JP2010272248A - High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst - Google Patents

High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst Download PDF

Info

Publication number
JP2010272248A
JP2010272248A JP2009121269A JP2009121269A JP2010272248A JP 2010272248 A JP2010272248 A JP 2010272248A JP 2009121269 A JP2009121269 A JP 2009121269A JP 2009121269 A JP2009121269 A JP 2009121269A JP 2010272248 A JP2010272248 A JP 2010272248A
Authority
JP
Japan
Prior art keywords
electrode catalyst
noble metal
supported
platinum
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009121269A
Other languages
Japanese (ja)
Inventor
Masahiro Watanabe
政廣 渡辺
Katsuyoshi Kakinuma
克良 柿沼
Hisao Yamashita
壽生 山下
Hiroshi Yano
啓 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2009121269A priority Critical patent/JP2010272248A/en
Publication of JP2010272248A publication Critical patent/JP2010272248A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particulate carrier usable as an alternative to carbon particles which support platinum and capable of greatly reducing the amount of platinum to be used because there is no dissolution or corrosion such as quinone production at a high potential, and to provide an electrode catalyst supporting noble metal particles having nanometer sizes. <P>SOLUTION: Attention is focused on the fact that some of metal oxide and metal nitride having specified compositions and crystal structures stably exist without causing dissolution or corrosion at a high potential of 0.9 V or higher and show a high conductivity of 10 S/cm or higher. The particulates of the metal oxide and the metal nitride having specific surface areas of 3 m<SP>2</SP>/g or larger are synthesized using a gas and/or liquid phase and fine noble metal particles having particle sizes 1-20 nm are supported on the surfaces without being aggregated to produce a highly stable electrode material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、温度の降下と共に導電率が上がる、もしくは一定となる金属的な伝導性を有することを特徴とする電極触媒用微粒子担体であり、さらに詳しくは、10S/cm以上の導電性をもつ酸化物および/または窒化物で、3m/g以上の比表面積があり、0.9V 以上の電位にて化学的に安定な性質をもつ微粒子について、これを担体として、その表面上に1nm〜20nmの粒径をもつ貴金属微粒子を担持させた、燃料電池用電極に関するものである。 The present invention is a particulate carrier for an electrode catalyst characterized by having a metallic conductivity that increases or becomes constant with a decrease in temperature, and more specifically has a conductivity of 10 S / cm or more. Oxides and / or nitrides having a specific surface area of 3 m 2 / g or more, and fine particles having a chemically stable property at a potential of 0.9 V or more are used as a carrier on the surface thereof. The present invention relates to a fuel cell electrode carrying noble metal fine particles having a particle diameter of 20 nm.

従来、貴金属微粒子を炭素担体粒子に担持させたものは、燃料電池の電極触媒として多用されている。この場合の担体粒子としては主に、比表面積が100m/g以上の微粒子が用いられている。特に高い導電性を持つ炭素粒子は燃料電池の電極用触媒の担体として有効なものである。 Conventionally, those in which noble metal fine particles are supported on carbon support particles are widely used as electrode catalysts for fuel cells. As the carrier particles in this case, fine particles having a specific surface area of 100 m 2 / g or more are mainly used. In particular, carbon particles having high conductivity are effective as a support for a catalyst for an electrode of a fuel cell.

その炭素粒子に、白金や白金とルテニウムもしくは白金と鉄といった貴金属合金粒子を担持させた粉末は、高性能な高分子形燃料電池用電極触媒として知られている。例えば特許文献1、2には、白金や白金と他の1種以上の金属による合金を炭素に担持させることにより固体高分子形燃料電池用電極ができると記載されている。   A powder in which noble metal alloy particles such as platinum, platinum and ruthenium, or platinum and iron are supported on the carbon particles is known as a high-performance polymer fuel cell electrode catalyst. For example, Patent Documents 1 and 2 describe that a polymer electrolyte fuel cell electrode can be formed by supporting platinum or an alloy of platinum and one or more other metals on carbon.

また特許文献3、4、5、6では、白金代替触媒としてペロブスカイト型酸化物微粒子や卑な金属酸化物を用い、それらを炭素へ担持させた触媒が燃料電池用電極触媒としての効果を発揮すると記載されている。さらに、特許文献7では白金を主として二酸化チタン等の酸化物からなる担体材料に担持させ、それに導電性を付与させるため炭素を混ぜることにより燃料電池等の電気化学デバイスの出力特性および耐久性を効果的に向上させると記載されている。また特許文献8、9では白金代替触媒として酸窒化物、窒化物、遷移金属四窒化物を利用し、それらを炭素に担持させることで電極触媒として使用する例も挙げられている。   In Patent Documents 3, 4, 5, and 6, when a perovskite-type oxide fine particle or a base metal oxide is used as a platinum substitute catalyst, and a catalyst in which these are supported on carbon exhibits an effect as an electrode catalyst for a fuel cell. Are listed. Further, in Patent Document 7, the output characteristics and durability of an electrochemical device such as a fuel cell are effectively obtained by supporting platinum on a support material composed mainly of an oxide such as titanium dioxide and mixing it with carbon to impart electrical conductivity thereto. It is described that it will improve. In Patent Documents 8 and 9, oxynitrides, nitrides, and transition metal tetranitrides are used as platinum substitute catalysts, and examples of using them as carbon catalysts by supporting them on carbon are also given.

特開2001−15121JP 2001-15121 A 特開2006−127979JP 2006-127799 A 特開2008−4286JP2008-4286 特開2006−26586JP2006-26586 特開2004−363056JP 2004-363056 A 特開2003−092114JP 2003-092114 A 特開2005−174835JP-A-2005-174835 特開2008−155111JP 2008-155111 A 特開2005−44659JP 2005-44659 A

上述のように白金およびその合金化合物を炭素に担持させたものや、金属酸化物、酸窒化物そして窒化物等を助触媒として、白金およびその合金化合物と共に炭素へ担持させた電極触媒は公知の物質であるとも言える。近年、PEFCは自動車などへの応用が期待されており、走行中の加減速に対応した頻繁な負荷変動・起動停止に対応する電極が必要とされている。しかし、頻繁な負荷変動・起動停止により、カソードの電位は0.9V以上に達するため、炭素は下記の反応式(1)に示す酸化反応により、著しく劣化する。
C + 2HO→ CO+ 4H + 4e (E0 = 0.207V vs RHE)
・・・(1)
また、担体を金属酸化物にして耐久性を向上させる試みがあるものの、その導電性が小さいため、集電体としての機能を十分に発揮できない。現状では、前記特許文献7にあるように、担体に炭素(カーボンブラック、グラファイト化カーボン等)の添加を必要としている。
As described above, there are known electrocatalysts in which platinum and its alloy compound are supported on carbon, and electrode catalysts in which platinum and its alloy compound are supported on carbon using a metal oxide, oxynitride, nitride, etc. as a cocatalyst. It can be said that it is a substance. In recent years, PEFC is expected to be applied to automobiles and the like, and an electrode corresponding to frequent load fluctuation / start / stop corresponding to acceleration / deceleration during traveling is required. However, since the cathode potential reaches 0.9 V or more due to frequent load fluctuations and start / stop operations, carbon deteriorates significantly due to the oxidation reaction shown in the following reaction formula (1).
C + 2H 2 O → CO 2 + 4H + + 4e (E 0 = 0.207 V vs RHE)
... (1)
In addition, although there is an attempt to improve durability by using a carrier as a metal oxide, since the conductivity is small, the function as a current collector cannot be sufficiently exhibited. At present, as described in Patent Document 7, it is necessary to add carbon (carbon black, graphitized carbon, etc.) to the support.

従って、0.9V以上の高電位においても安定で、高い導電性を兼ね備えた担体を開発する必要がある。さらには、その担体の比表面積を大きくすることで、1nm〜20nmの粒子径をもつ貴金属微粒子を高分散させた電極触媒を作製し、カソードへ応用する必要もある。   Therefore, it is necessary to develop a carrier that is stable even at a high potential of 0.9 V or more and has high conductivity. Furthermore, by increasing the specific surface area of the carrier, it is also necessary to produce an electrode catalyst in which noble metal fine particles having a particle diameter of 1 nm to 20 nm are highly dispersed and to apply it to the cathode.

そのうえ、PEFCの広汎な普及を目指すためには、カソードに含まれる高価な貴金属の量を大幅に減らす必要もある。
本発明は、上記の課題に対し、0.9V以上の高電位において溶解や腐食等がおきず、PEFCの作動条件下で安定に存在し、高い導電率を有する金属酸化物および金属窒化物の微粒子担体および該担体に、ナノサイズに粒径を制御したPtおよびまたはPt合金を担持した高性能電極触媒を提供することにある。
In addition, in order to achieve widespread use of PEFC, it is necessary to significantly reduce the amount of expensive noble metal contained in the cathode.
The present invention solves the above-mentioned problems with metal oxides and metal nitrides that do not dissolve or corrode at a high potential of 0.9 V or higher, exist stably under PEFC operating conditions, and have high conductivity. It is an object of the present invention to provide a high-performance electrocatalyst that supports Pt and / or a Pt alloy having a particle size controlled to a nano size on a fine particle support.

上記した電極触媒の腐食を解決するために、本発明はある特定な組成、結晶構造を持つ金属酸化物および金属窒化物の中には0.9V以上の高電位において溶解や腐食等が生じず安定に存在するものがあり、さらに高い導電率を示すものがあることに着目し、それら金属酸化物および金属窒化物の微粒子について、3m/g以上の大きな比表面積を気相および/または液相を利用して合成し、該表面に1〜20nmの粒子径をもつ微細な貴金属粒子を凝集させることなく担持させることにより高安定性電極材料を提供する。更に第2の課題であるPt量低減化に関しては金属酸化物、金属窒化物は炭素に比べ比重が2〜3倍大きいため、同じ体積%のPtを担持させるのに、金属酸化物担体、金属窒化物担体は炭素担体に比べ1/2〜1/3のPtの使用量で済むことになる。すなわち、電極表面に担持されるPtの量を大幅に減らすことができる。 In order to solve the above-mentioned corrosion of the electrode catalyst, the present invention does not cause dissolution or corrosion at a high potential of 0.9 V or higher in metal oxides and metal nitrides having a specific composition and crystal structure. Focusing on the fact that there are those that exist stably, and there are those that exhibit higher electrical conductivity, and these metal oxide and metal nitride fine particles have a large specific surface area of 3 m 2 / g or more in the gas phase and / or liquid. A highly stable electrode material is provided by synthesizing using a phase and supporting fine noble metal particles having a particle diameter of 1 to 20 nm on the surface without aggregation. Furthermore, regarding the reduction of Pt amount, which is the second problem, metal oxides and metal nitrides have a specific gravity 2 to 3 times larger than that of carbon. Therefore, in order to support the same volume% of Pt, metal oxide support, metal The nitride carrier can be used in an amount of Pt that is 1/2 to 1/3 that of the carbon carrier. That is, the amount of Pt supported on the electrode surface can be greatly reduced.

本発明は以下の事項に関するものである。すなわち、
(1)温度降下と共に導電率が上がる、もしくは一定となる金属伝導性を有することを特徴とする電極触媒用微粒子担体
(2)導電率が10S/cm以上を有する酸化物および/または窒化物であることを特徴とする(1)に記載の電極触媒用微粒子担体
(3)前記酸化物が、ランタン、ストロンチウム、セリウム、カルシウム、バリウム、イットリウム、エルビウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、マグネシウム、ニオブ、ビスマス、アンチモン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、スズ、ジルコニウム、モリブデン、インジウム、タンタル、タングステンから選ばれる一種以上の元素を含有することを特徴とする(1)または(2)のいずれかに記載の電極触媒用微粒子担体。
(4)前記窒化物が、鉄、バナジウム、チタン、クロム、ジルコニウム、タンタルから選ばれる一種以上を含有することを特徴とする(1)または(2)のいずれかに記載の電極触媒用微粒子担体。
(5)比表面積が3m/g以上あることを特徴とする(2)に記載の電極触媒用微粒子担体。
(6)(1)から(5)に記載の微粒子担体は、プラズマ炎中で熱処理を行って製造することを特徴とする電極触媒用微粒子担体の製造方法。
(7)平均粒子径が1〜20nmの貴金属および/または貴金属を含む合金を、(1)または(2)のいずれかに記載の微粒子に担持することを特徴とする電極触媒。
(8)平均粒子径が1〜20nmの貴金属および/または貴金属を含む合金を、1〜40重量%含むことを特徴とする(1)または(2)のいずれかに記載の電極触媒。
(9)カソードおよび/またはアノードに用いる電極触媒として、導電率が10S/cm以上を有する酸化物および/または窒化物に、平均粒子径が1〜20nmの貴金属および/または貴金属を含む合金を、1〜40重量%含むことを特徴とする(6)から(8)のいずれかに記載の電極触媒を用いた燃料電池。
The present invention relates to the following items. That is,
(1) Electrode catalyst fine particle support characterized in that the conductivity increases or becomes constant as the temperature drops (2) An oxide and / or nitride having a conductivity of 10 S / cm or more The fine particle support for an electrode catalyst according to (1), wherein the oxide is lanthanum, strontium, cerium, calcium, barium, yttrium, erbium, praseodymium, neodymium, samarium, europium, magnesium, niobium (1) or (1) containing one or more elements selected from bismuth, antimony, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, tin, zirconium, molybdenum, indium, tantalum, and tungsten. The electrode carrier for electrode catalyst according to any one of 2).
(4) The electrode catalyst fine particle support according to either (1) or (2), wherein the nitride contains one or more selected from iron, vanadium, titanium, chromium, zirconium, and tantalum. .
(5) The electrode catalyst fine particle carrier according to (2), wherein the specific surface area is 3 m 2 / g or more.
(6) A method for producing a particulate carrier for an electrode catalyst, wherein the particulate carrier according to (1) to (5) is produced by performing a heat treatment in a plasma flame.
(7) An electrode catalyst characterized in that a noble metal having an average particle diameter of 1 to 20 nm and / or an alloy containing a noble metal is supported on the fine particles according to either (1) or (2).
(8) The electrode catalyst according to any one of (1) and (2), which contains 1 to 40% by weight of a noble metal having an average particle diameter of 1 to 20 nm and / or an alloy containing the noble metal.
(9) As an electrode catalyst used for the cathode and / or anode, an oxide containing a noble metal and / or noble metal having an average particle diameter of 1 to 20 nm in an oxide and / or nitride having an electric conductivity of 10 S / cm or more, A fuel cell using the electrode catalyst according to any one of (6) to (8), which is contained in an amount of 1 to 40% by weight.

本発明によれば、10(S/cm)以上の導電率を有する金属酸化物、金属窒化物の各微粒子で3m/g以上の比表面積をもつものは、粒子径が1〜20nmとなる貴金属を、既存の電極触媒より貴金属を少なく担持させても高い酸素還元活性を有する。さらに、0.9V以上の高電位において、金属酸化物、金属窒化物は溶解や腐食等を生じず、安定な触媒となる。本発明からなる電極触媒材料により安価で、高耐久性に優れたPEFCが実用化でき、燃料電池の広汎な普及が実現できる。 According to the present invention, the fine particles of metal oxide and metal nitride having a conductivity of 10 (S / cm) or more and having a specific surface area of 3 m 2 / g or more have a particle diameter of 1 to 20 nm. Even if the noble metal is supported in a smaller amount than the existing electrode catalyst, it has a high oxygen reduction activity. Furthermore, at high potentials of 0.9 V or higher, metal oxides and metal nitrides do not cause dissolution or corrosion, and become stable catalysts. The electrocatalyst material according to the present invention makes it possible to put into practical use a PEFC that is inexpensive and excellent in durability, and can realize widespread use of fuel cells.

本発明からなる金属酸化物担体およびまたは金属窒化物担体に貴金属を担持した電極触媒は炭素担体に貴金属を担持した電極触媒より貴金属の含有量を半分以上減らし、高電位で安定な電極触媒を実現することができ、安価で高耐久性電極触媒を提供することによりPEFC の長期安定作動と広汎な普及が可能となる。   Electrocatalysts with noble metals supported on metal oxide supports and / or metal nitride supports according to the present invention can reduce the noble metal content by more than half compared to electrode catalysts with noble metals supported on carbon supports, and realize stable electrode catalysts at high potentials. Providing an inexpensive and highly durable electrocatalyst enables the long-term stable operation and widespread use of PEFC.

実施例1で作製したPt担持TiN電極触媒についてのXRDパターンである。2 is an XRD pattern for a Pt-supported TiN electrocatalyst produced in Example 1. FIG. 実施例1で作製したPt担持TiN電極触媒についてのSTEM像である。2 is a STEM image of the Pt-supported TiN electrode catalyst produced in Example 1. FIG. 実施例2で作製したPt担持Ti電極触媒についてのXRDパターンである。2 is an XRD pattern for a Pt-supported Ti 4 O 7 electrode catalyst produced in Example 2. FIG. 実施例2で作製したPt担持Ti電極触媒についてのSTEM像である。 3 is a STEM image of the Pt-supported Ti 4 O 7 electrode catalyst produced in Example 2. FIG. 実施例2で作製したPt担持(La0.6Sr0.4)FeO3-δ電極触媒についてのXRDパターンである。2 is an XRD pattern for a Pt-supported (La 0.6 Sr 0.4 ) FeO 3-δ electrode catalyst prepared in Example 2. FIG. 実施例2で作製したPt担持(La0.6Sr0.4)FeO3-δ電極触媒についてのSTEM像である。2 is a STEM image of a Pt-supported (La 0.6 Sr 0.4 ) FeO 3-δ electrode catalyst prepared in Example 2. FIG. 実施例1で作製したPt担持TiN電極触媒について、電池特性評価で得られたCV曲線を表す図である。It is a figure showing the CV curve obtained by battery characteristic evaluation about the Pt carrying | support TiN electrode catalyst produced in Example 1. FIG. 市販Pt担持炭素電極触媒について、電池特性評価で得られた比較のためのCV曲線を表す図である。It is a figure showing the CV curve for the comparison obtained by battery characteristic evaluation about the commercially available Pt carrying | support carbon electrode catalyst. 実施例1で作製したPt担持TiN電極触媒について、電池特性評価で得られたORRボルタモグラムを表す図である。2 is a diagram showing an ORR voltammogram obtained by battery characteristic evaluation for the Pt-supported TiN electrode catalyst produced in Example 1. FIG. 実施例2で作製したPt担持Ti電極触媒について、電池特性評価で得られたCV曲線を表す図である。 4 is a diagram showing a CV curve obtained by battery characteristic evaluation for the Pt-supported Ti 4 O 7 electrode catalyst produced in Example 2. FIG. 実施例2で作製したPt担持Ti電極触媒について、電池特性評価で得られたORRボルタモグラムを表す図である。6 is a diagram showing an ORR voltammogram obtained by battery characteristic evaluation for a Pt-supported Ti 4 O 7 electrode catalyst produced in Example 2. FIG. 実施例3で作製したPt担持(La0.6Sr0.4)FeO3-δ電極触媒について、電池特性評価で得られたCV曲線を表す図である。FIG. 6 is a diagram showing a CV curve obtained by battery characteristic evaluation for the Pt-supported (La 0.6 Sr 0.4 ) FeO 3-δ electrode catalyst prepared in Example 3. 実施例3で作製したPt担持(La0.6Sr0.4)FeO3-δ電極触媒について、電池特性評価で得られたORRボルタモグラムを表す図である。FIG. 6 is a diagram showing an ORR voltammogram obtained by battery characteristic evaluation for the Pt-supported (La 0.6 Sr 0.4 ) FeO 3-δ electrode catalyst prepared in Example 3.

本発明の金属酸化物、金属窒化物の各微粒子を作製するにあたっては、アルゴンもしくは窒素を用いたプラズマを用いた、公知の作製方法が適用できる。本発明においては、あらかじめ原料となる金属イオンを含む溶液を調製し、超音波噴霧器により溶液をミストにしてプラズマ内に導入するか、もしくは、原料となる金属を含有する化合物を加熱して蒸発させ、プラズマ内に導入することで微粉末を得る。   In producing each fine particle of the metal oxide and metal nitride of the present invention, a known production method using plasma using argon or nitrogen can be applied. In the present invention, a solution containing a metal ion as a raw material is prepared in advance, and the solution is made into a mist by an ultrasonic sprayer and introduced into the plasma, or the compound containing the metal as a raw material is heated and evaporated. The fine powder is obtained by introducing into the plasma.

得られた導電性微粉末担体表面上に1〜20nmの白金および白金合金微粒子を担持させるにあたり、逆ミセル法や含浸法などの手法を応用できる。例えば、逆ミセル法で合成した1〜20nmの白金および白金合金微粒子を有機溶媒に分散させた状態で、前記粉体を添加する。そして、担体粒子表面に吸着させ、ろ過と乾燥を経て、加熱処理することで、電極触媒を作製する。   In supporting platinum and platinum alloy fine particles of 1 to 20 nm on the surface of the obtained conductive fine powder carrier, techniques such as reverse micelle method and impregnation method can be applied. For example, the powder is added in a state where 1 to 20 nm platinum and platinum alloy fine particles synthesized by the reverse micelle method are dispersed in an organic solvent. And it is made to adsorb | suck to the support particle | grain surface, and an electrode catalyst is produced by heat-processing through filtration and drying.

以下、本発明の金属酸化物、金属窒化物の各微粒子について詳細に説明する。本物質はランタン、ストロンチウム、セリウム、カルシウム、バリウム、イットリウム、エルビウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、マグネシウム、ニオブ、ビスマス、アンチモン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、スズ、ジルコニウム、モリブデン、インジウム、タンタル、タングステンから選ばれる一種以上の元素を含む酸化物微粒子、および、鉄、バナジウム、チタン、クロム、ジルコニウム、タンタルから選ばれる一種以上の元素を含む窒化物微粒子である。なお、これら微粒子は強酸性条件下でも溶解しないことから、チタン、鉄、ニオブ、タンタル、ジルコニウム、スズのうち少なくとも一種類が含有されていることが好ましい。   Hereinafter, the fine particles of the metal oxide and metal nitride of the present invention will be described in detail. This substance is lanthanum, strontium, cerium, calcium, barium, yttrium, erbium, praseodymium, neodymium, samarium, europium, magnesium, niobium, bismuth, antimony, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, tin, zirconium Oxide fine particles containing one or more elements selected from molybdenum, indium, tantalum and tungsten, and nitride fine particles containing one or more elements selected from iron, vanadium, titanium, chromium, zirconium and tantalum. Since these fine particles do not dissolve even under strongly acidic conditions, it is preferable that at least one of titanium, iron, niobium, tantalum, zirconium and tin is contained.

後述する実施例においては、主元素としてチタンや鉄を使用しているが、一般に、金属酸化物、窒化物は添加元素などを加えることにより高い導電性を持つものが多く、強酸性条件下でも溶解しないものがあることから、その選択肢の幅はチタンや鉄に限らず広いと考えられる。いずれの場合にも、高い導電率を有する可能性を持つ元素を、主元素とすることがより好ましい。   In the examples described later, titanium or iron is used as the main element, but generally, metal oxides and nitrides often have high conductivity by adding additive elements, etc., even under strongly acidic conditions. Since there are those that do not dissolve, the range of options is not limited to titanium and iron, but is considered wide. In any case, it is more preferable to use an element having a high conductivity as a main element.

また、対腐食性に優れているものの、導電率が僅かに下がるような担体であっても、炭素を担体へ混合することで、その電極反応の性能を十分発揮させることも可能である。
本発明の金属酸化物、金属窒化物の各微粒子は、それ自体導電性を持つため、炭素を含まずに電極用の触媒担体として利用できる。導電率は好ましくは10S/cm以上を有すれば、所望の電極性能を得ることができる。また、その際、各微粒子の比表面積は3m/g上あり、好ましくは40m/g以上あることが望まれる。これは、担体の比表面積が上記値より小さい場合、1〜20nmの白金および白金合金触媒が、担体上にて凝集し粗大化するためである。このとき1nm未満であれば、電極反応が進行していくうちに溶解してしまい、また20nm以上では所望の電極性能が得られない。またこのときの担持量は1〜40重量%であることが望ましい。
Moreover, even if the carrier has excellent corrosion resistance but has a slight decrease in electrical conductivity, the performance of the electrode reaction can be sufficiently exhibited by mixing carbon with the carrier.
The fine particles of the metal oxide and metal nitride of the present invention themselves have electrical conductivity, and therefore can be used as a catalyst support for electrodes without containing carbon. Desirable electrode performance can be obtained if the conductivity is preferably 10 S / cm or more. At that time, the specific surface area of each particle is on 3m 2 / g, preferably desirable that 40 m 2 / g or more. This is because when the specific surface area of the support is smaller than the above value, 1 to 20 nm of platinum and the platinum alloy catalyst are aggregated and coarsened on the support. If it is less than 1 nm at this time, it will melt | dissolve while an electrode reaction advances, and desired electrode performance will not be obtained in 20 nm or more. In addition, the loading amount at this time is desirably 1 to 40% by weight.

なお、金属酸化物、金属窒化物各微粒子の比表面積はBET法により測定し、白金および白金合金の平均粒子径は透過型電子顕微鏡(TEM)の撮影像から求める。   The specific surface area of each metal oxide and metal nitride fine particle is measured by the BET method, and the average particle diameters of platinum and platinum alloy are obtained from a photographic image of a transmission electron microscope (TEM).

(Pt20重量%担持TiN)
RFプラズマ法にて合成されたTiN(比表面積44m/g)50.25mgを、ジフェニルエーテル2.5mlに入れ、超音波分散機にて30分間混合し、TiNの分散液を調製した。ジフェニルエーテル10ml中に白金アセチルアセトナートを50.6mg、ヘキサデカンジオール260mgを入れ、110℃窒素気流中で30分間混合し、白金錯体を含む有機溶液を調製した。得られた溶液に界面活性剤としてオレイン酸85ml、オレイルアミン酸80ml入れ、220℃窒素気流中で30分間混合し、オレイン酸およびオレイルアミン酸で構成され、白金イオンを内包したミセルを含む溶液を調製した。上記溶液に水素化トリエチルホウ素リチウムテトラヒドロフラン溶液を1ml加え、270℃窒素気流中30分間混合することで、上記ミセル中に白金イオンを還元し、界面活性剤に覆われた白金微粒子の分散液を調製した。得られた分散液を200℃まで徐冷し、そこに上記TiN分散液を混合して、270℃窒素気流中30分間混合し、界面活性剤で覆われた白金微粒子をそれぞれのTiN粉末表面に吸着させた。TiN微粒子を室温にてろ過し、エタノールでの洗浄を数回行った。60℃にて乾燥後、電気炉にて400℃にて加熱処理し、TiN微粒子表面の有機物を除去することで、Ptを担持したTiN電極粉末を得た。
(Pt20 wt% supported TiN)
TiN (specific surface area 44 m 2 / g) 50.25 mg synthesized by RF plasma method was put in 2.5 ml of diphenyl ether and mixed for 30 minutes with an ultrasonic disperser to prepare a dispersion of TiN. In 10 ml of diphenyl ether, 50.6 mg of platinum acetylacetonate and 260 mg of hexadecanediol were placed and mixed in a nitrogen stream at 110 ° C. for 30 minutes to prepare an organic solution containing a platinum complex. 85 ml of oleic acid and 80 ml of oleylamic acid were added to the obtained solution as a surfactant and mixed in a nitrogen stream at 220 ° C. for 30 minutes to prepare a solution containing micelles composed of oleic acid and oleylamic acid and containing platinum ions. . Add 1 ml of lithium triethylborohydride solution to the above solution and mix in 270 ° C. nitrogen stream for 30 minutes to reduce platinum ions in the micelle and prepare a dispersion of platinum fine particles covered with surfactant. did. The obtained dispersion is gradually cooled to 200 ° C., and the TiN dispersion is mixed therewith and mixed in a 270 ° C. nitrogen stream for 30 minutes. The platinum fine particles covered with the surfactant are placed on the surface of each TiN powder. Adsorbed. TiN fine particles were filtered at room temperature and washed several times with ethanol. After drying at 60 ° C., heat treatment was performed at 400 ° C. in an electric furnace to remove organic substances on the surface of the TiN fine particles, whereby a TiN electrode powder carrying Pt was obtained.

このようにして得られたPtを担持したTiN電極粉末について、粉末X線回折測定を行った結果、図1に示す回折パターンが得られ、PtとTiNの存在を確認した。この際回折ピークの半値幅から得られる各粉末の結晶子径はPtが5.4nmであり、TiNは31.4nmであった。なお、Ptの担持量は高周波誘導加熱発光分光法(ICP)を用いて確認した。さらに、得られた粉末の表面および形状を透過走査電子顕微鏡(STEM)にて観察した。その結果、PtがTiN表面に均一に分散して担持されていることが確認された(図2)。また、担持されたPtは球形であり、その平均粒径は4.5nm(50個の粒子径を平均して算出)であった。TiN粉末は立方体もしくは直方体であり、その一辺は10〜30nmであった。   The TiN electrode powder carrying Pt thus obtained was subjected to powder X-ray diffraction measurement. As a result, the diffraction pattern shown in FIG. 1 was obtained, and the presence of Pt and TiN was confirmed. At this time, the crystallite diameter of each powder obtained from the half width of the diffraction peak was Pt of 5.4 nm and TiN of 31.4 nm. The amount of Pt supported was confirmed using high frequency induction heating emission spectroscopy (ICP). Furthermore, the surface and shape of the obtained powder were observed with a transmission scanning electron microscope (STEM). As a result, it was confirmed that Pt was uniformly dispersed and supported on the TiN surface (FIG. 2). The supported Pt was spherical, and its average particle size was 4.5 nm (calculated by averaging 50 particle sizes). The TiN powder was a cube or a rectangular parallelepiped, and one side thereof was 10 to 30 nm.

また、大気圧プラズマ法にて合成したTiOをアンモニア中で熱処理(1150℃)したTiN(比表面積5m/g)についても同様な処理を行い、Ptを担持したTiN電極粉末を得た。TiN粉末は不定形であった。 The same treatment was performed on TiN (specific surface area 5 m 2 / g) obtained by heat-treating TiO 2 synthesized by the atmospheric pressure plasma method in ammonia (1150 ° C.) to obtain a TiN electrode powder carrying Pt. The TiN powder was amorphous.

(Pt20重量%担持Ti
硫酸チタン(24重量%水溶液)2.78gを29.5mlの水に混合し、Tiイオンを含む水溶液を調製した。上記水溶液を入れたガラス製のフラスコを、水を張ったトレー内に設置し、トレー内の超音波噴霧器を用いて上記水溶液をミストにした。上記フラスコ内にアルゴンガスを流し、上記ミストをアルゴンガスプラズマ内に導入した。その際のプラズマの出力は0.6kWとした。プラズマ内を通過した上記アルゴンガスを純水(比抵抗10MΩ以上)の入ったトラップに通し、アルゴン内の粉末を純水内に分散させた。得られた分散液をろ過して、担体前駆体粉末を得た。上記前駆体粉末を水素中1100℃にて還元し、粉末X線回折法にて相の同定を行った。得られたTi54.5mgをジフェニルエーテル2.5mlに入れ、超音波分散機にて30分間混合し、Tiの分散液を調製した。また、白金アセチルアセトナートを50.6mg、ヘキサデカンジオール260mgをジフェニルエーテル10mlに入れ、110℃窒素気流中で30分間混合し、白金錯体を含む有機溶液を調製した。得られた溶液に界面活性剤としてオレイン酸85ml、オレイルアミン酸80ml入れ、220℃窒素気流中で30分間混合し、オレイン酸およびオレイルアミン酸で構成され、白金イオンを内包したミセルを含む溶液を調製した。上記溶液に水素化トリエチルホウ素リチウムテトラヒドロフラン溶液を1ml加え、270℃窒素気流中30分間混合することで、上記ミセル中の白金イオンを還元し、界面活性剤に覆われた白金微粒子の分散液を調製した。得られた分散液を200℃まで徐冷し、そこに上記Ti分散液を混合して、270℃窒素気流中30分間混合し、界面活性剤で覆われた白金微粒子をTi粉末表面に吸着させた。このTi微粒子が分散した分散液を室温にてろ過し、得られた粉末をエタノールで数回洗浄した。60℃にて乾燥後、電気炉にて400℃にて加熱処理し、Ti微粒子表面の有機物を除去して、Ptを担持したTi電極粉末を得た。
(Pt 20 wt% supported Ti 4 O 7 )
2.78 g of titanium sulfate (24 wt% aqueous solution) was mixed with 29.5 ml of water to prepare an aqueous solution containing Ti ions. The glass flask containing the aqueous solution was placed in a tray filled with water, and the aqueous solution was made into a mist using an ultrasonic sprayer in the tray. Argon gas was allowed to flow into the flask, and the mist was introduced into the argon gas plasma. The plasma output at that time was 0.6 kW. The argon gas that passed through the plasma was passed through a trap containing pure water (specific resistance of 10 MΩ or more), and the argon powder was dispersed in the pure water. The obtained dispersion was filtered to obtain a carrier precursor powder. The precursor powder was reduced in hydrogen at 1100 ° C., and the phase was identified by powder X-ray diffraction. 54.5 mg of the resulting Ti 4 O 7 was put into 2.5 ml of diphenyl ether and mixed for 30 minutes with an ultrasonic disperser to prepare a dispersion of Ti 4 O 7 . Further, 50.6 mg of platinum acetylacetonate and 260 mg of hexadecanediol were placed in 10 ml of diphenyl ether and mixed in a nitrogen stream at 110 ° C. for 30 minutes to prepare an organic solution containing a platinum complex. 85 ml of oleic acid and 80 ml of oleylamic acid were added to the obtained solution as a surfactant and mixed in a nitrogen stream at 220 ° C. for 30 minutes to prepare a solution containing micelles composed of oleic acid and oleylamic acid and containing platinum ions. . Add 1 ml of lithium triethylborohydride solution to the above solution and mix in 270 ° C. nitrogen stream for 30 minutes to reduce platinum ions in the micelles and prepare a dispersion of platinum fine particles covered with surfactant. did. The obtained dispersion is slowly cooled to 200 ° C., and the above Ti 4 O 7 dispersion is mixed therewith and mixed in a 270 ° C. nitrogen stream for 30 minutes, and the platinum fine particles covered with the surfactant are removed from Ti 4 O. 7 Adsorbed on the powder surface. The dispersion in which the Ti 4 O 7 fine particles were dispersed was filtered at room temperature, and the obtained powder was washed several times with ethanol. After drying at 60 ° C., heat treatment was performed at 400 ° C. in an electric furnace to remove organic substances on the surface of the Ti 4 O 7 fine particles to obtain a Ti 4 O 7 electrode powder carrying Pt.

このようにして得られたPtを担持したTi電極粉末について、粉末X線回折測定を行った結果、図3に示す回折パターンが得られ、PtとTiの存在を確認した。その際、回折ピークの半値幅から得られる各粉末の結晶子径はPtが6.0nmであり、Tiは約30nmであった。なお、Ptの担持量は高周波誘導加熱発光分光法(ICP)を用いて確認した。さらに、得られた粉末の表面および形状を透過電子顕微鏡(TEM)にて観察し(図4)、担持されたPtは球形であり、その平均の粒径は5.5nmであった。 The Ti 4 O 7 electrode powder carrying Pt thus obtained was subjected to powder X-ray diffraction measurement. As a result, the diffraction pattern shown in FIG. 3 was obtained, and the presence of Pt and Ti 4 O 7 was confirmed. . At that time, the crystallite diameter of each powder obtained from the half width of the diffraction peak was 6.0 nm for Pt and about 30 nm for Ti 4 O 7 . The amount of Pt supported was confirmed using high frequency induction heating emission spectroscopy (ICP). Further, the surface and shape of the obtained powder were observed with a transmission electron microscope (TEM) (FIG. 4), and the supported Pt was spherical, and the average particle size was 5.5 nm.


(Pt50重量%担持(La0.6Sr0.4)FeO3-δ
硝酸ランタン六水和物0.649g、硝酸ストロンチウム0.410g、硝酸鉄九水和物1.21gを水30mlに溶解させ、La,SrおよびFeイオンを含む水溶液を調製した。上記水溶液を入れたガラス製のフラスコを、水を張ったトレー内に設置し、トレー内の超音波噴霧器を用いて上記水溶液をミストにした。上記フラスコ内にアルゴンガスを流し、ミストとアルゴンガスをプラズマ内に導入した。その際のプラズマの出力は0.6kWとした。プラズマを通過したアルゴンガスを、純水(比抵抗10MΩ以上)を入れたトラップに通し、アルゴンガス内の粉末を純水に分散させた。得られた分散液をろ過することで、(La0.6Sr0.4)FeO3-δ担体粉末を得た。
(La0.6Sr0.4)FeO3-δ粉末24.6mgをジフェニルエーテル2.5mlに入れ、超音波分散機にて30分間混合し、(La0.6Sr0.4)FeO3-δの分散液を調製した。ジフェニルエーテル10ml中に白金アセチルアセトナートを8.0mg、ヘキサデカンジオール260mgを入れ、110℃窒素気流中で30分間混合し、白金錯体を含む有機溶液を調製した。得られた溶液に界面活性剤としてオレイン酸85ml、オレイルアミン酸80ml入れ、220℃窒素気流中で30分間混合し、オレイン酸およびオレイルアミン酸で構成され、白金イオンを内包したミセルを含む溶液を調製した。上記溶液に水素化トリエチルホウ素リチウムテトラヒドロフラン溶液を1ml加え、270℃窒素気流中30分間混合することで、上記ミセル中に白金イオンを還元し、界面活性剤に覆われた白金微粒子の分散液を調製した。得られた分散液を200℃まで徐冷し、そこに上記(La0.6Sr0.4)FeO3-δ分散液を混合して、270℃窒素気流中30分間混合し、界面活性剤で覆われた白金微粒子を(La0.6Sr0.4)FeO3-δ粉末表面に吸着させた。この(La0.6Sr0.4)FeO3-δ微粒子を室温にてろ過し、エタノールでの洗浄を数回行った。60℃にて乾燥後、電気炉にて400℃にて加熱処理し、(La0.6Sr0.4)FeO3-δ微粒子表面の有機物を除去することで、Ptを担持した(La0.6Sr0.4)FeO3-δ電極粉末を得た。

(Pt 50 wt% supported (La 0.6 Sr 0.4 ) FeO 3-δ )
Lanthanum nitrate hexahydrate 0.649 g, strontium nitrate 0.410 g, and iron nitrate nonahydrate 1.21 g were dissolved in 30 ml of water to prepare an aqueous solution containing La, Sr and Fe ions. The glass flask containing the aqueous solution was placed in a tray filled with water, and the aqueous solution was made into a mist using an ultrasonic sprayer in the tray. Argon gas was allowed to flow into the flask, and mist and argon gas were introduced into the plasma. The plasma output at that time was 0.6 kW. The argon gas that passed through the plasma was passed through a trap containing pure water (specific resistance of 10 MΩ or more), and the powder in the argon gas was dispersed in pure water. The obtained dispersion was filtered to obtain a (La 0.6 Sr 0.4 ) FeO 3-δ carrier powder.
24.6 mg of (La 0.6 Sr 0.4 ) FeO 3-δ powder is put into 2.5 ml of diphenyl ether and mixed for 30 minutes with an ultrasonic disperser, and (La 0.6 Sr 0.4 ) FeO 3- A dispersion of δ was prepared. In 10 ml of diphenyl ether, 8.0 mg of platinum acetylacetonate and 260 mg of hexadecanediol were placed and mixed in a nitrogen stream at 110 ° C. for 30 minutes to prepare an organic solution containing a platinum complex. 85 ml of oleic acid and 80 ml of oleylamic acid were added to the obtained solution as a surfactant and mixed in a nitrogen stream at 220 ° C. for 30 minutes to prepare a solution containing micelles composed of oleic acid and oleylamic acid and containing platinum ions. . Add 1 ml of lithium triethylborohydride solution to the above solution and mix in 270 ° C. nitrogen stream for 30 minutes to reduce platinum ions in the micelle and prepare a dispersion of platinum fine particles covered with surfactant. did. The obtained dispersion was gradually cooled to 200 ° C., and the above (La 0.6 Sr 0.4 ) FeO 3-δ dispersion was mixed therewith and mixed in a nitrogen flow at 270 ° C. for 30 minutes to obtain a surfactant. The platinum fine particles covered with the above were adsorbed on the surface of (La 0.6 Sr 0.4 ) FeO 3-δ powder. The (La 0.6 Sr 0.4 ) FeO 3-δ fine particles were filtered at room temperature and washed with ethanol several times. After drying at 60 ° C., heat treatment is performed at 400 ° C. in an electric furnace to remove organic substances on the surface of (La 0.6 Sr 0.4 ) FeO 3-δ fine particles, thereby supporting Pt (La 0 .6 Sr 0.4 ) FeO 3-δ electrode powder was obtained.

得られたPtを担持した(La0.6Sr0.4)FeO3-δ電極粉末について、粉末X線回折測定を行った結果、図5に示す回折パターンが得られ、Ptと(La0.6Sr0.4)FeO3-δの存在を確認した。この際回折ピークの半値幅から得られる各粉末の結晶子径はPtが11.0nmであり、(La0.6Sr0.4)FeO3-δは31.4nmであった。なお、Ptの担持量は高周波誘導加熱発光分光法(ICP)を用いて確認した。さらに、得られた粉末の表面および形状を透過電子顕微鏡(TEM)にて観察した(図6)。その結果、Ptが(La0.6Sr0.4)FeO3-δ表面に均一に分散して担持されていることが確認された。また、担持されたPtは球形であり、その粒径は8nmから15nmであった。 As a result of powder X-ray diffraction measurement of the obtained (La 0.6 Sr 0.4 ) FeO 3-δ electrode powder carrying Pt, the diffraction pattern shown in FIG. 5 was obtained, and Pt and (La 0 .6 Sr 0.4 ) FeO 3-δ was present. At this time, the crystallite diameter of each powder obtained from the half width of the diffraction peak was 11.0 nm for Pt, and (La 0.6 Sr 0.4 ) FeO 3-δ was 31.4 nm. The amount of Pt supported was confirmed using high frequency induction heating emission spectroscopy (ICP). Furthermore, the surface and shape of the obtained powder were observed with a transmission electron microscope (TEM) (FIG. 6). As a result, it was confirmed that Pt was uniformly dispersed and supported on the (La 0.6 Sr 0.4 ) FeO 3-δ surface. The supported Pt was spherical and the particle size was 8 nm to 15 nm.

以上の方法で得られた各電極粉末について、回転リングディスク電極を用いてCV測定を行った。電解液には0.1mol/lの過塩素酸水溶液を、参照極には標準水素電極(RHE)を用いた。電位の走査速度は0.1V/sec.とした。更に、0.9V以上での電極材料の安定性を確認するため、0.05V〜1.3Vまで電位範囲を100回操引した後、0.05V〜1.0Vの電位範囲でCVを測定した。この測定手順を1セットとして、10セット以上(1000サイクル以上の操引)を行った。Pt20重量%担持TiNにおける1セット後のCV測定結果を図7に示す。比較として0.05V〜1.0Vの電位範囲で操引した市販Pt担持炭素のCV測定結果を図8に示す。Pt担持炭素では電位の操引に伴い0.2V〜0.6V付近の電流値が増加すると共に、炭素の劣化で生じたキノン基の酸化還元に伴うピークが0.6V付近で現れている。それに対し、Pt担持TiN電極では0.2V〜0.6V付近の電流値は各測定とも一定であり、0.05Vから0.2V付近での酸素吸着波に起因するピーク面積から求めた白金有効反応面積(SPt)は13.0m/g(Pt)となった。セット毎のSPtは3セット目以降18.0m/g(Pt)で一定となった。これより、0.9V以上の高電位でもPt担持TiN電極は安定であることが判明した。また、回転リングディスク電極を用いてORR測定を行い、その結果を図9に示す。これより、On set電位が0.9V付近であることから、市販Pt担持炭素カソードより高い電位から酸素還元電流が流れることを確認した。また、Koutecky−Levich プロットより活性化支配電流を見積もったところ、16mA/cmとなり、この値は同じSPtをもつPt担持炭素電極の約10倍高い活性があることを示している。 About each electrode powder obtained by the above method, CV measurement was performed using the rotating ring disk electrode. A 0.1 mol / l perchloric acid aqueous solution was used as the electrolytic solution, and a standard hydrogen electrode (RHE) was used as the reference electrode. The potential scanning speed was 0.1 V / sec. Furthermore, in order to confirm the stability of the electrode material at 0.9 V or higher, the CV was measured in the potential range of 0.05 V to 1.0 V after operating the potential range 100 times from 0.05 V to 1.3 V. did. With this measurement procedure as one set, 10 sets or more (1000 cycles or more) were performed. FIG. 7 shows the CV measurement results after one set in Pt 20 wt% TiN. As a comparison, FIG. 8 shows CV measurement results of commercially available Pt-supported carbon operated in a potential range of 0.05 V to 1.0 V. In the case of Pt-supported carbon, the current value in the vicinity of 0.2 V to 0.6 V increases as the potential is manipulated, and a peak due to redox of the quinone group generated by the deterioration of the carbon appears in the vicinity of 0.6 V. On the other hand, in the Pt-supported TiN electrode, the current value in the vicinity of 0.2V to 0.6V is constant for each measurement, and the platinum effective value obtained from the peak area caused by the oxygen adsorption wave in the vicinity of 0.05V to 0.2V. The reaction area (S Pt ) was 13.0 m 2 / g (Pt). S Pt for each set became constant at 18.0 m 2 / g (Pt) after the third set. From this, it was found that the Pt-supported TiN electrode is stable even at a high potential of 0.9 V or higher. Further, ORR measurement was performed using a rotating ring disk electrode, and the result is shown in FIG. From this, it was confirmed that the oxygen reduction current flows from a higher potential than the commercially available Pt-supported carbon cathode because the On set potential is around 0.9V. Furthermore, it was estimated activation governing current from Koutecky-Levich plots, 16 mA / cm 2, and this value indicates that there is approximately 10-fold higher activity of the Pt-supported carbon electrodes with the same S Pt.

同様にして測定したPt50重量%担持TiのCV、ORR測定結果を図10,11に示す。SPtは2.0m/g(Pt)となった。また、On set電位は1.0Vであり、通常のPt担持担体の場合と比較して0.3V〜0.5Vほど高電位から酸素還元電流が流れることを確認した。Koutecky−Levichプロットより、算出した活性支配電流密度は同じSPtをもつPt担持炭素電極の場合に比べ3〜5倍程度大きい値を示した。 The CV and ORR measurement results of Pt 50 wt% supported Ti 4 O 7 measured in the same manner are shown in FIGS. S Pt was 2.0 m 2 / g (Pt). Further, the On set potential was 1.0 V, and it was confirmed that the oxygen reduction current flows from a high potential of about 0.3 V to 0.5 V as compared with the case of a normal Pt-supported carrier. From Koutecky-Levich plot calculated activity dominated current density showed a 3-5 times greater value than that of the Pt-supported carbon electrodes with the same S Pt.

Pt50重量%担持(La0.6Sr0.4)FeO3-δのCV、ORR測定結果を図12,13に示す。SPtは2.0m/g(Pt)となった。また、On set電位は0.95Vであり、通常のPt担持担体の場合より高電位から酸素還元電流が流れることを確認した。Koutecky−Levichプロットより、算出した活性支配電流密度は同じSPtをもつPt担持炭素電極の場合に比べ3倍程度大きい値を示した。 CV and ORR measurement results of Pt 50 wt% supported (La 0.6 Sr 0.4 ) FeO 3-δ are shown in FIGS. S Pt was 2.0 m 2 / g (Pt). Further, the On set potential was 0.95 V, and it was confirmed that the oxygen reduction current flows from a higher potential than in the case of a normal Pt-supported carrier. From Koutecky-Levich plot calculated activity dominated current density showed a three times greater value than that of the Pt-supported carbon electrodes with the same S Pt.

近年注目されている、燃料電池自動車ではPEFCが採用されている。それに利用される電極材料は炭素を担体として1nm〜20nmの粒子径をもつ貴金属微粒子を担持させたものを利用している。しかし、自動車用では、走行中の加減速に対応した頻繁な負荷変動・起動停止が生じ、その際カソードの電位は0.9V以上に達する。この0.9V以上の高い電位において、炭素は前記の反応式(1)に示す酸化反応により、著しく劣化する。本発明は、炭素を全く用いていないため、0.9V以上の高電位においても安定で、高い導電性を兼ね備えた担体を応用しており、高い非表面軌跡を有していることから、1nm〜20nmの粒子径をもつ貴金属微粒子をさせることができることから、耐久性と触媒活性を兼ね備えている。従って、PEFCを搭載した電気自動車等へ利用が期待される。   In recent years, PEFC has been adopted in fuel cell vehicles that have been attracting attention. The electrode material used for this is a material in which noble metal fine particles having a particle diameter of 1 nm to 20 nm are supported using carbon as a carrier. However, for automobiles, frequent load fluctuations and start / stops corresponding to acceleration / deceleration during traveling occur, and the potential of the cathode reaches 0.9 V or more. At this high potential of 0.9 V or higher, carbon is significantly degraded by the oxidation reaction shown in the above reaction formula (1). Since the present invention does not use carbon at all, it applies a carrier that is stable even at a high potential of 0.9 V or higher and has high conductivity, and has a high non-surface locus. Since noble metal fine particles having a particle diameter of ˜20 nm can be produced, it has both durability and catalytic activity. Therefore, it is expected to be used for electric vehicles equipped with PEFC.

Claims (9)

温度降下と共に導電率が上がる、もしくは一定となる金属伝導性を有することを特徴とする電極触媒用微粒子担体。   A fine particle carrier for an electrode catalyst, which has a metal conductivity that increases or becomes constant as the temperature drops. 導電率が10S/cm以上を有する酸化物および/または窒化物であることを特徴とする請求項1に記載の電極触媒用微粒子担体。   2. The electrode catalyst fine particle carrier according to claim 1, which is an oxide and / or a nitride having an electric conductivity of 10 S / cm or more. 前記酸化物が、ランタン、ストロンチウム、セリウム、カルシウム、バリウム、イットリウム、エルビウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、マグネシウム、ニオブ、ビスマス、アンチモン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、スズ、ジルコニウム、モリブデン、インジウム、タンタル、タングステンから選ばれる一種以上の元素を含有することを特徴とする請求項1または2のいずれかに記載の電極触媒用微粒子担体。   The oxide is lanthanum, strontium, cerium, calcium, barium, yttrium, erbium, praseodymium, neodymium, samarium, europium, magnesium, niobium, bismuth, antimony, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, tin 3. The electrode catalyst fine particle carrier according to claim 1, comprising one or more elements selected from zirconium, molybdenum, indium, tantalum, and tungsten. 前記窒化物が、鉄、バナジウム、チタン、クロム、ジルコニウム、タンタルから選ばれる一種以上を含有することを特徴とする請求項1または2のいずれかに記載の電極触媒用微粒子担体。   3. The particulate support for an electrode catalyst according to claim 1, wherein the nitride contains one or more selected from iron, vanadium, titanium, chromium, zirconium, and tantalum. 比表面積が3m/g以上あることを特徴とする請求項2に記載の電極触媒用微粒子担体。 The particulate support for an electrode catalyst according to claim 2, wherein the specific surface area is 3 m 2 / g or more. 請求項1から5に記載の微粒子担体は、プラズマ炎中で熱処理を行って製造することを特徴とする電極触媒用微粒子担体の製造方法。   6. The method for producing a particulate carrier for an electrode catalyst, wherein the particulate carrier according to claim 1 is produced by performing a heat treatment in a plasma flame. 平均粒子径が1〜20nmの貴金属および/または貴金属を含む合金を、請求項1または2のいずれかに記載の微粒子に担持することを特徴とする電極触媒。   3. An electrode catalyst characterized in that a noble metal having an average particle diameter of 1 to 20 nm and / or an alloy containing a noble metal is supported on the fine particles according to claim 1 or 2. 平均粒子径が1〜20nmの貴金属および/または貴金属を含む合金を、1〜40重量%含むことを特徴とする請求項1または2のいずれかに記載の電極触媒。   3. The electrode catalyst according to claim 1, comprising 1 to 40% by weight of a noble metal having an average particle diameter of 1 to 20 nm and / or an alloy containing the noble metal. カソードおよび/またはアノードに用いる電極触媒として、導電率が10S/cm以上を有する酸化物および/または窒化物に、平均粒子径が1〜20nmの貴金属および/または貴金属を含む合金を、1〜40重量%含むことを特徴とする請求項6から8のいずれかに記載の電極触媒を用いた燃料電池。   As an electrocatalyst used for the cathode and / or anode, a noble metal having an average particle diameter of 1 to 20 nm and / or an alloy containing the noble metal in an oxide and / or nitride having an electric conductivity of 10 S / cm or more is used. The fuel cell using the electrode catalyst according to any one of claims 6 to 8, wherein the fuel cell contains wt%.
JP2009121269A 2009-05-19 2009-05-19 High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst Pending JP2010272248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121269A JP2010272248A (en) 2009-05-19 2009-05-19 High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121269A JP2010272248A (en) 2009-05-19 2009-05-19 High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2014060159A Division JP5858077B2 (en) 2014-03-24 2014-03-24 High potential stable carrier and electrode catalyst for polymer electrolyte fuel cell
JP2014060160A Division JP5858078B2 (en) 2014-03-24 2014-03-24 Method for producing high potential stable carrier and electrode catalyst for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2010272248A true JP2010272248A (en) 2010-12-02

Family

ID=43420134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121269A Pending JP2010272248A (en) 2009-05-19 2009-05-19 High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst

Country Status (1)

Country Link
JP (1) JP2010272248A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214373A (en) * 2011-03-30 2012-11-08 Osaka Gas Co Ltd Platinum-carrying titanium oxide carrier
JP2014093255A (en) * 2012-11-06 2014-05-19 Toyota Motor Corp Manufacturing method of composite catalyst for fuel cell and composite catalyst for fuel cell
KR20170065065A (en) * 2015-12-02 2017-06-13 한국과학기술원 Single Atomic Platinum Catalysts and Their Uses
CN106960966A (en) * 2016-01-08 2017-07-18 丰田自动车株式会社 Electrode catalyst and the method for manufacturing the electrode catalyst for fuel cell for fuel cell
KR101862822B1 (en) 2018-01-16 2018-05-30 한국과학기술원 Catalyst for fuel cell, Fuel cell including the same and Method for preparing the catalyst
WO2018096851A1 (en) * 2016-11-22 2018-05-31 堺化学工業株式会社 Electrode material and method for producing same
JP2019171331A (en) * 2018-03-29 2019-10-10 堺化学工業株式会社 Noble metal catalyst production method and noble metal catalyst
CN112313007A (en) * 2018-06-20 2021-02-02 住友电气工业株式会社 Steam reforming catalyst and fuel cell system using the same
CN114395779A (en) * 2022-01-06 2022-04-26 清华大学 Catalyst for PEM water electrolysis, preparation method and application thereof
WO2022145349A1 (en) * 2021-01-04 2022-07-07 国立大学法人山梨大学 Supported metal catalyst
WO2022158390A1 (en) * 2021-01-25 2022-07-28 デンカ株式会社 Particles having specific low-order titanium oxide crystal composition, method for producing same, and dispersion

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048833A (en) * 1998-07-29 2000-02-18 Toyota Motor Corp Fuel cell
JP2003017072A (en) * 2001-06-28 2003-01-17 Toyota Motor Corp Mea for fuel cell, its manufacturing method, catalyst layer for fuel cell, and its manufacturing method
JP2003508877A (en) * 1999-08-23 2003-03-04 バラード パワー システムズ インコーポレイティド Anode structure of fuel cell for obtaining resistance to voltage reversal
JP2006277992A (en) * 2005-03-28 2006-10-12 Tanaka Kikinzoku Kogyo Kk Catalyst for fuel electrode of solid polymer fuel cell
JP2006351253A (en) * 2005-06-13 2006-12-28 Ngk Spark Plug Co Ltd Solid oxide fuel cell stack, solid oxide fuel cell module using this, and manufacturing method of solid oxide fuel cell stack
JP2007012284A (en) * 2005-06-28 2007-01-18 Toshiba Corp Electrode catalyst, manufacturing method thereof, fuel electrode, and fuel cell apparatus
JP2007112696A (en) * 2005-09-26 2007-05-10 Toyota Motor Corp Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cell
JP2008052943A (en) * 2006-08-22 2008-03-06 Ngk Spark Plug Co Ltd Fuel cell stack and fuel cell
JP2009518173A (en) * 2005-12-07 2009-05-07 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Catalyst comprising a solid support, an oxide and a metal active phase grafted on the oxide, its production method and use
JP2009104990A (en) * 2007-10-25 2009-05-14 Nippon Shokubai Co Ltd Method of manufacturing electrolyte sheet for solid oxide fuel cell and electrolyte sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048833A (en) * 1998-07-29 2000-02-18 Toyota Motor Corp Fuel cell
JP2003508877A (en) * 1999-08-23 2003-03-04 バラード パワー システムズ インコーポレイティド Anode structure of fuel cell for obtaining resistance to voltage reversal
JP2003017072A (en) * 2001-06-28 2003-01-17 Toyota Motor Corp Mea for fuel cell, its manufacturing method, catalyst layer for fuel cell, and its manufacturing method
JP2006277992A (en) * 2005-03-28 2006-10-12 Tanaka Kikinzoku Kogyo Kk Catalyst for fuel electrode of solid polymer fuel cell
JP2006351253A (en) * 2005-06-13 2006-12-28 Ngk Spark Plug Co Ltd Solid oxide fuel cell stack, solid oxide fuel cell module using this, and manufacturing method of solid oxide fuel cell stack
JP2007012284A (en) * 2005-06-28 2007-01-18 Toshiba Corp Electrode catalyst, manufacturing method thereof, fuel electrode, and fuel cell apparatus
JP2007112696A (en) * 2005-09-26 2007-05-10 Toyota Motor Corp Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cell
JP2009518173A (en) * 2005-12-07 2009-05-07 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Catalyst comprising a solid support, an oxide and a metal active phase grafted on the oxide, its production method and use
JP2008052943A (en) * 2006-08-22 2008-03-06 Ngk Spark Plug Co Ltd Fuel cell stack and fuel cell
JP2009104990A (en) * 2007-10-25 2009-05-14 Nippon Shokubai Co Ltd Method of manufacturing electrolyte sheet for solid oxide fuel cell and electrolyte sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BHARAT AVASARALA ET AL.: "Titanium nitride nanoparticles based electrocatalysts for proton exchangemembrane fuel cells", JOURNAL OF MATERIALS CHEMISTRY, vol. 19, JPN6014028974, 19 February 2009 (2009-02-19), pages 1803 - 1805, ISSN: 0002852820 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214373A (en) * 2011-03-30 2012-11-08 Osaka Gas Co Ltd Platinum-carrying titanium oxide carrier
JP2014093255A (en) * 2012-11-06 2014-05-19 Toyota Motor Corp Manufacturing method of composite catalyst for fuel cell and composite catalyst for fuel cell
KR20170065065A (en) * 2015-12-02 2017-06-13 한국과학기술원 Single Atomic Platinum Catalysts and Their Uses
KR102457845B1 (en) 2015-12-02 2022-10-25 한국과학기술원 Single Atomic Platinum Catalysts and Their Uses
CN106960966A (en) * 2016-01-08 2017-07-18 丰田自动车株式会社 Electrode catalyst and the method for manufacturing the electrode catalyst for fuel cell for fuel cell
GB2570590B (en) * 2016-11-22 2022-03-16 Sakai Chemical Industry Co Electrode material and method for producing same
WO2018096851A1 (en) * 2016-11-22 2018-05-31 堺化学工業株式会社 Electrode material and method for producing same
GB2570590A (en) * 2016-11-22 2019-07-31 Sakai Chemical Industry Co Electrode material and method for producing same
JPWO2018096851A1 (en) * 2016-11-22 2019-10-17 堺化学工業株式会社 Electrode material and manufacturing method thereof
KR101862822B1 (en) 2018-01-16 2018-05-30 한국과학기술원 Catalyst for fuel cell, Fuel cell including the same and Method for preparing the catalyst
JP2019171331A (en) * 2018-03-29 2019-10-10 堺化学工業株式会社 Noble metal catalyst production method and noble metal catalyst
JP7222179B2 (en) 2018-03-29 2023-02-15 堺化学工業株式会社 Noble metal catalyst manufacturing method and noble metal catalyst
CN112313007A (en) * 2018-06-20 2021-02-02 住友电气工业株式会社 Steam reforming catalyst and fuel cell system using the same
CN112313007B (en) * 2018-06-20 2023-05-05 住友电气工业株式会社 Steam reforming catalyst and fuel cell system using the same
WO2022145349A1 (en) * 2021-01-04 2022-07-07 国立大学法人山梨大学 Supported metal catalyst
WO2022158390A1 (en) * 2021-01-25 2022-07-28 デンカ株式会社 Particles having specific low-order titanium oxide crystal composition, method for producing same, and dispersion
CN114395779A (en) * 2022-01-06 2022-04-26 清华大学 Catalyst for PEM water electrolysis, preparation method and application thereof

Similar Documents

Publication Publication Date Title
Walter et al. Perspective on intermetallics towards efficient electrocatalytic water-splitting
JP2010272248A (en) High potential stable carrier for polymer electrolyte fuel cell, and electrode catalyst
Wang et al. Three-dimensionally porous graphene–carbon nanotube composite-supported PtRu catalysts with an ultrahigh electrocatalytic activity for methanol oxidation
EP2506350B1 (en) Oxide-based stable high-potential carrier for solid polymer fuel cell
Ghouri et al. Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium
Naik et al. Two-dimensional oxygen-deficient TiO2 nanosheets-supported Pt nanoparticles as durable catalyst for oxygen reduction reaction in proton exchange membrane fuel cells
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
Qin et al. Enhanced methanol oxidation activity and stability of Pt particles anchored on carbon-doped TiO2 nanocoating support
Ahmadi et al. Pt–Co alloy nanoparticles synthesized on sulfur-modified carbon nanotubes as electrocatalysts for methanol electrooxidation reaction
Li et al. Co9S8-porous carbon spheres as bifunctional electrocatalysts with high activity and stability for oxygen reduction and evolution reactions
Zoladek et al. Evaluation of reduced-graphene-oxide-supported gold nanoparticles as catalytic system for electroreduction of oxygen in alkaline electrolyte
Song et al. Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)
Qin et al. Pd nanoparticles anchored on carbon-doped TiO2 nanocoating support for ethanol electrooxidation in alkaline media
Kim et al. The plasma-assisted formation of Ag@ Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction
JP2010102889A (en) Electrode catalyst for fuel cell
Feng et al. Morphology effect of MnO2 promoter to the catalytic performance of Pt toward methanol electrooxidation reaction
JP2007112696A (en) Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cell
Yuasa Molten salt synthesis of Nb-doped TiO2 rod-like particles for use in bifunctional oxygen reduction/evolution electrodes
JP6727263B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP2020161272A (en) Electrode material, electrode, membrane electrode assembly, and polymer electrolyte fuel cell
JP5858077B2 (en) High potential stable carrier and electrode catalyst for polymer electrolyte fuel cell
Taei et al. Electrocatalytic oxidation of ethanol on a glassy carbon electrode modified with a gold nanoparticle-coated hydrolyzed CaFe–Cl layered double hydroxide in alkaline medium
WO2019177060A1 (en) Electrode catalyst for fuel cell, and fuel cell using same
Zhou et al. Research on a novel Ni-doped TiN modified N-doped CNTs supported Pt catalysts and their synergistic effect for methanol electrooxidation
JP4919309B2 (en) Metal oxide platinum composite catalyst for oxygen reduction and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805