JP2003109614A - Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same - Google Patents

Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same

Info

Publication number
JP2003109614A
JP2003109614A JP2001297225A JP2001297225A JP2003109614A JP 2003109614 A JP2003109614 A JP 2003109614A JP 2001297225 A JP2001297225 A JP 2001297225A JP 2001297225 A JP2001297225 A JP 2001297225A JP 2003109614 A JP2003109614 A JP 2003109614A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
transition metal
cell oxygen
macrocyclic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001297225A
Other languages
Japanese (ja)
Inventor
Takashi Iijima
孝 飯島
Kenichiro Tadokoro
健一郎 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001297225A priority Critical patent/JP2003109614A/en
Publication of JP2003109614A publication Critical patent/JP2003109614A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for an inexpensive high molecular solid electrolyte fuel cell oxygen pole and a method of manufacturing the same, capable of exercising the catalyst characteristic similar to a conventional catalyst using a large amount of platinum. SOLUTION: In this catalyst for high molecular solid electrolyte-type fuel cell oxygen pole and the method of manufacturing the same, the catalyst is composed of carbon material holding a large ring compound complex of transition metal and noble metal, and a BET specific surface area of the carbon material is 500 m<2> /g or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子固体電解質
型燃料電池酸素極用触媒に関し、特に、高性能且つ安価
な高分子固体電解質型燃料電池酸素極用触媒に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer solid oxide fuel cell oxygen electrode catalyst, and more particularly to a high performance and inexpensive polymer solid electrolyte fuel cell oxygen electrode catalyst.

【0002】[0002]

【従来の技術】高分子固体電解質型燃料電池は、高い電
流密度が取り出せ、低温作動が可能で、且つコンパクト
な電池を設計可能なことから、電気自動車用電源、携帯
電子機器用電源などの移動型電源、或いは、家庭用電源
など定置分散型電源としての応用が期待され、実用化に
向けた検討が精力的に進められている。
2. Description of the Related Art Polymer solid oxide fuel cells are capable of extracting a high current density, capable of operating at low temperatures, and can be designed as a compact battery. Therefore, they are used as power sources for electric vehicles and portable electronic devices. It is expected to be applied as a stationary power source such as a mold power source or a household power source, and studies for practical use are being vigorously pursued.

【0003】高分子固体電解質型燃料電池を実用に供す
るためには、反応を促進させるための触媒が必須であ
り、触媒として、水素極、酸素極ともに、白金、或いは
白金合金が主に検討されている(例えば、平成12年度
新エネルギー・産業技術総合開発機構委託研究成果報告
書「固体高分子型燃料電池低コスト電極の開発」)。し
かしながら、特に酸素極での過電圧が大きく、単セルの
理論出力電圧1.23Vに対して、1A/cm2程度の
実用域の電流を取り出そうとすると通常の触媒担持量
(酸素極側で0.1〜0.5mg/cm2)で酸素極の
過電圧は0.3V以上に達してしまう(例えば、平成1
0年度新エネルギー・産業技術総合開発機構委託研究成
果報告書「高耐久性電池実用化のためのイオン交換膜に
関する研究」)。過電圧を低減する対策として、触媒に
用いる白金或いは白金合金の担持量を多くすることが考
えられるが、触媒量の増加による過電圧の低減効果は小
さく、他方、触媒増に伴うコストアップという課題がよ
り一層大きくなり、コストと触媒パフォーマンスの両立
が依然大きな課題となっている。
In order to put the polymer solid oxide fuel cell into practical use, a catalyst for accelerating the reaction is indispensable. As the catalyst, platinum or platinum alloy is mainly studied for both hydrogen electrode and oxygen electrode. (For example, the 2000 New Energy and Industrial Technology Development Organization commissioned research result report “Development of low cost solid polymer fuel cell electrodes”). However, the overvoltage is particularly large at the oxygen electrode, and when a current in the practical range of about 1 A / cm 2 is to be extracted with respect to the theoretical output voltage of 1.23 V of a single cell, a normal catalyst loading amount (0. The overvoltage of the oxygen electrode reaches 0.3 V or more at 1 to 0.5 mg / cm 2 (see Heisei 1
Report of research results commissioned by Japan New Energy and Industrial Technology Development Organization "Fundamental Research on Ion Exchange Membrane for Practical Use of Highly Durable Batteries") As a measure to reduce the overvoltage, it is possible to increase the amount of platinum or platinum alloy used for the catalyst, but the effect of reducing the overvoltage by increasing the amount of catalyst is small, while the problem of cost increase due to the increase of the catalyst is more As the cost increases, the balance between cost and catalyst performance remains a major issue.

【0004】上述のようにコスト、並びに過電圧を低減
するような白金を代替する新規触媒が切望され、精力的
な研究が展開されている。その中でも、酸素還元能を有
する触媒として、古くからポルフィリン(PP)、フタ
ロシアニン(Pc)、テトラアザアヌレン(TAA)等
の金属を含有する大環状化合物の錯体が検討されている
(H. Jahnke, M. Schonborn,
G. Zimmermann, Topics in Cu
rrent Chemistry, Vol.61, p
133〜181 (1976))。これらの金属の大環
状化合物錯体は、生体内の酸素のメディエーターとして
知られており、即ち、酸素分子に対する吸着能を活かし
て電気化学的な酸素分子の還元反応に適用するというの
が基本的発想である(湯浅真、日本油化学会誌、Vo
l.49,p315〜323,(2000))。研究当
初は、リン酸型燃料電池の酸素極用触媒としての実用を
目指した検討がなされていたが、リン酸による触媒の劣
化、触媒活性が白金に比較して低い等の課題が残り、リ
ン酸型燃料電池への適用は未達であった。他方、高分子
固体電解質型燃料電池の場合には、酸性環境下での触媒
の劣化は回避可能と考えられるため、近年、新たな精力
的研究が進展している状況である。
As described above, a new catalyst that substitutes platinum for reducing cost and overvoltage is desired, and vigorous research is being conducted. Among them, as a catalyst having an oxygen reducing ability, a complex of a macrocyclic compound containing a metal such as porphyrin (PP), phthalocyanine (Pc) and tetraazaannulene (TAA) has been studied for a long time (H. Jahnke, M. Schonborn,
G. Zimmermann, Topics in Cu
rent Chemistry, Vol. 61, p
133-181 (1976)). Macrocyclic compound complexes of these metals are known as mediators of oxygen in the living body, that is, the basic idea is to apply them to electrochemical reduction reaction of oxygen molecules by utilizing their adsorption ability for oxygen molecules. Makoto Yuasa, Journal of Japan Oil Chemists' Society, Vo
l. 49, p315-323, (2000)). At the beginning of the research, studies were conducted aiming at practical use as a catalyst for oxygen electrodes of phosphoric acid fuel cells, but problems such as catalyst deterioration due to phosphoric acid and lower catalytic activity than platinum remain, and Application to acid fuel cells has not been achieved. On the other hand, in the case of the solid polymer electrolyte fuel cell, it is considered that the deterioration of the catalyst in an acidic environment can be avoided, and thus new energetic research is progressing in recent years.

【0005】これら大環状化合物の金属錯体を触媒とし
て実用の電極に適用するには、触媒の電子伝導体への固
定化が必須である。そのために使用されるのが、炭素担
体である。具体的には、電子伝導性が高く、且つ表面積
の大きなカーボンブラックが用いられる。この炭素担体
と金属の大環状化合物錯体との組み合わせにより、電極
触媒としての連続使用が可能となる。
In order to apply these metal complexes of macrocyclic compounds as catalysts to practical electrodes, it is essential to immobilize the catalysts on electron conductors. A carbon support is used for this purpose. Specifically, carbon black having a high electron conductivity and a large surface area is used. The combination of the carbon support and the metal macrocycle complex enables continuous use as an electrode catalyst.

【0006】これら炭素担体上に担持された大環状化合
物の金属錯体の酸素還元触媒としての課題は、過電圧が
白金触媒よりも大きいこと、還元生成物が水(4電子反
応生成物と呼ぶ)だけでなく、過酸化水素(2電子反応
生成物と呼ぶ)の混合物であるという2点である。過電
圧に対する対策として、非酸化性雰囲気中での熱処理が
提案されている(J. A. R. van Veen e
t al., J. Chem. Soc., Farad
ay Trans. 1, Vol.77, p2827
(1981))。しかしながら、熱処理後の改善された
過電圧は、白金に比較して0.1V以上であり、実用に
は依然として課題が残る。
The problems as the oxygen reduction catalyst of the metal complex of the macrocyclic compound supported on these carbon carriers are that the overvoltage is larger than that of the platinum catalyst, and that the reduction product is only water (called 4-electron reaction product). Rather, it is a mixture of hydrogen peroxide (called a two-electron reaction product). As a countermeasure against overvoltage, heat treatment in a non-oxidizing atmosphere has been proposed (J.A.R. van Veen e).
t al. , J. Chem. Soc. , Farad
ay Trans. 1, Vol. 77, p2827
(1981)). However, the improved overvoltage after heat treatment is 0.1 V or more as compared with platinum, and a problem remains in practical use.

【0007】また、4電子反応生成物の収率の向上とし
て、複核錯体(特開平11−253811号公報、F.
C. Anson et al., Journal of
American Chemical Societ
y, Vol.113, p9564 (1991))、
ポルフィリン錯体の2量化(J. P. Collman
et al., Journal of American
Chemical Society, Vol.10
2, p6027 (1980))等が提案されている。
しかしながら、合成における収率等工業的適用が困難な
こと、コスト高であること、白金或いは白金合金に比較
して過電圧が大きい等の課題が残る。
In order to improve the yield of the four-electron reaction product, a binuclear complex (Japanese Patent Laid-Open No. 11-253811, F.
C. Anson et al. , Journal of of
American Chemical Societ
y, Vol. 113, p9564 (1991)),
Dimerization of Porphyrin Complex (JP Collman
et al. , Journal of American
Chemical Society, Vol. 10
2, p6027 (1980)) and the like have been proposed.
However, there remain problems that industrial application such as yield in synthesis is difficult, cost is high, and overvoltage is large as compared with platinum or platinum alloy.

【0008】他方、白金の微粒子化、或いは、白金触媒
の利用率の向上による白金の使用量を低減、即ち、コス
ト削減を狙った触媒の開発が検討されている(例えば、
平成12年度新エネルギー・産業技術総合開発機構委託
研究成果報告書「固体高分子型燃料電池低コスト電極の
開発」)。しかしながら、白金の使用量低減に伴う出力
特性の低下も伴い、実用的には課題が残る。
On the other hand, the development of a catalyst aimed at reducing the amount of platinum used by making fine platinum particles or improving the utilization rate of the platinum catalyst, that is, cost reduction is under consideration (for example,
FY 2000 New Energy and Industrial Technology Development Organization Contract Research Results Report "Development of low cost solid polymer fuel cell electrodes"). However, a problem remains in practical use due to a decrease in output characteristics accompanying a reduction in the amount of platinum used.

【0009】[0009]

【発明が解決しようとする課題】本発明は、白金を多量
に使用する従来の触媒と同等の触媒特性を発揮する安価
な高分子固体電解質型燃料電池酸素極用触媒及びその製
造方法の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention provides an inexpensive catalyst for a polymer solid oxide fuel cell oxygen electrode that exhibits catalytic characteristics equivalent to those of a conventional catalyst that uses a large amount of platinum, and a method for producing the same. To aim.

【0010】[0010]

【課題を解決するための手段】上述の課題を解決するた
め、本発明者らが鋭意検討の結果、以下の手段により課
題を解決することに成功し、本発明に至ったものであ
る。即ち、 (1) 遷移金属の大環状化合物錯体と貴金属を担持し
た炭素材料からなる触媒であって、前記炭素材料のBE
T比表面積が500m2/g以上であることを特徴とす
る高分子固体電解質型燃料電池酸素極用触媒。 (2) 前記炭素材料が、SBET−SCTAB≧100m2
gを満たすことを特徴とする(1)記載の高分子固体電
解質型燃料電池酸素極用触媒。 (3) 前記大環状化合物の環状構造がN4−キレート
構造である(1)記載の高分子固体電解質型燃料電池酸
素極用触媒。 (4) 前記遷移金属がCo及び/又はFeであること
を特徴とする請求項(1)記載の高分子固体電解質型燃
料電池酸素極用触媒。 (5) 前記触媒に含まれる貴金属が5質量%以下であ
ることを特徴とする(1)記載の高分子固体電解質型燃
料電池酸素極用触媒。 (6) 前記触媒に含まれる遷移金属が2質量%以下で
あることを特徴とする(1)記載の高分子固体電解質型
燃料電池酸素極用触媒。 (7) BET比表面積が500m2/g以上の炭素粉
末の表面に遷移金属含有大環状化合物と貴金属とを担持
させた後に、700℃〜1100℃の温度で熱処理する
ことを特徴とする高分子固体電解質型燃料電池酸素極用
触媒の製造方法。
In order to solve the above-mentioned problems, the inventors of the present invention have made earnest studies, and as a result, have succeeded in solving the problems by the following means, resulting in the present invention. That is, (1) a catalyst comprising a carbon material supporting a macrocyclic compound complex of a transition metal and a noble metal, wherein the BE of the carbon material is
A polymer solid oxide fuel cell oxygen electrode catalyst having a T specific surface area of 500 m 2 / g or more. (2) The carbon material is S BET −S CTAB ≧ 100 m 2 /
The polymer solid oxide fuel cell oxygen electrode catalyst according to (1), which satisfies g. (3) The polymer solid oxide fuel cell oxygen electrode catalyst according to (1), wherein the macrocyclic compound has a cyclic structure of N 4 -chelate structure. (4) The catalyst for oxygen electrode of polymer solid oxide fuel cell according to (1), wherein the transition metal is Co and / or Fe. (5) The catalyst for a polymer solid oxide fuel cell oxygen electrode according to (1), wherein the noble metal contained in the catalyst is 5% by mass or less. (6) The polymer solid oxide fuel cell oxygen electrode catalyst according to (1), wherein the transition metal contained in the catalyst is 2% by mass or less. (7) A polymer characterized by carrying out heat treatment at a temperature of 700 ° C to 1100 ° C after supporting a transition metal-containing macrocyclic compound and a noble metal on the surface of carbon powder having a BET specific surface area of 500 m 2 / g or more. A method for producing a catalyst for an oxygen electrode of a solid oxide fuel cell.

【0011】[0011]

【発明の実施の形態】以下に本発明の内容を具体的に説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The contents of the present invention will be specifically described below.

【0012】本発明において本質的に重要なことは、
(i)遷移金属の大環状化合物錯体と貴金属とを共存させ
て触媒作用を発現させること、(ii)前述の触媒を担持さ
せる担体には比表面積の大きい炭素材料を用いること、
の2点である。
Essentially important in the present invention is that
(i) to develop a catalytic action by allowing a macrocyclic compound complex of a transition metal and a noble metal to coexist, (ii) using a carbon material having a large specific surface area as a carrier for supporting the above-mentioned catalyst,
There are two points.

【0013】ここで、大環状化合物とは、9原子以上に
より構成され、且つ、3以上の配位結合(ligati
ng)原子を有する環状化合物であり(Coordin
ation Chemistry of Macrocy
clic Compounds, G. A. Melso
n, Plenum press, New York &
London,(1979))、その具体的構造は、フ
タロシアニン類、ポルフィリン類、アザポルフィリン
類、テトラアザアンヌレン類、シッフ(Schiff)
塩基のようなN4−キレート構造、N,N(−エチレンビ
ス(サリシリデンイミナト)等のN22−キレート構
造、オルソアミノフェノールより誘導される化合物等の
22−キレート構造、サリシルアルデヒドより誘導さ
れる化合物等のO4−キレート構造、等の大環状化合物
を指すものである。これらの大環状化合物は、何れも本
発明に適用可能であるが、好ましくは、金属に対して4
配位以上の錯形成能を有する化合物が好ましい。配位数
が多いほど、錯体としての化学的安定性が高まり、即ち
触媒寿命が向上するためである。
Here, the macrocyclic compound is composed of 9 atoms or more and has 3 or more coordination bonds (ligati).
ng) is a cyclic compound having an atom (Coordin
ation Chemistry of Macrocy
CLIC COMPUNDS, G.I. A. Melso
n, Plenum press, New York &
London, (1979)), and its specific structure is phthalocyanines, porphyrins, azaporphyrins, tetraazaannulene, Schiff.
N 4 -chelate structure such as base, N 2 O 2 -chelate structure such as N, N (-ethylenebis (salicylideneiminato), N 2 S 2 -chelate structure such as compounds derived from orthoaminophenol , A macrocyclic compound such as an O 4 -chelate structure such as a compound derived from salicylaldehyde, etc. Any of these macrocyclic compounds are applicable to the present invention, but preferably a metal Against 4
A compound having a complex-forming ability of coordination or higher is preferable. This is because as the coordination number increases, the chemical stability of the complex increases, that is, the catalyst life increases.

【0014】大環状化合物の中心に位置する金属が遷移
金属であることの必要性は、その電子構造にある。即
ち、酸素分子の結合性軌道から吸着サイトの金属原子の
空のs軌道への電荷移動(donation)と、遷移
金属原子のd軌道から酸素分子の反結合性軌道への電荷
移動(backdonation)により、酸素分子と
遷移金属原子を中心にした大環状化合物錯体との吸着状
態が安定化され(小林久芳,山口克,表面,Vol.2
3,p311(1985))、その結果、高い酸素還元
活性を示す。つまり、d電子軌道に空の軌道がある遷移
金属が、基本的に酸素還元活性の必要条件を満たすもの
である。
The need for the centrally located metal of the macrocycle to be a transition metal lies in its electronic structure. That is, the charge transfer from the bond orbit of the oxygen molecule to the empty s orbit of the metal atom at the adsorption site and the charge transfer from the d orbit of the transition metal atom to the antibond orbit of the oxygen molecule. , The adsorption state of oxygen molecules and macrocycle complexes centered on transition metal atoms is stabilized (Kobayashi, K., Yamaguchi, K., Surface, Vol. 2).
3, p311 (1985)), and as a result, shows high oxygen reduction activity. That is, a transition metal having an empty orbit in the d electron orbit basically satisfies the requirement for oxygen reduction activity.

【0015】本発明における遷移金属の大環状化合物と
貴金属との共存という複合触媒は、後述の実施例にその
具体例を示すように、各々単独の触媒活性よりも、共存
した状態の方が触媒活性が高いという実験事実に基づく
ものである。その理論的な解釈は未確定であるが、例え
ば、貴金属上での4電子還元反応と共に、遷移金属の大
環状化合物錯体上での2電子反応に引き続き、貴金属上
で更に2電子還元反応を生じる等の、2つの還元反応パ
スにより酸素還元反応が行われるために、各々単独の場
合よりも、共存した場合の方が触媒活性が促進されると
推察される。
In the composite catalyst of the present invention in which a macrocycle of a transition metal and a noble metal coexist, the coexistence state of the catalyst is greater than the catalytic activity of each of them, as will be shown in the specific examples below. It is based on the experimental fact that the activity is high. Although its theoretical interpretation is uncertain, for example, along with the 4-electron reduction reaction on the noble metal, the 2-electron reaction on the macrocyclic compound complex of the transition metal is followed by a further 2-electron reduction reaction on the precious metal. Since the oxygen reduction reaction is carried out by two reduction reaction paths such as those described above, it is presumed that the catalytic activity is promoted more when they coexist than when they each coexist.

【0016】更に、この二つの触媒の共存による触媒活
性の向上には、触媒の担体である炭素材料の表面積が大
きいことが必須の条件である。触媒担体の効果は、単な
る反応の場を広くするという物理的効果だけでなく、遷
移金属錯体の大環状化合物に対する化学的な相互作用を
通じた触媒作用の活性化が推察される。遷移金属の大環
状化合物錯体の触媒反応プロセスにおいて、遷移金属に
吸着した酸素分子の還元反応は、同時に遷移金属の価数
変化を伴うが、その価数変化を容易にする(促進する)
のが、大環状化合物のπ電子である。即ち、酸素還元時
に遷移金属の価数は増加するが、触媒能を回復するに
は、増加した価数が元に戻る(金属を取り囲む大環状化
合物から電子を金属に供給する)過程がなければ、連続
した触媒作用を発揮することは出来ない。そして、その
際の電子移動を担うのが、遷移金属原子に対してキレー
ト結合している大環状化合物のπ電子系である。そし
て、大環状化合物のπ電子の移動を更に容易にするの
が、巨大なπ電子系を形成する炭素材料の担体である。
Further, in order to improve the catalytic activity due to the coexistence of these two catalysts, it is an essential condition that the surface area of the carbon material which is the carrier of the catalyst is large. As for the effect of the catalyst carrier, not only the physical effect of broadening the field of the reaction but also the activation of the catalytic action through the chemical interaction of the transition metal complex with the macrocyclic compound is presumed. In the catalytic reaction process of transition metal macrocycle complex, the reduction reaction of oxygen molecules adsorbed on the transition metal is accompanied by the valence change of the transition metal at the same time, but facilitates (promotes) the valence change.
Is the π electron of the macrocyclic compound. That is, the valence of the transition metal increases at the time of oxygen reduction, but in order to restore the catalytic ability, there is a process of returning the increased valence to the original (supplying electrons to the metal from the macrocyclic compound surrounding the metal). , Cannot exert continuous catalytic action. The electron transfer in this case is carried out by the π-electron system of the macrocyclic compound which is chelated to the transition metal atom. Further, it is a carrier of a carbon material forming a huge π-electron system that further facilitates the transfer of π-electrons of the macrocyclic compound.

【0017】表面積の大きい炭素材料は一般に活性が高
い。その活性は、炭素材料表面に形成される凹凸、微細
孔による炭素網面の欠陥やエッジ部分等に起因するもの
である。本発明では、表面積の大きな(活性の高い)炭
素材料を大環状化合物の担体に用いることで、炭素材料
のπ電子系と大環状化合物のπ電子系との相互作用の増
幅を図ったものである。
Carbon materials having a large surface area are generally highly active. The activity is due to irregularities formed on the surface of the carbon material, defects on the carbon net surface due to fine pores, edge portions, and the like. In the present invention, by using a carbon material having a large surface area (high activity) as a carrier for a macrocyclic compound, the interaction between the π-electron system of the carbon material and the π-electron system of the macrocyclic compound is amplified. is there.

【0018】この触媒活性に対応する表面積の大きさの
指標には、鋭意検討した結果、窒素ガスの吸着等温線の
BET式評価により求められる比表面積(BET比表面
積)が適当であることが分かった。その具体的数値範囲
は、500m2/g以上である。500m2/g未満で
は、触媒活性を増幅させると推察される炭素表面の凹
凸、微細孔による炭素網面の欠陥、エッジ部分の量が不
十分であり、触媒活性の向上は発現しない。他方、20
00m2/g以上にまで表面積を大きくすると、炭素内
部に深く入り込んだ微細孔が形成され、その微細孔の内
部表面が反応場全体に占める比率が高くなるため、酸素
の拡散等の物質移動が律速となり、触媒活性は劣化して
しまう恐れがあり、本発明には好ましくないことがあ
る。
As a result of extensive studies, it was found that the specific surface area (BET specific surface area) obtained by the BET-type evaluation of the adsorption isotherm of nitrogen gas is appropriate as an index of the surface area corresponding to the catalytic activity. It was The specific numerical range is 500 m 2 / g or more. If the amount is less than 500 m 2 / g, the amount of the carbon surface irregularities, the carbon network surface defects due to fine pores, and the edge portion, which are presumed to amplify the catalytic activity, is insufficient, and the catalytic activity is not improved. On the other hand, 20
When the surface area is increased to 00 m 2 / g or more, fine pores that penetrate deeply into carbon are formed, and the internal surface of the fine pores occupies a large proportion of the whole reaction field, so that mass transfer such as oxygen diffusion occurs. There is a possibility that the rate becomes rate-determining and the catalytic activity is deteriorated, which is not preferable in the present invention.

【0019】この微細孔による表面積の比率を具体的に
表したのが、SBET−SCTAB≧100m2/gである。こ
こに、SBETはBET比表面積を表し、SCTABはCTA
B(セチルトリメチルアンモニウムブロマイド)の吸着
量により定義される表面積で、CTABが入り込めない
微細孔を除いた表面積に相当し、その測定法はASTM
(米国材料試験協会)のD3765法に従う。前述のよ
うに炭素表面の凹凸、微細孔による炭素網面の欠陥やエ
ッジ部分の量が触媒活性の支配要因と考えられ、従って
最適な微細孔の量の存在が推察される。それを定量的に
表現したのが、SBET−SCTAB≧100m2/gである。
BET−SCTABが100m2/g未満では、微細孔の量が
少なく、触媒活性の増幅効果が小さい。他方、SBET
CTABが1000m2/gを越える場合には、全表面積
に占める微細孔内部面積の比率が高すぎるために、前述
の酸素分子の物質移動が律速となり、触媒活性は劣化す
る恐れがあるので、本発明には好ましくないことがあ
る。
The specific surface area ratio of the fine pores is S BET -S CTAB ≧ 100 m 2 / g. Where S BET is the BET specific surface area and S CTAB is the CTA.
The surface area defined by the amount of B (cetyltrimethylammonium bromide) adsorbed, which corresponds to the surface area excluding the micropores in which CTAB cannot enter. The measuring method is ASTM
According to the American Society for Testing and Materials D3765 method. As described above, the unevenness of the carbon surface, the defects on the carbon network surface due to the micropores, and the amount of the edge portion are considered to be the controlling factors of the catalytic activity, and therefore it is presumed that the optimum amount of the micropores exists. A quantitative expression of this is S BET −S CTAB ≧ 100 m 2 / g.
When S BET -S CTAB is less than 100 m 2 / g, the amount of micropores is small and the effect of amplifying the catalytic activity is small. On the other hand, S BET
If S CTAB exceeds 1000 m 2 / g, the ratio of the internal area of the micropores to the total surface area is too high, and the above-mentioned mass transfer of oxygen molecules is rate-determining, which may deteriorate the catalytic activity. It may not be preferred for the present invention.

【0020】本発明に好適に用いられる炭素材料は、上
記の表面構造を満たすものであれば、特に限定されるも
のではない。例示するならば、いわゆる導電性グレード
のカーボンブラック、カーボンナノチューブ、カーボン
ナノファイバー等を挙げることができる。
The carbon material preferably used in the present invention is not particularly limited as long as it satisfies the above surface structure. For example, so-called conductive grade carbon black, carbon nanotubes, carbon nanofibers and the like can be mentioned.

【0021】本発明に好適に使用される大環状化合物
は、N4−キレート構造が好ましい。遷移金属の大環状
化合物錯体と貴金属との共存による触媒活性の向上幅
は、適用される遷移金属の大環状化合物錯体の単独の触
媒活性の高さに依存し、即ち、大環状化合物錯体の触媒
活性が高いほど、貴金属との共存による触媒活性の増幅
効果が大きい。そして、N4−キレート構造が他のキレ
ート構造に比較して触媒活性が高く、本発明に好適に使
用することができることが判った。N4−キレート構造
の中でも、特にテトラフェニルポルフィリン、テトラメ
トキシフェニルポルフィリン等のポルフィリンの誘導
体、フタロシアニン誘導体、テトラアザアンヌレン類
が、触媒活性の高さから好ましい。
The macrocyclic compound preferably used in the present invention preferably has an N 4 -chelate structure. The extent of improvement in catalytic activity due to the coexistence of a transition metal macrocyclic compound complex and a noble metal depends on the level of the catalytic activity of the applied transition metal macrocyclic compound complex alone, that is, the catalyst of the macrocyclic compound complex. The higher the activity, the greater the effect of amplifying the catalytic activity due to the coexistence with the noble metal. It was also found that the N 4 -chelate structure has higher catalytic activity than other chelate structures and can be suitably used in the present invention. Among the N 4 -chelate structures, porphyrin derivatives such as tetraphenylporphyrin and tetramethoxyphenylporphyrin, phthalocyanine derivatives, and tetraazaannulene are particularly preferred because of their high catalytic activity.

【0022】また、遷移金属元素の種類によっても触媒
活性は変化する。本発明者が鋭意検討した結果、大環状
化合物の種類に依存せず高い活性を示すのが、Co及び
/又はFeであり、本発明に好適に使用することができ
る。
The catalytic activity also changes depending on the type of transition metal element. As a result of diligent studies by the present inventor, it is Co and / or Fe that exhibits high activity independently of the type of macrocyclic compound, and can be suitably used in the present invention.

【0023】本発明に用いる貴金属は、ルテニウム、ロ
ジウム、パラジウム、オスミウム、イリジウム、白金、
及び、これらを主成分とする合金を指す。触媒活性の高
さから、本発明では、ルテニウム、ロジウム、パラジウ
ム、オスミウム、イリジウム、白金、及び、これらを主
成分とする合金の適用が好ましい。白金及び白金を主成
分とした合金の適用が、更に好ましい。他の貴金属は、
白金に比較して触媒活性が低く、遷移金属の大環状化合
物錯体との共存による触媒活性向上は認められるが、そ
の改善幅は小さい。
The noble metal used in the present invention is ruthenium, rhodium, palladium, osmium, iridium, platinum,
It also means an alloy containing these as the main components. In the present invention, it is preferable to apply ruthenium, rhodium, palladium, osmium, iridium, platinum, and alloys containing these as the main components because of their high catalytic activity. It is more preferable to use platinum and an alloy containing platinum as a main component. Other precious metals are
The catalytic activity is lower than that of platinum, and the improvement of the catalytic activity due to the coexistence of the transition metal with the macrocyclic compound complex is recognized, but the improvement is small.

【0024】本発明の貴金属の担持量は、5質量%以下
が好ましい。5質量%を越えて担持すると、貴金属単独
の触媒作用が相対的に強くなり、遷移金属の大環状化合
物錯体との共存による触媒活性の増加幅が小さくなって
しまう。更に、触媒のコストという観点も考慮すると、
貴金属の担持量は4質量%以下がより一層好ましい。ま
た、触媒としての機能を発現するため、貴金属の担持量
は、0.1質量%以上が好ましく、さらに好ましくは
0.5質量%以上である。
The supported amount of the noble metal of the present invention is preferably 5% by mass or less. When it is supported in an amount of more than 5% by mass, the catalytic action of the noble metal alone becomes relatively strong, and the increase in the catalytic activity due to the coexistence of the transition metal with the macrocyclic compound complex becomes small. Furthermore, considering the cost of the catalyst,
The amount of the noble metal supported is more preferably 4% by mass or less. Further, in order to exhibit the function as a catalyst, the amount of the noble metal supported is preferably 0.1% by mass or more, more preferably 0.5% by mass or more.

【0025】遷移金属の大環状化合物錯体の担持量は遷
移金属の担持量として2質量%以下が好ましく、更に好
ましくは1質量%以下である。2質量%を越えて担持す
ると、遷移金属の大環状化合物錯体の触媒作用が相対的
に強くなり、貴金属との共存による触媒活性の増加幅が
小さくなってしまう。また、触媒としての機能を発現す
るため、遷移金属の担持量は、0.01質量%以上が好
ましく、さらに好ましくは0.05質量%以上である。
The amount of the transition metal macrocyclic compound supported on the transition metal is preferably 2% by mass or less, more preferably 1% by mass or less. When it is supported in an amount of more than 2% by mass, the catalytic action of the transition metal macrocyclic compound complex becomes relatively strong, and the increase in the catalytic activity due to the coexistence with the noble metal becomes small. Further, the amount of the transition metal supported is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more in order to exhibit the function as a catalyst.

【0026】本発明において規定する触媒の触媒活性の
本質は、炭素材料の表面と遷移金属の大環状化合物錯体
とのπ電子を通じた相互作用と推察される。そこで、こ
のπ電子相互作用をより強くすることを狙って、触媒の
調整方法を鋭意検討した結果、炭素粉末の表面に遷移金
属の大環状化合物錯体と貴金属とを担持させた後に、非
酸化性雰囲気中で700℃〜1100℃の温度で熱処理
することにより、高活性な触媒を調製し得ることを見出
した。ここで、酸化性雰囲気で処理すると、炭素担体と
大環状化合物の酸化消耗が発生し、触媒活性を消失する
ことになる。また、700℃未満の温度での熱処理で
は、炭素担体と大環状化合物とのπ電子相互作用が充分
でなく、触媒活性が発現しない。他方、1100℃を越
える温度での熱処理は、大環状化合物の熱的分解を生じ
るために、触媒活性を消失することになる。
The essence of the catalytic activity of the catalyst specified in the present invention is presumed to be the interaction between the surface of the carbon material and the macrocyclic compound complex of the transition metal through π electrons. Therefore, as a result of diligently studying the method for adjusting the catalyst with the aim of further strengthening the π-electron interaction, as a result of supporting the transition metal macrocyclic compound complex and the noble metal on the surface of the carbon powder, It was found that a highly active catalyst can be prepared by heat treatment at a temperature of 700 ° C to 1100 ° C in an atmosphere. Here, if the treatment is carried out in an oxidizing atmosphere, the carbon carrier and the macrocyclic compound will be consumed by oxidation, and the catalytic activity will be lost. Further, in the heat treatment at a temperature lower than 700 ° C., the π-electron interaction between the carbon support and the macrocyclic compound is not sufficient, and the catalytic activity is not expressed. On the other hand, heat treatment at a temperature higher than 1100 ° C. causes thermal decomposition of the macrocyclic compound, resulting in loss of catalytic activity.

【0027】本発明の触媒は、高分子固体電解質型燃料
電池の電極触媒層を形成する通常の方法、例示するなら
ば、触媒と高分子固体電解質溶液とのスラリーを調製
し、それをカーボンペーパーに塗布する方法等に適用す
ることが可能であり、特に、触媒層の形成方法に制限は
ない。
The catalyst of the present invention is a conventional method for forming an electrode catalyst layer of a polymer electrolyte fuel cell, for example, a slurry of a catalyst and a polymer solid electrolyte solution is prepared and the slurry is prepared by using carbon paper. The present invention can be applied to the method of applying to, and the method of forming the catalyst layer is not particularly limited.

【0028】[0028]

【実施例】以下に、本発明にて規定する触媒に関して、
具体的に説明する。
[Examples] With respect to the catalyst specified in the present invention,
This will be specifically described.

【0029】(炭素材料担体)触媒用の炭素材料担体に
は、市販のカーボンブラックを用いた。造粒されている
場合には、予め乳鉢にて粉砕したものを以下の触媒調製
に供した。実施例、比較例に用いたカーボンブラック
は、ケッチェンブラックEC(ライオン(株)社製、E
Cと略す)、ケッチェンブラックEC600JD(ライ
オン(株)社製、EC600JDと略す)、プリンテッ
クスXE2(デグサジャパン(株)社製、XE2と略
す)、カラーブラックFW200(デグサジャパン
(株)社製、FW200と略す)、バルカンXC72R
(キャボット(株)、XC72Rと略す)、並びに、米
国ElectroChem社製のEC20PTC(XC
72に白金20質量%担持したもの)である。これらの
カーボンブラックのBET比表面積、SBET−SCTAB
表1にまとめて示す。
(Carbon material carrier) Commercially available carbon black was used as the carbon material carrier for the catalyst. If granulated, it was ground in a mortar in advance and subjected to the following catalyst preparation. Carbon black used in Examples and Comparative Examples is Ketjen Black EC (manufactured by Lion Corporation, E
(Abbreviated as C), Ketjen Black EC600JD (manufactured by Lion Corporation, abbreviated as EC600JD), Printex XE2 (manufactured by Degussa Japan Co., Ltd., abbreviated as XE2), Color Black FW200 (manufactured by Degussa Japan Co., Ltd.) , FW200), Vulcan XC72R
(Cabot Corporation, abbreviated as XC72R), and EC20PTC (XC, manufactured by ElectroChem, USA)
72 carrying 20% by mass of platinum). Table 1 collectively shows the BET specific surface area, S BET -S CTAB , of these carbon blacks.

【0030】(触媒調製法)所定の質量%になるよう
に、塩化白金酸6水和物(和光純薬(株)製)を計量
し、水で適当量に希釈した水溶液に、担体として用いる
カーボンブラックを加えて、十分攪拌した後、超音波発
生器にて分散を進行させた。分散液をエバポレーターで
乾燥固化させた前駆体を、水素/アルゴン混合ガスを流
通させた電気炉(水素ガスの比率;10〜50体積%)
で300℃に加熱し、塩化白金酸の還元処理を行った。
(Catalyst preparation method) Chloroplatinic acid hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was weighed so as to be a predetermined mass% and used as a carrier in an aqueous solution diluted with water to an appropriate amount. After carbon black was added and sufficiently stirred, dispersion was allowed to proceed with an ultrasonic generator. An electric furnace (hydrogen gas ratio: 10 to 50% by volume) in which a hydrogen / argon mixed gas was passed through the precursor obtained by drying and solidifying the dispersion liquid with an evaporator.
At 300 ° C., the chloroplatinic acid was reduced.

【0031】所定の質量%になるように、遷移金属の大
環状化合物錯体(市販の試薬)を計量し、N,N’−ジ
メチルフォルムアミド(試薬特級グレード)、又は、ピ
リジン(試薬特級グレード)を適当量加えた溶液に、上
述の白金を担持したカーボンブラック(Pt−C)を加
えて十分に攪拌し、さらに超音波発生器を用いて分散を
進行させた。分散液を70℃のオイルバスにて保温しな
がら、8時間以上還流(アルゴンにフロー下)した後、
分散液の5倍量以上の蒸留水に攪拌しながら注ぎ込み、
大環状化合物のPt−C上への定着を行った。その後、
減圧濾過により触媒を分離採取し、再度、60℃程度の
温度の蒸留水で洗浄し、減圧濾過により触媒を採取し、
100℃で真空乾燥した。
A transition metal macrocyclic compound complex (commercially available reagent) is weighed so as to be a predetermined mass%, and N, N'-dimethylformamide (reagent special grade) or pyridine (reagent special grade). The carbon black (Pt-C) supporting platinum described above was added to a solution to which an appropriate amount of was added, and the mixture was sufficiently stirred, and further dispersion was promoted using an ultrasonic generator. While the dispersion was kept warm in an oil bath at 70 ° C., refluxed for 8 hours or more (under argon flow),
Pour into distilled water at least 5 times the amount of the dispersion while stirring,
The macrocyclic compound was fixed on Pt-C. afterwards,
The catalyst was separated and collected by vacuum filtration, washed again with distilled water at a temperature of about 60 ° C., and the catalyst was collected by vacuum filtration.
It was vacuum dried at 100 ° C.

【0032】なお、実施例、比較例に用いた大環状化合
物は、フタロシアニン(Pcと略す)、5,10,1
5,20−テトラフェニル−21H,23H−ポルフィ
リン(TPPと略す)、5,10,15,20−テトラ
キス(4−メトキシフェニル)−21H,23H−ポル
フィリン(TMPPと略す)である。さらに、アルゴン
ガス雰囲気中、所定の温度で1時間処理して、評価用の
触媒とした。
The macrocyclic compounds used in Examples and Comparative Examples are phthalocyanine (abbreviated as Pc), 5,10,1.
5,20-tetraphenyl-21H, 23H-porphyrin (abbreviated as TPP) and 5,10,15,20-tetrakis (4-methoxyphenyl) -21H, 23H-porphyrin (abbreviated as TMPP). Further, it was treated at a predetermined temperature for 1 hour in an argon gas atmosphere to obtain a catalyst for evaluation.

【0033】なお、遷移金属の大環状化合物錯体のみを
担持した触媒の調製は、前述の白金担持プロセスを除い
て、遷移金属の大環状化合物錯体の担持プロセスのみに
従い、他方、白金のみを担持した触媒の調製は、遷移金
属の大環状化合物錯体の担持プロセスを除いて、白金担
持プロセスのみに従って触媒を調製した。
The preparation of the catalyst carrying only the transition metal macrocyclic compound complex was carried out only by carrying the transition metal macrocyclic compound complex, except for the above-mentioned platinum carrying process, while carrying only platinum. The catalyst was prepared according to only the platinum loading process, excluding the loading process of the transition metal macrocycle complex.

【0034】(触媒活性の評価法) 評価用サンプルの調製 触媒を予め乳鉢で粉砕した触媒粉末15mgと高分子固
体電解質溶液(米国ElectroChem社のEC−
NS−05;ナフィオン5質量%溶液)300mgとエ
タノール300mgとをサンプル瓶に入れ、攪拌子を用
い15分間スターラーで攪拌し、十分に混練されたスラ
リーを調製した。
(Evaluation Method of Catalytic Activity) Preparation of Sample for Evaluation 15 mg of catalyst powder obtained by previously pulverizing the catalyst in a mortar and a polymer solid electrolyte solution (EC-manufactured by ElectroChem, USA)
NS-05; Nafion 5% by mass solution) (300 mg) and ethanol (300 mg) were placed in a sample bottle and stirred with a stirrer for 15 minutes using a stirrer to prepare a sufficiently kneaded slurry.

【0035】試験極の調製 回転リングディスク電極のディスク電極上に、上記のス
ラリーを塗布・乾燥して試験極とした。ディスク電極
は、グラッシーカーボンで製造された直径6mmの円柱
で、その底面にサンプルを塗布する。塗布量は0.03
mgとなるように調整した。また、リング電極は、内径
7.3mm、外径9.3mmの白金製の円筒であり、回
転リングディスク電極は、ディスク電極とリング電極と
が同心に位置し、ディスク電極とリング電極の間、並び
にリング電極の外側をテフロン(登録商標)樹脂で絶縁
した構造になっている。
Preparation of Test Electrode The above-mentioned slurry was applied onto the disk electrode of the rotating ring disk electrode and dried to give a test electrode. The disk electrode is a cylinder made of glassy carbon and having a diameter of 6 mm, and the sample is applied to the bottom surface thereof. Coating amount is 0.03
It was adjusted to be mg. Further, the ring electrode is a platinum cylinder having an inner diameter of 7.3 mm and an outer diameter of 9.3 mm, and the rotating ring disc electrode is such that the disc electrode and the ring electrode are concentrically located, and between the disc electrode and the ring electrode, In addition, the outside of the ring electrode is insulated with Teflon (registered trademark) resin.

【0036】評価方法 (有)日厚計測の回転リングディスク評価装置(RRD
E−1)を用いて、触媒の電気化学的な活性評価を行っ
た。電気化学的な評価には、ソーラートロン社SI12
87を2台用いて、リング電極とディスク電極を独立に
制御して、バイポーラー測定を行った。電解液には0.
1Nの硫酸水溶液を用い、基準極にSCE電極、対極に
Pt板を用いるセル構成とした。評価条件は以下の通り
である。酸素ガスをバブリングさせ、酸素が飽和した電
解液状態で、2500rpmで回転した電極のディスク
電極の電位を1.0V(SCE基準)から−0.2V
(SCE基準)まで10mV/secの速度で掃引さ
せ、その際、リング電極の電位を1.1V(SCE基
準)に保持して、ディスク電極、リング電極に流れる電
流の経時変化を測定し、ディスク電極の電位に対するデ
ィスク電流、リング電流のプロットを得た。
Evaluation method (with) Rotating ring disk evaluation device (RRD) for day thickness measurement
E-1) was used to evaluate the electrochemical activity of the catalyst. Solartron SI12 for electrochemical evaluation
Bipolar measurement was performed by using two 87 and controlling the ring electrode and the disk electrode independently. The electrolyte should be 0.
A 1N sulfuric acid aqueous solution was used, a SCE electrode was used as the reference electrode, and a Pt plate was used as the counter electrode. The evaluation conditions are as follows. The potential of the disk electrode of the electrode rotated at 2500 rpm was changed from 1.0 V (SCE standard) to -0.2 V in the electrolytic solution state in which oxygen gas was bubbled and oxygen was saturated.
(SCE standard) is swept at a speed of 10 mV / sec, at that time, the potential of the ring electrode is maintained at 1.1 V (SCE standard), and the time-dependent change of the current flowing through the disk electrode and the ring electrode is measured. A plot of the disk current and the ring current with respect to the electrode potential was obtained.

【0037】過電圧評価法 上記ディスク電位とディスク電流のプロットから、飽和
電流値の半分の電流値のときの電位(E1/2)を読み取
った。米国ElectroChem社製触媒のEC20
PTC(カーボンブラック上に20質量%の白金を担持
させた触媒)のE1/2 0を基準として、実施例、比較例の
各触媒の ΔE1/2=E1/2 0−E1/2 を評価した。すなわち、ΔE1/2 が大きいほど過電圧
が大きく、触媒活性が低い。ΔE1/2=0(mV)でE
C20PTCと同等の過電圧で、マイナスならばEC2
0PTCよりも過電圧が小さく、触媒活性が高いことに
対応する。
Overvoltage Evaluation Method From the above plot of disk potential and disk current, the potential (E 1/2 ) at a current value half the saturation current value was read. EC20, a catalyst manufactured by ElectroChem, USA
PTC, based on the E 1/2 0 of (catalyst supported a 20 wt% platinum on carbon black), examples of each catalyst of Comparative Example ΔE 1/2 = E 1/2 0 -E 1 / 2 was evaluated. That is, the larger ΔE 1/2 , the larger the overvoltage and the lower the catalytic activity. E at ΔE 1/2 = 0 (mV)
Overvoltage equivalent to C20PTC, if negative, EC2
It corresponds to a smaller overvoltage and a higher catalytic activity than 0 PTC.

【0038】4電子反応率の評価法 リング電流とディスク電流のディスク電位に対するプロ
ットから、下式に基づいて、4電子反応率ηを計算し
た。
Evaluation Method of 4-Electron Reaction Rate From the plot of the ring current and the disk current with respect to the disk potential, the 4-electron reaction rate η was calculated based on the following equation.

【0039】η(%)=[Id−(Ir/n)]/[Id
+(Ir/n)] ここで、Idはディスク電流、Irはリング電流を表し、
nはリング電極によるディスク反応生成物の捕捉率を表
す。
Η (%) = [I d − (I r / n)] / [I d
+ (I r / n)] where I d is the disk current, I r is the ring current,
n represents the capture rate of the disc reaction product by the ring electrode.

【0040】捕捉率の実験的な測定法は、藤嶋昭,等、
電気化学測定法(下)、技報堂出版(1991)に従っ
て評価した結果、実施例に用いた電極においてはn=
0.36であった。
An experimental method for measuring the capture rate is described in Akira Fujishima, et al.
As a result of evaluation according to the electrochemical measurement method (bottom) and Gihodo Publishing (1991), in the electrode used in the example, n =
It was 0.36.

【0041】また、ディスク電位に応じてηは変化する
(電位が卑なほどηは小さくなる)が、触媒によるηの
差が明確になるように、本評価においてはディスク電位
が0V(SCE基準)のときのηを採用した。
Further, η changes according to the disk potential (η becomes smaller as the potential becomes base), but in this evaluation, the disk potential was 0 V (SCE standard so that the difference in η due to the catalyst becomes clear. ) Was adopted.

【0042】表1に、(a)担体物性として、BET表
面積、CTAB表面積、(b)触媒組成として、大環状
化合物種、遷移金属種とその担持量、白金担持量、
(c)触媒調製条件として、触媒担持後の熱処理温度、
(d)触媒活性の指標として、EC20PTCに対する
過電圧差ΔE1/2と4電子反応率η、をまとめて示し
た。
In Table 1, (a) physical properties of the carrier, BET surface area, CTAB surface area, (b) catalyst composition, macrocyclic compound species, transition metal species and their loading amount, platinum loading amount,
(C) As the catalyst preparation conditions, the heat treatment temperature after supporting the catalyst,
(D) As an index of catalytic activity, the overvoltage difference ΔE 1/2 and the four-electron reaction rate η with respect to EC20PTC are shown together.

【0043】これらの実施例、比較例の結果から、本発
明にて規定している担体の表面構造(BET比表面積と
BET−SCTAB)の触媒活性への効果は、明確である。
また、遷移金属の大環状化合物錯体の担持量、貴金属
(白金)の担持量に関しても、本発明の規定が効果的で
あることが認められる。更に、触媒の調整法として、触
媒担持後の熱処理温度の効果が明確に認められ、本発明
において規定する温度範囲での熱処理により、明確な触
媒活性の向上が認められる。
From the results of these Examples and Comparative Examples, the effect of the surface structure (BET specific surface area and SBET- SCTAB ) of the carrier defined in the present invention on the catalytic activity is clear.
Further, it is recognized that the definition of the present invention is also effective with respect to the loading amount of the macrocyclic compound complex of the transition metal and the loading amount of the noble metal (platinum). Further, as a method of preparing the catalyst, the effect of the heat treatment temperature after supporting the catalyst is clearly recognized, and the heat treatment within the temperature range specified in the present invention clearly improves the catalytic activity.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】以上のように、本発明にて規定するとこ
ろの遷移金属の大環状化合物錯体と貴金属を、500m
2/g以上の比表面積を有する炭素材料に複合担持した
触媒は、その貴金属担持量が、現状標準的に用いられて
いる白金20質量%担持の触媒に対比して、約1/7で
あるにもかかわらず、過電圧、4電子反応率において、
ほぼ同等の触媒活性を発現しており、触媒のコスト低減
と触媒活性の両立をもたらしているものである。
As described above, the transition metal macrocyclic compound complex and the noble metal defined in the present invention are 500 m each.
The amount of the noble metal supported by the catalyst composite-supported on the carbon material having a specific surface area of 2 / g or more is about 1/7 as compared with the catalyst currently supporting 20% by mass of platinum which is normally used as standard. Nevertheless, at overvoltage, 4 electron reaction rate,
It exhibits almost the same catalytic activity, which brings about both reduction of catalyst cost and catalytic activity.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS03 BB01 BB06 BB08 BB12 BB17 DD06 EE03 EE05 EE08 EE11 EE16 EE17 HH02 HH05 HH08 5H026 AA06 BB01 EE05 EE11 EE17 HH02 HH05 HH08    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H018 AA06 AS03 BB01 BB06 BB08                       BB12 BB17 DD06 EE03 EE05                       EE08 EE11 EE16 EE17 HH02                       HH05 HH08                 5H026 AA06 BB01 EE05 EE11 EE17                       HH02 HH05 HH08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属の大環状化合物錯体と貴金属を
担持した炭素材料からなる触媒であって、前記炭素材料
のBET比表面積が500m2/g以上であることを特
徴とする高分子固体電解質型燃料電池酸素極用触媒。
1. A polymer solid electrolyte comprising a carbon material supporting a macrocyclic compound complex of a transition metal and a noble metal, wherein the carbon material has a BET specific surface area of 500 m 2 / g or more. Type fuel cell oxygen electrode catalyst.
【請求項2】 前記炭素材料が、SBET−SCTAB≧10
0m2/gを満たすことを特徴とする請求項1記載の高
分子固体電解質型燃料電池酸素極用触媒。
2. The carbon material is S BET −S CTAB ≧ 10.
The catalyst for polymer electrolyte fuel cell oxygen electrode according to claim 1, which satisfies 0 m 2 / g.
【請求項3】 前記大環状化合物の環状構造がN4−キ
レート構造である請求項1記載の高分子固体電解質型燃
料電池酸素極用触媒。
3. The catalyst for a polymer solid oxide fuel cell oxygen electrode according to claim 1, wherein the cyclic structure of the macrocyclic compound is an N 4 -chelate structure.
【請求項4】 前記遷移金属が、Co及び/又はFeで
あることを特徴とする請求項1記載の高分子固体電解質
型燃料電池酸素極用触媒。
4. The catalyst for a polymer solid oxide fuel cell oxygen electrode according to claim 1, wherein the transition metal is Co and / or Fe.
【請求項5】 前記触媒に含まれる貴金属が5質量%以
下であることを特徴とする請求項1記載の高分子固体電
解質型燃料電池酸素極用触媒。
5. The catalyst for polymer solid oxide fuel cell oxygen electrode according to claim 1, wherein the noble metal contained in the catalyst is 5% by mass or less.
【請求項6】 前記触媒に含まれる遷移金属が2質量%
以下であることを特徴とする請求項1記載の高分子固体
電解質型燃料電池酸素極用触媒。
6. The transition metal contained in the catalyst is 2% by mass.
The polymer solid oxide fuel cell oxygen electrode catalyst according to claim 1, wherein:
【請求項7】 BET比表面積が500m2/g以上の
炭素粉末の表面に遷移金属含有大環状化合物と貴金属と
を担持させた後に、700℃〜1100℃の温度で熱処
理することを特徴とする高分子固体電解質型燃料電池酸
素極用触媒の製造方法。
7. A carbon powder having a BET specific surface area of 500 m 2 / g or more, the transition metal-containing macrocyclic compound and the noble metal being supported on the surface of the carbon powder, and then heat-treated at a temperature of 700 ° C. to 1100 ° C. A method for producing a catalyst for a polymer solid oxide fuel cell oxygen electrode.
JP2001297225A 2001-09-27 2001-09-27 Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same Pending JP2003109614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297225A JP2003109614A (en) 2001-09-27 2001-09-27 Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297225A JP2003109614A (en) 2001-09-27 2001-09-27 Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003109614A true JP2003109614A (en) 2003-04-11

Family

ID=19118339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297225A Pending JP2003109614A (en) 2001-09-27 2001-09-27 Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003109614A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008815A1 (en) * 2003-07-18 2005-01-27 Shinano Kenshi Kabushiki Kaisha Fuel cell, electrode material for fuel cell and method for producing same
JP2005056776A (en) * 2003-08-07 2005-03-03 Toyota Central Res & Dev Lab Inc Solid polymer electrolyte, fuel cell electrode, and solid polymer fuel cell
JP2005294107A (en) * 2004-04-01 2005-10-20 Toyota Motor Corp Fuel cell and fuel cell system using this
WO2005104275A1 (en) * 2004-04-22 2005-11-03 Nippon Steel Corporation Fuel cell and gas diffusion electrode for fuel cell
JP2005332807A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Fuel cell
WO2006003943A1 (en) * 2004-06-30 2006-01-12 Tdk Corporation Direct alcohol fuel cell and method for producing same
WO2006008929A1 (en) * 2004-06-30 2006-01-26 Tdk Corporation Fuel cell cathode manufacturing method and fuel cell manufacturing method
JP2006059578A (en) * 2004-08-18 2006-03-02 National Institute Of Advanced Industrial & Technology Cathode electrode catalyst for polymer electrolyte fuel cell, and manufacturing method thereof
JP2006085976A (en) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology Electrocatalyst for hydrogen electrode of low-temperature type fuel cell
JP2006120335A (en) * 2004-10-19 2006-05-11 Nippon Steel Corp Gas diffusion layer for fuel cell, gas diffusion electrode for the fuel cell and the fuel cell
JP2006156013A (en) * 2004-11-26 2006-06-15 Nippon Steel Corp Catalyst for oxygen electrode in polymer electrolyte fuel cell
JP2006310002A (en) * 2005-04-27 2006-11-09 Asahi Kasei Corp Electrode catalyst for fuel cell and its manufacturing method
JP2008130325A (en) * 2006-11-20 2008-06-05 Asahi Kasei Corp Electrode catalyst for fuel cell
CN100407487C (en) * 2005-07-11 2008-07-30 英属盖曼群岛商胜光科技股份有限公司 Fuel battery with chelant
JP2008293807A (en) * 2007-05-24 2008-12-04 Toyota Motor Corp Method for evaluating performance of electrode catalyst for cell constituted of n4 chelate type dimerized metal complex
JP2008305561A (en) * 2007-06-05 2008-12-18 Asahi Kasei Corp Electrode catalyst for fuel cell
CN100466345C (en) * 2004-04-22 2009-03-04 新日本制铁株式会社 Fuel cell and gas diffusion electrode for fuel cell
JP2011516254A (en) * 2008-04-07 2011-05-26 アクタ ソシエタ ペル アチオニ High performance ORR (oxidation-reduction reaction) PGM (Pt group metal) free catalyst
US8114803B2 (en) 2005-02-03 2012-02-14 Toyota Jidosha Kabushiki Kaisha Catalyst material and process for preparing the same
JP2012084490A (en) * 2010-10-15 2012-04-26 Toyota Motor Corp Lithium gas battery
JPWO2015045852A1 (en) * 2013-09-30 2017-03-09 日産自動車株式会社 Catalyst carbon powder, catalyst using the catalyst carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell
JP2017188357A (en) * 2016-04-07 2017-10-12 東洋インキScホールディングス株式会社 Electrode paste composition for air battery, positive electrode layer for air battery, and air battery
JP2018086640A (en) * 2016-11-24 2018-06-07 国立研究開発法人産業技術総合研究所 Electrochemical oxygen reduction catalyst
US10333166B2 (en) 2014-10-29 2019-06-25 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell, method for producing the same, electrode catalyst layer for fuel cell comprising the catalyst, and membrane electrode assembly for fuel cell and fuel cell using the catalyst or the catalyst layer
CN114540860A (en) * 2021-03-18 2022-05-27 天津科技大学 Preparation of conductive nickel coordination polymer and application of conductive nickel coordination polymer in preparing hydrogen peroxide through electrocatalysis

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008815A1 (en) * 2003-07-18 2005-01-27 Shinano Kenshi Kabushiki Kaisha Fuel cell, electrode material for fuel cell and method for producing same
JP2005056776A (en) * 2003-08-07 2005-03-03 Toyota Central Res & Dev Lab Inc Solid polymer electrolyte, fuel cell electrode, and solid polymer fuel cell
JP2005294107A (en) * 2004-04-01 2005-10-20 Toyota Motor Corp Fuel cell and fuel cell system using this
WO2005104275A1 (en) * 2004-04-22 2005-11-03 Nippon Steel Corporation Fuel cell and gas diffusion electrode for fuel cell
JP2005332807A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Fuel cell
KR100897637B1 (en) * 2004-04-22 2009-05-14 신닛뽄세이테쯔 카부시키카이샤 Fuel cell and gas diffusion electrode for fuel cell
KR100919326B1 (en) * 2004-04-22 2009-09-25 신닛뽄세이테쯔 카부시키카이샤 Fuel cell and gas diffusion electrode for fuel cell
CN100466345C (en) * 2004-04-22 2009-03-04 新日本制铁株式会社 Fuel cell and gas diffusion electrode for fuel cell
US9786925B2 (en) 2004-04-22 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Fuel cell and fuel cell use gas diffusion electrode
JPWO2006003943A1 (en) * 2004-06-30 2008-04-17 Tdk株式会社 Direct alcohol fuel cell and method for manufacturing the same
US8652704B2 (en) 2004-06-30 2014-02-18 Tdk Corporation Direct alcohol fuel cell with cathode catalyst layer containing silver and method for producing the same
US7927762B2 (en) 2004-06-30 2011-04-19 Tdk Corporation Fuel cell cathode manufacturing method and fuel cell manufacturing method
WO2006008929A1 (en) * 2004-06-30 2006-01-26 Tdk Corporation Fuel cell cathode manufacturing method and fuel cell manufacturing method
WO2006003943A1 (en) * 2004-06-30 2006-01-12 Tdk Corporation Direct alcohol fuel cell and method for producing same
CN100449829C (en) * 2004-06-30 2009-01-07 Tdk株式会社 Direct alcohol fuel cell and method for producing same
JP2006059578A (en) * 2004-08-18 2006-03-02 National Institute Of Advanced Industrial & Technology Cathode electrode catalyst for polymer electrolyte fuel cell, and manufacturing method thereof
JP4635248B2 (en) * 2004-08-18 2011-02-23 独立行政法人産業技術総合研究所 Cathode electrode catalyst for polymer electrolyte fuel cell and production method thereof
JP2006085976A (en) * 2004-09-15 2006-03-30 National Institute Of Advanced Industrial & Technology Electrocatalyst for hydrogen electrode of low-temperature type fuel cell
JP2006120335A (en) * 2004-10-19 2006-05-11 Nippon Steel Corp Gas diffusion layer for fuel cell, gas diffusion electrode for the fuel cell and the fuel cell
JP4520815B2 (en) * 2004-10-19 2010-08-11 新日本製鐵株式会社 Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell
JP2006156013A (en) * 2004-11-26 2006-06-15 Nippon Steel Corp Catalyst for oxygen electrode in polymer electrolyte fuel cell
JP4520833B2 (en) * 2004-11-26 2010-08-11 新日本製鐵株式会社 Polymer solid oxide fuel cell oxygen electrode catalyst
US8114803B2 (en) 2005-02-03 2012-02-14 Toyota Jidosha Kabushiki Kaisha Catalyst material and process for preparing the same
JP2006310002A (en) * 2005-04-27 2006-11-09 Asahi Kasei Corp Electrode catalyst for fuel cell and its manufacturing method
CN100407487C (en) * 2005-07-11 2008-07-30 英属盖曼群岛商胜光科技股份有限公司 Fuel battery with chelant
JP2008130325A (en) * 2006-11-20 2008-06-05 Asahi Kasei Corp Electrode catalyst for fuel cell
JP2008293807A (en) * 2007-05-24 2008-12-04 Toyota Motor Corp Method for evaluating performance of electrode catalyst for cell constituted of n4 chelate type dimerized metal complex
JP2008305561A (en) * 2007-06-05 2008-12-18 Asahi Kasei Corp Electrode catalyst for fuel cell
JP2011516254A (en) * 2008-04-07 2011-05-26 アクタ ソシエタ ペル アチオニ High performance ORR (oxidation-reduction reaction) PGM (Pt group metal) free catalyst
JP2012084490A (en) * 2010-10-15 2012-04-26 Toyota Motor Corp Lithium gas battery
JPWO2015045852A1 (en) * 2013-09-30 2017-03-09 日産自動車株式会社 Catalyst carbon powder, catalyst using the catalyst carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell
US10135074B2 (en) 2013-09-30 2018-11-20 Nissan Motor Co., Ltd. Carbon powder for catalyst, catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder
US10333166B2 (en) 2014-10-29 2019-06-25 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell, method for producing the same, electrode catalyst layer for fuel cell comprising the catalyst, and membrane electrode assembly for fuel cell and fuel cell using the catalyst or the catalyst layer
JP2017188357A (en) * 2016-04-07 2017-10-12 東洋インキScホールディングス株式会社 Electrode paste composition for air battery, positive electrode layer for air battery, and air battery
JP2018086640A (en) * 2016-11-24 2018-06-07 国立研究開発法人産業技術総合研究所 Electrochemical oxygen reduction catalyst
CN114540860A (en) * 2021-03-18 2022-05-27 天津科技大学 Preparation of conductive nickel coordination polymer and application of conductive nickel coordination polymer in preparing hydrogen peroxide through electrocatalysis
CN114540860B (en) * 2021-03-18 2023-06-30 天津科技大学 Preparation of conductive nickel coordination polymer and application thereof in electrocatalytic preparation of hydrogen peroxide

Similar Documents

Publication Publication Date Title
JP2003109614A (en) Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same
KR100897637B1 (en) Fuel cell and gas diffusion electrode for fuel cell
CN105377428B (en) Electrode catalyst for fuel cell and method for activating catalyst
JP4799897B2 (en) Fuel cell
JP4963147B2 (en) ELECTRODE CATALYST FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5068029B2 (en) Oxygen reduction composite catalyst, method for producing the same, and fuel cell using the same
Roncaroli et al. Cobalt and iron complexes with N-heterocyclic ligands as pyrolysis precursors for oxygen reduction catalysts
Gong et al. Silver–tungsten carbide nanohybrid for efficient electrocatalysis of oxygen reduction reaction in microbial fuel cell
Kakati et al. Hydrothermal synthesis of PtRu on CNT/SnO2 composite as anode catalyst for methanol oxidation fuel cell
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
CN108352533A (en) P/ metal-N-C type composite catalysts
JPH05129023A (en) Improved catalyst material
US6245707B1 (en) Methanol tolerant catalyst material
JP2005527956A (en) Conductive polymer-grafted carbon materials for fuel cell applications
Lee et al. A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oyxgen reduction
Du et al. Applications of RDE and RRDE methods in oxygen reduction reaction
JP5540294B2 (en) Method for producing electrode catalyst for fuel cell
Hu et al. High crystallinity binuclear iron phthalocyanine catalyst with enhanced performance for oxygen reduction reaction
Huang et al. Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)
JP2003157857A (en) Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity
Türk et al. Oxygen electroreduction on zinc and dilithium phthalocyanine modified multiwalled carbon nanotubes in alkaline media
Serov et al. Electroreduction of oxygen over iron macrocyclic catalysts for DMFC applications
Xu et al. Nitrogen/sulfur co-doped non-noble metal material as an efficient electrocatalyst for the oxygen reduction reaction in alkaline media
CN110600752B (en) H2Method for preparing carbon-supported Pt alloy catalyst by gas-phase thermal reduction
JP2021091952A (en) Size control method for core-shell nanoparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106