンを担持された触媒電極に較べ、格段にCO被毒の解消に効果を発現することを見出し、係る技術に基づき本発明を完成させるに至った。
As described above, although various proposals have been made as methods for improving the activity of the electrode catalyst for fuel cells, in reality, the performance and life requirements required for the electrode catalyst for direct methanol fuel cells are achieved. Has not reached.
Therefore, the present inventors have been able to produce a catalyst such as platinum, which has been a problem in the past, for an electrode catalyst used in a direct methanol fuel cell that can be manufactured at a relatively low cost and is expected to promote its spread. We intensively studied how to solve the problem of CO poisoning.
As a result, a catalyst electrode obtained by coating an electrode catalyst such as platinum with a titanium oxide sol dispersed and stabilized with hydroxycarboxylic acid is converted into a catalyst electrode carrying titanium oxide as disclosed in the prior art. In comparison, the present inventors have found that the present invention is significantly effective in eliminating CO poisoning, and completed the present invention based on such a technique.
即ち、本発明は電極触媒をヒドロキシカルボン酸から選ばれた一種以上の酸で分散安定化されたアナターゼ型結晶質酸化チタンゾルで被覆処理することを特徴とする直接メタノール型燃料電池用電極触媒の製造方法に関する。 That is, the present invention provides a direct methanol fuel cell electrode catalyst characterized in that the electrode catalyst is coated with anatase crystalline titanium oxide sol dispersed and stabilized with one or more acids selected from hydroxycarboxylic acids. Regarding the method.
本発明の直接メタノール型燃料電池(以下、DMFCと略記する)用電極触媒の製造方法により得られた電極は、特にアノード電極に用いる場合、白金触媒担持カーボン電極での白金表面のCO被毒を抑制し、以て効率的且つ持続的な電極反応を維持する。従って、本発明によれば、優れた電池特性を有するDMFCを提供することができる。
また、本発明によれば、白金−ルテニウム電極触媒に本発明で使用するアナターゼ型酸化チタンゾルを担持させることにより、更に上記性能を凌ぐ性能を有するDMFC用電極触媒を得ることができる。
The electrode obtained by the method for producing an electrocatalyst for a direct methanol fuel cell (hereinafter abbreviated as DMFC) according to the present invention, particularly when used as an anode electrode, is capable of CO poisoning of the platinum surface on the platinum catalyst-supporting carbon electrode. Suppress and thus maintain an efficient and sustained electrode reaction. Therefore, according to the present invention, a DMFC having excellent battery characteristics can be provided.
In addition, according to the present invention, by supporting the anatase-type titanium oxide sol used in the present invention on a platinum-ruthenium electrode catalyst, it is possible to obtain a DMFC electrode catalyst having further performance exceeding the above performance.
以下に本発明を更に詳細に説明する。
先ず本発明で使用するヒドロキシカルボン酸から選ばれた一種以上の酸で分散安定化されたアナターゼ型結晶質酸化チタンゾルは、結晶質の一次粒子からなる。また、ゾル粒子は動的散乱法による平均粒子径が数nmから数十nm程度であるため、無定形酸化チタンのゾルに比較して高濃度のゾルとして得られるものである。
また、酸化チタンのアナターゼ型結晶質とは、ルチル型、ブルッカイト型など酸化チタンの結晶形の一種で最も低温で生成する結晶形であり、本発明では酸化チタンゾルを乾燥し、これを粉末X線回折測定に供した時に、アナターゼ型の回折ピークが認められるアナターゼ型酸化チタンゾルを使用する。
The present invention is described in further detail below.
First, the anatase type crystalline titanium oxide sol dispersed and stabilized with one or more acids selected from hydroxycarboxylic acids used in the present invention consists of crystalline primary particles. Further, since the sol particles have an average particle diameter of about several nanometers to several tens of nanometers by a dynamic scattering method, the sol particles can be obtained as a sol having a higher concentration than the amorphous titanium oxide sol.
In addition, the anatase type crystalline of titanium oxide is one of the crystalline forms of titanium oxide such as rutile type and brookite type, which are produced at the lowest temperature. In the present invention, the titanium oxide sol is dried, and this is powder X-ray. An anatase-type titanium oxide sol in which an anatase-type diffraction peak is observed when subjected to diffraction measurement is used.
このようなゾルは、例えば、特許文献3に記載しているような方法で製造することができる。その製造法を例示すれば、先ず、四塩化チタン等の水溶性酸化チタン化合物を炭酸アンモニウム等のアルカリで中和分解し、含水酸化チタンゲルを得た後、これを濾過洗浄し、残存する不純物を除去する。次いで、このゲルを100℃以上の温度で水熱処理を行い、結晶子、粒子径を成長させることによりアナターゼ型結晶性酸化チタンゾルを得る。次に、これにヒドロキシカルボン酸を加えて二回目の水熱処理に供することにより本発明で使用するヒドロキシカルボン酸から選ばれた一種以上の酸で分散安定化されたアナターゼ型結晶質酸化チタンゾルを得ることができる。 Such a sol can be manufactured, for example, by a method described in Patent Document 3. To illustrate the production method, first, a water-soluble titanium oxide compound such as titanium tetrachloride is neutralized and decomposed with an alkali such as ammonium carbonate to obtain a hydrous titanium oxide gel, which is filtered and washed to remove residual impurities. Remove. Next, the gel is hydrothermally treated at a temperature of 100 ° C. or higher to grow crystallites and particle diameters, thereby obtaining an anatase type crystalline titanium oxide sol. Next, an anatase type crystalline titanium oxide sol which is dispersed and stabilized with one or more acids selected from the hydroxycarboxylic acids used in the present invention is obtained by adding a hydroxycarboxylic acid thereto and subjecting it to a second hydrothermal treatment. be able to.
このようなゾルは微細な粒子を有し、これによって比表面積が大きくなり、一般的な粉末と比較してそのゾルの有する特性をより有効に利用することができる。本発明で使用する酸化チタンゾルの平均粒子径は、5nm〜15nmの範囲のものが最も良い電極特性を発揮する。このようなゾルに代えて、例えば、酸化チタン粉末や粉砕法によって得ることができる平均粒子径が数百nmの酸化チタンのコロイド状溶液などを、本発明のような燃料電池用電極触媒に使用した場合には、白金などの貴金属とカーボンへのチタンの被覆状態が粗くなるため、電極触媒の活性が低下したり不安定な電極特性を生じるだけでなく、電極への被覆強度も低下するため、実用面でも問題がある。
このように、白金や白金とルテニウムを組み合わせた電極触媒に通常の酸化チタンを被覆処理しても触媒活性や実用面で不十分であるが、本発明で使用するヒドロキシカルボン酸で分散安定化された酸化チタンのナノ粒子が分散しているアナターゼ型酸化チタンゾルを使用し、これに電極材料を浸漬あるいはこれを電極材料にスプレー塗布し、あるいは添加、混合し、乾燥、加熱することによって電極材料を被覆処理することにより、DMFC用電極触媒としての効果、即ち触媒活性の向上とCO被毒の抑制に優れた効果が発揮される。
Such a sol has fine particles, thereby increasing the specific surface area, and the characteristics of the sol can be used more effectively than a general powder. The average particle diameter of the titanium oxide sol used in the present invention exhibits the best electrode characteristics when it is in the range of 5 nm to 15 nm. Instead of such sols, for example, titanium oxide powder or colloidal solution of titanium oxide having an average particle size of several hundred nm that can be obtained by a pulverization method is used for the fuel cell electrode catalyst as in the present invention. In this case, since the coating state of titanium on the noble metal such as platinum and carbon becomes rough, not only the activity of the electrode catalyst is reduced or unstable electrode characteristics are generated, but also the coating strength to the electrode is also reduced. There is also a problem in practical use.
As described above, even if an electrode catalyst comprising platinum or a combination of platinum and ruthenium is coated with ordinary titanium oxide, the catalytic activity and practical use are insufficient, but the dispersion is stabilized by the hydroxycarboxylic acid used in the present invention. The anatase-type titanium oxide sol in which the titanium oxide nanoparticles are dispersed is immersed in the electrode material or spray-coated on the electrode material, or added, mixed, dried and heated. By performing the coating treatment, the effect as an electrode catalyst for DMFC, that is, the effect of improving catalytic activity and suppressing CO poisoning is exhibited.
本発明で使用するゾルの分散安定剤は、乳酸、クエン酸、グリコール酸、リンゴ酸、酒石酸、マンデル酸等のヒドロキシカルボン酸から選ばれた一種以上の酸であることが必要であり、その理由は定かでないが、これ以外の無機の酸である硝酸、塩酸等の鉱酸或いはカルボン酸、ポリカルボン酸等の有機酸の使用では、本発明で求めるような優れたDMFC用電極触媒の特性を得ることが出来ない。また、上記のヒドロキシカルボン酸の内、クエン酸、リンゴ酸又は酒石酸の使用が、白金等の触媒へのCO被毒の低減効果を最も良く発揮する。 The sol dispersion stabilizer used in the present invention must be one or more acids selected from hydroxycarboxylic acids such as lactic acid, citric acid, glycolic acid, malic acid, tartaric acid, and mandelic acid, for the reason. However, the use of mineral acids such as nitric acid and hydrochloric acid, or organic acids such as carboxylic acid and polycarboxylic acid, which are other inorganic acids, makes it possible to obtain excellent DMFC electrode catalyst characteristics as required in the present invention. I can't get it. Further, among the above hydroxycarboxylic acids, the use of citric acid, malic acid or tartaric acid exhibits the best effect of reducing CO poisoning to a catalyst such as platinum.
また、アナターゼ型結晶質酸化チタンゾルのヒドロキシカルボン酸量に関して云えば、ヒドロキシカルボン酸量は、酸化チタン量に対して、ヒドロキシカルボン酸/酸化チタン(TiO2)モル比で0.01〜0.1の範囲であることが上記の効果を最も発揮する。
更に、本発明で使用するゾルで被覆するために使用する電極触媒としては、白金又は白金とルテニウムである。この白金とルテニウムは合金であり、そのモル比は概ね1:0.5〜1.2であるが、1:1近傍であることがCO被毒の低減への効果を最も発揮する。
Further, regarding the amount of hydroxycarboxylic acid in the anatase crystalline titanium oxide sol, the amount of hydroxycarboxylic acid is 0.01 to 0.1 in terms of hydroxycarboxylic acid / titanium oxide (TiO 2 ) molar ratio with respect to the amount of titanium oxide. The above-mentioned effect is exhibited most in the range.
Furthermore, the electrode catalyst used for coating with the sol used in the present invention is platinum or platinum and ruthenium. The platinum and ruthenium are alloys, and the molar ratio thereof is approximately 1: 0.5 to 1.2, but the effect of reducing CO poisoning is most effective when the ratio is in the vicinity of 1: 1.
本発明のDMFC用電極触媒の製造方法は、上記の様な白金触媒等の電極触媒に、予め前記のゾルを添加し被覆処理を行った後、これを一般に使用される炭素粉末等の電極材料と混合し、焼成して製造することができる。
或いは市販されている白金−導電性炭素微粉末に、本発明で使用する酸化チタンゾルを添加して充分に混合し、これを焼成して製造することもできる。
The method for producing an electrode catalyst for DMFC of the present invention comprises the above-mentioned electrode catalyst such as a platinum catalyst, and after adding the sol in advance and performing a coating treatment, this is generally used as an electrode material such as carbon powder. And can be manufactured by baking.
Alternatively, it can be produced by adding the titanium oxide sol used in the present invention to a commercially available platinum-conductive carbon fine powder and mixing them well, followed by firing.
白金触媒等の電極触媒に対する酸化チタン量に関して云えば、TiO2/Pt又はTiO2/(Pt−Ru)として概ね10〜40質量%である。
混合方法としては、例えば、アナターゼ型酸化チタンゾルと前述の貴金属−導電性炭素粉末を直接混合しても良いし、これを超純水等に分散しスラリー状とした後混合しても良い。
次いでこの分散スラリーを乾燥、粉砕した後、窒素雰囲気下で100〜400℃程度の温度で加熱することにより本発明のDMFC用電極触媒を製造することができる。
Regarding the amount of titanium oxide with respect to an electrode catalyst such as a platinum catalyst, it is approximately 10 to 40% by mass as TiO 2 / Pt or TiO 2 / (Pt—Ru).
As a mixing method, for example, anatase-type titanium oxide sol and the above-mentioned noble metal-conductive carbon powder may be directly mixed, or they may be dispersed in ultrapure water or the like and then mixed into a slurry.
Next, the dispersion slurry is dried and pulverized, and then heated at a temperature of about 100 to 400 ° C. in a nitrogen atmosphere, whereby the DMFC electrode catalyst of the present invention can be produced.
また、上記のような被覆処理を行うに際し、アナターゼ型酸化チタンゾルの粘度調整のために、水溶性高分子などの増粘剤等を分散スラリー中に添加することもできる。
この様な増粘剤としては、多糖類やポリビニルアルコール、ポリエチレンオキシドなどが例示できる。更には、アナターゼ型酸化チタンゾルを白金等の貴金属触媒に担持しやすくするために、メタノール、エタノールなどのアルコール、脂肪族系界面活性剤、フッ素系界面活性剤、シリコーン系界面活性剤等を使用して被覆処理を行うこともできる。
In performing the coating treatment as described above, a thickener such as a water-soluble polymer can be added to the dispersion slurry in order to adjust the viscosity of the anatase-type titanium oxide sol.
Examples of such thickeners include polysaccharides, polyvinyl alcohol, and polyethylene oxide. Furthermore, in order to make it easy to carry anatase type titanium oxide sol on a noble metal catalyst such as platinum, alcohols such as methanol and ethanol, aliphatic surfactants, fluorine surfactants, silicone surfactants, etc. are used. The coating process can also be performed.
以下に、これまで述べてきた発明の詳細を具体的に例を掲げて更に説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the details of the invention described so far will be further described with specific examples, but the present invention is not limited only to these examples.
[酸化チタンゾル被覆Pt/C触媒]
Pt/C(田中貴金属工業(株)製,比表面積329.2m2/g,Pt/C=46.2/53.8(質量比))0.70gに、酸化チタンゾル(多木化学(株)製,タイノックSA-1,TiO210質量%,アナターゼ型,平均粒子径7nm,分散剤:リンゴ酸使用(リンゴ酸/TiO2モル比0.03))1.32g、超純水50gを混合し懸濁液を得た。
懸濁液中の酸化チタンゾルとPt/Cが均一に混合されるように、1時間の超音波分散処理を行った。
超音波分散処理を行った懸濁液を60℃で乾燥させた後、乾燥物を乳鉢で粉砕し、その後N2ガス雰囲気下250℃で2時間焼成することにより、TiO2で被覆処理されたPt/C触媒を得た。
[Titanium oxide sol-coated Pt / C catalyst]
Pt / C (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., specific surface area 329.2 m 2 / g, Pt / C = 46.2 / 53.8 (mass ratio)) 0.70 g, titanium oxide sol (manufactured by Taki Chemical Co., Ltd., Tynock SA) -1, TiO 2 10% by mass, anatase type, average particle size 7 nm, dispersant: malic acid used (malic acid / TiO 2 molar ratio 0.03)) 1.32 g and ultrapure water 50 g were mixed to obtain a suspension It was.
Ultrasonic dispersion treatment was performed for 1 hour so that the titanium oxide sol and Pt / C in the suspension were uniformly mixed.
The suspension subjected to the ultrasonic dispersion treatment was dried at 60 ° C., and then the dried product was pulverized in a mortar and then baked at 250 ° C. for 2 hours in an N 2 gas atmosphere to be coated with TiO 2 . A Pt / C catalyst was obtained.
[酸化チタンゾル被覆Pt−Ru/C触媒]
Pt−Ru/C(田中貴金属工業(株)製,比表面積329.2m2/g,Pt/Ru/C=29.6/23.0/47.4(質量比))0.70gに、酸化チタンゾル(多木化学(株)製,タイノックSA-2,TiO210質量%,アナターゼ型,平均粒子径8nm,分散剤:クエン酸使用(クエン酸/TiO2モル比0.03))0.86g、超純水50gを混合し懸濁液を得た。
懸濁液中の酸化チタンゾルとPt−Ru/Cが均一に混合されるように、1時間の超音波分散処理を行った。
超音波分散処理を行った懸濁液を60℃で乾燥させた後、乾燥物を乳鉢で粉砕し、その後N2ガス雰囲気下250℃で2時間焼成することにより、TiO2で被覆処理されたPt−Ru/C触媒を得た。
[Titanium oxide sol-coated Pt-Ru / C catalyst]
To 0.70 g of Pt-Ru / C (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., specific surface area 329.2 m 2 / g, Pt / Ru / C = 29.6 / 23.0 / 47.4 (mass ratio)), titanium oxide sol (Taki Chemical ( Co., Ltd., Tainok SA-2, TiO 2 10 mass%, anatase type, average particle size 8 nm, dispersant: citric acid used (citric acid / TiO 2 molar ratio 0.03)) 0.86 g, ultrapure water 50 g mixed A suspension was obtained.
Ultrasonic dispersion treatment was performed for 1 hour so that the titanium oxide sol and Pt—Ru / C in the suspension were uniformly mixed.
The suspension subjected to the ultrasonic dispersion treatment was dried at 60 ° C., and then the dried product was pulverized in a mortar and then baked at 250 ° C. for 2 hours in an N 2 gas atmosphere to be coated with TiO 2 . A Pt-Ru / C catalyst was obtained.
[酸化チタンゾル被覆Pt/C触媒]
Pt/C(田中貴金属工業(株)製,比表面積329.2m2/g,Pt/C=46.2/53.8(質量比))0.70gに、酸化チタンゾル(多木化学(株)製,タイノックSA-3,TiO210質量%,アナターゼ型,平均粒子径7nm,分散剤:酒石酸使用(酒石酸/TiO2モル比0.03))1.32g、超純水50gを混合し懸濁液を得た。
懸濁液中の酸化チタンゾルとPt/Cが均一に混合されるように、1時間の超音波分散処理を行った。
超音波分散処理を行った懸濁液を60℃で乾燥させた後、乾燥物を乳鉢で粉砕し、その後N2ガス雰囲気下250℃で2時間焼成することにより、TiO2で被覆処理されたPt/C触媒を得た。
[比較例1]
[Titanium oxide sol-coated Pt / C catalyst]
Pt / C (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., specific surface area 329.2 m 2 / g, Pt / C = 46.2 / 53.8 (mass ratio)) 0.70 g, titanium oxide sol (manufactured by Taki Chemical Co., Ltd., Tynock SA) -3, TiO 2 10% by mass, anatase type, average particle size 7 nm, dispersant: tartaric acid used (tartaric acid / TiO 2 molar ratio 0.03)) 1.32 g and ultrapure water 50 g were mixed to obtain a suspension.
Ultrasonic dispersion treatment was performed for 1 hour so that the titanium oxide sol and Pt / C in the suspension were uniformly mixed.
The suspension subjected to the ultrasonic dispersion treatment was dried at 60 ° C., and then the dried product was pulverized in a mortar and then baked at 250 ° C. for 2 hours in an N 2 gas atmosphere to be coated with TiO 2 . A Pt / C catalyst was obtained.
[Comparative Example 1]
[酸化チタン非処理Pt/C触媒]
Pt/C(田中貴金属工業(株)製,比表面積329.2m2/g,Pt/C=46.2/53.8(質量比))0.70gに、超純水50gを混合し実施例1と同様に1時間の超音波分散処理を行った。
超音波分散処理を行った懸濁液を60℃で乾燥させた後、乾燥物を乳鉢で粉砕し、N2ガス雰囲気下250℃で2時間焼成し、Pt/C触媒を得た。
[比較例2]
[Titanium oxide non-treated Pt / C catalyst]
Pt / C (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., specific surface area 329.2 m 2 / g, Pt / C = 46.2 / 53.8 (mass ratio)) 0.70 g was mixed with 50 g of ultrapure water in the same manner as in Example 1. The ultrasonic dispersion treatment for 1 hour was performed.
The suspension subjected to ultrasonic dispersion treatment was dried at 60 ° C., and then the dried product was pulverized in a mortar and calcined at 250 ° C. for 2 hours in an N 2 gas atmosphere to obtain a Pt / C catalyst.
[Comparative Example 2]
[酸化チタン非処理Pt−Ru/C触媒]
Pt−Ru/C(田中貴金属工業(株)製,比表面積329.2m2/g,Pt/Ru/C=29.6/23.0/47.4(質量比))0.70gに、超純水50gを混合し実施例1と同様に1時間の超音波分散処理を行った。
超音波分散処理を行った懸濁液を60℃で乾燥させた後、乾燥物を乳鉢で粉砕し、N2ガス雰囲気下250℃で2時間焼成し、Pt−Ru/C触媒を得た。
[比較例3]
[Titanium oxide non-treated Pt-Ru / C catalyst]
Pt-Ru / C (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., specific surface area 329.2 m 2 / g, Pt / Ru / C = 29.6 / 23.0 / 47.4 (mass ratio)) 0.70 g was mixed with 50 g of ultrapure water. In the same manner as in Example 1, ultrasonic dispersion treatment for 1 hour was performed.
The suspension subjected to the ultrasonic dispersion treatment was dried at 60 ° C., and then the dried product was pulverized in a mortar and calcined at 250 ° C. for 2 hours in an N 2 gas atmosphere to obtain a Pt—Ru / C catalyst.
[Comparative Example 3]
[酸化チタン粉末被覆Pt/C触媒]
Pt/C(田中貴金属工業(株)製,比表面積329.2m2/g,Pt/C=46.2/53.8(質量比))0.70gに、酸化チタン粉末(多木化学(株)製,タイノックA-100,TiO2 84質量%,アナターゼ型,平均粒子径2μm,比表面積300m2/g)0.16g、超純水50gを混合し懸濁液を得た。
懸濁液中の酸化チタン粉末とPt/Cが均一に混合されるように、1時間の超音波分散処理を行った。
超音波分散処理を行った懸濁液を60℃で乾燥させた後、乾燥物を乳鉢で粉砕し、その後N2ガス雰囲気下250℃で2時間焼成することにより、TiO2で被覆処理されたPt/C触媒を得た。
[比較例4]
[Titanium oxide powder-coated Pt / C catalyst]
Pt / C (Tanaka Kikinzoku Kogyo Co., Ltd., specific surface area 329.2m 2 / g, Pt / C = 46.2 / 53.8 (mass ratio)) 0.70g, titanium oxide powder (Taki Chemical Co., Ltd., Tynock) A-100, TiO 2 84 mass%, anatase type,
An ultrasonic dispersion treatment for 1 hour was performed so that the titanium oxide powder and Pt / C in the suspension were uniformly mixed.
The suspension subjected to the ultrasonic dispersion treatment was dried at 60 ° C., and then the dried product was pulverized in a mortar and then baked at 250 ° C. for 2 hours in an N 2 gas atmosphere to be coated with TiO 2 . A Pt / C catalyst was obtained.
[Comparative Example 4]
[硝酸安定型酸化チタンゾル被覆Pt/C触媒]
Pt/C(田中貴金属工業(株)製,比表面積329.2m2/g,Pt/C=46.2/53.8(質量比))0.70gに、硝酸安定型酸化チタンゾル(多木化学(株)製,タイノックI-3,TiO2 10質量%,アナターゼ型,平均粒子径12nm,分散剤:硝酸使用(硝酸/TiO2モル比0.01))1.32g、超純水50gを混合し懸濁液を得た。
懸濁液中の酸化チタンゾルとPt/Cが均一に混合されるように、1時間の超音波分散処理を行った。
超音波分散処理を行った懸濁液を60℃で乾燥させた後、乾燥物を乳鉢で粉砕し、その後N2ガス雰囲気下250℃で2時間焼成することにより、TiO2で被覆処理されたPt/C触媒を得た。
実施例1〜3及び比較例1〜4で得た電極触媒の各成分を表1に示した。
[Nitric acid-stable titanium oxide sol-coated Pt / C catalyst]
Pt / C (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., specific surface area 329.2m 2 / g, Pt / C = 46.2 / 53.8 (mass ratio)) 0.70g, nitrate stable titanium oxide sol (manufactured by Taki Chemical Co., Ltd.) , Tynock I-3, TiO 2 10% by mass, anatase type, average particle size 12nm, dispersant: nitric acid (nitric acid / TiO 2 molar ratio 0.01)) 1.32g, ultrapure water 50g was mixed and the suspension was mixed Obtained.
Ultrasonic dispersion treatment was performed for 1 hour so that the titanium oxide sol and Pt / C in the suspension were uniformly mixed.
The suspension subjected to the ultrasonic dispersion treatment was dried at 60 ° C., and then the dried product was pulverized in a mortar and then baked at 250 ° C. for 2 hours in an N 2 gas atmosphere to be coated with TiO 2 . A Pt / C catalyst was obtained.
Table 1 shows the components of the electrode catalysts obtained in Examples 1 to 3 and Comparative Examples 1 to 4.
[アノード電極(燃料極)の作製]
実施例1〜3及び比較例1〜4で得られた触媒0.20gと、5質量%Nafion溶液1.53gと超純水0.34gとを混合し、1時間攪拌することにより触媒を十分に分散させたペーストを得た。
得られたペーストを、Pt換算で0.80mg/cm2となるように、ポリテトラフルオロエチレンで撥水処理を施したカーボンペーパー上に塗布した。これを乾燥させた後、ペーパーを切断し4cm2のアノード電極を作製した。
[Production of anode electrode (fuel electrode)]
The catalyst was sufficiently obtained by mixing 0.20 g of the catalyst obtained in Examples 1 to 3 and Comparative Examples 1 to 4, 1.53 g of 5 mass% Nafion solution and 0.34 g of ultrapure water, and stirring for 1 hour. A paste dispersed in was obtained.
The obtained paste was applied onto carbon paper that had been subjected to a water-repellent treatment with polytetrafluoroethylene so as to be 0.80 mg / cm 2 in terms of Pt. After drying this, the paper was cut to produce a 4 cm 2 anode electrode.
[膜電極接合体(MEA)の作製]
上記の各アノード電極と、比較例1の触媒を用いて上記方法により作製したPt/C電極触媒をカソード電極とし、予め3%の過酸化水素水で1時間、純水で1時間、1Mの硫酸で1時間、更に純水で1時間煮沸処理を行ったNafion112膜と共に130℃、1MPaで2分間熱圧着することで膜電極接合体(MEA)を作製した。
[Production of membrane electrode assembly (MEA)]
Each of the anode electrodes described above and the Pt / C electrode catalyst prepared by the above method using the catalyst of Comparative Example 1 was used as a cathode electrode, preliminarily 1% with 3% hydrogen peroxide, 1 hour with pure water, and 1M A membrane electrode assembly (MEA) was produced by thermocompression bonding at 130 ° C. and 1 MPa for 2 minutes together with a Nafion 112 membrane that had been boiled with sulfuric acid for 1 hour and further with pure water for 1 hour.
[電極性能とDMFCの評価]
燃料として5質量%メタノール水溶液を使用し、アノードへの燃料供給量を0.8ml/min、燃料供給温度95℃とした。更に、カソードへの酸素供給量を100ml/minとし、セル温度80℃で燃料電池の運転を行った。
また、MEAの性能確認方法として、負荷変動(I−V)特性については燃料電池評価装置(Globe Tech.Inc.社製)を使用し、インピーダンス測定にはインピーダンスアナライザー(Zehner GmbH社製)を使用し、電圧0.30V、周波数50mHz〜15kHz、重畳電圧5mVの条件でインピーダンスを測定した。
実施例1〜3及び比較例1〜4で製造した電極触媒を、上記の性能評価試験に供したところ、以下のようなI−V特性とインピーダンス特性の結果が得られた。
[Evaluation of electrode performance and DMFC]
A 5 mass% aqueous methanol solution was used as the fuel, the amount of fuel supplied to the anode was 0.8 ml / min, and the fuel supply temperature was 95 ° C. Further, the fuel cell was operated at a cell temperature of 80 ° C. with an oxygen supply amount to the cathode of 100 ml / min.
In addition, as a method for confirming MEA performance, a fuel cell evaluation device (Globe Tech. Inc.) is used for load fluctuation (IV) characteristics, and an impedance analyzer (Zehner GmbH) is used for impedance measurement. The impedance was measured under the conditions of a voltage of 0.30 V, a frequency of 50 mHz to 15 kHz, and a superimposed voltage of 5 mV.
When the electrode catalysts manufactured in Examples 1 to 3 and Comparative Examples 1 to 4 were subjected to the above performance evaluation test, the following results of IV characteristics and impedance characteristics were obtained.
[I−V特性]
作製した電極触媒をアノード側に用いたDMFCのI−V特性を測定した。各電極触媒を使用して測定を行った結果を図1に示した。I−V特性は電池性能を示す特性であり、I−V曲線が上になる程、電池性能が優れていることを示している。図1では触媒種だけを変えているため、I−V曲線が上になる程、触媒性能が優れていることを意味する。
測定結果から、実施例1の触媒を使用した電極と、比較例1の触媒を使用した電極を比較すると、TiO2を担持した触媒は性能が向上していることが判る。また、実施例2と比較例2との対比についても同様である。
更に、実施例1の触媒を使用した電極と比較例3の触媒を使用した電極を比較すると、比較例3の電池性能の向上は殆ど認めらない。即ち、この実験は単に白金触媒をTiO2で被覆処理すればよいというものではないということを示しており、本発明技術の卓越性を知ることができる。
更に、実施例1の触媒を使用した電極と比較例4の触媒を使用した電極を比較すると、同じ酸化チタンゾルであっても本発明の酸化チタンゾル(リンゴ酸安定型)は、比較例4の酸化チタンゾル(硝酸安定型)を使用した電極に較べ、格段に触媒性能が向上していることが明らかである。このことからも本発明技術の優秀性を伺い知ることができる。
尚、実施例3の触媒について測定した結果、I−V特性は、ほぼ実施例1の触媒による測定結果と同じであった。
[IV characteristics]
The IV characteristic of DMFC using the produced electrode catalyst on the anode side was measured. The results of measurement using each electrode catalyst are shown in FIG. The IV characteristic is a characteristic indicating battery performance. The higher the IV curve, the better the battery performance. In FIG. 1, since only the catalyst type is changed, the higher the IV curve, the better the catalyst performance.
From the measurement results, comparing the electrode using the catalyst of Example 1 and the electrode using the catalyst of Comparative Example 1, it can be seen that the performance of the catalyst supporting TiO 2 is improved. The same applies to the comparison between Example 2 and Comparative Example 2.
Furthermore, when the electrode using the catalyst of Example 1 and the electrode using the catalyst of Comparative Example 3 are compared, almost no improvement in the battery performance of Comparative Example 3 is observed. That is, this experiment shows that the platinum catalyst is not simply coated with TiO 2 , and the superiority of the technology of the present invention can be known.
Further, when the electrode using the catalyst of Example 1 and the electrode using the catalyst of Comparative Example 4 are compared, the titanium oxide sol (malic acid stable type) of the present invention is the oxidation of Comparative Example 4 even if the same titanium oxide sol is used. It is clear that the catalyst performance is remarkably improved as compared with the electrode using titanium sol (nitric acid stable type). From this fact, the superiority of the technology of the present invention can be heard.
In addition, as a result of measuring about the catalyst of Example 3, IV characteristic was the same as the measurement result by the catalyst of Example 1 substantially.
[インピーダンス特性]
作製した電極触媒をアノード側に用いたDMFCのインピーダンス特性を測定した。インピーダンス特性は、表示法としてナイキストプロットが用いられる。ナイキストプロットでは、アーク(円弧)の半円の大きさが触媒活性の優劣を示す。そのため、半円の大きさが小さい程、触媒活性が優れていることを意味する。実施例1と比較例1、3及び4の触媒を使用して測定を行った結果を図2に示した。
測定結果から、実施例1の触媒を使用した電極と、比較例1の触媒を使用した電極を比較すると、本発明のTiO2を担持した触媒は格段に触媒活性が優れていることが判る。
例えば、本発明の酸化チタンゾルを使用した電極と、比較例4の硝酸安定型酸化チタンゾルとを比較してみても、明らかに本発明の酸化チタンゾルによる触媒活性が向上していることが判る。
尚、実施例3の触媒について測定した結果、インピーダンス特性は、ほぼ実施例1の触媒による測定結果と同じであった。
[Impedance characteristics]
The impedance characteristic of DMFC using the produced electrode catalyst on the anode side was measured. The Nyquist plot is used as the display method for the impedance characteristics. In the Nyquist plot, the size of the semicircle of the arc (arc) indicates the superiority or inferiority of the catalyst activity. Therefore, the smaller the size of the semicircle, the better the catalytic activity. The results of measurement using the catalysts of Example 1 and Comparative Examples 1, 3 and 4 are shown in FIG.
From the measurement results, when the electrode using the catalyst of Example 1 and the electrode using the catalyst of Comparative Example 1 are compared, it can be seen that the catalyst supporting TiO 2 of the present invention is remarkably superior in catalytic activity.
For example, comparing the electrode using the titanium oxide sol of the present invention with the nitric acid stable titanium oxide sol of Comparative Example 4, it can be clearly seen that the catalytic activity of the titanium oxide sol of the present invention is improved.
In addition, as a result of measuring about the catalyst of Example 3, the impedance characteristic was the same as the measurement result by the catalyst of Example 1.
Claims (6)
The method for producing an electrode catalyst for a direct methanol fuel cell according to any one of claims 1 to 5, wherein the electrode catalyst is platinum or platinum and ruthenium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003287851A JP4471146B2 (en) | 2003-08-06 | 2003-08-06 | Method for producing electrode catalyst for direct methanol fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003287851A JP4471146B2 (en) | 2003-08-06 | 2003-08-06 | Method for producing electrode catalyst for direct methanol fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005056746A true JP2005056746A (en) | 2005-03-03 |
JP4471146B2 JP4471146B2 (en) | 2010-06-02 |
Family
ID=34366714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003287851A Expired - Lifetime JP4471146B2 (en) | 2003-08-06 | 2003-08-06 | Method for producing electrode catalyst for direct methanol fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4471146B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006126349A1 (en) * | 2005-05-25 | 2006-11-30 | Nissan Motor Co., Ltd. | Electrode material for fuel cell and fuel cell |
JP2007213859A (en) * | 2006-02-07 | 2007-08-23 | Tokyo Institute Of Technology | Oxide composite material, its manufacturing method and oxidation-reduction electrode |
JP2008181696A (en) * | 2007-01-23 | 2008-08-07 | Asahi Glass Co Ltd | Catalyst for fuel cell and its manufacturing method |
JP2012252865A (en) * | 2011-06-02 | 2012-12-20 | Nippon Steel & Sumitomo Metal | Electrode material and fuel cell |
JP2013059741A (en) * | 2011-09-14 | 2013-04-04 | Toyota Motor Corp | Catalyst-supporting carrier and method for manufacturing the same |
EP2200742A4 (en) * | 2007-08-31 | 2016-02-24 | Cristal Usa Inc | Transparent, stable titanium dioxide sols |
JP2016507869A (en) * | 2013-01-08 | 2016-03-10 | アウディ アクチェンゲゼルシャフトAudi Ag | Fuel cell catalyst treatment |
JP2016201314A (en) * | 2015-04-13 | 2016-12-01 | トヨタ自動車株式会社 | Method of manufacturing electrode for fuel battery |
EP3467921A4 (en) * | 2016-06-03 | 2019-07-03 | Nissan Motor Co., Ltd. | Electrode catalyst, method for manufacturing same, and electrode catalyst layer using electrode catalyst |
CN110190310A (en) * | 2019-05-16 | 2019-08-30 | 华南理工大学 | A method of promoting fuel-cell catalyst and membrane electrode durability |
-
2003
- 2003-08-06 JP JP2003287851A patent/JP4471146B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006126349A1 (en) * | 2005-05-25 | 2006-11-30 | Nissan Motor Co., Ltd. | Electrode material for fuel cell and fuel cell |
JP2007213859A (en) * | 2006-02-07 | 2007-08-23 | Tokyo Institute Of Technology | Oxide composite material, its manufacturing method and oxidation-reduction electrode |
JP2008181696A (en) * | 2007-01-23 | 2008-08-07 | Asahi Glass Co Ltd | Catalyst for fuel cell and its manufacturing method |
EP2200742A4 (en) * | 2007-08-31 | 2016-02-24 | Cristal Usa Inc | Transparent, stable titanium dioxide sols |
JP2012252865A (en) * | 2011-06-02 | 2012-12-20 | Nippon Steel & Sumitomo Metal | Electrode material and fuel cell |
JP2013059741A (en) * | 2011-09-14 | 2013-04-04 | Toyota Motor Corp | Catalyst-supporting carrier and method for manufacturing the same |
JP2016507869A (en) * | 2013-01-08 | 2016-03-10 | アウディ アクチェンゲゼルシャフトAudi Ag | Fuel cell catalyst treatment |
JP2016201314A (en) * | 2015-04-13 | 2016-12-01 | トヨタ自動車株式会社 | Method of manufacturing electrode for fuel battery |
EP3467921A4 (en) * | 2016-06-03 | 2019-07-03 | Nissan Motor Co., Ltd. | Electrode catalyst, method for manufacturing same, and electrode catalyst layer using electrode catalyst |
CN110190310A (en) * | 2019-05-16 | 2019-08-30 | 华南理工大学 | A method of promoting fuel-cell catalyst and membrane electrode durability |
WO2020228252A1 (en) * | 2019-05-16 | 2020-11-19 | 华南理工大学 | Method for enhancing durability of catalyst and membrane electrode of fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP4471146B2 (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cruz et al. | Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells | |
CN1874841B (en) | Precious metal oxide catalyst for water electrolysis | |
JP3861146B2 (en) | Anode catalyst for fuel cell | |
JP4901143B2 (en) | Electrode catalyst, electrode for fuel electrode, fuel cell device, and method for producing electrode catalyst | |
JPWO2009060582A1 (en) | Method for producing fuel cell electrode material, fuel cell electrode material, and fuel cell using the fuel cell electrode material | |
EP3006106B1 (en) | Catalyst particles, support-type catalyst particles, and use thereof | |
JP2006128118A (en) | Catalyst for fuel cell, its production method, and fuel cell system containing the catalyst | |
Wang et al. | Monodisperse Pt nanoparticles anchored on N-doped black TiO2 as high performance bifunctional electrocatalyst | |
JP2006210135A (en) | Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device | |
JP2010272248A (en) | High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst | |
JP2010102889A (en) | Electrode catalyst for fuel cell | |
CN111266110A (en) | Anode catalyst for water electrolysis hydrogen production by using transition metal doped titanium oxide as carrier and preparation method thereof | |
JPWO2009028408A1 (en) | Electrode catalyst layer, membrane electrode assembly, and fuel cell | |
JP4471146B2 (en) | Method for producing electrode catalyst for direct methanol fuel cell | |
CN107732262B (en) | Anti-poisoning Pt-based nano catalyst and preparation method and application thereof | |
JP4999418B2 (en) | ELECTRODE CATALYST FOR DIRECT FUEL CELL, FUEL DIRECT FUEL CELL USING THE SAME, AND ELECTRONIC DEVICE | |
Habibi et al. | Electrooxidation of formic acid and formaldehyde on the Fe3O4@ Pt core-shell nanoparticles/carbon-ceramic electrode | |
Yavari et al. | SrFeO3-δ assisting with Pd nanoparticles on the performance of alcohols catalytic oxidation | |
JPWO2009060777A1 (en) | Electrode catalyst and positive electrode oxygen reduction electrode using the same | |
JP2007273161A (en) | Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell | |
JPWO2019177060A1 (en) | Electrode catalyst for fuel cells and fuel cells using them | |
KR102385067B1 (en) | Co catalyst for oxygen evolution reaction and The manufacturing method for the same | |
JP2006294601A (en) | Electrocatalyst for fuel cell | |
JP7502245B2 (en) | Electrocatalysts for hydrogen fuel cell anodes | |
EP4447170A1 (en) | Excellent-durability carbon-based catalyst for fuel cell, preparation method therefor, and proton exchange membrane fuel cell comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4471146 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160312 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |