JP4958133B2 - Electrode catalyst for hydrogen electrode of low temperature fuel cell - Google Patents
Electrode catalyst for hydrogen electrode of low temperature fuel cell Download PDFInfo
- Publication number
- JP4958133B2 JP4958133B2 JP2004268219A JP2004268219A JP4958133B2 JP 4958133 B2 JP4958133 B2 JP 4958133B2 JP 2004268219 A JP2004268219 A JP 2004268219A JP 2004268219 A JP2004268219 A JP 2004268219A JP 4958133 B2 JP4958133 B2 JP 4958133B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- fuel cell
- hydrogen
- complex
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title claims description 98
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 58
- 239000001257 hydrogen Substances 0.000 title claims description 56
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 56
- 239000000446 fuel Substances 0.000 title claims description 42
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 50
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 26
- 229910052697 platinum Inorganic materials 0.000 claims description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 150000002431 hydrogen Chemical class 0.000 claims description 12
- IBYSTTGVDIFUAY-UHFFFAOYSA-N vanadium monoxide Chemical compound [V]=O IBYSTTGVDIFUAY-UHFFFAOYSA-N 0.000 claims description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 150000004696 coordination complex Chemical class 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 7
- 125000004429 atom Chemical group 0.000 claims description 6
- -1 ethylene diamino metal complex Chemical class 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- 239000006229 carbon black Substances 0.000 claims description 5
- 239000003575 carbonaceous material Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 4
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 4
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 239000003273 ketjen black Substances 0.000 claims description 3
- 125000000018 nitroso group Chemical group N(=O)* 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 239000010419 fine particle Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 39
- 229910002091 carbon monoxide Inorganic materials 0.000 description 39
- 125000002524 organometallic group Chemical group 0.000 description 18
- 231100000572 poisoning Toxicity 0.000 description 17
- 230000000607 poisoning effect Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 13
- 239000002245 particle Substances 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000003446 ligand Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 229910002845 Pt–Ni Inorganic materials 0.000 description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- GOYDFRLNXMTMOG-UHFFFAOYSA-N 2-N-quinolin-2-ylbenzene-1,2-diamine Chemical compound NC1=CC=CC=C1NC1=CC=C(C=CC=C2)C2=N1 GOYDFRLNXMTMOG-UHFFFAOYSA-N 0.000 description 3
- VEUMANXWQDHAJV-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]ethyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCN=CC1=CC=CC=C1O VEUMANXWQDHAJV-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- FADMTUHPEFWZTJ-UHFFFAOYSA-N N1=C(C=CC2=CC=CC=C12)NC1=C(C=CC=C1)N.[Ni] Chemical compound N1=C(C=CC2=CC=CC=C12)NC1=C(C=CC=C1)N.[Ni] FADMTUHPEFWZTJ-UHFFFAOYSA-N 0.000 description 3
- 229920000557 Nafion® Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- GMWMTHWSVLVUJD-UHFFFAOYSA-N 2-n-quinolin-8-ylbenzene-1,2-diamine Chemical compound NC1=CC=CC=C1NC1=CC=CC2=CC=CN=C12 GMWMTHWSVLVUJD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910000929 Ru alloy Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000002153 concerted effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000010411 electrocatalyst Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- GZUIZWAZYRTOIL-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]ethyliminomethyl]phenol oxovanadium Chemical compound O=[V].C(C=1C(O)=CC=CC1)=NCCN=CC=1C(O)=CC=CC1 GZUIZWAZYRTOIL-UHFFFAOYSA-N 0.000 description 1
- UGNSMKDDFAUGFT-UHFFFAOYSA-N 4,4-dimethyl-2-phenyl-5h-1,3-oxazole Chemical compound CC1(C)COC(C=2C=CC=CC=2)=N1 UGNSMKDDFAUGFT-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- DBEMNLLMZNFXMI-UHFFFAOYSA-N C(CN=C1C2=CC3=CC=CC=C3C=C2C=CC1)N=C1C2=CC3=CC=CC=C3C=C2C=CC1 Chemical compound C(CN=C1C2=CC3=CC=CC=C3C=C2C=CC1)N=C1C2=CC3=CC=CC=C3C=C2C=CC1 DBEMNLLMZNFXMI-UHFFFAOYSA-N 0.000 description 1
- JKHKWJMWOPUYFV-UHFFFAOYSA-N CC(CNC1=NC2=CC=CC=C2C=C1)NC3=NC4=CC=CC=C4C=C3 Chemical compound CC(CNC1=NC2=CC=CC=C2C=C1)NC3=NC4=CC=CC=C4C=C3 JKHKWJMWOPUYFV-UHFFFAOYSA-N 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、改質ガスを用いる高分子型燃料電池、およびアルカリ型燃料電池、リン酸型燃料電池のような動作温度が約300℃以下の低温型燃料電池の水素極用電極触媒として有効な金属・有機金属錯体混合触媒及びこの触媒を用いた低温型燃料電池に関する。 INDUSTRIAL APPLICABILITY The present invention is effective as an electrode catalyst for a hydrogen electrode of a low temperature fuel cell having an operating temperature of about 300 ° C. or less, such as a polymer fuel cell using reformed gas, an alkaline fuel cell, and a phosphoric acid fuel cell The present invention relates to a mixed metal / organometallic complex catalyst and a low-temperature fuel cell using the catalyst.
改質ガスを用いる高分子型燃料電池、およびアルカリ型燃料電池、リン酸型燃料電池のような動作温度が約300℃以下の低温型燃料電池においては、水素ガスと電解質との間で電子授受を行う電極触媒の性能が電池性能に大きな影響を及ぼす。特にCOなどの触媒被毒物質によって電極が反応妨害を受ける場合は、耐被毒物質性を有する触媒の開発が重要な研究課題となっている。 In polymer fuel cells using reformed gas, and low temperature fuel cells having an operating temperature of about 300 ° C. or lower, such as alkaline fuel cells and phosphoric acid fuel cells, electrons are transferred between hydrogen gas and an electrolyte. The performance of the electrocatalyst that performs the battery greatly affects the battery performance. In particular, when an electrode is disturbed by a catalyst poisoning substance such as CO, the development of a catalyst having resistance to poisoning substances is an important research subject.
従来、このような低温型燃料電池の耐CO被毒性を有する燃料極用触媒として白金・ルテニウム、白金・錫、白金・モリブデン系のような2元合金、あるいはそれらをベースとした3元系以上の合金触媒や、白金・チタン酸化物、白金タングステン酸のような金属と酸化物をベースにした触媒が開発されている。
しかしながら、これらの触媒は以下のような問題点があった。
1.CO濃度の高い系での耐CO被毒性に劣る。
2.耐CO被毒性を発揮する反応メカニズムとして、2元機能メカニズム、d−電子欠損メカニズムなどが提案されているが、それらはすべて構成成分の原子間相互作用を念頭に置いてのもので、新しい機能に基づいた新触媒の開発という点ではもはや限界にきている。
3.経験上第2成分、第3成分として選択できる金属や酸化物の種類が限られており、触媒能の向上を期待することはできない。
Conventionally, as a catalyst for a fuel electrode having low CO poisoning resistance in such a low-temperature fuel cell, a binary alloy such as platinum / ruthenium, platinum / tin, platinum / molybdenum, or a ternary system based on them. Alloy catalysts and catalysts based on metals and oxides such as platinum / titanium oxide and platinum tungstic acid have been developed.
However, these catalysts have the following problems.
1. It is inferior in CO-toxication resistance in a system with high CO concentration.
2. As a reaction mechanism that exhibits resistance to CO poisoning, a dual function mechanism, a d-electron deficiency mechanism, and the like have been proposed, all of which are designed with interatomic interactions in mind, and are new functions. The development of new catalysts based on this is no longer the limit.
3. Based on experience, the types of metals and oxides that can be selected as the second component and the third component are limited, and improvement in catalytic ability cannot be expected.
本発明者等は上記問題点を基に、遷移金属元素又はその合金と、周期律表V族、VI族、VII族、VIII族の遷移金属元素のような2種類以上の原子価を有する金属元素を中心元素とし、窒素、酸素、硫黄などを含む配位子を平面状に配位する有機金属錯体を混在させた混合触媒について提案している(特許文献1参照)。 Based on the above problems, the present inventors have two or more kinds of valence metals such as transition metal elements or alloys thereof and transition metal elements of Group V, VI, VII, and VIII of the Periodic Table. A mixed catalyst in which an organometallic complex in which an element is a central element and a ligand containing nitrogen, oxygen, sulfur or the like is coordinated in a plane is mixed is proposed (see Patent Document 1).
しかし、COガスなどによる触媒被毒を受けやすい低温型燃料電池の燃料極において、上記文献に記載された有機金属錯体を含む触媒は、メタノール酸化触媒として開発されたものであり、メタノール酸化特性が示されている。そして、メタノール酸化の過程で副生成物として生じるCOによる被毒を受けないようにするため、触媒表面でのCO被覆率を50%以下とし、実用化されている白金−ルテニウム合金触媒等と同程度の耐CO被毒性を得ることを目的としたものである。
本発明はこのような技術の実状に鑑みなされたものであって、水素酸化触媒としての優れた性能をもち、耐CO被毒性がCO濃度10ppm〜100ppmであっても周知の白金−ルテニウム合金触媒よりさらに優れると共に、価格的にも製造面でも有利な低温型燃料電池の水素極用電極触媒およびこれを用いた低温型燃料電池を提供することを目的とする。
However, in the fuel electrode of a low-temperature fuel cell that is susceptible to catalyst poisoning due to CO gas or the like, the catalyst containing the organometallic complex described in the above document has been developed as a methanol oxidation catalyst and has methanol oxidation characteristics. It is shown. In order not to be poisoned by CO generated as a by-product in the process of methanol oxidation, the CO coverage on the catalyst surface is set to 50% or less, which is the same as that of a platinum-ruthenium alloy catalyst that has been put into practical use. The purpose is to obtain a degree of CO poisoning resistance.
The present invention has been made in view of the actual situation of such a technology, and has a superior performance as a hydrogen oxidation catalyst, and is a well-known platinum-ruthenium alloy catalyst even when the CO poisoning resistance is a CO concentration of 10 ppm to 100 ppm. An object of the present invention is to provide an electrode catalyst for a hydrogen electrode of a low temperature fuel cell which is further superior and advantageous in terms of cost and production, and a low temperature fuel cell using the same.
本発明者等は、上記課題を解決するため更に、混合触媒において注意深く白金又はその合金と、窒素、酸素、硫黄などを含む配位子を平面状に配位する有機金属錯体とその中心金属原子、及び熱処理調整条件等を検討した結果、特定の有機金属錯体と特定の中心金属原子の組み合わせのものを水素酸化触媒として用いたときに、これまで得られなかった特に優れた耐CO被毒性を有する水素極用電極触媒を見出し、本発明に至った。
すなわち本発明は、
(1)白金又はその合金と、N,N’−ビス(サリシリデン)エチレンジアミノ金属錯体の混合触媒であって、錯体中心金属が、オキソバナジウム、マンガン、鉄、コバルト、ニッケルから選ばれる金属原子であり、担体に担持し、200℃〜550℃で熱処理したものであることを特徴とする水素を含む改質ガスを用いる低温型燃料電池の水素極用電極触媒、
(2)白金又はその合金と、N,N’−モノ−8−キノリル−o−フェニレンジアミン金属錯体の混合触媒であって、錯体中心金属が、オキソバナジウム、マンガン、鉄、コバルト、ニッケルから選ばれる金属原子であり、担体に担持し、200℃〜550℃で熱処理したものであることを特徴とする水素を含む改質ガスを用いる低温型燃料電池の水素極用電極触媒、
(3)前記白金又はその合金が、アンミン錯体、カルボニル錯体、アセチルアセトナート錯体、ニトロソ錯体、酢酸塩、塩化物、臭化物、ヨウ化物から選ばれる化合物に由来するものであって、(1)または(2)記載の金属錯体と予め溶液状態で混合され、これを担体に担持後200℃〜550℃で熱処理されることで生成された、担体表面に微粒子状に担持されていることを特徴とする(1)または(2)記載の水素極用電極触媒、
(4)前記熱処理が、不活性ガス中または還元性ガスを一部含む不活性ガス中で行われることを特徴とする(1)乃至(3)のいずれか1項記載の水素極用電極触媒、
(5)担体が炭素質材料であることを特徴とする(1)乃至(4)のいずれか1項記載の水素極用電極触媒、
(6)炭素質材料が、グラファイト、カーボンブラック、ケッチェンブラック、活性炭及びグラシーカーボンから選ばれた少なくとも一種であることを特徴とする(5)記載の水素極用電極触媒、
(7)前記(1)乃至(6)いずれか1項記載の水素極用触媒を用いた低温型燃料電池の水素極、
(8)前記(7)記載の水素極を備えた低温型燃料電池、および
(9)低温型燃料電池が、改質ガスを用いる固体高分子型燃料電池、またはリン酸型燃料電池であることを特徴とする(8)記載の低温型燃料電池
を提供するものである。
In order to solve the above-mentioned problems, the inventors of the present invention further carefully arranged platinum or an alloy thereof and an organometallic complex in which a ligand containing nitrogen, oxygen, sulfur, etc. is coordinated in a planar manner and a central metal atom thereof in a mixed catalyst. As a result of examining heat treatment adjustment conditions, etc., when a combination of a specific organometallic complex and a specific central metal atom is used as a hydrogen oxidation catalyst, particularly excellent CO poisoning resistance that has not been obtained so far is obtained. The present inventors have found an electrode catalyst for a hydrogen electrode having the present invention, and have reached the present invention.
That is, the present invention
(1) platinum or its alloys, N, a mixed catalyst of N'- bis (Sarishiriden) ethylene diamino metal complex, a metal complex the central metal is selected oxovanadium, manganese, iron, cobalt, nickel or al An electrode catalyst for a hydrogen electrode of a low-temperature fuel cell using a reformed gas containing hydrogen, which is an atom, supported on a support, and heat-treated at 200 ° C. to 550 ° C.,
(2) platinum or its alloys, N, a mixed catalyst of N'- mono-8-quinolyl -o- phenylene diamine metal complexes, complexes central metal, oxo vanadium, manganese, iron, cobalt, or nickel An electrode catalyst for a hydrogen electrode of a low-temperature fuel cell using a reformed gas containing hydrogen, which is a metal atom selected from the above, supported on a support and heat-treated at 200 ° C. to 550 ° C.,
(3) The platinum or an alloy thereof is derived from a compound selected from an ammine complex, a carbonyl complex, an acetylacetonate complex, a nitroso complex, acetate, chloride, bromide, and iodide, (1) or (2) characterized in that it is supported in the form of fine particles on the surface of the support, which is produced by mixing with the metal complex described in the solution in advance and supporting the support on a support and then heat-treating at 200 ° C. to 550 ° C. (1) or (2) a hydrogen electrode electrode catalyst,
(4) The electrode catalyst for a hydrogen electrode according to any one of (1) to (3), wherein the heat treatment is performed in an inert gas or an inert gas partially including a reducing gas. ,
(5) The electrode catalyst for a hydrogen electrode according to any one of (1) to (4), wherein the support is a carbonaceous material,
(6) The electrode catalyst for a hydrogen electrode according to (5), wherein the carbonaceous material is at least one selected from graphite, carbon black, ketjen black, activated carbon and glassy carbon,
(7) The hydrogen electrode of the low-temperature fuel cell using the hydrogen electrode catalyst according to any one of (1) to (6),
(8) The low-temperature fuel cell having the hydrogen electrode according to (7), and (9) the low-temperature fuel cell is a solid polymer fuel cell or a phosphoric acid fuel cell using a reformed gas. The low-temperature fuel cell according to (8) is provided.
本発明に係る低温型燃料電池の水素極用電極触媒は次のような利点を有する。
(1)従来の合金系触媒、酸化物系触媒と比べCO濃度が高い系においても、より優れた耐CO被毒性を示し、また、従来のこれら触媒と同程度の耐久性を有する。
(2)N,N'−ビス(サリシリデン)エチレンジアミン、N,N'−モノ−8−キノリル−o−フェニレンジアミンのような簡単な構造の錯体配位子と、ニッケル、鉄、コバルト、バナジウムなどから選ばれる低価格の有機金属錯体を原料とすることで、触媒材料のコスト削減につながり、その調製方法も容易である。
The electrode catalyst for a hydrogen electrode of a low-temperature fuel cell according to the present invention has the following advantages.
(1) Even in a system having a higher CO concentration than conventional alloy-based catalysts and oxide-based catalysts, it exhibits better CO poisoning resistance and has the same durability as these conventional catalysts.
(2) Complex ligands of simple structure such as N, N′-bis (salicylidene) ethylenediamine, N, N′-mono-8-quinolyl-o-phenylenediamine, nickel, iron, cobalt, vanadium, etc. By using a low-cost organometallic complex selected from the above as raw materials, the cost of the catalyst material is reduced, and its preparation method is easy.
本発明の水素極用電極触媒の好ましい実施の態様について、詳細に説明する。
本発明における電極触媒は、(a)白金又はその合金と、(b)N,N'−ビス(サリシリデン)エチレンジアミノ金属錯体、またはN,N'−モノ−8−キノリル−o−フェニレンジアミン金属錯体を含むものである。
前記(a)の白金系合金の第2成分としては、従来から燃料電池の燃料極に使用されている周期律表第VIII族を中心とする遷移金属元素であることが望ましいが、後述するように有機金属錯体との協奏効果によって、混合触媒を構成した状態では金属触媒単独、あるいは有機金属錯体単独の触媒に比べ10倍以上優れた触媒作用を示すので、金属触媒自身では触媒作用が弱いものでも選択できる。
このような遷移金属元素としては、コバルト、ニッケル、パラジウム、ルテニウム等の周期律表第VIII族の金属元素の他、チタン、レニウム、錫、モリブデン、銀、金などが挙げられる。
A preferred embodiment of the electrode catalyst for hydrogen electrode of the present invention will be described in detail.
The electrode catalyst in the present invention includes (a) platinum or an alloy thereof, (b) N, N′-bis (salicylidene) ethylenediamino metal complex, or N, N′-mono-8-quinolyl-o-phenylenediamine metal. It contains a complex.
The second component of the platinum-based alloy (a) is preferably a transition metal element centered on Group VIII of the periodic table, which has been used in the fuel electrode of a fuel cell, but will be described later. As a result of the concerted effect with the organometallic complex, the catalyst function is 10 times or more superior to that of the metal catalyst alone or the catalyst of the organometallic complex alone when the mixed catalyst is configured. But you can choose.
Examples of such transition metal elements include titanium, rhenium, tin, molybdenum, silver, gold, and the like in addition to group VIII metal elements such as cobalt, nickel, palladium, and ruthenium.
前記(b)の有機金属錯体における中心金属としては、オキソバナジウム、マンガン、鉄、コバルト、ニッケルから選ばれる。この中、本発明において好ましく使用される金属元素は、オキソバナジウム、マンガン、ニッケルである。中心金属がこれら以外のものである場合には、良好な耐CO被毒性を発現せず、本発明の目的を達成することができない。
Wherein the center metal in the organometallic complexes of (b) is oxo vanadium, manganese, iron, cobalt, selected nickel or al. Among these, metal elements preferably used in the present invention are oxovanadium, manganese, and nickel. When the central metal is other than these, good CO poisoning resistance is not exhibited, and the object of the present invention cannot be achieved.
本発明の混合触媒において、(a)の白金(又はその合金)触媒と、(b)の有機金属錯体の混合割合については、特に制限はなく、それぞれ選択された触媒原料において経験的に最適な割合を見出せばよく、必要に応じて適宜設定される。
通常、(a)の白金(又はその合金)触媒と、(b)の有機金属錯体の混合割合は、20:80ないし90:10の範囲で選ばれ、協奏効果を最大限に発揮するためには40:60〜60:40の割合にすることが好ましい。
In the mixed catalyst of the present invention, the mixing ratio of the platinum (or alloy thereof) catalyst (a) and the organometallic complex (b) is not particularly limited, and is optimally determined empirically for each selected catalyst raw material. What is necessary is just to find a ratio and it sets suitably as needed.
Usually, the mixing ratio of the platinum (or alloy) catalyst of (a) and the organometallic complex of (b) is selected in the range of 20:80 to 90:10 to maximize the concerted effect. Is preferably in the ratio of 40:60 to 60:40.
触媒の調製法としては、従来公知の方法、例えば、物理的混合法、熱分解法、液相法、プラズマ同時蒸着法などの方法が何れも使用できる。
熱分解法による触媒の具体的な調製法としては、例えば、(a)の白金(又はその合金)触媒を同金属の錯化合物前駆体、例えばアンミン錯体、カルボニル錯体、アセチルアセトナート錯体、カルボン酸錯体、ニトロソ錯体や酢酸塩、塩化物、臭化物、ヨウ化物などのような熱分解しやすいものとしておき、これと(b)の有機金属錯体とを可溶性の有機溶媒に同時に溶解し、蒸発乾固する方法、あるいは(a)の遷移金属触媒の水溶性錯化合物、例えばアンミン錯体と(b)の有機金属錯体の水溶液を混合し、蒸発乾固する方法などを挙げることができる。
As a method for preparing the catalyst, any conventionally known method such as a physical mixing method, a thermal decomposition method, a liquid phase method, and a plasma co-evaporation method can be used.
As a specific method for preparing the catalyst by the thermal decomposition method, for example, a platinum (or alloy thereof) catalyst of (a) is used as a complex compound precursor of the same metal, such as an ammine complex, a carbonyl complex, an acetylacetonate complex, a carboxylic acid. Complexes, nitroso complexes, acetates, chlorides, bromides, iodides, etc. are easily decomposed, and this and the organometallic complex (b) are simultaneously dissolved in a soluble organic solvent and evaporated to dryness. Or a method of mixing a water-soluble complex compound of the transition metal catalyst of (a) such as an ammine complex and an aqueous solution of the organometallic complex of (b) and evaporating to dryness.
本発明に係る触媒は、好ましくは、触媒担体の表面に担持させて用いることが好ましい。担体としては、従来公知のもの、例えばグラファイト、カーボンブラック、ケッチェンブラック、活性炭、グラシーカーボンのような炭素質材料、ラネーニッケル、ラネー銀のようなポーラス金属などが挙げられ、炭素質材料が好ましく使用される。炭素質材料であれば粒径0.01〜100μm、好ましくは0.02〜10μmのものを用いると担持が良好に行われる。 The catalyst according to the present invention is preferably used while being supported on the surface of a catalyst carrier. Examples of the carrier include conventionally known materials such as graphite, carbon black, ketjen black, activated carbon, glassy carbon such as glassy carbon, porous metal such as Raney nickel, Raney silver, etc. used. If it is a carbonaceous material, carrying | supporting will be performed satisfactorily when a thing with a particle size of 0.01-100 micrometers, preferably 0.02-10 micrometers is used.
触媒を担体に担持させる方法としては、溶解乾燥法、プラズマ蒸着法、加熱蒸着法、CVD法などの従来公知の方法が何れも使用できる。
溶解乾燥法による場合は、たとえば、(a)の遷移金属触媒を同金属の錯化合物、例えばアンミン錯体やカルボニル錯体等のような熱分解しやすいものとしておき、これと(b)の有機金属錯体とを可溶性有機溶媒に溶解し、その有機溶媒に担体、例えばカーボン粒子を撹拌混合し、ついで溶媒を乾燥させればよい。
As a method for supporting the catalyst on the carrier, any conventionally known method such as a dissolution drying method, a plasma vapor deposition method, a heat vapor deposition method, or a CVD method can be used.
In the case of the dissolution drying method, for example, the transition metal catalyst of (a) is easily decomposed thermally, such as a complex compound of the same metal such as an ammine complex or a carbonyl complex, and this is combined with an organometallic complex of (b) Are dissolved in a soluble organic solvent, a carrier, for example, carbon particles is stirred and mixed in the organic solvent, and then the solvent is dried.
このようにして得られた混合触媒を直接電極担体(カーボン粒子など)に担持した形態で水素極用の電極触媒として供することもできるが、本発明においては、有機金属錯体が電解質側などに溶出することを防止し、優れた耐CO被毒性を達成するために、混合触媒を担体に担持させた後、不活性ガスなどのガス中で熱処理しておく。
この熱処理温度は、(a)の金属触媒成分の粒径増大を防ぐ意味からは低い方が望ましいが、有機金属錯体を安定化させるには200℃程度以上の温度が必要であり、本発明では、200℃〜550℃、好ましくは300℃〜500℃である。300℃以上の熱処理では、(a)の金属触媒成分の前駆体と(b)の金属錯体との混合物が複合体を形成するものと思われるので、特に好ましく、また、優れた耐CO被毒性を考慮すると、550℃以下、好ましくは500℃以下である。
この熱処理は、アルゴン、窒素などの不活性ガス中や水素などの還元性ガスを一部含む不活性ガス中等の雰囲気中で行うのが好ましい。
The mixed catalyst thus obtained can be used as an electrode catalyst for a hydrogen electrode in the form of being directly supported on an electrode carrier (carbon particles, etc.). However, in the present invention, the organometallic complex is eluted on the electrolyte side. In order to prevent this and achieve excellent CO poisoning resistance, the mixed catalyst is supported on a carrier and then heat-treated in a gas such as an inert gas.
The heat treatment temperature is preferably low from the viewpoint of preventing the particle size of the metal catalyst component (a) from increasing, but a temperature of about 200 ° C. or higher is required to stabilize the organometallic complex. 200 ° C to 550 ° C, preferably 300 ° C to 500 ° C. In the heat treatment at 300 ° C. or higher, a mixture of the precursor of the metal catalyst component (a) and the metal complex (b) is considered to form a complex, and is particularly preferable, and has excellent CO poisoning resistance. Is 550 ° C. or lower, preferably 500 ° C. or lower.
This heat treatment is preferably performed in an atmosphere such as an inert gas such as argon or nitrogen or an inert gas partially containing a reducing gas such as hydrogen.
本発明においては、このような電極触媒を、必要によりカーボン担持ペースト、テフロン(登録商標)エマルジョン、高分子電解質溶液及びバインダー等からなる混合物のような形態とし、水素極或いは電解質側にそれ自体公知の方法例えばスプレー法、スクリーン印刷法、刷毛塗り法などのような方法で設けることにより所望とする低温型燃料電池の水素極を得ることができる。
In the present invention, such an electrode catalyst is in the form of a mixture comprising a carbon-supported paste, a Teflon (registered trademark) emulsion, a polymer electrolyte solution and a binder, if necessary, and is known per se on the hydrogen electrode or electrolyte side. For example, a desired hydrogen electrode of a low-temperature fuel cell can be obtained by a method such as spraying, screen printing, or brushing.
また、上記で得た水素極は低温型燃料電池の耐CO被毒性電極として、運転温度が80℃を下回っても、例えば10ppm〜100ppmのCOを含有する条件で好適に使用される。特に、改質ガスを用いる高分子型燃料電池、およびリン酸型燃料電池のような動作温度が約300℃以下であってCO濃度の高い改質ガスを用いる燃料電池の水素極として好ましい。 In addition, the hydrogen electrode obtained above is suitably used as a CO-toxic electrode for low-temperature fuel cells under conditions containing, for example, 10 ppm to 100 ppm of CO even when the operating temperature is below 80 ° C. In particular, it is preferable as a hydrogen electrode of a fuel cell using a reformed gas having a high CO concentration and an operating temperature of about 300 ° C. or less, such as a polymer fuel cell using a reformed gas and a phosphoric acid fuel cell.
次に、本発明の水素極用電極触媒を実施例によりさらに詳細に説明し、その効果を明瞭にする。
実施例1
原料として、白金テトラアンミン錯体、およびニッケルN,N'−モノ−8−キノリル−o−フェニレンジアミン[ニッケルモノキノリルフェニレンジアミン]を準備した。前者は市販の試薬[Pt(NH3)4]Cl2・nH2Oを、後者は以下の方法で合成した。
還流冷却器のついたフラスコ内に8−ヒドロキシキノリン2.9g、o−フェニレンジアミン1.1g、二亜硫酸ナトリウム3.8g、純水20mlを加え、約110℃において1週間還流加熱した。その後、反応溶液に50%水酸化ナトリウム溶液を加えアルカリ性とした。冷却後ベンゼンで抽出し、アルミナカラムクロマトグラフィーで分離精製し、ヘキサンで再結晶することでモノキノリルフェニレンジアミンの黄色結晶を得た(収率約14%)。室温において、窒素ガス脱気したアセトニトリル中で等モルのモノキノリルフェニレンジアミンと酢酸ニッケル(II)四水和物を混合させることにより、ニッケルモノキノリルフェニレンジアミンの結晶を得た。
Next, the electrode catalyst for a hydrogen electrode of the present invention will be described in more detail with reference to examples, and the effect will be clarified.
Example 1
Platinum tetraammine complex and nickel N, N′-mono-8-quinolyl-o-phenylenediamine [nickel monoquinolylphenylenediamine] were prepared as raw materials. The former was synthesized by commercially available reagent [Pt (NH 3 ) 4 ] Cl 2 .nH 2 O, and the latter was synthesized by the following method.
In a flask equipped with a reflux condenser, 2.9 g of 8-hydroxyquinoline, 1.1 g of o-phenylenediamine, 3.8 g of sodium disulfite, and 20 ml of pure water were added and heated to reflux at about 110 ° C. for 1 week. Thereafter, 50% sodium hydroxide solution was added to the reaction solution to make it alkaline. After cooling, the mixture was extracted with benzene, separated and purified by alumina column chromatography, and recrystallized from hexane to obtain yellow crystals of monoquinolylphenylenediamine (yield: about 14%). Nickel monoquinolylphenylenediamine crystals were obtained by mixing equimolar monoquinolylphenylenediamine and nickel (II) acetate tetrahydrate in acetonitrile degassed with nitrogen gas at room temperature.
次に、白金テトラアンミン錯体、およびニッケルモノキノリルフェニレンジアミンの両者の錯体を重量比にして50:50の各割合で混合した。得られた混合触媒をカーボンブラック粒子(Vulcan XC-72R)と1:4の割合になるように秤量してこれをエタノール少量に溶かし、メノウ乳鉢を使って十分に混合した後、空気中80℃で乾燥させた。
このようにして準備された触媒担持カーボンブラック粒子を三分割し、それぞれを環状雰囲気炉に入れ、アルゴンガス雰囲気中においてそれぞれを400℃、500℃、600℃で2時間熱処理することにより3種の触媒担持カーボン粒子を得た〔Pt-Ni(mqph)/Cと略記する〕。
Next, the platinum tetraammine complex and the nickel monoquinolylphenylenediamine complex were mixed at a weight ratio of 50:50. The obtained mixed catalyst was weighed to a ratio of 1: 4 with carbon black particles (Vulcan XC-72R), dissolved in a small amount of ethanol, thoroughly mixed using an agate mortar, and then 80 ° C. in air. And dried.
The catalyst-supported carbon black particles thus prepared were divided into three parts, each was put in an annular atmosphere furnace, and each was heat treated at 400 ° C., 500 ° C., and 600 ° C. for 2 hours in an argon gas atmosphere. Catalyst-supported carbon particles were obtained [abbreviated as Pt-Ni (mqph) / C].
400℃で熱処理した触媒担持カーボン粒子を20重量倍のナフィオン(登録商標)高分子5%溶液(AldrichChemicals社製)とともに直径8mmのカーボンペーパー(東レインターナショナル社製、商品名TGP-H-090)ディスクに滴下乾燥して触媒面を作製し、ついでナフィオン(登録商標)115膜に触媒面が接するように片面ホットプレスすることによって半電池用MEAを作成した。
Carbon paper with a diameter of 8 mm (trade name: TGP-H-090) manufactured by Toray International Co., Ltd., together with 20% by weight Nafion (registered trademark)
この半電池用MEAを水素ガス流入用のテフロン(登録商標)ホルダーに装着し、カーボンペーパー側を純水素ガス、ナフィオン(登録商標)膜側を1M過塩素酸溶液に接し、過塩素酸溶液は窒素ガスで脱気しながら70℃に保持した。この様な半電池において、半電池用MEAを試験電極、過塩素酸水溶液中に白金板の対極及び可逆水素電極(RHE)を参照電極として配置し、水素酸化電流を測定した。測定にはポテンションスタットを用い、電流−電位曲線を記録するとともに、100mVvsRHEにおける水素酸化電流を評価した。 The MEA for half-cell was mounted on a Teflon holder for hydrogen gas flows in contact pure hydrogen gas and carbon paper over side, Nafion (registered trademark) film side to 1M perchloric acid solution, perchloric acid solution Was kept at 70 ° C. while degassing with nitrogen gas. In such a half-cell, the MEA for half-cell was placed as a test electrode, a counter electrode of a platinum plate and a reversible hydrogen electrode (RHE) in a perchloric acid aqueous solution, and the hydrogen oxidation current was measured. For the measurement, a potentiostat was used, a current-potential curve was recorded, and the hydrogen oxidation current at 100 mV vs RHE was evaluated.
同様に、水素ガス中に10、50、100ppmの一酸化炭素(CO)を含むガスを上記半セルに導入し、100mVvsRHEにおける水素酸化電流を評価することで触媒の耐CO被毒性を比較した。純水素を使用した時の100mVでの電流値を100%とした場合の、COを含む水素ガスでの電流値の割合(%)として、その結果を図1に示した。 Similarly, the gas containing 10, 50, and 100 ppm carbon monoxide (CO) in hydrogen gas was introduced into the half cell, and the hydrogen oxidation current at 100 mV vs RHE was evaluated to compare the CO poisoning resistance of the catalysts. The result is shown in FIG. 1 as a ratio (%) of the current value in the hydrogen gas containing CO when the current value at 100 mV when using pure hydrogen is 100%.
また、500℃又は600℃で熱処理した触媒担持カーボン粒子についても、それぞれ同様に半電池用MEAを作成し、同様に水素酸化電流を純水素、CO含有水素を導入して測定し、評価し、結果を図1に示した。
熱処理温度400℃あるいは500℃のPt-Ni(mqph)/Cにおいて、優れた耐CO性が現れた。
Also, for catalyst-carrying carbon particles heat-treated at 500 ° C. or 600 ° C., half-cell MEAs were similarly prepared, and the hydrogen oxidation current was similarly measured and evaluated by introducing pure hydrogen and CO-containing hydrogen, The results are shown in FIG.
Excellent CO resistance was exhibited at Pt—Ni (mqph) / C at a heat treatment temperature of 400 ° C. or 500 ° C.
実施例2
有機金属錯体原料として、ニッケルモノキノリルフェニレンジアミンの代わりに、N,N'−ビス(サリシリデン)エチレンジアミンオキソバナジウム[オキソバナジウムサレン]を用いた以外は実施例1と全く同じようにして得た(熱処理温度は400℃、500℃、600℃)触媒担持カーボン粒子〔Pt-VO(salen)/Cと略記する〕を用いて同様な耐CO被毒試験を行った。
図2に各熱処理温度で作成した混合触媒において、純水素および10、25、50ppmのCOを含む水素ガスで測定された100mVでの電流値を含有白金mg量当りに換算したグラフを示す。熱処理温度として400℃が好適であることが分かる。
次に、熱処理温度400℃で作成した混合触媒を、標準的な触媒材料である、20%白金担持カーボン〔Pt/Cと略記する〕及び20%白金、10%ルテニウム合金担持カーボン〔Pt-Ru/Cと略記する〕と比較するため、純水素における100mVでの電流値を100%とした時の10、25、50、100ppmのCOを含む水素ガスでの電流値の割合(%)として評価した。その結果を図3に示す。
Pt/C、Pt-Ru/Cなど標準的な電極触媒ではCO濃度が25ppm以上になると性能が著しく低下するのに対し、Pt-VO(salen)/C触媒は100ppmのCOを含む場合でも水素酸化電流が流れ、非常に優れた改質ガス用水素極触媒であることが示された。
Example 2
It was obtained in the same manner as in Example 1 except that N, N′-bis (salicylidene) ethylenediamine oxovanadium [oxovanadium salen] was used in place of nickel monoquinolylphenylenediamine as the organometallic complex raw material ( A similar CO poisoning resistance test was conducted using catalyst-supported carbon particles (abbreviated as Pt-VO (salen) / C) having heat treatment temperatures of 400 ° C., 500 ° C., and 600 ° C.
FIG. 2 shows a graph in which the current value at 100 mV measured with pure hydrogen and hydrogen gas containing 10, 25, and 50 ppm of CO is converted per mg of platinum contained in the mixed catalyst prepared at each heat treatment temperature. It can be seen that 400 ° C. is suitable as the heat treatment temperature.
Next, the mixed catalyst prepared at a heat treatment temperature of 400 ° C. is a standard catalyst material, 20% platinum-supported carbon (abbreviated as Pt / C) and 20% platinum, 10% ruthenium alloy-supported carbon [Pt-Ru]. / Abbreviated as / C], and evaluated as a ratio (%) of the current value in hydrogen gas containing 10, 25, 50, and 100 ppm of CO when the current value at 100 mV in pure hydrogen is 100%. did. The result is shown in FIG.
Standard electrocatalysts such as Pt / C and Pt-Ru / C show a significant decrease in performance when the CO concentration exceeds 25 ppm, whereas Pt-VO (salen) / C catalysts are hydrogen even when they contain 100 ppm CO. Oxidation current flows and it was shown that it is a very excellent hydrogen electrode catalyst for reformed gas.
実施例3
純水素ガスを燃料として、電位100mVにおけるPt-VO(salen)/C触媒上での電流値を連続的に測定し、耐久性を調べた。100時間連続運転におけるPt-VO(salen)/C触媒上での電流の経時変化を、前述のPt-Ru/C触媒における結果と比較して図4に示す。
図4から、有機金属錯体を原料とした本発明の触媒は、通常の燃料電池触媒と同程度の耐久性を有することが分かる。
Example 3
Using pure hydrogen gas as a fuel, the current value on a Pt-VO (salen) / C catalyst at a potential of 100 mV was continuously measured to investigate durability. FIG. 4 shows the change with time of the current on the Pt—VO (salen) / C catalyst in the continuous operation for 100 hours in comparison with the result of the aforementioned Pt—Ru / C catalyst.
FIG. 4 shows that the catalyst of the present invention using an organometallic complex as a raw material has the same durability as a normal fuel cell catalyst.
実施例4
実施例1のPt-Ni(mqph)/Cの代わりに、中心金属がマンガン、あるいはルテニウムである、マンガンモノキノリルフェニレンジアミンあるいはルテニウムモノキノリルフェニレンジアミンを用いた以外は同様にして作成した触媒担持カーボン粒子を得た〔Pt-Mn(mqph)/CあるいはPt-Ru(mqph)/Cと略記する〕。
実施例1、実施例2と同様に純水素、10、50、100ppmのCOを含む水素ガスを用いて、耐CO被毒試験を行い評価した結果を図5に示す。
図5から、モノキノリルフェニレンジアミンを用いた金属錯体であっても、中心金属が本発明に相当するニッケル、マンガンの場合に比べ、ルテニウムでは性能が劣り、中心金属の選択によっては良好な耐CO被毒性を示さないことが分かる。
Example 4
A catalyst prepared in the same manner as in Example 1 except that manganese monoquinolylphenylenediamine or ruthenium monoquinolylphenylenediamine in which the central metal is manganese or ruthenium is used instead of Pt—Ni (mqph) / C. Supported carbon particles were obtained [abbreviated as Pt-Mn (mqph) / C or Pt-Ru (mqph) / C].
FIG. 5 shows the results of a CO poisoning resistance test and evaluation using pure hydrogen, hydrogen gas containing 10, 50, and 100 ppm of CO as in Example 1 and Example 2.
From FIG. 5, even in the case of a metal complex using monoquinolylphenylenediamine, the performance of ruthenium is inferior to that of nickel or manganese corresponding to the present invention. It can be seen that it does not show CO toxicity.
比較例1
実施例2のオキソバナジウムサレンの代わりに、錯体配位子がN,N'−ビス(アントラニリデン)エチレンジアミンである、オキソバナジウムアンテン〔Pt-VO(anthen)/Cと略記する〕、及び錯体配位子がN,N'−ジキノリルプロピレンジアミンである、ジキノリルプロピレンジアミンオキソバナジウム錯体を用いた以外は同様にして作成した触媒担持カーボン粒子を得た〔Pt-VO(dqpr)/Cと略記する〕。
実施例1,実施例2と同様に耐CO被毒試験を行い評価した結果を、実施例2のPt-VO(salen)/Cと共に図6に示す。図6から、オキソバナジウムを中心金属に用いた金属錯体であっても、錯体配位子の選択によっては良好な耐CO被毒性を示さないことが分かる。
Comparative Example 1
An oxovanadium antenene (abbreviated as Pt-VO (anthen) / C) and a complex in which the complex ligand is N, N′-bis (anthranylidene) ethylenediamine instead of the oxovanadium salen of Example 2. Catalyst-supported carbon particles were prepared in the same manner except that the ligand was N, N′-diquinolylpropylenediamine and a diquinolylpropylenediamine oxovanadium complex was used [Pt-VO (dqpr) / C and Abbreviated].
FIG. 6 shows the results of evaluation by performing a CO poisoning resistance test in the same manner as in Example 1 and Example 2, together with Pt—VO (salen) / C in Example 2. FIG. 6 shows that even a metal complex using oxovanadium as a central metal does not show good CO poisoning resistance depending on the choice of complex ligand.
Claims (9)
9. The low-temperature fuel cell according to claim 8, wherein the low-temperature fuel cell is a solid polymer fuel cell or a phosphoric acid fuel cell using a reformed gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004268219A JP4958133B2 (en) | 2004-09-15 | 2004-09-15 | Electrode catalyst for hydrogen electrode of low temperature fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004268219A JP4958133B2 (en) | 2004-09-15 | 2004-09-15 | Electrode catalyst for hydrogen electrode of low temperature fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006085976A JP2006085976A (en) | 2006-03-30 |
JP4958133B2 true JP4958133B2 (en) | 2012-06-20 |
Family
ID=36164293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004268219A Expired - Lifetime JP4958133B2 (en) | 2004-09-15 | 2004-09-15 | Electrode catalyst for hydrogen electrode of low temperature fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4958133B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104607183A (en) * | 2015-01-22 | 2015-05-13 | 燕山大学 | Pd-Pt polyhedral nanocrystal electrocatalyst of low-temperature fuel cell and preparation method for Pd-Pt polyhedral nanocrystal electrocatalyst |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5019905B2 (en) * | 2007-02-22 | 2012-09-05 | 旭化成株式会社 | Fuel cell electrode and fuel cell using the electrode |
JP5375033B2 (en) * | 2008-11-05 | 2013-12-25 | 株式会社Ihi | Electrode catalyst for hydrogen electrode of low-temperature fuel cell, method for producing the same, fuel electrode for fuel cell, and fuel cell |
US20120100462A1 (en) * | 2009-06-10 | 2012-04-26 | Seiji Ogo | Electrode catalyst for fuel cell and use thereof |
JP6924342B2 (en) * | 2015-08-27 | 2021-08-25 | 国立大学法人山梨大学 | Fuel cell anode catalyst, anode and fuel cell |
JP6487314B2 (en) * | 2015-12-11 | 2019-03-20 | 日本電信電話株式会社 | Lithium air secondary battery and electrolyte for lithium air secondary battery |
CN113060719A (en) * | 2021-03-17 | 2021-07-02 | 山东省科学院新材料研究所 | Wood-based carbon foam and preparation method thereof, cathode electrocatalyst, cathode and metal-air battery |
CN113839053B (en) * | 2021-08-28 | 2024-04-09 | 西安交通大学 | Non-noble metal carbon-supported nickel-tin tantalum nitride nano electrocatalyst for alkaline direct methanol fuel cell and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07299359A (en) * | 1994-04-30 | 1995-11-14 | Tanaka Kikinzoku Kogyo Kk | Anode electrode catalyst for fuel cell |
JP3351285B2 (en) * | 1997-03-27 | 2002-11-25 | 三菱電機株式会社 | Anode electrode catalyst for polymer electrolyte fuel cells |
JP3632087B2 (en) * | 2001-03-02 | 2005-03-23 | 独立行政法人産業技術総合研究所 | Electrode catalyst for fuel electrode of low temperature fuel cell |
JP2003109614A (en) * | 2001-09-27 | 2003-04-11 | Nippon Steel Corp | Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same |
GB0207214D0 (en) * | 2002-03-27 | 2002-05-08 | Univ Loughborough | A catalyst for lowering the reduction overpotential of polysulfide species |
-
2004
- 2004-09-15 JP JP2004268219A patent/JP4958133B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104607183A (en) * | 2015-01-22 | 2015-05-13 | 燕山大学 | Pd-Pt polyhedral nanocrystal electrocatalyst of low-temperature fuel cell and preparation method for Pd-Pt polyhedral nanocrystal electrocatalyst |
Also Published As
Publication number | Publication date |
---|---|
JP2006085976A (en) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9054355B2 (en) | Catalyst with metal oxide doping for fuel cells | |
Antolini | Palladium in fuel cell catalysis | |
Li et al. | Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell | |
Salgado et al. | Pt–Ru electrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell | |
Lim et al. | A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability | |
JP4541458B2 (en) | Solid polymer fuel cell | |
JP5855023B2 (en) | Method for producing catalyst carrier, method for producing composite catalyst, composite catalyst, and fuel cell using the same | |
Chun et al. | A synthesis of CO-tolerant Nb2O5-promoted Pt/C catalyst for direct methanol fuel cell; its physical and electrochemical characterization | |
JP3632087B2 (en) | Electrode catalyst for fuel electrode of low temperature fuel cell | |
CN101926034B (en) | Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same | |
KR20140002628A (en) | Process for produclng carbon-comprising support | |
US20090047568A1 (en) | Electrode catalyst for fuel and fuel cell | |
Zhang et al. | Progress in non-platinum catalysts with applications in low temperature fuel cells | |
Shroti et al. | The Pt–Co alloying effect on the performance and stability of high temperature PEMFC cathodes | |
TWI474547B (en) | Fuel cell and electrocatalyst | |
JP5015489B2 (en) | Fuel cell electrode catalyst and fuel cell | |
Olson et al. | Electrochemical Evaluation of Porous Non‐Platinum Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells | |
US20210288334A1 (en) | A bimetallic catalyst and fuel for use in a direct dimethyl ether fuel cell | |
JP4958133B2 (en) | Electrode catalyst for hydrogen electrode of low temperature fuel cell | |
JP2011014475A (en) | Electrode catalyst for fuel cell, manufacturing method thereof, and solid polymer fuel cell | |
JP4863735B2 (en) | Supported electrode catalyst and catalyst production method | |
Yano et al. | New CO tolerant electro-catalysts exceeding Pt–Ru for the anode of fuel cells | |
JP5375033B2 (en) | Electrode catalyst for hydrogen electrode of low-temperature fuel cell, method for producing the same, fuel electrode for fuel cell, and fuel cell | |
Santiago et al. | The performance of carbon-supported PtOs electrocatalysts for the hydrogen oxidation in the presence of CO | |
JPH11111305A (en) | Fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20101029 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101029 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20101108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101130 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110318 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110830 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110830 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111221 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111221 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120314 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4958133 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |