JP4958133B2 - Electrode catalyst for hydrogen electrode of low temperature fuel cell - Google Patents

Electrode catalyst for hydrogen electrode of low temperature fuel cell Download PDF

Info

Publication number
JP4958133B2
JP4958133B2 JP2004268219A JP2004268219A JP4958133B2 JP 4958133 B2 JP4958133 B2 JP 4958133B2 JP 2004268219 A JP2004268219 A JP 2004268219A JP 2004268219 A JP2004268219 A JP 2004268219A JP 4958133 B2 JP4958133 B2 JP 4958133B2
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
hydrogen
complex
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004268219A
Other languages
Japanese (ja)
Other versions
JP2006085976A (en
Inventor
達弘 岡田
啓 矢野
千里 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004268219A priority Critical patent/JP4958133B2/en
Publication of JP2006085976A publication Critical patent/JP2006085976A/en
Application granted granted Critical
Publication of JP4958133B2 publication Critical patent/JP4958133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、改質ガスを用いる高分子型燃料電池、およびアルカリ型燃料電池、リン酸型燃料電池のような動作温度が約300℃以下の低温型燃料電池の水素極用電極触媒として有効な金属・有機金属錯体混合触媒及びこの触媒を用いた低温型燃料電池に関する。   INDUSTRIAL APPLICABILITY The present invention is effective as an electrode catalyst for a hydrogen electrode of a low temperature fuel cell having an operating temperature of about 300 ° C. or less, such as a polymer fuel cell using reformed gas, an alkaline fuel cell, and a phosphoric acid fuel cell The present invention relates to a mixed metal / organometallic complex catalyst and a low-temperature fuel cell using the catalyst.

改質ガスを用いる高分子型燃料電池、およびアルカリ型燃料電池、リン酸型燃料電池のような動作温度が約300℃以下の低温型燃料電池においては、水素ガスと電解質との間で電子授受を行う電極触媒の性能が電池性能に大きな影響を及ぼす。特にCOなどの触媒被毒物質によって電極が反応妨害を受ける場合は、耐被毒物質性を有する触媒の開発が重要な研究課題となっている。   In polymer fuel cells using reformed gas, and low temperature fuel cells having an operating temperature of about 300 ° C. or lower, such as alkaline fuel cells and phosphoric acid fuel cells, electrons are transferred between hydrogen gas and an electrolyte. The performance of the electrocatalyst that performs the battery greatly affects the battery performance. In particular, when an electrode is disturbed by a catalyst poisoning substance such as CO, the development of a catalyst having resistance to poisoning substances is an important research subject.

従来、このような低温型燃料電池の耐CO被毒性を有する燃料極用触媒として白金・ルテニウム、白金・錫、白金・モリブデン系のような2元合金、あるいはそれらをベースとした3元系以上の合金触媒や、白金・チタン酸化物、白金タングステン酸のような金属と酸化物をベースにした触媒が開発されている。
しかしながら、これらの触媒は以下のような問題点があった。
1.CO濃度の高い系での耐CO被毒性に劣る。
2.耐CO被毒性を発揮する反応メカニズムとして、2元機能メカニズム、d−電子欠損メカニズムなどが提案されているが、それらはすべて構成成分の原子間相互作用を念頭に置いてのもので、新しい機能に基づいた新触媒の開発という点ではもはや限界にきている。
3.経験上第2成分、第3成分として選択できる金属や酸化物の種類が限られており、触媒能の向上を期待することはできない。
Conventionally, as a catalyst for a fuel electrode having low CO poisoning resistance in such a low-temperature fuel cell, a binary alloy such as platinum / ruthenium, platinum / tin, platinum / molybdenum, or a ternary system based on them. Alloy catalysts and catalysts based on metals and oxides such as platinum / titanium oxide and platinum tungstic acid have been developed.
However, these catalysts have the following problems.
1. It is inferior in CO-toxication resistance in a system with high CO concentration.
2. As a reaction mechanism that exhibits resistance to CO poisoning, a dual function mechanism, a d-electron deficiency mechanism, and the like have been proposed, all of which are designed with interatomic interactions in mind, and are new functions. The development of new catalysts based on this is no longer the limit.
3. Based on experience, the types of metals and oxides that can be selected as the second component and the third component are limited, and improvement in catalytic ability cannot be expected.

本発明者等は上記問題点を基に、遷移金属元素又はその合金と、周期律表V族、VI族、VII族、VIII族の遷移金属元素のような2種類以上の原子価を有する金属元素を中心元素とし、窒素、酸素、硫黄などを含む配位子を平面状に配位する有機金属錯体を混在させた混合触媒について提案している(特許文献1参照)。   Based on the above problems, the present inventors have two or more kinds of valence metals such as transition metal elements or alloys thereof and transition metal elements of Group V, VI, VII, and VIII of the Periodic Table. A mixed catalyst in which an organometallic complex in which an element is a central element and a ligand containing nitrogen, oxygen, sulfur or the like is coordinated in a plane is mixed is proposed (see Patent Document 1).

特開2002−329500号公報JP 2002-329500 A

しかし、COガスなどによる触媒被毒を受けやすい低温型燃料電池の燃料極において、上記文献に記載された有機金属錯体を含む触媒は、メタノール酸化触媒として開発されたものであり、メタノール酸化特性が示されている。そして、メタノール酸化の過程で副生成物として生じるCOによる被毒を受けないようにするため、触媒表面でのCO被覆率を50%以下とし、実用化されている白金−ルテニウム合金触媒等と同程度の耐CO被毒性を得ることを目的としたものである。
本発明はこのような技術の実状に鑑みなされたものであって、水素酸化触媒としての優れた性能をもち、耐CO被毒性がCO濃度10ppm〜100ppmであっても周知の白金−ルテニウム合金触媒よりさらに優れると共に、価格的にも製造面でも有利な低温型燃料電池の水素極用電極触媒およびこれを用いた低温型燃料電池を提供することを目的とする。
However, in the fuel electrode of a low-temperature fuel cell that is susceptible to catalyst poisoning due to CO gas or the like, the catalyst containing the organometallic complex described in the above document has been developed as a methanol oxidation catalyst and has methanol oxidation characteristics. It is shown. In order not to be poisoned by CO generated as a by-product in the process of methanol oxidation, the CO coverage on the catalyst surface is set to 50% or less, which is the same as that of a platinum-ruthenium alloy catalyst that has been put into practical use. The purpose is to obtain a degree of CO poisoning resistance.
The present invention has been made in view of the actual situation of such a technology, and has a superior performance as a hydrogen oxidation catalyst, and is a well-known platinum-ruthenium alloy catalyst even when the CO poisoning resistance is a CO concentration of 10 ppm to 100 ppm. An object of the present invention is to provide an electrode catalyst for a hydrogen electrode of a low temperature fuel cell which is further superior and advantageous in terms of cost and production, and a low temperature fuel cell using the same.

本発明者等は、上記課題を解決するため更に、混合触媒において注意深く白金又はその合金と、窒素、酸素、硫黄などを含む配位子を平面状に配位する有機金属錯体とその中心金属原子、及び熱処理調整条件等を検討した結果、特定の有機金属錯体と特定の中心金属原子の組み合わせのものを水素酸化触媒として用いたときに、これまで得られなかった特に優れた耐CO被毒性を有する水素極用電極触媒を見出し、本発明に至った。
すなわち本発明は、
(1)白金又はその合金と、N,N’−ビス(サリシリデン)エチレンジアミノ金属錯体混合触媒であって、錯体中心金属が、オキソバナジウム、マンガン、鉄、コバルト、ニッケルから選ばれる金属原子であり、担体に担持し、200℃〜550℃で熱処理したものであることを特徴とする水素を含む改質ガスを用いる低温型燃料電池の水素極用電極触媒、
(2)白金又はその合金と、N,N’−モノ−8−キノリル−o−フェニレンジアミン金属錯体の混合触媒であって、錯体中心金属が、オキソバナジウム、マンガン、鉄、コバルト、ニッケルから選ばれる金属原子であり、担体に担持し、200℃〜550℃で熱処理したものであることを特徴とする水素を含む改質ガスを用いる低温型燃料電池の水素極用電極触媒、
(3)前記白金又はその合金が、アンミン錯体、カルボニル錯体、アセチルアセトナート錯体、ニトロソ錯体、酢酸塩、塩化物、臭化物、ヨウ化物から選ばれる化合物に由来するものであって、(1)または(2)記載の金属錯体と予め溶液状態で混合され、これを担体に担持後200℃〜550℃で熱処理されることで生成された、担体表面に微粒子状に担持されていることを特徴とする(1)または(2)記載の水素極用電極触媒、
(4)前記熱処理が、不活性ガス中または還元性ガスを一部含む不活性ガス中で行われることを特徴とする(1)乃至(3)のいずれか1項記載の水素極用電極触媒、
(5)担体が炭素質材料であることを特徴とする(1)乃至(4)のいずれか1項記載の水素極用電極触媒、
(6)炭素質材料が、グラファイト、カーボンブラック、ケッチェンブラック、活性炭及びグラシーカーボンから選ばれた少なくとも一種であることを特徴とする(5)記載の水素極用電極触媒、
(7)前記(1)乃至(6)いずれか1項記載の水素極用触媒を用いた低温型燃料電池の水素極、
(8)前記(7)記載の水素極を備えた低温型燃料電池、および
(9)低温型燃料電池が、改質ガスを用いる固体高分子型燃料電池、またはリン酸型燃料電池であることを特徴とする(8)記載の低温型燃料電池
を提供するものである。
In order to solve the above-mentioned problems, the inventors of the present invention further carefully arranged platinum or an alloy thereof and an organometallic complex in which a ligand containing nitrogen, oxygen, sulfur, etc. is coordinated in a planar manner and a central metal atom thereof in a mixed catalyst. As a result of examining heat treatment adjustment conditions, etc., when a combination of a specific organometallic complex and a specific central metal atom is used as a hydrogen oxidation catalyst, particularly excellent CO poisoning resistance that has not been obtained so far is obtained. The present inventors have found an electrode catalyst for a hydrogen electrode having the present invention, and have reached the present invention.
That is, the present invention
(1) platinum or its alloys, N, a mixed catalyst of N'- bis (Sarishiriden) ethylene diamino metal complex, a metal complex the central metal is selected oxovanadium, manganese, iron, cobalt, nickel or al An electrode catalyst for a hydrogen electrode of a low-temperature fuel cell using a reformed gas containing hydrogen, which is an atom, supported on a support, and heat-treated at 200 ° C. to 550 ° C.,
(2) platinum or its alloys, N, a mixed catalyst of N'- mono-8-quinolyl -o- phenylene diamine metal complexes, complexes central metal, oxo vanadium, manganese, iron, cobalt, or nickel An electrode catalyst for a hydrogen electrode of a low-temperature fuel cell using a reformed gas containing hydrogen, which is a metal atom selected from the above, supported on a support and heat-treated at 200 ° C. to 550 ° C.,
(3) The platinum or an alloy thereof is derived from a compound selected from an ammine complex, a carbonyl complex, an acetylacetonate complex, a nitroso complex, acetate, chloride, bromide, and iodide, (1) or (2) characterized in that it is supported in the form of fine particles on the surface of the support, which is produced by mixing with the metal complex described in the solution in advance and supporting the support on a support and then heat-treating at 200 ° C. to 550 ° C. (1) or (2) a hydrogen electrode electrode catalyst,
(4) The electrode catalyst for a hydrogen electrode according to any one of (1) to (3), wherein the heat treatment is performed in an inert gas or an inert gas partially including a reducing gas. ,
(5) The electrode catalyst for a hydrogen electrode according to any one of (1) to (4), wherein the support is a carbonaceous material,
(6) The electrode catalyst for a hydrogen electrode according to (5), wherein the carbonaceous material is at least one selected from graphite, carbon black, ketjen black, activated carbon and glassy carbon,
(7) The hydrogen electrode of the low-temperature fuel cell using the hydrogen electrode catalyst according to any one of (1) to (6),
(8) The low-temperature fuel cell having the hydrogen electrode according to (7), and (9) the low-temperature fuel cell is a solid polymer fuel cell or a phosphoric acid fuel cell using a reformed gas. The low-temperature fuel cell according to (8) is provided.

本発明に係る低温型燃料電池の水素極用電極触媒は次のような利点を有する。
(1)従来の合金系触媒、酸化物系触媒と比べCO濃度が高い系においても、より優れた耐CO被毒性を示し、また、従来のこれら触媒と同程度の耐久性を有する。
(2)N,N'−ビス(サリシリデン)エチレンジアミン、N,N'−モノ−8−キノリル−o−フェニレンジアミンのような簡単な構造の錯体配位子と、ニッケル、鉄、コバルト、バナジウムなどから選ばれる低価格の有機金属錯体を原料とすることで、触媒材料のコスト削減につながり、その調製方法も容易である。
The electrode catalyst for a hydrogen electrode of a low-temperature fuel cell according to the present invention has the following advantages.
(1) Even in a system having a higher CO concentration than conventional alloy-based catalysts and oxide-based catalysts, it exhibits better CO poisoning resistance and has the same durability as these conventional catalysts.
(2) Complex ligands of simple structure such as N, N′-bis (salicylidene) ethylenediamine, N, N′-mono-8-quinolyl-o-phenylenediamine, nickel, iron, cobalt, vanadium, etc. By using a low-cost organometallic complex selected from the above as raw materials, the cost of the catalyst material is reduced, and its preparation method is easy.

本発明の水素極用電極触媒の好ましい実施の態様について、詳細に説明する。
本発明における電極触媒は、(a)白金又はその合金と、(b)N,N'−ビス(サリシリデン)エチレンジアミノ金属錯体、またはN,N'−モノ−8−キノリル−o−フェニレンジアミン金属錯体を含むものである。
前記(a)の白金系合金の第2成分としては、従来から燃料電池の燃料極に使用されている周期律表第VIII族を中心とする遷移金属元素であることが望ましいが、後述するように有機金属錯体との協奏効果によって、混合触媒を構成した状態では金属触媒単独、あるいは有機金属錯体単独の触媒に比べ10倍以上優れた触媒作用を示すので、金属触媒自身では触媒作用が弱いものでも選択できる。
このような遷移金属元素としては、コバルト、ニッケル、パラジウム、ルテニウム等の周期律表第VIII族の金属元素の他、チタン、レニウム、錫、モリブデン、銀、金などが挙げられる。
A preferred embodiment of the electrode catalyst for hydrogen electrode of the present invention will be described in detail.
The electrode catalyst in the present invention includes (a) platinum or an alloy thereof, (b) N, N′-bis (salicylidene) ethylenediamino metal complex, or N, N′-mono-8-quinolyl-o-phenylenediamine metal. It contains a complex.
The second component of the platinum-based alloy (a) is preferably a transition metal element centered on Group VIII of the periodic table, which has been used in the fuel electrode of a fuel cell, but will be described later. As a result of the concerted effect with the organometallic complex, the catalyst function is 10 times or more superior to that of the metal catalyst alone or the catalyst of the organometallic complex alone when the mixed catalyst is configured. But you can choose.
Examples of such transition metal elements include titanium, rhenium, tin, molybdenum, silver, gold, and the like in addition to group VIII metal elements such as cobalt, nickel, palladium, and ruthenium.

前記(b)の有機金属錯体における中心金属としては、オキソバナジウム、マンガン、鉄、コバルト、ニッケルから選ばれる。この中、本発明において好ましく使用される金属元素は、オキソバナジウム、マンガン、ニッケルである。中心金属がこれら以外のものである場合には、良好な耐CO被毒性を発現せず、本発明の目的を達成することができない。
Wherein the center metal in the organometallic complexes of (b) is oxo vanadium, manganese, iron, cobalt, selected nickel or al. Among these, metal elements preferably used in the present invention are oxovanadium, manganese, and nickel. When the central metal is other than these, good CO poisoning resistance is not exhibited, and the object of the present invention cannot be achieved.

本発明の混合触媒において、(a)の白金(又はその合金)触媒と、(b)の有機金属錯体の混合割合については、特に制限はなく、それぞれ選択された触媒原料において経験的に最適な割合を見出せばよく、必要に応じて適宜設定される。
通常、(a)の白金(又はその合金)触媒と、(b)の有機金属錯体の混合割合は、20:80ないし90:10の範囲で選ばれ、協奏効果を最大限に発揮するためには40:60〜60:40の割合にすることが好ましい。
In the mixed catalyst of the present invention, the mixing ratio of the platinum (or alloy thereof) catalyst (a) and the organometallic complex (b) is not particularly limited, and is optimally determined empirically for each selected catalyst raw material. What is necessary is just to find a ratio and it sets suitably as needed.
Usually, the mixing ratio of the platinum (or alloy) catalyst of (a) and the organometallic complex of (b) is selected in the range of 20:80 to 90:10 to maximize the concerted effect. Is preferably in the ratio of 40:60 to 60:40.

触媒の調製法としては、従来公知の方法、例えば、物理的混合法、熱分解法、液相法、プラズマ同時蒸着法などの方法が何れも使用できる。
熱分解法による触媒の具体的な調製法としては、例えば、(a)の白金(又はその合金)触媒を同金属の錯化合物前駆体、例えばアンミン錯体、カルボニル錯体、アセチルアセトナート錯体、カルボン酸錯体、ニトロソ錯体や酢酸塩、塩化物、臭化物、ヨウ化物などのような熱分解しやすいものとしておき、これと(b)の有機金属錯体とを可溶性の有機溶媒に同時に溶解し、蒸発乾固する方法、あるいは(a)の遷移金属触媒の水溶性錯化合物、例えばアンミン錯体と(b)の有機金属錯体の水溶液を混合し、蒸発乾固する方法などを挙げることができる。
As a method for preparing the catalyst, any conventionally known method such as a physical mixing method, a thermal decomposition method, a liquid phase method, and a plasma co-evaporation method can be used.
As a specific method for preparing the catalyst by the thermal decomposition method, for example, a platinum (or alloy thereof) catalyst of (a) is used as a complex compound precursor of the same metal, such as an ammine complex, a carbonyl complex, an acetylacetonate complex, a carboxylic acid. Complexes, nitroso complexes, acetates, chlorides, bromides, iodides, etc. are easily decomposed, and this and the organometallic complex (b) are simultaneously dissolved in a soluble organic solvent and evaporated to dryness. Or a method of mixing a water-soluble complex compound of the transition metal catalyst of (a) such as an ammine complex and an aqueous solution of the organometallic complex of (b) and evaporating to dryness.

本発明に係る触媒は、好ましくは、触媒担体の表面に担持させて用いることが好ましい。担体としては、従来公知のもの、例えばグラファイト、カーボンブラック、ケッチェンブラック、活性炭、グラシーカーボンのような炭素質材料、ラネーニッケル、ラネー銀のようなポーラス金属などが挙げられ、炭素質材料が好ましく使用される。炭素質材料であれば粒径0.01〜100μm、好ましくは0.02〜10μmのものを用いると担持が良好に行われる。   The catalyst according to the present invention is preferably used while being supported on the surface of a catalyst carrier. Examples of the carrier include conventionally known materials such as graphite, carbon black, ketjen black, activated carbon, glassy carbon such as glassy carbon, porous metal such as Raney nickel, Raney silver, etc. used. If it is a carbonaceous material, carrying | supporting will be performed satisfactorily when a thing with a particle size of 0.01-100 micrometers, preferably 0.02-10 micrometers is used.

触媒を担体に担持させる方法としては、溶解乾燥法、プラズマ蒸着法、加熱蒸着法、CVD法などの従来公知の方法が何れも使用できる。
溶解乾燥法による場合は、たとえば、(a)の遷移金属触媒を同金属の錯化合物、例えばアンミン錯体やカルボニル錯体等のような熱分解しやすいものとしておき、これと(b)の有機金属錯体とを可溶性有機溶媒に溶解し、その有機溶媒に担体、例えばカーボン粒子を撹拌混合し、ついで溶媒を乾燥させればよい。
As a method for supporting the catalyst on the carrier, any conventionally known method such as a dissolution drying method, a plasma vapor deposition method, a heat vapor deposition method, or a CVD method can be used.
In the case of the dissolution drying method, for example, the transition metal catalyst of (a) is easily decomposed thermally, such as a complex compound of the same metal such as an ammine complex or a carbonyl complex, and this is combined with an organometallic complex of (b) Are dissolved in a soluble organic solvent, a carrier, for example, carbon particles is stirred and mixed in the organic solvent, and then the solvent is dried.

このようにして得られた混合触媒を直接電極担体(カーボン粒子など)に担持した形態で水素極用の電極触媒として供することもできるが、本発明においては、有機金属錯体が電解質側などに溶出することを防止し、優れた耐CO被毒性を達成するために、混合触媒を担体に担持させた後、不活性ガスなどのガス中で熱処理しておく。
この熱処理温度は、(a)の金属触媒成分の粒径増大を防ぐ意味からは低い方が望ましいが、有機金属錯体を安定化させるには200℃程度以上の温度が必要であり、本発明では、200℃〜550℃、好ましくは300℃〜500℃である。300℃以上の熱処理では、(a)の金属触媒成分の前駆体と(b)の金属錯体との混合物が複合体を形成するものと思われるので、特に好ましく、また、優れた耐CO被毒性を考慮すると、550℃以下、好ましくは500℃以下である。
この熱処理は、アルゴン、窒素などの不活性ガス中や水素などの還元性ガスを一部含む不活性ガス中等の雰囲気中で行うのが好ましい。
The mixed catalyst thus obtained can be used as an electrode catalyst for a hydrogen electrode in the form of being directly supported on an electrode carrier (carbon particles, etc.). However, in the present invention, the organometallic complex is eluted on the electrolyte side. In order to prevent this and achieve excellent CO poisoning resistance, the mixed catalyst is supported on a carrier and then heat-treated in a gas such as an inert gas.
The heat treatment temperature is preferably low from the viewpoint of preventing the particle size of the metal catalyst component (a) from increasing, but a temperature of about 200 ° C. or higher is required to stabilize the organometallic complex. 200 ° C to 550 ° C, preferably 300 ° C to 500 ° C. In the heat treatment at 300 ° C. or higher, a mixture of the precursor of the metal catalyst component (a) and the metal complex (b) is considered to form a complex, and is particularly preferable, and has excellent CO poisoning resistance. Is 550 ° C. or lower, preferably 500 ° C. or lower.
This heat treatment is preferably performed in an atmosphere such as an inert gas such as argon or nitrogen or an inert gas partially containing a reducing gas such as hydrogen.

本発明においては、このような電極触媒を、必要によりカーボン担持ペースト、テフロン(登録商標)エマルジョン、高分子電解質溶液及びバインダー等からなる混合物のような形態とし、水素極或いは電解質側にそれ自体公知の方法例えばスプレー法、スクリーン印刷法、刷毛塗り法などのような方法で設けることにより所望とする低温型燃料電池の水素極を得ることができる。
In the present invention, such an electrode catalyst is in the form of a mixture comprising a carbon-supported paste, a Teflon (registered trademark) emulsion, a polymer electrolyte solution and a binder, if necessary, and is known per se on the hydrogen electrode or electrolyte side. For example, a desired hydrogen electrode of a low-temperature fuel cell can be obtained by a method such as spraying, screen printing, or brushing.

また、上記で得た水素極は低温型燃料電池の耐CO被毒性電極として、運転温度が80℃を下回っても、例えば10ppm〜100ppmのCOを含有する条件で好適に使用される。特に、改質ガスを用いる高分子型燃料電池、およびリン酸型燃料電池のような動作温度が約300℃以下であってCO濃度の高い改質ガスを用いる燃料電池の水素極として好ましい。   In addition, the hydrogen electrode obtained above is suitably used as a CO-toxic electrode for low-temperature fuel cells under conditions containing, for example, 10 ppm to 100 ppm of CO even when the operating temperature is below 80 ° C. In particular, it is preferable as a hydrogen electrode of a fuel cell using a reformed gas having a high CO concentration and an operating temperature of about 300 ° C. or less, such as a polymer fuel cell using a reformed gas and a phosphoric acid fuel cell.

次に、本発明の水素極用電極触媒を実施例によりさらに詳細に説明し、その効果を明瞭にする。
実施例1
原料として、白金テトラアンミン錯体、およびニッケルN,N'−モノ−8−キノリル−o−フェニレンジアミン[ニッケルモノキノリルフェニレンジアミン]を準備した。前者は市販の試薬[Pt(NH3)4]Cl2・nH2Oを、後者は以下の方法で合成した。
還流冷却器のついたフラスコ内に8−ヒドロキシキノリン2.9g、o−フェニレンジアミン1.1g、二亜硫酸ナトリウム3.8g、純水20mlを加え、約110℃において1週間還流加熱した。その後、反応溶液に50%水酸化ナトリウム溶液を加えアルカリ性とした。冷却後ベンゼンで抽出し、アルミナカラムクロマトグラフィーで分離精製し、ヘキサンで再結晶することでモノキノリルフェニレンジアミンの黄色結晶を得た(収率約14%)。室温において、窒素ガス脱気したアセトニトリル中で等モルのモノキノリルフェニレンジアミンと酢酸ニッケル(II)四水和物を混合させることにより、ニッケルモノキノリルフェニレンジアミンの結晶を得た。
Next, the electrode catalyst for a hydrogen electrode of the present invention will be described in more detail with reference to examples, and the effect will be clarified.
Example 1
Platinum tetraammine complex and nickel N, N′-mono-8-quinolyl-o-phenylenediamine [nickel monoquinolylphenylenediamine] were prepared as raw materials. The former was synthesized by commercially available reagent [Pt (NH 3 ) 4 ] Cl 2 .nH 2 O, and the latter was synthesized by the following method.
In a flask equipped with a reflux condenser, 2.9 g of 8-hydroxyquinoline, 1.1 g of o-phenylenediamine, 3.8 g of sodium disulfite, and 20 ml of pure water were added and heated to reflux at about 110 ° C. for 1 week. Thereafter, 50% sodium hydroxide solution was added to the reaction solution to make it alkaline. After cooling, the mixture was extracted with benzene, separated and purified by alumina column chromatography, and recrystallized from hexane to obtain yellow crystals of monoquinolylphenylenediamine (yield: about 14%). Nickel monoquinolylphenylenediamine crystals were obtained by mixing equimolar monoquinolylphenylenediamine and nickel (II) acetate tetrahydrate in acetonitrile degassed with nitrogen gas at room temperature.

次に、白金テトラアンミン錯体、およびニッケルモノキノリルフェニレンジアミンの両者の錯体を重量比にして50:50の各割合で混合した。得られた混合触媒をカーボンブラック粒子(Vulcan XC-72R)と1:4の割合になるように秤量してこれをエタノール少量に溶かし、メノウ乳鉢を使って十分に混合した後、空気中80℃で乾燥させた。
このようにして準備された触媒担持カーボンブラック粒子を三分割し、それぞれを環状雰囲気炉に入れ、アルゴンガス雰囲気中においてそれぞれを400℃、500℃、600℃で2時間熱処理することにより3種の触媒担持カーボン粒子を得た〔Pt-Ni(mqph)/Cと略記する〕。
Next, the platinum tetraammine complex and the nickel monoquinolylphenylenediamine complex were mixed at a weight ratio of 50:50. The obtained mixed catalyst was weighed to a ratio of 1: 4 with carbon black particles (Vulcan XC-72R), dissolved in a small amount of ethanol, thoroughly mixed using an agate mortar, and then 80 ° C. in air. And dried.
The catalyst-supported carbon black particles thus prepared were divided into three parts, each was put in an annular atmosphere furnace, and each was heat treated at 400 ° C., 500 ° C., and 600 ° C. for 2 hours in an argon gas atmosphere. Catalyst-supported carbon particles were obtained [abbreviated as Pt-Ni (mqph) / C].

400℃で熱処理した触媒担持カーボン粒子を20重量倍のナフィオン(登録商標)高分子5%溶液(AldrichChemicals社製)とともに直径8mmのカーボンペーパー(東レインターナショナル社製、商品名TGP-H-090)ディスクに滴下乾燥して触媒面を作製し、ついでナフィオン(登録商標)115膜に触媒面が接するように片面ホットプレスすることによって半電池用MEAを作成した。
Carbon paper with a diameter of 8 mm (trade name: TGP-H-090) manufactured by Toray International Co., Ltd., together with 20% by weight Nafion (registered trademark) polymer 5% solution (manufactured by Aldrich Chemicals Co.). A catalyst surface was prepared by dripping and drying, and then half-cell MEA was prepared by hot pressing one side so that the catalyst surface was in contact with the Nafion (registered trademark) 115 membrane.

この半電池用MEAを水素ガス流入用のテフロン(登録商標)ホルダーに装着し、カーボンペーパ側を純水素ガス、ナフィオン(登録商標)膜側を1M過塩素酸溶液に接し、過塩素酸溶液は窒素ガスで脱気しながら70℃に保持した。この様な半電池において、半電池用MEAを試験電極、過塩素酸水溶液中に白金板の対極及び可逆水素電極(RHE)を参照電極として配置し、水素酸化電流を測定した。測定にはポテンションスタットを用い、電流−電位曲線を記録するとともに、100mVvsRHEにおける水素酸化電流を評価した。 The MEA for half-cell was mounted on a Teflon holder for hydrogen gas flows in contact pure hydrogen gas and carbon paper over side, Nafion (registered trademark) film side to 1M perchloric acid solution, perchloric acid solution Was kept at 70 ° C. while degassing with nitrogen gas. In such a half-cell, the MEA for half-cell was placed as a test electrode, a counter electrode of a platinum plate and a reversible hydrogen electrode (RHE) in a perchloric acid aqueous solution, and the hydrogen oxidation current was measured. For the measurement, a potentiostat was used, a current-potential curve was recorded, and the hydrogen oxidation current at 100 mV vs RHE was evaluated.

同様に、水素ガス中に10、50、100ppmの一酸化炭素(CO)を含むガスを上記半セルに導入し、100mVvsRHEにおける水素酸化電流を評価することで触媒の耐CO被毒性を比較した。純水素を使用した時の100mVでの電流値を100%とした場合の、COを含む水素ガスでの電流値の割合(%)として、その結果を図1に示した。   Similarly, the gas containing 10, 50, and 100 ppm carbon monoxide (CO) in hydrogen gas was introduced into the half cell, and the hydrogen oxidation current at 100 mV vs RHE was evaluated to compare the CO poisoning resistance of the catalysts. The result is shown in FIG. 1 as a ratio (%) of the current value in the hydrogen gas containing CO when the current value at 100 mV when using pure hydrogen is 100%.

また、500℃又は600℃で熱処理した触媒担持カーボン粒子についても、それぞれ同様に半電池用MEAを作成し、同様に水素酸化電流を純水素、CO含有水素を導入して測定し、評価し、結果を図1に示した。
熱処理温度400℃あるいは500℃のPt-Ni(mqph)/Cにおいて、優れた耐CO性が現れた。
Also, for catalyst-carrying carbon particles heat-treated at 500 ° C. or 600 ° C., half-cell MEAs were similarly prepared, and the hydrogen oxidation current was similarly measured and evaluated by introducing pure hydrogen and CO-containing hydrogen, The results are shown in FIG.
Excellent CO resistance was exhibited at Pt—Ni (mqph) / C at a heat treatment temperature of 400 ° C. or 500 ° C.

実施例2
有機金属錯体原料として、ニッケルモノキノリルフェニレンジアミンの代わりに、N,N'−ビス(サリシリデン)エチレンジアミンオキソバナジウム[オキソバナジウムサレン]を用いた以外は実施例1と全く同じようにして得た(熱処理温度は400℃、500℃、600℃)触媒担持カーボン粒子〔Pt-VO(salen)/Cと略記する〕を用いて同様な耐CO被毒試験を行った。
図2に各熱処理温度で作成した混合触媒において、純水素および10、25、50ppmのCOを含む水素ガスで測定された100mVでの電流値を含有白金mg量当りに換算したグラフを示す。熱処理温度として400℃が好適であることが分かる。
次に、熱処理温度400℃で作成した混合触媒を、標準的な触媒材料である、20%白金担持カーボン〔Pt/Cと略記する〕及び20%白金、10%ルテニウム合金担持カーボン〔Pt-Ru/Cと略記する〕と比較するため、純水素における100mVでの電流値を100%とした時の10、25、50、100ppmのCOを含む水素ガスでの電流値の割合(%)として評価した。その結果を図3に示す。
Pt/C、Pt-Ru/Cなど標準的な電極触媒ではCO濃度が25ppm以上になると性能が著しく低下するのに対し、Pt-VO(salen)/C触媒は100ppmのCOを含む場合でも水素酸化電流が流れ、非常に優れた改質ガス用水素極触媒であることが示された。
Example 2
It was obtained in the same manner as in Example 1 except that N, N′-bis (salicylidene) ethylenediamine oxovanadium [oxovanadium salen] was used in place of nickel monoquinolylphenylenediamine as the organometallic complex raw material ( A similar CO poisoning resistance test was conducted using catalyst-supported carbon particles (abbreviated as Pt-VO (salen) / C) having heat treatment temperatures of 400 ° C., 500 ° C., and 600 ° C.
FIG. 2 shows a graph in which the current value at 100 mV measured with pure hydrogen and hydrogen gas containing 10, 25, and 50 ppm of CO is converted per mg of platinum contained in the mixed catalyst prepared at each heat treatment temperature. It can be seen that 400 ° C. is suitable as the heat treatment temperature.
Next, the mixed catalyst prepared at a heat treatment temperature of 400 ° C. is a standard catalyst material, 20% platinum-supported carbon (abbreviated as Pt / C) and 20% platinum, 10% ruthenium alloy-supported carbon [Pt-Ru]. / Abbreviated as / C], and evaluated as a ratio (%) of the current value in hydrogen gas containing 10, 25, 50, and 100 ppm of CO when the current value at 100 mV in pure hydrogen is 100%. did. The result is shown in FIG.
Standard electrocatalysts such as Pt / C and Pt-Ru / C show a significant decrease in performance when the CO concentration exceeds 25 ppm, whereas Pt-VO (salen) / C catalysts are hydrogen even when they contain 100 ppm CO. Oxidation current flows and it was shown that it is a very excellent hydrogen electrode catalyst for reformed gas.

実施例3
純水素ガスを燃料として、電位100mVにおけるPt-VO(salen)/C触媒上での電流値を連続的に測定し、耐久性を調べた。100時間連続運転におけるPt-VO(salen)/C触媒上での電流の経時変化を、前述のPt-Ru/C触媒における結果と比較して図4に示す。
図4から、有機金属錯体を原料とした本発明の触媒は、通常の燃料電池触媒と同程度の耐久性を有することが分かる。
Example 3
Using pure hydrogen gas as a fuel, the current value on a Pt-VO (salen) / C catalyst at a potential of 100 mV was continuously measured to investigate durability. FIG. 4 shows the change with time of the current on the Pt—VO (salen) / C catalyst in the continuous operation for 100 hours in comparison with the result of the aforementioned Pt—Ru / C catalyst.
FIG. 4 shows that the catalyst of the present invention using an organometallic complex as a raw material has the same durability as a normal fuel cell catalyst.

実施例4
実施例1のPt-Ni(mqph)/Cの代わりに、中心金属がマンガン、あるいはルテニウムである、マンガンモノキノリルフェニレンジアミンあるいはルテニウムモノキノリルフェニレンジアミンを用いた以外は同様にして作成した触媒担持カーボン粒子を得た〔Pt-Mn(mqph)/CあるいはPt-Ru(mqph)/Cと略記する〕。
実施例1、実施例2と同様に純水素、10、50、100ppmのCOを含む水素ガスを用いて、耐CO被毒試験を行い評価した結果を図5に示す。
図5から、モノキノリルフェニレンジアミンを用いた金属錯体であっても、中心金属が本発明に相当するニッケル、マンガンの場合に比べ、ルテニウムでは性能が劣り、中心金属の選択によっては良好な耐CO被毒性を示さないことが分かる。
Example 4
A catalyst prepared in the same manner as in Example 1 except that manganese monoquinolylphenylenediamine or ruthenium monoquinolylphenylenediamine in which the central metal is manganese or ruthenium is used instead of Pt—Ni (mqph) / C. Supported carbon particles were obtained [abbreviated as Pt-Mn (mqph) / C or Pt-Ru (mqph) / C].
FIG. 5 shows the results of a CO poisoning resistance test and evaluation using pure hydrogen, hydrogen gas containing 10, 50, and 100 ppm of CO as in Example 1 and Example 2.
From FIG. 5, even in the case of a metal complex using monoquinolylphenylenediamine, the performance of ruthenium is inferior to that of nickel or manganese corresponding to the present invention. It can be seen that it does not show CO toxicity.

比較例1
実施例2のオキソバナジウムサレンの代わりに、錯体配位子がN,N'−ビス(アントラニリデン)エチレンジアミンである、オキソバナジウムアンテン〔Pt-VO(anthen)/Cと略記する〕、及び錯体配位子がN,N'−ジキノリルプロピレンジアミンである、ジキノリルプロピレンジアミンオキソバナジウム錯体を用いた以外は同様にして作成した触媒担持カーボン粒子を得た〔Pt-VO(dqpr)/Cと略記する〕。
実施例1,実施例2と同様に耐CO被毒試験を行い評価した結果を、実施例2のPt-VO(salen)/Cと共に図6に示す。図6から、オキソバナジウムを中心金属に用いた金属錯体であっても、錯体配位子の選択によっては良好な耐CO被毒性を示さないことが分かる。
Comparative Example 1
An oxovanadium antenene (abbreviated as Pt-VO (anthen) / C) and a complex in which the complex ligand is N, N′-bis (anthranylidene) ethylenediamine instead of the oxovanadium salen of Example 2. Catalyst-supported carbon particles were prepared in the same manner except that the ligand was N, N′-diquinolylpropylenediamine and a diquinolylpropylenediamine oxovanadium complex was used [Pt-VO (dqpr) / C and Abbreviated].
FIG. 6 shows the results of evaluation by performing a CO poisoning resistance test in the same manner as in Example 1 and Example 2, together with Pt—VO (salen) / C in Example 2. FIG. 6 shows that even a metal complex using oxovanadium as a central metal does not show good CO poisoning resistance depending on the choice of complex ligand.

実施例1の各熱処理のPt-Ni(mqph)/C混合触媒で得られる、純水素を使用した時の100 mVでの電流値を100%とした場合の、10、50、100 ppmのCOを含む水素ガスでの電流値の割合(%)を示した図である。CO 50 of 10, 50, 100 ppm obtained with the Pt—Ni (mqph) / C mixed catalyst of each heat treatment of Example 1 when the current value at 100 mV when using pure hydrogen is 100% It is the figure which showed the ratio (%) of the electric current value in hydrogen gas containing. 実施例2のPt-VO(salen)/C混合触媒で得られる、純水素および10、25、50ppmのCOを含む水素ガスでの100mVにおける電流値を担持白金mg量当りに換算した値を各熱処理温度で比較したグラフである。The values obtained by converting the current value at 100 mV with pure hydrogen and hydrogen gas containing 10, 25, and 50 ppm of CO obtained with the Pt—VO (salen) / C mixed catalyst of Example 2 to each mg of supported platinum It is the graph compared with the heat processing temperature. 実施例2の400℃で熱処理作成したPt-VO(salen)/C混合触媒で得られる、純水素を使用した時の100 mVでの電流値を100%%とした場合の、10、25、50、100 ppmのCOを含む水素ガスでの電流値の割合(%)を示した図であり、同時にPt/C及びPt-Ru/C触媒における性能とも比較したものである。10 and 25 when the current value at 100 mV when using pure hydrogen obtained by the Pt-VO (salen) / C mixed catalyst prepared by heat treatment at 400 ° C. in Example 2 is 100%. It is the figure which showed the ratio (%) of the electric current value in hydrogen gas containing 50 and 100 ppm CO, and also compares with the performance in a Pt / C and a Pt-Ru / C catalyst simultaneously. 実施例3のPt-VO(salen)/C混合触媒で得られる、純水素を使用した時の100 mVでの電流−時間変化を、Pt-Ru/C触媒における性能とも比較したグラフである。It is the graph which compared with the performance in a Pt-Ru / C catalyst the time-current change in 100 mV when using pure hydrogen obtained with the Pt-VO (salen) / C mixed catalyst of Example 3. 実施例4のPt-Mn(mqph)/C混合触媒およびPt-Ru(mqph)/C混合触媒で得られる、純水素を使用した時の100 mVでの電流値を100%とした場合の、10、50、100ppmのCOを含む水素ガスでの電流値の割合(%)を示した図であり、同時に実施例1のPt-Ni(mqph)/C触媒についても示したものである。When the current value at 100 mV when using pure hydrogen obtained with the Pt-Mn (mqph) / C mixed catalyst and the Pt-Ru (mqph) / C mixed catalyst of Example 4 is 100%, It is the figure which showed the ratio (%) of the electric current value in the hydrogen gas containing 10, 50, and 100 ppm CO, and also shows about the Pt-Ni (mqph) / C catalyst of Example 1 simultaneously. 比較例1のPt-VO(anthen)/C混合触媒およびPt-VO(dqpr)/C混合触媒で得られる、純水素を使用した時の100 mVでの電流値を100%とした場合の、10、50、100ppmのCOを含む水素ガスでの電流値の割合(%)を示した図であり、同時に実施例2のPt-VO(salen)/C混合触媒についても示したものである。When the current value at 100 mV when using pure hydrogen obtained with the Pt-VO (anthen) / C mixed catalyst and the Pt-VO (dqpr) / C mixed catalyst of Comparative Example 1 is 100%, It is the figure which showed the ratio (%) of the electric current value in hydrogen gas containing 10, 50, and 100 ppm CO, and also shows about the Pt-VO (salen) / C mixed catalyst of Example 2 simultaneously.

Claims (9)

白金又はその合金と、N,N’−ビス(サリシリデン)エチレンジアミノ金属錯体の混合触媒であって、錯体中心金属が、オキソバナジウム、マンガン、鉄、コバルト、ニッケルから選ばれる金属原子であり、担体に担持し、200℃〜550℃で熱処理したものであることを特徴とする水素を含む改質ガスを用いる低温型燃料電池の水素極用電極触媒。 Platinum or its alloys, N, a mixed catalyst of N'- bis (Sarishiriden) ethylene diamino metal complex, complex central metal, oxo vanadium, manganese, iron, cobalt, be nickel or we chosen metal atom An electrode catalyst for a hydrogen electrode of a low-temperature fuel cell using a reformed gas containing hydrogen, which is supported on a carrier and heat-treated at 200 ° C. to 550 ° C. 白金又はその合金と、N,N’−モノ−8−キノリル−o−フェニレンジアミン金属錯体の混合触媒であって、錯体中心金属が、オキソバナジウム、マンガン、鉄、コバルト、ニッケルから選ばれる金属原子であり、担体に担持し、200℃〜550℃で熱処理したものであることを特徴とする水素を含む改質ガスを用いる低温型燃料電池の水素極用電極触媒。 Platinum or its alloys, N, a mixed catalyst of N'- mono-8-quinolyl -o- phenylene diamine metal complexes, complexes central metal, oxo vanadium, manganese, iron, cobalt, selected nickel or al An electrode catalyst for a hydrogen electrode of a low-temperature fuel cell using a reformed gas containing hydrogen, which is a metal atom, supported on a support, and heat-treated at 200 ° C to 550 ° C. 前記白金又はその合金が、アンミン錯体、カルボニル錯体、アセチルアセトナート錯体、ニトロソ錯体、酢酸塩、塩化物、臭化物、ヨウ化物から選ばれる化合物に由来するものであって、請求項1または2記載の金属錯体と予め溶液状態で混合され、これを担体に担持後200℃〜550℃で熱処理されることで生成された、担体表面に微粒子状に担持されていることを特徴とする請求項1または2記載の水素極用電極触媒。   The platinum or an alloy thereof is derived from a compound selected from an ammine complex, a carbonyl complex, an acetylacetonate complex, a nitroso complex, an acetate, a chloride, a bromide, and an iodide. The metal complex is mixed in advance in a solution state, and is supported on the support surface in the form of fine particles produced by heat-treating the metal complex on the support and then heat-treating at 200 ° C to 550 ° C. 2. Electrode catalyst for hydrogen electrode according to 2. 前記熱処理が、不活性ガス中または還元性ガスを一部含む不活性ガス中で行われることを特徴とする請求項1乃至3のいずれか1項記載の水素極用電極触媒。   The electrode catalyst for a hydrogen electrode according to any one of claims 1 to 3, wherein the heat treatment is performed in an inert gas or an inert gas partially containing a reducing gas. 担体が、炭素質材料であることを特徴とする請求項1乃至4のいずれか1項記載の水素極用電極触媒。   The electrode catalyst for a hydrogen electrode according to any one of claims 1 to 4, wherein the support is a carbonaceous material. 炭素質材料が、グラファイト、カーボンブラック、ケッチェンブラック、活性炭及びグラシーカーボンから選ばれた少なくとも一種であることを特徴とする請求項5記載の水素極用電極触媒。   6. The electrode catalyst for a hydrogen electrode according to claim 5, wherein the carbonaceous material is at least one selected from graphite, carbon black, ketjen black, activated carbon and glassy carbon. 請求項1乃至6のいずれか1項記載の水素極用触媒を用いた低温型燃料電池の水素極。   A hydrogen electrode of a low-temperature fuel cell using the catalyst for a hydrogen electrode according to any one of claims 1 to 6. 請求項7記載の水素極を備えた低温型燃料電池。   A low-temperature fuel cell comprising the hydrogen electrode according to claim 7. 低温型燃料電池が、改質ガスを用いる固体高分子型燃料電池またはリン酸型燃料電池であることを特徴とする請求項8記載の低温型燃料電池。
9. The low-temperature fuel cell according to claim 8, wherein the low-temperature fuel cell is a solid polymer fuel cell or a phosphoric acid fuel cell using a reformed gas.
JP2004268219A 2004-09-15 2004-09-15 Electrode catalyst for hydrogen electrode of low temperature fuel cell Expired - Lifetime JP4958133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268219A JP4958133B2 (en) 2004-09-15 2004-09-15 Electrode catalyst for hydrogen electrode of low temperature fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268219A JP4958133B2 (en) 2004-09-15 2004-09-15 Electrode catalyst for hydrogen electrode of low temperature fuel cell

Publications (2)

Publication Number Publication Date
JP2006085976A JP2006085976A (en) 2006-03-30
JP4958133B2 true JP4958133B2 (en) 2012-06-20

Family

ID=36164293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268219A Expired - Lifetime JP4958133B2 (en) 2004-09-15 2004-09-15 Electrode catalyst for hydrogen electrode of low temperature fuel cell

Country Status (1)

Country Link
JP (1) JP4958133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607183A (en) * 2015-01-22 2015-05-13 燕山大学 Pd-Pt polyhedral nanocrystal electrocatalyst of low-temperature fuel cell and preparation method for Pd-Pt polyhedral nanocrystal electrocatalyst

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019905B2 (en) * 2007-02-22 2012-09-05 旭化成株式会社 Fuel cell electrode and fuel cell using the electrode
JP5375033B2 (en) * 2008-11-05 2013-12-25 株式会社Ihi Electrode catalyst for hydrogen electrode of low-temperature fuel cell, method for producing the same, fuel electrode for fuel cell, and fuel cell
US20120100462A1 (en) * 2009-06-10 2012-04-26 Seiji Ogo Electrode catalyst for fuel cell and use thereof
JP6924342B2 (en) * 2015-08-27 2021-08-25 国立大学法人山梨大学 Fuel cell anode catalyst, anode and fuel cell
JP6487314B2 (en) * 2015-12-11 2019-03-20 日本電信電話株式会社 Lithium air secondary battery and electrolyte for lithium air secondary battery
CN113060719A (en) * 2021-03-17 2021-07-02 山东省科学院新材料研究所 Wood-based carbon foam and preparation method thereof, cathode electrocatalyst, cathode and metal-air battery
CN113839053B (en) * 2021-08-28 2024-04-09 西安交通大学 Non-noble metal carbon-supported nickel-tin tantalum nitride nano electrocatalyst for alkaline direct methanol fuel cell and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299359A (en) * 1994-04-30 1995-11-14 Tanaka Kikinzoku Kogyo Kk Anode electrode catalyst for fuel cell
JP3351285B2 (en) * 1997-03-27 2002-11-25 三菱電機株式会社 Anode electrode catalyst for polymer electrolyte fuel cells
JP3632087B2 (en) * 2001-03-02 2005-03-23 独立行政法人産業技術総合研究所 Electrode catalyst for fuel electrode of low temperature fuel cell
JP2003109614A (en) * 2001-09-27 2003-04-11 Nippon Steel Corp Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same
GB0207214D0 (en) * 2002-03-27 2002-05-08 Univ Loughborough A catalyst for lowering the reduction overpotential of polysulfide species

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607183A (en) * 2015-01-22 2015-05-13 燕山大学 Pd-Pt polyhedral nanocrystal electrocatalyst of low-temperature fuel cell and preparation method for Pd-Pt polyhedral nanocrystal electrocatalyst

Also Published As

Publication number Publication date
JP2006085976A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US9054355B2 (en) Catalyst with metal oxide doping for fuel cells
Antolini Palladium in fuel cell catalysis
Li et al. Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell
Salgado et al. Pt–Ru electrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell
Lim et al. A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability
JP4541458B2 (en) Solid polymer fuel cell
JP5855023B2 (en) Method for producing catalyst carrier, method for producing composite catalyst, composite catalyst, and fuel cell using the same
Chun et al. A synthesis of CO-tolerant Nb2O5-promoted Pt/C catalyst for direct methanol fuel cell; its physical and electrochemical characterization
JP3632087B2 (en) Electrode catalyst for fuel electrode of low temperature fuel cell
CN101926034B (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
KR20140002628A (en) Process for produclng carbon-comprising support
US20090047568A1 (en) Electrode catalyst for fuel and fuel cell
Zhang et al. Progress in non-platinum catalysts with applications in low temperature fuel cells
Shroti et al. The Pt–Co alloying effect on the performance and stability of high temperature PEMFC cathodes
TWI474547B (en) Fuel cell and electrocatalyst
JP5015489B2 (en) Fuel cell electrode catalyst and fuel cell
Olson et al. Electrochemical Evaluation of Porous Non‐Platinum Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells
US20210288334A1 (en) A bimetallic catalyst and fuel for use in a direct dimethyl ether fuel cell
JP4958133B2 (en) Electrode catalyst for hydrogen electrode of low temperature fuel cell
JP2011014475A (en) Electrode catalyst for fuel cell, manufacturing method thereof, and solid polymer fuel cell
JP4863735B2 (en) Supported electrode catalyst and catalyst production method
Yano et al. New CO tolerant electro-catalysts exceeding Pt–Ru for the anode of fuel cells
JP5375033B2 (en) Electrode catalyst for hydrogen electrode of low-temperature fuel cell, method for producing the same, fuel electrode for fuel cell, and fuel cell
Santiago et al. The performance of carbon-supported PtOs electrocatalysts for the hydrogen oxidation in the presence of CO
JPH11111305A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101029

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110318

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111221

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250