JP2012252865A - Electrode material and fuel cell - Google Patents

Electrode material and fuel cell Download PDF

Info

Publication number
JP2012252865A
JP2012252865A JP2011124176A JP2011124176A JP2012252865A JP 2012252865 A JP2012252865 A JP 2012252865A JP 2011124176 A JP2011124176 A JP 2011124176A JP 2011124176 A JP2011124176 A JP 2011124176A JP 2012252865 A JP2012252865 A JP 2012252865A
Authority
JP
Japan
Prior art keywords
electrode material
catalyst
electrode
transition metal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011124176A
Other languages
Japanese (ja)
Inventor
Masataka Hiyoshi
正孝 日吉
Kenichiro Tadokoro
健一郎 田所
Takashi Iijima
孝 飯島
Hideaki Sawada
英明 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011124176A priority Critical patent/JP2012252865A/en
Publication of JP2012252865A publication Critical patent/JP2012252865A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell electrode material capable of maintaining output performance of a fuel cell at high level for a long time.SOLUTION: There are provided an electrode material and a fuel cell including an electrode manufactured using the electrode material. The electrode material comprises a catalyst particle in which a plurality of catalyst metal particles are supported on a conductive carbon fine particle and a part or the whole of the supported catalyst metal particles is covered with an oxide of transition metal. In the electrode material, a ratio of numbers of atoms between the number A of atoms of the catalyst metal and the number B of atoms of the transition metal satisfies 0<B/A≤3.5, each of the catalyst metal particles includes one or more components selected from among Pt, Ru, Rh, Pd, Co, Ni and Au, and the oxide of the transition metal includes one or more oxides selected from among Si, Zr, Ti, Mg, Al and In.

Description

本発明は、燃料電池の電極材料とその電極材料を用いた電極を備えてなる燃料電池に関する。   The present invention relates to a fuel cell electrode material and a fuel cell comprising an electrode using the electrode material.

一般的な固体高分子形燃料電池は、プロトン伝導性電解質膜を挟んでアノードとカソードとなる触媒層が配置され、これを挟んでさらに外側にガス拡散層が配置され、さらにその外側にセパレータが配置された基本構造を単位セルとしている。通常は、必要な出力にあわせて当該単位セルをスタックして電池を構成する。   In a general polymer electrolyte fuel cell, a catalyst layer that serves as an anode and a cathode is disposed with a proton conductive electrolyte membrane interposed therebetween, a gas diffusion layer is disposed on the outer side, and a separator is disposed on the outer side. The arranged basic structure is used as a unit cell. Normally, the unit cells are stacked to form a battery according to the required output.

前記基本構造の燃料電池から電流を取り出すためには、アノードとカソードの両極に配されたセパレータのガス流路から、カソード側に酸素あるいは空気等の酸化性ガスを、アノード側には水素等の還元性ガスを、ガス拡散層を介して触媒層までそれぞれ供給する。以下、触媒層を電極ともいう。また、電極を構成する材料を電極材料という。   In order to extract the current from the fuel cell having the basic structure, an oxidizing gas such as oxygen or air is supplied to the cathode side from the gas flow path of the separator disposed at both the anode and cathode, and hydrogen or the like is used to the anode side. Reducing gas is supplied to the catalyst layer through the gas diffusion layer. Hereinafter, the catalyst layer is also referred to as an electrode. Moreover, the material which comprises an electrode is called electrode material.

例えば、水素ガスと酸素ガスを利用する場合、アノードの触媒上で起こる
2 → 2H+ + 2e- (E0=0V)
の化学反応(酸化反応)と、カソードの触媒上で起こる
2+4H+ + 4e- → 2H2O(E0=1.23V)
の化学反応(還元反応)のエネルギー差(電位差)を利用して発電する。反応場となる触媒には一般的に触媒金属を導電性炭素上に担持したものが用いられる。燃料電池の運転条件において、触媒金属は高温、低pH、カソードであれば高電位、酸化雰囲気といった触媒金属の溶出、凝集が起こり得る環境に曝されている。そのため長時間の運転によって触媒金属の溶出や凝集が起こり、発電反応に関与する触媒金属の表面積が小さくなり、燃料電池の性能低下が生じる。
For example, when hydrogen gas and oxygen gas are used, H 2 → 2H + + 2e (E0 = 0 V) that occurs on the catalyst of the anode
Chemical reaction (oxidation reaction) and O 2 + 4H + + 4e → 2H 2 O occurring on the cathode catalyst (E0 = 1.23 V)
Power is generated using the energy difference (potential difference) of the chemical reaction (reduction reaction). As a catalyst for the reaction field, generally, a catalyst metal supported on conductive carbon is used. Under the operating conditions of the fuel cell, the catalyst metal is exposed to an environment in which elution and aggregation of the catalyst metal can occur, such as high temperature, low pH, and high potential in the cathode, and an oxidizing atmosphere. For this reason, elution and aggregation of the catalyst metal occur due to long-time operation, the surface area of the catalyst metal involved in the power generation reaction is reduced, and the performance of the fuel cell is reduced.

特許文献1では、触媒金属粒子が溶出することで燃料電池の性能が低下するという問題の解決を目的として、触媒金属粒子を多孔性無機(遷移金属)材料で被覆することで、触媒金属の溶出を防止することができる電極材料を開示している。   In Patent Document 1, for the purpose of solving the problem that the performance of a fuel cell deteriorates due to the elution of catalyst metal particles, the catalyst metal is eluted by coating the catalyst metal particles with a porous inorganic (transition metal) material. The electrode material which can prevent is disclosed.

特開2008−004541号公報JP 2008-004541 A

しかしながら、特許文献1に開示された触媒金属粒子が多孔性無機材料に覆われた電極材料は、触媒粒子の溶出を抑制し燃料電池の耐久性を大幅に向上するものの、多孔性といえども無機材料が2〜20nmの範囲で厚く被覆しているため、燃料となるガスの触媒金属上への供給を阻害する。その結果、過電圧が大きくなり燃料電池の発電性能を低下させる問題が生じる。   However, the electrode material disclosed in Patent Document 1 in which the catalyst metal particles are covered with a porous inorganic material suppresses the elution of the catalyst particles and greatly improves the durability of the fuel cell. Since the material is thickly coated in the range of 2 to 20 nm, the supply of the gas serving as the fuel onto the catalyst metal is hindered. As a result, there arises a problem that the overvoltage is increased and the power generation performance of the fuel cell is lowered.

本発明は、長時間にわたって燃料電池の出力性能を高く維持することが可能な燃料電池用の電極材料とその電極材料を用いた電極を備えてなる燃料電池を提供することにある。   An object of the present invention is to provide an electrode material for a fuel cell capable of maintaining high output performance of the fuel cell for a long time and a fuel cell including an electrode using the electrode material.

本発明者らは、導電性炭素微粒子上に担持された触媒金属粒子が遷移金属の酸化物により被覆された電極材料について、触媒金属の原子個数Aと遷移金属の原子個数Bの比B/Aを種々変化させ、耐久性評価前後の酸素還元活性と触媒金属の電気化学的表面積(ECSA)の変化について調査した。ECSAとは燃料電池の発電に関与できる触媒金属表面積に相当し、電気化学的に有効な触媒金属の表面積としてサイクリックボルタモグラムの水素脱離波の面積から算出できる。従って、触媒金属が溶出したり凝集することによって触媒金属の表面積が小さくなった場合、ECSAの計測値が小さくなる。   In the electrode material in which the catalytic metal particles supported on the conductive carbon fine particles are coated with the oxide of the transition metal, the present inventors have a ratio B / A of the atomic number A of the catalytic metal and the atomic number B of the transition metal. The oxygen reduction activity before and after the durability evaluation and the change in the electrochemical surface area (ECSA) of the catalytic metal were investigated. ECSA corresponds to the catalytic metal surface area that can participate in the power generation of the fuel cell, and can be calculated from the area of the hydrogen desorption wave in the cyclic voltammogram as the electrochemically effective catalytic metal surface area. Therefore, when the catalytic metal is eluted or agglomerated to reduce the surface area of the catalytic metal, the ECSA measurement value is reduced.

調査の結果、電極材料の酸素還元活性が長時間にわたって高く維持し続け、かつ触媒金属の溶出が抑制されECSAが低下しにくい比B/Aの領域が存在することを見出した。   As a result of the investigation, it has been found that there is a region with a ratio B / A in which the oxygen reduction activity of the electrode material continues to be kept high for a long time, elution of the catalyst metal is suppressed, and ECSA is unlikely to decrease.

発明の要旨とするところは以下のようになる。
(1)導電性炭素微粒子上に複数の触媒金属粒子が担持され、該担持された触媒金属粒子が遷移金属の酸化物により一部もしくは全部を被覆されている触媒粒子からなり、電極材料における触媒金属の原子個数Aと遷移金属原子個数Bの原子個数比率が0<B/A≦3.5であることを特徴とする電極材料。
(2)前記触媒金属粒子が、Pt、Ru、Rh、Pd、Co、Ni、Auのうち1つ以上の成分を含んでなることを特徴とする(1)に記載の電極材料。
(3)前記遷移金属の酸化物が、Si、Zr、Ti、Mg、Al、Inの酸化物のうち1つ以上の酸化物を含んでなることを特徴とする(1)または(2)に記載の電極材料。
(4)(1)ないし(3)のいずれか1つに記載の電極材料を用いた電極を備えてなる燃料電池。
The gist of the invention is as follows.
(1) A catalyst in an electrode material comprising a plurality of catalyst metal particles supported on conductive carbon fine particles, the supported catalyst metal particles being partly or entirely covered with an oxide of a transition metal. An electrode material, wherein the atomic number ratio of the number A of metal atoms to the number B of transition metal atoms is 0 <B / A ≦ 3.5.
(2) The electrode material according to (1), wherein the catalytic metal particles include one or more components of Pt, Ru, Rh, Pd, Co, Ni, and Au.
(3) The oxide of the transition metal includes one or more oxides of oxides of Si, Zr, Ti, Mg, Al, and In. (1) or (2) The electrode material as described.
(4) A fuel cell comprising an electrode using the electrode material according to any one of (1) to (3).

本発明の電極材料により、燃料電池の出力性能を損なわず、長時間にわたって高活性を維持することが可能な燃料電池用の電極材料を提供することが可能となる。   With the electrode material of the present invention, it is possible to provide an electrode material for a fuel cell that can maintain high activity for a long time without impairing the output performance of the fuel cell.

耐久性評価前後のECSAと、電極材料中の遷移金属原子個数B/触媒金属原子個数Aとの関係を示す図である。It is a figure which shows the relationship between ECSA before and after durability evaluation, and transition metal atom number B / catalyst metal atom number A in an electrode material. 0.5V(vs.標準カロメル電極(SCE))における酸素還元電流を酸素還元活性(ORR活性)とし、耐久性評価前後のORR活性と、電極材料中の遷移金属原子個数B/触媒金属原子個数Aとの関係を示す図である。Oxygen reduction current at 0.5 V (vs. standard calomel electrode (SCE)) is defined as oxygen reduction activity (ORR activity), ORR activity before and after durability evaluation, number of transition metal atoms in electrode material B / number of catalyst metal atoms It is a figure which shows the relationship with A. FIG. 遷移金属の酸化物が触媒金属粒子表面の全てを覆う場合の電子顕微鏡観察イメージ図である。It is an electron microscope observation image figure in case the oxide of a transition metal covers the whole catalyst metal particle surface. 遷移金属の酸化物被膜が触媒金属粒子表面の一部を覆う場合の電子顕微鏡観察イメージ図である。It is an electron microscope observation image figure in case the oxide film of a transition metal covers a part of catalyst metal particle surface. 遷移金属の酸化物が触媒金属粒子表面の全てを覆うものと、遷移金属の酸化物被膜が触媒金属粒子表面の一部を覆うものが混在する場合の電子顕微鏡観察イメージ図である。It is an electron microscope observation image figure when the thing in which the oxide of a transition metal covers the whole catalyst metal particle surface and the thing in which the oxide film of a transition metal covers a part of catalyst metal particle surface are mixed.

[第1の実施形態]
第1の実施形態は、導電性炭素微粒子上に複数の触媒金属粒子が担持され、該担持された触媒金属粒子が遷移金属の酸化物により一部もしくは全部を被覆されている触媒粒子からなり、電極材料における触媒金属の原子個数Aと遷移金属原子個数Bの原子個数比率が0<B/A≦3.5であることを特徴とする電極材料である。
[First Embodiment]
In the first embodiment, a plurality of catalyst metal particles are supported on conductive carbon fine particles, and the supported catalyst metal particles are composed of catalyst particles partially or entirely covered with an oxide of a transition metal, The electrode material is characterized in that the atomic number ratio of the number A of catalyst metal atoms to the number B of transition metal atoms in the electrode material is 0 <B / A ≦ 3.5.

(触媒金属粒子を被覆する遷移金属酸化膜の被覆の厚さ)
発明者らは、燃料電池の電極を構成する触媒の酸素還元活性と耐久性を電気化学的に評価するにあたり、耐久性評価試験前後における0.5V(vs.SCE)における酸素還元電流とECSAの変化について調査した。0.5V(vs.標準カロメル電極(SCE))における酸素還元電流を酸素還元活性(ORR活性)ともいう。より具体的には、導電性炭素微粒子上に複数の触媒金属粒子が担持され、該担持された触媒金属粒子が遷移金属の酸化物により一部もしくは全部を被覆されている触媒粒子からなる電極材料を用いて電極を構成した燃料電池において、電極材料中の遷移金属原子個数B/触媒金属原子個数Aの比が、耐久性評価前後のECSA及びORR活性の変化に及ぼす影響を評価した。
(Thickness of the transition metal oxide film covering the catalytic metal particles)
When electrochemically evaluating the oxygen reduction activity and durability of the catalyst constituting the electrode of the fuel cell, the inventors have determined the oxygen reduction current and ECSA at 0.5 V (vs. SCE) before and after the durability evaluation test. The change was investigated. The oxygen reduction current at 0.5 V (vs. standard calomel electrode (SCE)) is also referred to as oxygen reduction activity (ORR activity). More specifically, an electrode material comprising catalyst particles in which a plurality of catalyst metal particles are supported on conductive carbon fine particles, and the supported catalyst metal particles are partially or entirely covered with an oxide of a transition metal. The effect of the ratio of the number of transition metal atoms B / the number of catalyst metal atoms A in the electrode material on the changes in ECSA and ORR activity before and after durability evaluation was evaluated.

触媒金属をPt、遷移金属をSiとし、B/Aを0から3.7まで変化させて電極材料を作成し、当該電極材料についてECSA、及び0.5V(vs.SCE)における酸素還元電流を明らかにするために、ディスク電極を用いて電気化学測定を行った。これら電極材料について耐久性試験を行い、耐久性試験の前後において上記電気化学測定を行った。耐久性試験前を初期値、耐久性試験後を経過値という。電極材料の具体的な作成条件、電気化学測定条件、耐久性試験条件の詳細については、後述する実施例1と同じである。   The catalyst metal is Pt, the transition metal is Si, and B / A is changed from 0 to 3.7 to prepare an electrode material. The electrode material is subjected to ECSA and an oxygen reduction current at 0.5 V (vs. SCE). For clarity, electrochemical measurements were performed using disk electrodes. These electrode materials were subjected to a durability test, and the electrochemical measurements were performed before and after the durability test. The initial value is before the durability test and the elapsed value is after the durability test. Specific details of the electrode material preparation conditions, electrochemical measurement conditions, and durability test conditions are the same as in Example 1 described later.

図1には、横軸をB/A、縦軸をECSAとし、初期値(●)と経過値(△)をプロットした。図1により、遷移金属の酸化物被膜で被覆した本発明の電極材料のECSA初期値は無被覆の電極材料のECSA初期値と比較して低下が少ないことを確認した。また、無被覆(B/A=0)の触媒の経過値が初期値に対して60%程度低下するのに対して、遷移金属の酸化物被膜で被覆した本発明の電極材料の初期値はB/Aの値を0.01まで小さくしても20%程度しか低下しないことを確認した。   In FIG. 1, the horizontal axis is B / A, the vertical axis is ECSA, and the initial value (●) and the elapsed value (Δ) are plotted. From FIG. 1, it was confirmed that the ECSA initial value of the electrode material of the present invention coated with an oxide coating of a transition metal was less lowered than the ECSA initial value of the uncoated electrode material. In addition, while the elapsed value of the uncoated (B / A = 0) catalyst is reduced by about 60% with respect to the initial value, the initial value of the electrode material of the present invention coated with the transition metal oxide film is It was confirmed that even if the value of B / A was reduced to 0.01, it decreased only by about 20%.

図2には、0.5V(vsSCE)における酸素還元電流を酸素還元活性(ORR活性)として縦軸とし、横軸をB/Aとして、初期値(●)と経過値(△)をプロットした。図2により、遷移金属の酸化物被膜で被覆した本発明の電極材料の酸素還元活性初期値は、無被覆(B/A=0)の電極材料の初期値と比較して低下が少ないことを確認した。また、無被覆の触媒の経過値が初期値に対して50%程度低下するのに対して、遷移金属の酸化物被膜で被覆した本発明の電極材料の初期値はB/Aの値を0.01まで小さくしても20%程度しか低下しないことを確認した。   In FIG. 2, the initial value (●) and elapsed value (Δ) are plotted with the oxygen reduction current at 0.5 V (vs SCE) as the oxygen reduction activity (ORR activity) on the vertical axis and the horizontal axis as B / A. . According to FIG. 2, the initial value of the oxygen reduction activity of the electrode material of the present invention coated with the oxide film of transition metal is less decreased than the initial value of the electrode material without coating (B / A = 0). confirmed. In addition, while the elapsed value of the uncoated catalyst is reduced by about 50% with respect to the initial value, the initial value of the electrode material of the present invention coated with the transition metal oxide film has a B / A value of 0. It was confirmed that even if it was reduced to 0.01, it decreased only by about 20%.

電極材料中の触媒金属及び遷移金属の原子個数は、電極材料をICP−MS法により分析すると、触媒金属の質量a及び遷移金属の質量bが計測できることから、触媒金属の原子量Ma及び遷移金属の原子量Mbで除することで、
A=a/Ma
B=b/Mb
として算出できる。
Catalyst metal and atomic number of the transition metal in the electrode material, the electrode material is analyzed by ICP-MS method, since the mass a and the mass b of the transition metal of the catalyst metal can be measured, the catalytic metal atomic weight M a and a transition metal By dividing by the atomic weight M b of
A = a / M a
B = b / M b
Can be calculated as

図1において、ECSA(m2/g)の初期値が50〜40、経過値が38〜35となる範囲が、0<B/A≦3.5である。図2において、0.5V(vsSCE)における酸素還元電流が0.003以上となる範囲が、0<B/A≦3.5である。 In FIG. 1, the range in which the initial value of ECSA (m 2 / g) is 50 to 40 and the elapsed value is 38 to 35 is 0 <B / A ≦ 3.5. In FIG. 2, the range in which the oxygen reduction current at 0.5 V (vs SCE) is 0.003 or more is 0 <B / A ≦ 3.5.

(触媒金属と遷移金属)
触媒金属は酸素の還元反応に触媒作用を有する、もしくは水素の酸化反応に触媒作用を有するものであれば使用できる。公知の触媒としてPt、Ru、Rh、Pd、Co、Ni、Auのうち1つ以上を含むものであれば良い。
(Catalyst metal and transition metal)
The catalyst metal can be used as long as it has a catalytic action for oxygen reduction reaction or a catalytic action for hydrogen oxidation reaction. Any known catalyst may be used as long as it contains one or more of Pt, Ru, Rh, Pd, Co, Ni, and Au.

遷移金属の酸化物は、Si、Zr、Ti、Mg、Al、Inの酸化物のうち1つ以上を含むものであればよい。   The transition metal oxide may be one containing at least one of Si, Zr, Ti, Mg, Al, and In oxides.

導電性炭素微粒子上に担持された触媒金属粒子が遷移金属の酸化物により被覆されている状況については、電子顕微鏡によって確認することができる。遷移金属の酸化物被膜が触媒金属粒子を覆う形態については3種類があり、遷移金属の酸化物が触媒金属粒子表面の全てを覆う場合の電子顕微鏡観察イメージ図が図3に示され、遷移金属の酸化物被膜が触媒金属粒子表面の一部を覆う場合の電子顕微鏡観察イメージ図が図4に示され、遷移金属の酸化物が触媒金属粒子表面の全てを覆うものと、遷移金属の酸化物被膜が触媒金属粒子表面の一部を覆うものが混在する場合の電子顕微鏡観察イメージ図が図5に示される。   The situation in which the catalytic metal particles supported on the conductive carbon fine particles are covered with the transition metal oxide can be confirmed by an electron microscope. There are three types of forms in which the transition metal oxide film covers the catalyst metal particles. FIG. 3 shows an electron microscope observation image when the transition metal oxide covers the entire surface of the catalyst metal particles. The electron microscope observation image figure when an oxide film covers a part of catalyst metal particle surface is shown in FIG. 4, and the transition metal oxide film covers all of the catalyst metal particle surface and the transition metal oxide film. FIG. 5 shows an electron microscope observation image diagram in the case where a material covering a part of the catalyst metal particle surface is mixed.

(導電性炭素材料)
導電性炭素微粒子は一般的に存在する電子伝導性を有する炭素材料であれば特に限定するものではないが、本来求められる反応以外の化学反応をおこしたり、水との接触によって炭素材料を構成する物質が溶出するような材料は好ましくなく、化学的に安定な炭素材料が好ましい。好ましい導電性炭素微粒子材料の種類としては、カーボンブラックを例としてあげることができる。
(Conductive carbon material)
The conductive carbon fine particle is not particularly limited as long as it is a carbon material having an electron conductivity that is generally present, but the carbon material is configured by performing a chemical reaction other than the originally required reaction or contacting with water. A material from which the substance is eluted is not preferable, and a chemically stable carbon material is preferable. An example of a preferable conductive carbon fine particle material is carbon black.

[第2の実施形態]
第2の実施形態は、第1の実施形態に記載の電極材料を用いた電極を備えてなる固体高分子形燃料電池である。プロトン伝導性電解質膜を挟んでアノードもしくはカソードとなる触媒層として第1の実施形態に記載した電極材料を用いた電極を装備し、これを挟んでさらに外側にガス拡散層が配置され、さらにその外側にセパレータを配置する。
[Second Embodiment]
The second embodiment is a polymer electrolyte fuel cell comprising an electrode using the electrode material described in the first embodiment. An electrode using the electrode material described in the first embodiment is provided as a catalyst layer serving as an anode or a cathode with a proton conductive electrolyte membrane interposed therebetween, and a gas diffusion layer is further disposed on the outer side of the electrode layer. A separator is placed outside.

[実施例1]
(電極材料の作製)
導電性炭素微粒子として市販のカーボンブラック(BET表面積=1270m2/g)を用い、カーボンブラックに触媒金属としてPtを担持した具体例を挙げて説明するが、本発明がこれらに制限されるものではない。まず、カーボンブラック、塩化白金酸、水、エタノールを所定比率で配合した混合溶液中で分散させ、その後脱気処理した。次に、沈殿剤(還元剤)としてアンモニア水をゆっくり滴下し、1時間撹拌した。上記アンモニア水を用いて洗浄と瀘過を行った。その後Heガス中で623Kの温度で3時間焼成することで、カーボンブラック上にPt粒子を高分散に担持することができた。これにより、Pt粒子を担持したカーボンブラックを得ることができた。
[Example 1]
(Production of electrode material)
A commercially available carbon black (BET surface area = 1270 m 2 / g) is used as the conductive carbon fine particles, and a specific example in which Pt is supported as a catalytic metal on the carbon black will be described. However, the present invention is not limited thereto. Absent. First, carbon black, chloroplatinic acid, water, and ethanol were dispersed in a mixed solution in a predetermined ratio, and then degassed. Next, aqueous ammonia was slowly added dropwise as a precipitant (reducing agent) and stirred for 1 hour. Cleaning and filtration were performed using the ammonia water. Thereafter, the Pt particles were supported on the carbon black in a highly dispersed manner by calcining in He gas at a temperature of 623 K for 3 hours. Thereby, carbon black carrying Pt particles could be obtained.

次に、Pt粒子を担持したカーボンブラックを、Siの酸化物により被覆した例を用いて説明するが、本発明がこれに限定されるものではない。   Next, an example in which carbon black supporting Pt particles is coated with an oxide of Si will be described, but the present invention is not limited to this.

まず、上記工程で得られたPt粒子を担持したカーボンブラックを脱水エタノール溶液中に分散させた。次に、3−アミノプロピルトリエトキシシランを滴下し、30分間攪拌した。その後、テトラエトキシシランを滴下し、60分間攪拌した。その後、24時間かけて水をゆっくり滴下しながら攪拌した。その後、アルコール洗浄、濾化を行い、真空乾燥した。その後Ar雰囲気中で573Kの温度で熱処理をすることで所望の電極材料を得た。得られた電極材料はICP−MSによる元素の定量分析を行った。   First, carbon black carrying Pt particles obtained in the above process was dispersed in a dehydrated ethanol solution. Next, 3-aminopropyltriethoxysilane was added dropwise and stirred for 30 minutes. Thereafter, tetraethoxysilane was added dropwise and stirred for 60 minutes. Thereafter, the mixture was stirred while slowly dropping water over 24 hours. Thereafter, washing with alcohol and filtration were performed, followed by vacuum drying. Thereafter, heat treatment was performed at a temperature of 573 K in an Ar atmosphere to obtain a desired electrode material. The obtained electrode material was subjected to quantitative analysis of elements by ICP-MS.

(PtとSiを使用した電極材料)
触媒金属をPtとし、遷移金属をSiとして、B/Aを、3.7〜0.0と変化させた電極材料についてECSA、及び0.5V(vs.SCE)における酸素還元電流を明らかにするために、ディスク電極を用いて電気化学測定を行った。
(Electrode material using Pt and Si)
Clarify oxygen reduction current at ECSA and 0.5 V (vs. SCE) for electrode materials in which Pt is the catalyst metal, Si is the transition metal, and B / A is changed from 3.7 to 0.0. Therefore, electrochemical measurement was performed using a disk electrode.

電気化学測定は、(有)日厚計測の回転リングディスク評価装置(RRDE−1)及び、ソーラートロン社製ポテンショスタットSI1287を用いて以下の手順で行った。   The electrochemical measurement was performed by the following procedure using a rotating ring disk evaluation apparatus (RRDE-1) for measuring the thickness of the sun (RRDE-1) and a potentiostat SI1287 manufactured by Solartron.

市販のディスク電極(ディスク直径6mm)上に、作製した電極材料3mgを5質量%ナフィオン(登録商標)溶液60mgを含むエタノール500mg中に分散させたスラリーを塗布・乾燥して試験極とした。スラリーの塗布量は0.02mgとなるように調整した。電解液には0.1Nの硫酸水溶液を用い、基準極にSCE、対極にPt板を用いるセル構成とした。電解液の温度を293Kとし、酸素ガスをバブリングし、酸素を飽和させた。電極のディスク電極は2400rpmで回転し、電位を0.7V(vs.SCE)から0.1V(vs.SCE)まで10mV/secの速度で掃引させ、基準電極に対する作用極の電位と、作用極に流れる酸素還元電流との関係を測定し、作用極の電位が0.5V(vs.SCE)における酸素還元電流値を記録し、酸素還元活性(ORR活性)の初期値とした。次に、電解液を窒素飽和の電解液に交換し、温度を293Kとし、−0.3V(vs.SCE)〜1.0V(vs.SCE)の範囲で10mV/secの電位走査速度でサイクリックボルタモグラムを行い、水素脱離波の電気量からECSAを算出し、ESCAの初期値とした。   A slurry obtained by dispersing 3 mg of the produced electrode material in 500 mg of ethanol containing 60 mg of a 5 mass% Nafion (registered trademark) solution on a commercially available disk electrode (disk diameter 6 mm) was dried and used as a test electrode. The amount of slurry applied was adjusted to 0.02 mg. A 0.1N sulfuric acid aqueous solution was used as the electrolyte, and a cell configuration was used in which SCE was used as the reference electrode and a Pt plate was used as the counter electrode. The temperature of the electrolyte was 293 K, and oxygen gas was bubbled to saturate oxygen. The electrode of the electrode rotates at 2400 rpm, and the potential is swept from 0.7 V (vs. SCE) to 0.1 V (vs. SCE) at a rate of 10 mV / sec. The oxygen reduction current value flowing through the electrode was measured, and the oxygen reduction current value at a working electrode potential of 0.5 V (vs. SCE) was recorded as the initial value of the oxygen reduction activity (ORR activity). Next, the electrolytic solution is replaced with a nitrogen-saturated electrolytic solution, the temperature is set to 293 K, and a cyclic scan is performed at a potential scanning speed of 10 mV / sec in the range of −0.3 V (vs. SCE) to 1.0 V (vs. SCE). Click voltammogram was performed, ECSA was calculated from the electric quantity of hydrogen desorption wave, and used as the initial value of ESCA.

次に、耐久性評価試験として、0.6V(vs.SCE)保持を6秒、1.0V(vs.SCE)保持を6秒を1サイクルとする、矩形波の電位サイクルを20000サイクル印加した。   Next, as a durability evaluation test, a rectangular wave potential cycle was applied for 20000 cycles, with 0.6 V (vs. SCE) holding for 6 seconds and 1.0 V (vs. SCE) holding for 6 seconds as one cycle. .

耐久性評価試験が終了したところで、−0.3V(vs.SCE)〜1.0V(vs.SCE)の範囲で10mV/secの電位走査速度でサイクリックボルタモグラムを行い、ECSAを算出し、ESCAの経過値とした。その後、電解液を交換し、酸素ガスをバブリングさせ、酸素が飽和した状態で、温度を293Kとした。電極のディスク電極は2400rpmで回転し、電位を0.7V(vs.SCE)から0.1V(vs.SCE)まで10mV/secの速度で掃引させ、基準電極に対する作用極の電位と、作用極に流れる酸素還元電流との関係を測定し、作用極の電位が0.5V(vs.SCE)における酸素還元電流値を記録し、酸素還元活性(ORR活性)の経過値とした。   When the durability evaluation test was completed, cyclic voltammogram was performed at a potential scanning speed of 10 mV / sec in the range of −0.3 V (vs. SCE) to 1.0 V (vs. SCE), ECSA was calculated, and ESCA The elapsed value of Thereafter, the electrolyte was replaced, oxygen gas was bubbled, and the temperature was 293 K in a state where oxygen was saturated. The electrode of the electrode rotates at 2400 rpm, and the potential is swept from 0.7 V (vs. SCE) to 0.1 V (vs. SCE) at a rate of 10 mV / sec. The relationship with the oxygen reduction current flowing through the electrode was measured, the oxygen reduction current value at a working electrode potential of 0.5 V (vs. SCE) was recorded, and this was taken as the elapsed value of oxygen reduction activity (ORR activity).

ESCAの初期値と経過値、酸素還元活性(ORR活性)の初期値と経過値を表1に示す。ECSAの初期値、経過値がいずれも38m2/g以上、作用極の電位が0.5V(vs.SCE)における酸素還元電流(ORR活性)の初期値、経過値のいずれも0.003mA/cm2以上の場合は○と評価する。ESCA初期値、経過値のいずれかが38m2/g未満、作用極の電位が0.5V(vs.SCE)における酸素還元電流(ORR活性)の初期値、経過値のいずれかが0.003mA/cm2未満の場合は×と評価する。 Table 1 shows the initial value and elapsed value of ESCA, and the initial value and elapsed value of oxygen reduction activity (ORR activity). The initial value and elapsed value of ECSA are both 38 m 2 / g or more, and the initial value and elapsed value of oxygen reduction current (ORR activity) at a working electrode potential of 0.5 V (vs. SCE) are both 0.003 mA / In the case of cm 2 or more, it is evaluated as ○. Either the initial value of ESCA or the elapsed value is less than 38 m 2 / g, and the initial value or elapsed value of the oxygen reduction current (ORR activity) at a working electrode potential of 0.5 V (vs. SCE) is 0.003 mA. When it is less than / cm 2 , it is evaluated as x.

Figure 2012252865
Figure 2012252865

0<B/A≦3.5の場合には、電気化学測定結果が○と評価できる。しかし、B/A=0あるいは3.7の場合には、電気化学測定結果が×と評価される。   When 0 <B / A ≦ 3.5, the electrochemical measurement result can be evaluated as ◯. However, when B / A = 0 or 3.7, the electrochemical measurement result is evaluated as x.

[実施例2](PtとZr、Ti、Mg、Al、Inを使用した電極材料)
触媒金属としてPtを使用し、遷移金属としてZr、Ti、Mg、Al、Inを使用した。実施例1におけるテトラエトキシシランを、テトラエトキシチタン(Ti対応)、テトラエトキシジルコニウム(Zr対応)、アルミニウムトリエトキシド(Al対応)、インジウムトリエトキシド(In対応)、マグネシウムジエトキシド(Mg対応)にそれぞれ変更した。それぞれについて、B/Aを2.0と3.7の2種類に変化させた。上記以外の電極材料製造条件は前記実施例1と同様である。また、ECSA、及び0.5V(vsSCE)における酸素還元電流を明らかにするために、ディスク電極を用いて電気化学測定を行った。電気化学測定、耐久性評価試験条件、評価判定条件については、上記実施例1と同じ条件とした。これらの結果を下記の表2に示す。
Example 2 (electrode material using Pt and Zr, Ti, Mg, Al, In)
Pt was used as the catalyst metal, and Zr, Ti, Mg, Al, and In were used as the transition metal. The tetraethoxysilane in Example 1 was changed to tetraethoxytitanium (for Ti), tetraethoxyzirconium (for Zr), aluminum triethoxide (for Al), indium triethoxide (for In), magnesium diethoxide (for Mg). ) Respectively. About each, B / A was changed into two types, 2.0 and 3.7. The electrode material manufacturing conditions other than those described above are the same as in Example 1. In order to clarify the oxygen reduction current at ECSA and 0.5 V (vs SCE), electrochemical measurement was performed using a disk electrode. The electrochemical measurement, durability evaluation test conditions, and evaluation determination conditions were the same as those in Example 1 above. These results are shown in Table 2 below.

Figure 2012252865
Figure 2012252865

0<B/A≦3.5の場合には、電気化学測定結果が○と評価できる。しかし、3.7の場合には、電気化学測定結果が×と評価される。   When 0 <B / A ≦ 3.5, the electrochemical measurement result can be evaluated as ◯. However, in the case of 3.7, the electrochemical measurement result is evaluated as x.

[実施例3](Ru、Rh、Pd、Co、Ni、Au、とSiを使用した電極材料)
触媒金属としてRu、Rh、Pd、Co、Ni、Auを使用し、遷移金属としてSiを使用した場合の実施例については表3に記載した。触媒金属の種類を変更した点を除いて、前記実施例1と同じ条件を採用している。なお、表3においてPt−Ru、Pt−Rh、Pt−Au,Pd−Ni、Pd−Coの記載は記載された遷移金属の合金を各々意味する。
[Example 3] (Ru, Rh, Pd, Co, Ni, Au, and electrode material using Si)
Examples in which Ru, Rh, Pd, Co, Ni, and Au are used as the catalyst metal and Si is used as the transition metal are shown in Table 3. The same conditions as in Example 1 are adopted except that the type of catalyst metal is changed. In Table 3, “Pt—Ru”, “Pt—Rh”, “Pt—Au”, “Pd—Ni”, and “Pd—Co” mean alloys of the described transition metals.

Figure 2012252865
Figure 2012252865

いずれも0<B/A≦3.5であり、電気化学測定結果が○と評価できる。   In either case, 0 <B / A ≦ 3.5, and the electrochemical measurement result can be evaluated as ◯.

[実施例4](燃料電池としての評価)
前記[実施例1]の実施例1〜13、比較例1〜7に記載の電極材料を用いて電極とし、燃料電池を構成して評価を行った。
[Example 4] (Evaluation as a fuel cell)
A fuel cell was constructed and evaluated using the electrode materials described in Examples 1 to 13 and Comparative Examples 1 to 7 in [Example 1].

アルゴン気流中で5%ナフィオン溶液(アルドリッチ製)を触媒の質量に対してナフィオン固形分の質量が3倍になるように加え、軽く撹拌後、超音波で触媒を粉砕し、白金触媒とナフィオンを合わせた固形分濃度が、2質量%となるように撹拌しながら酢酸ブチルを加え、各触媒層スラリーを作製した。   Add 5% Nafion solution (manufactured by Aldrich) in an argon stream so that the mass of Nafion solids is 3 times the mass of the catalyst, and after gently stirring, pulverize the catalyst with ultrasonic waves to remove the platinum catalyst and Nafion. Butyl acetate was added with stirring so that the combined solid content concentration was 2% by mass to prepare each catalyst layer slurry.

前記触媒層スラリーをテフロン(登録商標)シートの片面にそれぞれスプレー法で塗布し、80℃のアルゴン気流中10分間、続いて120℃のアルゴン気流中1時間乾燥し、前記[実施例1]の実施例1〜13、比較例1〜7に記載の電極材料を触媒層に含有した固体高分子型燃料電池用電極を得た。   The catalyst layer slurry was applied to each side of a Teflon (registered trademark) sheet by a spray method, dried in an argon stream at 80 ° C. for 10 minutes, and then dried in an argon stream at 120 ° C. for 1 hour. Solid polymer fuel cell electrodes containing the electrode materials described in Examples 1 to 13 and Comparative Examples 1 to 7 in the catalyst layer were obtained.

それぞれの電極は白金使用量が0.10mg/cm2となるようにスプレー等の条件を設定した。白金使用量は、スプレー塗布前後のテフロン(登録商標)シートの乾燥質量を測定し、その差から計算して求めた。 For each electrode, conditions such as spraying were set so that the amount of platinum used was 0.10 mg / cm 2 . The amount of platinum used was determined by measuring the dry mass of a Teflon (registered trademark) sheet before and after spray coating and calculating the difference.

得られた固体高分子型燃料電池用電極から2.5cm角の大きさで2枚づつ切り取り、触媒層が電解質膜と接触するように同じ種類の電極2枚で電解質膜(ナフィオン112)を挟み、130℃、90kg/cm2で10分間ホットプレスを行った。室温まで冷却後、テフロン(登録商標)シートのみを注意深く剥がし、アノード及びカソードの触媒層をナフィオン膜に定着させた。更に、市販のカーボンクロス(ElectroChem社製EC−CC1−060)を2.5cm角の大きさに2枚切り取って、ナフィオン膜に定着させたアノードとカソードを挟むようにして130℃、50kg/cm2で10分間ホットプレスを行い、膜/電極接合体(Membrane Electrode Assembly,MEA)20種を作製した。 Two 2.5 cm square pieces are cut from the obtained polymer electrolyte fuel cell electrode, and the electrolyte membrane (Nafion 112) is sandwiched between two electrodes of the same type so that the catalyst layer is in contact with the electrolyte membrane. And hot pressing at 130 ° C. and 90 kg / cm 2 for 10 minutes. After cooling to room temperature, only the Teflon (registered trademark) sheet was carefully peeled off to fix the anode and cathode catalyst layers to the Nafion membrane. Further, two commercially available carbon cloths (EC-CC1-060 manufactured by ElectroChem) were cut into 2.5 cm square sizes, and the anode and cathode fixed on the Nafion membrane were sandwiched at 130 ° C. and 50 kg / cm 2 . Hot pressing was performed for 10 minutes to prepare 20 types of membrane / electrode assemblies (Membrane Electrode Assembly, MEA).

初期電流密度の測定は、作製した各MEAは、それぞれ燃料電池測定装置に組み込んで行った。電流密度測定は、セル端子間電圧を開放電圧(通常0.9〜1.0V程度)から0.2Vまで段階的に変化させ、セル端子間電圧が0.8Vのときに流れる電流密度を測定した。耐久試験後の電流密度は耐久試験実施後に初期電流密度の測定と同様に行った。   The initial current density was measured by incorporating each manufactured MEA into a fuel cell measuring apparatus. Current density measurement measures the current density that flows when the cell terminal voltage is 0.8V by gradually changing the voltage between the cell terminals from the open circuit voltage (usually about 0.9 to 1.0V) to 0.2V. did. The current density after the endurance test was the same as the measurement of the initial current density after the endurance test.

耐久試験としては、セル端子間電圧を0.9Vに15秒間保持、セル端子間電圧を1.3Vに15秒間保持のサイクルを4000回実施した。   As an endurance test, a cycle of holding the cell terminal voltage at 0.9 V for 15 seconds and holding the cell terminal voltage at 1.3 V for 15 seconds was performed 4000 times.

ガスは、カソードに空気、アノードに純水素を、利用率がそれぞれ50%と80%となるように供給し、それぞれのガス圧は、セル下流に設けられた背圧弁で0.1MPaに圧力調整した。セル温度は70℃に設定し、供給する空気と純水素は、それぞれ50℃に保温された蒸留水中でバブリングを行い、加湿した。   The gas is supplied to the cathode with air and pure hydrogen to the anode so that the utilization rates are 50% and 80%, respectively, and the pressure of each gas is adjusted to 0.1 MPa by a back pressure valve provided downstream of the cell. did. The cell temperature was set to 70 ° C., and the supplied air and pure hydrogen were bubbled in distilled water kept at 50 ° C. and humidified.

表4に各MEAの初期電流密度と耐久試験後の電流密度を示した。初期電流密度、耐久試験後の電流密度の値がいずれも130(mA/cm2)以上の場合は○と評価し、これに満たないものは×と評価した。 Table 4 shows the initial current density of each MEA and the current density after the durability test. When both the initial current density and the value of the current density after the durability test were 130 (mA / cm 2 ) or more, they were evaluated as “good”, and those less than this were evaluated as “poor”.

Figure 2012252865
Figure 2012252865

本発明の実施例1、2、3、4、5、6、7、8、9、10、11、12、13の触媒を用いたMEAは、優れた初期電池性能を発揮するのと同時に、耐久試験後にも高い電池性能を維持している。   MEAs using the catalysts of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 of the present invention exhibit excellent initial battery performance, High battery performance is maintained after the durability test.

比較例2の触媒を用いたMEAは、初期電池性能は優れているが、耐久試験後の電池性能が低く、耐久性に劣ることが分かる。また、比較例1、3、4、5、6、7の触媒を用いたMEAは、初期電池性能と耐久試験後電池性能の差を示した劣化率は低く、耐久性に優れているが、初期電池性能が本発明の実施例1、2、3、4、5、6、7、8、9、10、11、12、13の触媒を用いたMEAに比べて劣位である。   It can be seen that the MEA using the catalyst of Comparative Example 2 has excellent initial battery performance, but has low battery performance after the durability test and is inferior in durability. In addition, the MEA using the catalysts of Comparative Examples 1, 3, 4, 5, 6, and 7 has a low deterioration rate indicating a difference between the initial battery performance and the battery performance after the durability test, and is excellent in durability. The initial battery performance is inferior to the MEA using the catalysts of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 of the present invention.

1:触媒金属粒子
2:遷移金属の酸化物被膜
3:導電性炭素粒子
1: catalytic metal particles 2: oxide film of transition metal 3: conductive carbon particles

Claims (4)

導電性炭素微粒子上に複数の触媒金属粒子が担持され、該担持された触媒金属粒子が遷移金属の酸化物により一部もしくは全部を被覆されている触媒粒子からなり、電極材料における触媒金属の原子個数Aと遷移金属原子個数Bの原子個数比率が0<B/A≦3.5であることを特徴とする電極材料。   A plurality of catalyst metal particles are supported on conductive carbon fine particles, and the supported catalyst metal particles are composed of catalyst particles partially or wholly covered with an oxide of a transition metal, and the catalyst metal atoms in the electrode material An electrode material wherein the ratio of the number of atoms A to the number of transition metal atoms B is 0 <B / A ≦ 3.5. 前記触媒金属粒子が、Pt、Ru、Rh、Pd、Co、Ni、Auのうち1つ以上の成分を含んでなることを特徴とする請求項1に記載の電極材料。   2. The electrode material according to claim 1, wherein the catalytic metal particles comprise one or more components of Pt, Ru, Rh, Pd, Co, Ni, and Au. 前記遷移金属の酸化物が、Si、Zr、Ti、Mg、Al、Inの酸化物のうち1つ以上の酸化物を含んでなることを特徴とする請求項1または2に記載の電極材料。   3. The electrode material according to claim 1, wherein the transition metal oxide includes one or more oxides of Si, Zr, Ti, Mg, Al, and In. 請求項1ないし3のいずれか1項に記載の電極材料を用いた電極を備えてなる燃料電池。   A fuel cell comprising an electrode using the electrode material according to any one of claims 1 to 3.
JP2011124176A 2011-06-02 2011-06-02 Electrode material and fuel cell Pending JP2012252865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124176A JP2012252865A (en) 2011-06-02 2011-06-02 Electrode material and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124176A JP2012252865A (en) 2011-06-02 2011-06-02 Electrode material and fuel cell

Publications (1)

Publication Number Publication Date
JP2012252865A true JP2012252865A (en) 2012-12-20

Family

ID=47525508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124176A Pending JP2012252865A (en) 2011-06-02 2011-06-02 Electrode material and fuel cell

Country Status (1)

Country Link
JP (1) JP2012252865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059741A (en) * 2011-09-14 2013-04-04 Toyota Motor Corp Catalyst-supporting carrier and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167620A (en) * 1995-12-15 1997-06-24 Toshiba Corp Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
JP2004146223A (en) * 2002-10-25 2004-05-20 National Institute Of Advanced Industrial & Technology Negative electrode catalyst for fuel cell
JP2005056746A (en) * 2003-08-06 2005-03-03 Taki Chem Co Ltd Method for manufacturing electrocatalyst for direct methanol fuel cells
JP2005270864A (en) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd Fuel cell electrode catalyst and manufacturing method therefor
JP2006261052A (en) * 2005-03-18 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Manufacturing method of electrode catalyst powder for solid polymer fuel cell, and electrode catalyst powder for solid polymer fuel cell
JP2007273161A (en) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell
JP2008004541A (en) * 2006-05-25 2008-01-10 Nissan Motor Co Ltd Electrode material
JP2011014506A (en) * 2009-07-06 2011-01-20 Toyota Motor Corp Electrode catalyst for fuel cell and solid polymer fuel cell using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167620A (en) * 1995-12-15 1997-06-24 Toshiba Corp Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
JP2004146223A (en) * 2002-10-25 2004-05-20 National Institute Of Advanced Industrial & Technology Negative electrode catalyst for fuel cell
JP2005056746A (en) * 2003-08-06 2005-03-03 Taki Chem Co Ltd Method for manufacturing electrocatalyst for direct methanol fuel cells
JP2005270864A (en) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd Fuel cell electrode catalyst and manufacturing method therefor
JP2006261052A (en) * 2005-03-18 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Manufacturing method of electrode catalyst powder for solid polymer fuel cell, and electrode catalyst powder for solid polymer fuel cell
JP2007273161A (en) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing electrode catalyst powder for polymer electrolyte fuel cell
JP2008004541A (en) * 2006-05-25 2008-01-10 Nissan Motor Co Ltd Electrode material
JP2011014506A (en) * 2009-07-06 2011-01-20 Toyota Motor Corp Electrode catalyst for fuel cell and solid polymer fuel cell using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAKAE TAKENAKA ET AL.: "Preparation of supported Pt-Co alloy nanoparticle catalysts for the oxygen reduction reaction by cov", JOURNAL OF CATALYSIS, vol. 274, JPN6014023537, 2010, pages 228 - 238, XP055131112, ISSN: 0002829333, DOI: 10.1016/j.jcat.2010.07.005 *
化学大辞典, vol. 第1版, JPN6014023540, 1989, pages 1846, ISSN: 0002829334 *
金属なんでも小事典, JPN6014010750, 1997, pages 38, ISSN: 0002767644 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059741A (en) * 2011-09-14 2013-04-04 Toyota Motor Corp Catalyst-supporting carrier and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP3082184B1 (en) Carbon support material for solid polymer type fuel cell use and metal catalyst particle-supporting carbon material and methods of production of same
JP5887453B1 (en) Electrode catalyst, gas diffusion electrode forming composition, gas diffusion electrode, membrane / electrode assembly, fuel cell stack
Oh et al. The inhibition of electrochemical carbon corrosion in polymer electrolyte membrane fuel cells using iridium nanodendrites
JP2007335338A (en) Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same
Yang et al. An effective and durable interface structure design for oxygen reduction and methanol oxidation electrocatalyst
Hassan et al. Effect of addition of Ru and/or Fe in the stability of PtMo/C electrocatalysts in proton exchange membrane fuel cells
JP2020047432A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
US20100068591A1 (en) Fuel cell catalyst, fuel cell cathode and polymer electrolyte fuel cell including the same
JP6734345B2 (en) Metal alloy catalysts for fuel cell anodes
Li et al. Effect of Co2+ on oxygen reduction reaction catalyzed by Pt catalyst, and its implications for fuel cell contamination
Elezović et al. Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction
JP6478677B2 (en) Fuel cell electrode
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP5601280B2 (en) Catalyst for polymer electrolyte fuel cell
JP5755833B2 (en) Anode catalyst layer for fuel cells
US11901565B2 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
US20090253013A1 (en) Electrode for fuel cell, membrane electrode assembly and fuel cell
EP4086987A1 (en) Electrode for fuel cell having high durability, method for manufacturing same, and membrane-electrode assembly comprising same
JP2012252865A (en) Electrode material and fuel cell
Marra et al. Oxygen reduction reaction kinetics on a Pt thin layer electrode in AEMFC
JP2021163699A (en) Catalyst layer for polymer electrolyte fuel cell, membrane electrode assembly, and polymer electrolyte fuel cell
JP2005135671A (en) Electrode for fuel cell
Zhang et al. On the electro-oxidation of small organic molecules: towards a fuel cell catalyst testing platform with realistic reaction environment
JP2006147345A (en) Electrode catalyst layer and its manufacturing method
JP7131535B2 (en) Catalyst layer for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105