JP5068029B2 - Oxygen reduction composite catalyst, method for producing the same, and fuel cell using the same - Google Patents

Oxygen reduction composite catalyst, method for producing the same, and fuel cell using the same Download PDF

Info

Publication number
JP5068029B2
JP5068029B2 JP2006099584A JP2006099584A JP5068029B2 JP 5068029 B2 JP5068029 B2 JP 5068029B2 JP 2006099584 A JP2006099584 A JP 2006099584A JP 2006099584 A JP2006099584 A JP 2006099584A JP 5068029 B2 JP5068029 B2 JP 5068029B2
Authority
JP
Japan
Prior art keywords
composite catalyst
oxygen
oxygen reduction
metal
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006099584A
Other languages
Japanese (ja)
Other versions
JP2007273371A (en
Inventor
雅雄 坂下
善弘 兼田
風人 梁田
秀樹 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2006099584A priority Critical patent/JP5068029B2/en
Publication of JP2007273371A publication Critical patent/JP2007273371A/en
Application granted granted Critical
Publication of JP5068029B2 publication Critical patent/JP5068029B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は酸素還元複合触媒及びその製造方法並びにこれを用いた燃料電池に関する。   The present invention relates to an oxygen reduction composite catalyst, a method for producing the same, and a fuel cell using the same.

燃料電池は、水素又はアルコール等の炭化水素系の燃料と酸素等の酸化剤とを供給し、その酸化還元反応によって得られる化学エネルギーを直接電気エネルギーに変換する発電システムである。このような燃料電池は、従来の発電システムと比較してクリーンなエネルギー源として注目されており、特に水素を燃料源とした固体高分子型燃料電池(PEFC)や直接メタノール型(DMFC)に代表される、液体炭化水素材料を直接燃料として使用する直接酸化燃料電池(DOFC)は、比較的低温で作動できることや、小型化が可能等の利点から実用化に向けて幅広く研究されている。   A fuel cell is a power generation system that supplies a hydrocarbon fuel such as hydrogen or alcohol and an oxidant such as oxygen and directly converts chemical energy obtained by the oxidation-reduction reaction into electric energy. Such fuel cells are attracting attention as a clean energy source compared to conventional power generation systems, and are particularly representative of polymer electrolyte fuel cells (PEFC) and direct methanol types (DMFC) using hydrogen as a fuel source. The direct oxidation fuel cell (DOFC) using a liquid hydrocarbon material as a direct fuel has been extensively studied for practical use because it can operate at a relatively low temperature and can be downsized.

酸素還元触媒としては、白金もしくは白金合金を炭素担体上に微分散させた電極触媒が広く用いられている。このような白金系電極触媒は、一般的に酸素還元活性は高いものの、経済性の点において依然として課題が残る。   As an oxygen reduction catalyst, an electrode catalyst in which platinum or a platinum alloy is finely dispersed on a carbon support is widely used. Such platinum-based electrode catalysts generally have high oxygen reduction activity, but still have problems in terms of economy.

一方、フタロシアニンやポルフィリン等の大環状有機化合物と遷移金属による金属錯体を用いて炭素担体表面を修飾することにより、酸素還元能を発現させる方法も古くから知られており、近年では、このような大環状有機化合物や、いわゆる金属-N4錯体を用いる酸素還元触媒の開発も進められている(例えば、特許文献1〜10等)。   On the other hand, a method for expressing oxygen reduction ability by modifying a carbon support surface using a metal complex of a macrocyclic organic compound such as phthalocyanine or porphyrin and a transition metal has been known for a long time. Development of an oxygen reduction catalyst using a macrocyclic organic compound or a so-called metal-N4 complex is also in progress (for example, Patent Documents 1 to 10).

しかしながら、従来の大環状有機化合物を用いる酸素還元触媒は、前記貴金属系電極触媒と比較すると、酸素還元活性が低く、例えば、自動車用途等高い出力電圧が求められる場合に出力電流の低下が顕著であり、実用レベルの使用は困難である。また、4電子還元反応よりも2電子還元反応の方に進み易いため過酸化水素濃度が高く、触媒自体やPEFCの電解質膜等の腐食等の耐久性に対する問題も解決されていない。さらに、活性の高い活性の高いコバルトあるいは鉄のポルフィリン誘導錯体は非常に高価であると言う問題がある。さらに、ポルフィリンあるいはフタロシアニン等のいわゆる大環状錯体は溶媒に溶け難いと言う取り扱い上の難点もある。   However, conventional oxygen reduction catalysts using macrocyclic organic compounds have lower oxygen reduction activity than the noble metal-based electrode catalyst. For example, when a high output voltage is required such as for automobiles, the output current is significantly reduced. Yes, it is difficult to use at a practical level. Further, since the two-electron reduction reaction is more likely to proceed than the four-electron reduction reaction, the concentration of hydrogen peroxide is high, and problems with durability such as corrosion of the catalyst itself and the PEFC electrolyte membrane have not been solved. Furthermore, a highly active cobalt or iron porphyrin-derived complex has a problem that it is very expensive. In addition, so-called macrocyclic complexes such as porphyrin or phthalocyanine have a handling difficulty that they are difficult to dissolve in a solvent.

また、従来の貴金属粒子に加え、有機化合物もしくは有機金属錯体の両方を使用することによる燃料電池触媒の高機能化を図る研究も行なわれている。   In addition to conventional noble metal particles, research is also being conducted to improve the functionality of fuel cell catalysts by using both organic compounds or organometallic complexes.

例えば、特許文献11では、ダイレクト型低温燃料電池の空気極において、触媒表面上で酸素還元反応を選択的に生起させる添加剤が開示されている。該特許文献では、ダイレクトメタノール燃料電池等の低温型燃料電池において、燃料極に供給された燃料が電解質を浸透して酸素極に拡散し、酸素極の触媒上で反応することにより起電力の低下や燃料効率の低下等を引き起こす、所謂クロスオーバの問題に対する解決手段として、白金等の触媒粒子表面に吸着能力を有する化合物、又はそれらの金属錯体を有効成分とする化合物を酸素極触媒上に添加剤として添加することによって、燃料化合物による妨害を受けることなく酸素還元選択的反応を進行させるとある。
しかしながら、前記手法では、酸素還元反応を駆動する触媒自体は従来の貴金属であるため、経済性や資源量の面での問題は全く解決されていない。さらに、該触媒は触媒表面上に添加剤を吸着させてなるため、触媒の反応面積を減少させ、出力電流が従来よりも低下してしまうと言う問題がある。
For example, Patent Document 11 discloses an additive that selectively causes an oxygen reduction reaction on a catalyst surface in an air electrode of a direct low-temperature fuel cell. In this patent document, in a low temperature fuel cell such as a direct methanol fuel cell, the fuel supplied to the fuel electrode penetrates the electrolyte, diffuses into the oxygen electrode, and reacts on the catalyst of the oxygen electrode, thereby reducing the electromotive force. As a means of solving the so-called crossover problem that causes a decrease in fuel efficiency and the like, a compound having an adsorption ability on the surface of catalyst particles such as platinum or a compound containing a metal complex thereof as an active ingredient is added onto the oxygen electrode catalyst. When added as an agent, the oxygen reduction selective reaction is allowed to proceed without being disturbed by the fuel compound.
However, in the above method, since the catalyst itself that drives the oxygen reduction reaction is a conventional noble metal, problems in terms of economy and the amount of resources have not been solved at all. Further, since the catalyst adsorbs the additive on the surface of the catalyst, there is a problem that the reaction area of the catalyst is reduced and the output current is lowered as compared with the conventional case.

特許文献12では、遷移金属の大環状化合物錯体と貴金属を担持した炭素材料からなる触媒であって、前記炭素材料のBET比表面積が500m2/g以上である高分子固体電解質型燃料電池酸素極用触媒が開示されている。該特許文献においては、各々単独の触媒活性よりも、共存した状態の方が触媒活性が高い理由について、貴金属上での4電子還元反応と共に、遷移金属の大環状化合物錯体上での2電子反応に引き続き、貴金属上で更に2電子還元反応を生じる等の、2つの還元反応パスにより酸素還元反応が行われるためと推測している。しかしながら、該特許文献では、触媒の担体である炭素材料の表面積に規定があり、担体の大表面積化による触媒活性の向上には限界がある。また、前記大環状化合物錯体は、上述のように未だ高価と言う問題点もある。依然として、さらなる触媒能の向上及びコスト低減が求められている。 Patent Document 12 discloses a polymer solid oxide fuel cell oxygen electrode, which is a catalyst comprising a carbon material carrying a transition metal macrocycle compound complex and a noble metal, wherein the carbon material has a BET specific surface area of 500 m 2 / g or more. Catalysts for use are disclosed. In this patent document, the reason why the catalytic activity is higher in the coexisting state than the individual catalytic activity is that the two-electron reaction on the transition metal macrocycle compound complex together with the four-electron reduction reaction on the noble metal. Following this, it is assumed that the oxygen reduction reaction is carried out by two reduction reaction paths, such as further two-electron reduction reaction on the noble metal. However, in this patent document, the surface area of the carbon material that is the catalyst support is regulated, and there is a limit to the improvement of the catalyst activity by increasing the surface area of the support. In addition, the macrocyclic compound complex has a problem that it is still expensive as described above. There is still a need for further improvement in catalytic performance and cost reduction.

また、近年、高温焼成した炭素担体が、従来の大環状有機化合物を用いることなしに酸素の4電子還元反応を駆動できることも明らかとなっている。例えば、非特許文献1や非特許文献2、特許文献13では、ポリアクリロニトリル等の窒素含有高分子を炭化させることにより、酸素還元触媒を調製している。しかしながら、その酸素還元特性は、上記の大環状有機化合物を用いた酸素触媒よりも劣ると言う問題点がある。   In recent years, it has also become clear that a carbon support fired at high temperature can drive a four-electron reduction reaction of oxygen without using a conventional macrocyclic organic compound. For example, in Non-Patent Document 1, Non-Patent Document 2, and Patent Document 13, an oxygen reduction catalyst is prepared by carbonizing a nitrogen-containing polymer such as polyacrylonitrile. However, there is a problem that the oxygen reduction characteristic is inferior to the oxygen catalyst using the macrocyclic organic compound.

したがって、実用上PEFCの特徴である高出力エネルギー密度を得るためには、依然として白金系もしくは白金合金の担持は不可避である。   Therefore, in order to obtain a high output energy density that is a characteristic of PEFC in practice, it is still inevitable to carry a platinum-based or platinum alloy.

特開昭57−105969号公報JP-A-57-105969 特開昭57−208073号公報JP-A-57-208073 特開昭57−208074号公報JP-A-57-208074 特開昭58−54565号公報JP 58-54565 A 特開平11−253811号公報Japanese Patent Laid-Open No. 11-253811 特開2000−157871号公報JP 2000-157871 A 特開2003−109614号公報JP 2003-109614 A 特開2004−41587号公報JP 2004-41587 A 特開2004−206148号公報JP 2004-206148 A 特開2005−203147号公報JP 2005-203147 A 特開2005−228497号公報JP 2005-228497 A 特開2003−109614号公報JP 2003-109614 A 特開2004−330181号公報JP 2004-330181 A S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, J. Appl. Electrochem., 19 (1989) 19.S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, J. Appl. Electrochem., 19 (1989) 19. Siyu Ye and Ashok K. Vijh, Electrochemistry Communications, vol. 5, No3, pp. 272-275.Siyu Ye and Ashok K. Vijh, Electrochemistry Communications, vol. 5, No3, pp. 272-275.

本発明の目的は、価格面で優れかつ資源的に制約の少なく、従来より4電子還元効率が高い、優れた酸素還元活性を有する燃料電池酸素極用の酸素還元触媒を提供することである。また、本発明の別の目的は、白金を使用した場合においても、従来より使用量を低減することができる、もしくは、従来よりも特性に優れ、高い出力密度を得ることのできる酸素還元触媒を提供することである。さらに、本発明は、前記酸素還元触媒を備えた燃料電池用膜電極接合体及び従来よりも優れた燃料電池を提供することも目的とする。   An object of the present invention is to provide an oxygen reduction catalyst for a fuel cell oxygen electrode, which is excellent in price and less resource-constrained and has a higher 4-electron reduction efficiency than before and has an excellent oxygen reduction activity. Further, another object of the present invention is to provide an oxygen reduction catalyst that can reduce the amount of use compared to the conventional case even when platinum is used, or is superior in characteristics and capable of obtaining a high output density. Is to provide. Furthermore, another object of the present invention is to provide a fuel cell membrane electrode assembly including the oxygen reduction catalyst and a fuel cell superior to the conventional one.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、燃料電池酸素極用の酸素還元触媒において、配位結合又は共有結合の少なくとも一方で金属原子と結合可能な表面部位を有した導電性担体に、少なくともヘテロ原子含有有機化合物を配位子として有する金属錯体を担持させてなる酸素還元複合触媒が、従来の大環状有機化合物にて従来の炭素担体表面を修飾するよりも、酸素の4電子還元反応効率が向上でき、酸素還元特性に優れ有効であることを見出した。
さらに、本発明者らは、配位結合又は共有結合の少なくとも一方で金属原子と結合可能な部位を有した導電性担体に、ヘテロ原子含有有機化合物を配位子として有する金属錯体と貴金属の両方を担持させることにより、従来と等量の白金使用量においてもより酸素還元特性に優れた酸素還元触媒となることを見出した。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have a surface portion capable of binding to a metal atom in at least one of a coordination bond and a covalent bond in an oxygen reduction catalyst for a fuel cell oxygen electrode. The oxygen reduction composite catalyst, in which a metal complex having at least a heteroatom-containing organic compound as a ligand is supported on a conductive support, is more effective than a conventional macrocyclic organic compound that modifies the surface of a conventional carbon support. It has been found that the four-electron reduction reaction efficiency can be improved and the oxygen reduction characteristics are excellent and effective.
Furthermore, the present inventors have provided both a metal complex having a heteroatom-containing organic compound as a ligand and a noble metal on a conductive carrier having a site capable of binding to a metal atom at least one of a coordination bond and a covalent bond. It has been found that an oxygen reduction catalyst having more excellent oxygen reduction characteristics can be obtained even when platinum is used in an amount equivalent to the conventional amount.

即ち、本発明は、配位結合又は共有結合の少なくとも一方で金属原子と結合可能な表面部位を有した導電性担体が、少なくともヘテロ原子含有有機化合物を配位子として有する金属錯体を担持してなる酸素還元複合触媒であって、前記導電性担体が、ヘテロ原子を分子内に含む有機化合物を水酸化ナトリウムと混合して、不活性ガス環境にて加熱炭化をしてなる炭素材料であることを特徴とする酸素還元複合触媒である。
また、上記導電性担体が、窒素、酸素、硫黄、リン又は炭素からなる群から選ばれる少なくとも1種の元素を含有し、該元素と金属錯体中の金属原子が配位結合又は共有結合の少なくとも一方で結合することを特徴とする。
That is, in the present invention, a conductive carrier having a surface portion capable of binding to a metal atom at least one of a coordination bond and a covalent bond carries a metal complex having at least a heteroatom-containing organic compound as a ligand. And the conductive support is a carbon material obtained by mixing an organic compound containing a hetero atom in the molecule with sodium hydroxide and heating and carbonizing in an inert gas environment. Is an oxygen reduction composite catalyst characterized by
The conductive carrier contains at least one element selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus, and carbon, and the metal atom in the metal complex is at least a coordinate bond or a covalent bond. On the other hand, they are combined.

また、上記ヘテロ原子含有有機化合物が、窒素、酸素、硫黄又はリンからなる群から選ばれる少なくとも1種の原子を含み、より具体的には、含窒素環状化合物であり、さらに該含窒素環状化合物の具体例として、ピリジン類、ビピリジン類、ターピリジン類、フェナントロリン類、ピラジン類又はイミダゾール類からなる群から選ばれる少なくとも1種の含窒素芳香族化合物が挙げられる。さらに、他のヘテロ原子含有有機化合物の例として、テトラシアノキノジメタン又はその塩が挙げられる。   Further, the heteroatom-containing organic compound contains at least one atom selected from the group consisting of nitrogen, oxygen, sulfur or phosphorus, more specifically, a nitrogen-containing cyclic compound, and further, the nitrogen-containing cyclic compound Specific examples thereof include at least one nitrogen-containing aromatic compound selected from the group consisting of pyridines, bipyridines, terpyridines, phenanthrolines, pyrazines or imidazoles. Furthermore, tetracyanoquinodimethane or its salt is mentioned as an example of another hetero atom containing organic compound.

また、上記金属錯体の中心金属として、第4〜第6周期遷移金属元素からなる群の少なくとも1種から選ばれる金属が挙げられ、具体的には、コバルト、鉄、銅から選ばれる1種又は2種以上の金属が挙げられる。
また、上記導電性担体が、さらに貴金属もしくはその合金を担持してなり、具体的には、白金もしくはその合金が挙げられる。
Examples of the central metal of the metal complex include a metal selected from at least one selected from the group consisting of fourth to sixth periodic transition metal elements. Specifically, one selected from cobalt, iron, and copper, or Two or more kinds of metals may be mentioned.
The conductive carrier further carries a noble metal or an alloy thereof, specifically, platinum or an alloy thereof.

さらに、本発明の酸素還元複合触媒の製造方法は、ヘテロ原子を分子内に含む有機化合物を水酸化ナトリウムと混合して、不活性ガス環境にて加熱炭化をすることで、配位結合又は共有結合の少なくとも一方で金属原子と結合可能な表面部位を有した導電性担体を得、該導電性担体に、ヘテロ原子含有有機化合物を配位子として有する金属錯体を少なくとも担持させた後、熱処理して酸素還元複合触媒を製造することを特徴とする。また、前記熱処理後に、さらに貴金属もしくはその合金を担持する。 Furthermore, in the method for producing an oxygen reduction composite catalyst of the present invention , an organic compound containing a heteroatom in the molecule is mixed with sodium hydroxide, and heated and carbonized in an inert gas environment, whereby coordinate bonding or sharing is achieved. A conductive carrier having a surface part capable of binding to a metal atom at least one of the bonds is obtained, and the conductive carrier carries at least a metal complex having a heteroatom-containing organic compound as a ligand, followed by heat treatment. Thus, an oxygen reduction composite catalyst is produced. Further, after the heat treatment, a noble metal or an alloy thereof is further supported.

さらに、本発明は、上記のいずれかの酸素還元複合触媒を用いてなる燃料電池であり、また、該燃料電池として、固体高分子型燃料電池又は直接酸化燃料電池が挙げられる。   Furthermore, the present invention is a fuel cell using any one of the above oxygen reduction composite catalysts, and examples of the fuel cell include a solid polymer fuel cell and a direct oxidation fuel cell.

本発明によれば、燃料電池酸素極用の酸素還元触媒において、配位結合又は共有結合少なくとも一方で金属原子と結合可能な表面部位を有した導電性担体に、少なくともヘテロ原子含有有機化合物を配位子として有する金属錯体を担持させてなる酸素還元複合触媒が、従来の大環状有機化合物にて従来の炭素担体表面を修飾した酸素還元触媒よりも、酸素の4電子還元反応効率を向上できる。   According to the present invention, in an oxygen reduction catalyst for a fuel cell oxygen electrode, at least a heteroatom-containing organic compound is arranged on a conductive support having a surface portion capable of binding to a metal atom at least one of a coordination bond and a covalent bond. The oxygen reduction composite catalyst in which the metal complex having the ligand is supported can improve the efficiency of the four-electron reduction reaction of oxygen as compared with the conventional oxygen reduction catalyst in which the surface of the carbon support is modified with a conventional macrocyclic organic compound.

さらに、本発明の酸素還元複合触媒は、さらに、白金、パラジウム、ロジウム、イリジウム、ルテニウム又はオスミウム、及びそれらを含有する合金等の貴金属を担持することにより、上記金属錯体を修飾せずに貴金属を担持した場合に比べ、出力電流密度を向上することができる。また、従来と同等の性能を得る場合には、貴金属使用量を低減することができる。   Furthermore, the oxygen reduction composite catalyst of the present invention further supports a noble metal without modifying the metal complex by supporting a noble metal such as platinum, palladium, rhodium, iridium, ruthenium or osmium, and alloys containing them. The output current density can be improved as compared with the case where it is supported. Moreover, when obtaining the performance equivalent to the conventional one, the amount of noble metal used can be reduced.

本発明の酸素還元複合触媒の第1の実施形態は、配位結合又は共有結合の少なくとも一方で金属原子と結合可能な表面部位を有した導電性担体が、ヘテロ原子含有有機化合物を配位子として有する金属錯体を少なくとも担持してなる酸素還元複合触媒であって、前記導電性担体が、ヘテロ原子を分子内に含む有機化合物を水酸化ナトリウムと混合して、不活性ガス環境にて加熱炭化をしてなる炭素材料であることを特徴としている。 In the first embodiment of the oxygen reduction composite catalyst of the present invention, a conductive support having a surface portion capable of binding to a metal atom at least one of a coordination bond and a covalent bond is a heteroatom-containing organic compound ligand. An oxygen reduction composite catalyst comprising at least a metal complex supported as a carrier, wherein the conductive support is mixed with sodium hydroxide and an organic compound containing a hetero atom in the molecule, and is heated and carbonized in an inert gas environment. It is characterized by being a carbon material .

上記導電性担体は、窒素、酸素、硫黄、リン又は炭素からなる群から選ばれる少なくとも1種の元素を含有し、該元素と金属錯体中の金属原子が配位結合又は共有結合の少なくとも一方で結合することが望ましい。   The conductive support contains at least one element selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus, and carbon, and the metal atom in the metal complex and the element is at least one of a coordinate bond or a covalent bond. It is desirable to combine.

上記の導電性担体には高い導電性が求められることから、炭素材料を主成分とすることが望ましい。具体的には、1×10-3Scm-1以上の導電率を有することが望ましい。結晶構造は特には限定されないが、カーボンブラック、アモルファスカーボンやカーボンナノフィラメント等が好適に使用できる。その他に、カーボンナノチューブやナノホーン等が挙げられる。また、金属錯体の担持量を増加することができるよう、金属原子と結合可能な表面部位は多いことが望ましい。したがって、窒素、酸素、硫黄、リン又は炭素からなる群から選ばれる少なくとも1種の元素の含有量は多いことが望ましく、該炭素材料の表面に、窒素、酸素、硫黄又はリンの少なくとも1種を合計量で1〜17原子%含有することが望ましい。また、触媒使用量当たりの発電電流が向上するよう、該導電性担体の比表面積は大きいことが望ましく、具体的には、BET比表面積が、450m2/g以上であることが望ましい。また、このような導電性担体の製造方法については、ヘテロ原子を分子内に含む有機化合物を水酸化ナトリウムと混合して、アルゴン気体などの不活性ガス環境にて加熱炭化をすることで得ることができる。 Since the above-mentioned conductive carrier is required to have high conductivity, it is desirable that a carbon material is a main component. Specifically, it is desirable to have a conductivity of 1 × 10 −3 Scm −1 or more. The crystal structure is not particularly limited, but carbon black, amorphous carbon, carbon nanofilament and the like can be suitably used. Other examples include carbon nanotubes and nanohorns. Further, it is desirable that there are many surface sites that can be bonded to metal atoms so that the amount of the metal complex supported can be increased. Therefore, it is desirable that the content of at least one element selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus or carbon is large, and at least one of nitrogen, oxygen, sulfur or phosphorus is added to the surface of the carbon material. It is desirable to contain 1 to 17 atomic% in the total amount. Further, it is desirable that the specific surface area of the conductive carrier is large so that the generated current per catalyst use amount is improved. Specifically, the BET specific surface area is desirably 450 m 2 / g or more. Further, a method of manufacturing such a conductive support, obtained by a mixture of organic compounds containing hetero atoms in the molecule with sodium hydroxide, heating carbonization in an inert gas environment, such as argon gas be able to.

上記金属錯体としては、ヘテロ原子含有有機化合物を配位子として有することが望ましい。該へテロ原子含有有機化合物の例としては、窒素、酸素、硫黄又はリンからなる群から選ばれる少なくとも1種の原子を含む有機化合物、より具体的には、含窒素環状化合物であることが望ましい。該含窒素環状化合物の具体例として、ピリジン類、ビピリジン類、ターピリジン類、フェナントロリン類、ピラジン類又はイミダゾール類等の含窒素芳香族化合物が挙げられる。さらに、他のヘテロ原子含有有機化合物の好適な例として、テトラシアノキノジメタン(以降、TCNQと略記する)又はその塩が挙げられる。   The metal complex preferably has a heteroatom-containing organic compound as a ligand. As an example of the heteroatom-containing organic compound, an organic compound containing at least one atom selected from the group consisting of nitrogen, oxygen, sulfur or phosphorus, more specifically, a nitrogen-containing cyclic compound is desirable. . Specific examples of the nitrogen-containing cyclic compound include nitrogen-containing aromatic compounds such as pyridines, bipyridines, terpyridines, phenanthrolines, pyrazines and imidazoles. Furthermore, as a suitable example of another heteroatom-containing organic compound, tetracyanoquinodimethane (hereinafter abbreviated as TCNQ) or a salt thereof may be mentioned.

ヘテロ原子含有有機化合物を配位子として有することが望ましい理由は明確ではないが、一般的に知られているように、金属錯体が酸素還元触媒として機能しているためと考察している。さらに、含窒素芳香族化合物が望ましい理由として、中心金属への配位能が高く、安定して錯体を形成し、触媒の耐久性の向上に寄与すると考察している。また、公知のポルフィリンやフタロシアニン等の大環状物質よりも、安価でかつ容易に調製ができると言う利点もある。   Although it is not clear why it is desirable to have a heteroatom-containing organic compound as a ligand, it is considered that the metal complex functions as an oxygen reduction catalyst as is generally known. Further, it is considered that the reason why nitrogen-containing aromatic compounds are desirable is that they have a high coordination ability to the central metal, form stable complexes, and contribute to improvement of the durability of the catalyst. In addition, there is an advantage that it can be easily prepared at a lower cost than known macrocyclic substances such as porphyrin and phthalocyanine.

TCNQ又はその塩が好適に利用できる詳細な理由は不明であるが、TCNQ又はその塩が有するシアノ基やπ共役により中心金属との共有結合もしくは配位結合が可能であること、さらにTCNQ部分が積層構造を取るため中心金属部分が規則的に配列することでき、その結果、隣接する複数の中心金属間と酸素分子と相互作用し、酸素架橋構造(μ-オキソ構造、μ-ジオキソ構造、ジ-μ-オキソ構造、μ-ヒドロキソ、ジ-μ-ヒドロキドソ構造等)を構成することにより、酸素還元触媒活性が向上したと考察している。   Although the detailed reason why TCNQ or a salt thereof can be suitably used is unknown, it is possible to form a covalent bond or a coordinate bond with a central metal by a cyano group or π conjugation possessed by TCNQ or a salt thereof. The central metal portion can be regularly arranged to form a laminated structure, and as a result, the oxygen bridge structure (μ-oxo structure, μ-dioxo structure, di- It is considered that the oxygen reduction catalytic activity is improved by constructing a -μ-oxo structure, μ-hydroxo, di-μ-hydroxo structure, etc.).

また、上記金属錯体の中心金属として、第4〜第6周期遷移金属元素からなる群の少なくとも1種から選ばれる金属が挙げられ、具体的には、コバルト、鉄、銅から選ばれる1種又は2種以上の金属が望ましい。   Examples of the central metal of the metal complex include a metal selected from at least one selected from the group consisting of fourth to sixth periodic transition metal elements. Specifically, one selected from cobalt, iron, and copper, or Two or more metals are desirable.

これらの金属錯体が一般的に酸素還元触媒能を有することは公知であるが、ケッチェンブラックのような汎用炭素材料への金属錯体による修飾だけでは、燃料電池用酸素還元触媒としては実用的ではなかった。本発明では、配位結合又は共有結合の少なくとも一方で金属原子と結合可能な表面部位を有した導電性担体に、ヘテロ原子含有有機化合物を配位子として有する金属錯体を修飾し、複合触媒とすることで、酸素還元能の大幅な向上を達成できた。   Although it is known that these metal complexes generally have oxygen reduction catalytic ability, it is not practical as an oxygen reduction catalyst for fuel cells only by modification with a metal complex to a general-purpose carbon material such as ketjen black. There wasn't. In the present invention, a metal complex having a heteroatom-containing organic compound as a ligand is modified on a conductive carrier having a surface portion capable of binding to a metal atom at least one of a coordination bond and a covalent bond, As a result, the oxygen reduction ability was greatly improved.

この理由の詳細は明らかではないが、触媒活性点となる金属又は金属錯体が導電性担体表面に直接結合されると共に、該導電性担体の表面に均一に分散できることが優位に働いていると考えている。   Although the details of this reason are not clear, it is considered that the metal or metal complex serving as the catalytic active point is directly bonded to the surface of the conductive support and can be dispersed uniformly on the surface of the conductive support. ing.

さらに、導電性担体と金属錯体との共存効果について、ピリジン類、ビピリジン類、ターピリジン類、フェナントロリン類、ピラジン類又はイミダゾール類等の含窒素芳香族化合物、もしくはTCNQ又はその塩を用いた金属錯体の方が、一般に酸素還元触媒能が高いとされる上記ポルフィリン誘導錯体よりも優れた効果を発揮した。   Furthermore, regarding the coexistence effect of the conductive carrier and the metal complex, the nitrogen complex containing nitrogen compounds such as pyridines, bipyridines, terpyridines, phenanthrolines, pyrazines or imidazoles, or metal complexes using TCNQ or a salt thereof can be used. The method exhibited an effect superior to that of the porphyrin-derived complex, which is generally considered to have high oxygen reduction catalytic ability.

前記導電性担体に前記金属錯体を担持する方法としては、特には限定されず公知の方法で担持することができる。例えば、金属錯体を溶解させた溶液内に前記導電性担体を浸漬させ、減圧乾燥・固化させる方法等が挙げられる。その他に、金属錯体粉末と前記導電性担体をボールミル等の機械的な混合方法が挙げられる。   The method for supporting the metal complex on the conductive carrier is not particularly limited and can be supported by a known method. For example, a method of immersing the conductive carrier in a solution in which a metal complex is dissolved, drying under reduced pressure, and solidifying can be used. In addition, a mechanical mixing method such as ball milling may be used for the metal complex powder and the conductive carrier.

上記金属錯体の担持後、さらに加熱処理することが望ましい。この熱処理温度は、用いる導電性担体及び金属錯体の組み合わせで最適な処理温度が異なるため限定はされないが、250℃〜900℃の範囲で行なうことが望ましい。特に500℃〜900℃で行なうことが望ましい。詳細は明らかではないが、加熱処理することにより酸素還元能が向上することから、中心金属と導電性担体との結合部位、もしくは中心金属とヘテロ原子含有有機化合物配位子との結合部位が変性したと考察している。さらに、金属錯体もしくは金属粒子の電解質への溶解を抑制する効果もある。この時、250℃未満の加熱処理では、前記効果が見られない。また、900℃超の加熱処理を行なうと、前記導電性担体における金属錯体との結合部位や前記配位子が熱分解してしまい、金属錯体との相互作用が不可能となる虞がある。また、中心金属が金属化してさらに凝集・肥大化し、酸素還元能が低下することになる虞もある。   It is desirable to further heat-treat after supporting the metal complex. The heat treatment temperature is not limited because the optimum treatment temperature varies depending on the combination of the conductive carrier and the metal complex to be used, but it is desirable to carry out the heat treatment in the range of 250 ° C to 900 ° C. It is particularly desirable to carry out at 500 ° C to 900 ° C. Although details are not clear, the oxygen reduction ability is improved by heat treatment, so the binding site between the central metal and the conductive carrier or the binding site between the central metal and the heteroatom-containing organic compound ligand is modified. I think that I did. Furthermore, there is an effect of suppressing dissolution of the metal complex or metal particles in the electrolyte. At this time, the effect is not seen in the heat treatment at less than 250 ° C. In addition, when a heat treatment at 900 ° C. or higher is performed, there is a possibility that the binding site with the metal complex or the ligand in the conductive carrier is thermally decomposed and the interaction with the metal complex becomes impossible. Moreover, there is a possibility that the central metal is metallized to further agglomerate and enlarge, and the oxygen reducing ability is lowered.

また、本発明の第2の実施形態として、上記第1の実施形態を施した導電性担体に、さらに貴金属もしくは貴金属を含有する合金を担持していることが望ましい。その結果、上記金属錯体を修飾せずに貴金属を担持した場合に比べ、出力電流密度を向上することができる。また、従来と同等の性能を得る場合には、貴金属使用量を低減することができる。貴金属の具体的例として、白金、パラジウム、ロジウム、イリジウム、ルテニウム又はオスミウム、及びそれらを含有する合金から選らばれる少なくとも1種が挙げられる。   In addition, as a second embodiment of the present invention, it is desirable that a conductive support subjected to the first embodiment further carry a noble metal or a noble metal-containing alloy. As a result, the output current density can be improved as compared with the case where a noble metal is supported without modifying the metal complex. Moreover, when obtaining the performance equivalent to the conventional one, the amount of noble metal used can be reduced. Specific examples of the noble metal include at least one selected from platinum, palladium, rhodium, iridium, ruthenium or osmium, and alloys containing them.

この理由の詳細は明らかではないが、金属錯体修飾のみでは出力できない高出力電圧域においても、金属錯体を修飾することにより貴金属の酸素還元触媒活性が向上し、出力電流密度が向上していることから、導電性担体表面に修飾した金属錯体と貴金属との相乗効果が発現し、酸素還元における過電圧を低下しているものと考察している。   Although the details of this reason are not clear, the oxygen reduction catalytic activity of noble metals is improved and the output current density is improved by modifying the metal complex even in the high output voltage range where the output cannot be achieved only with the metal complex modification. Therefore, it is considered that the synergistic effect of the metal complex modified on the surface of the conductive support and the noble metal is expressed, and the overvoltage in oxygen reduction is reduced.

上記貴金属もしくは貴金属を含有する合金を担持させる方法としては、特には限定されず公知の方法を用いることができる。例えば、塩化白金酸水溶液もしくは塩化白金酸と他の貴金属塩の混合水溶液に金属錯体で表面修飾した導電性担体を分散したけん濁液に、蟻酸ナトリウムを滴下することにより、白金もしくは白金合金を担持した酸素還元触媒を得ることができる。   The method for supporting the noble metal or the alloy containing the noble metal is not particularly limited, and a known method can be used. For example, platinum or platinum alloys are supported by dropping sodium formate into a suspension in which a conductive carrier surface-modified with a metal complex is dispersed in an aqueous solution of chloroplatinic acid or a mixed aqueous solution of chloroplatinic acid and other noble metal salts. The obtained oxygen reduction catalyst can be obtained.

上記貴金属もしくはその合金を担持させる工程は、上記導電性担体に上記金属錯体を担持させる第1の工程を行なった後に実施することが望ましい。詳細な理由については明確ではないが、上記の相乗効果が発現するためには、前記金属錯体が貴金属もしくはその合金粒子の表面ではなく導電性担体表面と結合していることが必要であると考察している。   The step of supporting the noble metal or its alloy is preferably performed after the first step of supporting the metal complex on the conductive support. Although the detailed reason is not clear, it is considered that the metal complex needs to be bonded to the surface of the conductive support rather than the surface of the noble metal or its alloy particles in order to exhibit the above synergistic effect. is doing.

また、本発明における第2の実施形態においては、金属錯体修飾の有無で酸素還元反応の反応電子数に変化が見られなかったことから、酸素還元反応は貴金属もしくはその合金により進行していると考察している。したがって、貴金属もしくはその合金担持後に金属錯体を担持させた場合、貴金属もしくはその合金粒子表面が被覆され、返って酸素還元反応を阻害する可能性がある。   Further, in the second embodiment of the present invention, since there was no change in the number of reaction electrons in the oxygen reduction reaction with or without the metal complex modification, the oxygen reduction reaction proceeds with a noble metal or an alloy thereof. I am considering. Therefore, when a metal complex is supported after supporting a noble metal or its alloy, the surface of the noble metal or its alloy particles may be coated, which may inhibit the oxygen reduction reaction.

また、金属錯体に加熱処理を施す工程を含む場合、貴金属もしくはその合金を担持させる第2の工程との順序については、用いる金属錯体及び貴金属の種類により異なるため特には限定されない。第2の工程に加熱処理が必要な場合は、金属錯体の加熱処理と合わせて行なうこともできる。   In addition, in the case of including the step of heat-treating the metal complex, the order of the second step for supporting the noble metal or its alloy is not particularly limited because it differs depending on the type of the metal complex and the noble metal used. When heat treatment is necessary for the second step, it can be performed together with the heat treatment of the metal complex.

以上説明したような酸素還元複合触媒を作製した後、従来公知の方法で燃料電池の酸素極用の触媒として燃料電池を組み上げることで、従来よりも特性に優れ、高い出力密度の燃料電池を得ることができる。また、白金等の貴金属やその合金を使用した場合においても、高い出力密度が得られる優れた燃料電池、もしくは、従来より使用量を低減し経済性に優れた燃料電池を得ることができる。   After producing the oxygen reduction composite catalyst as described above, the fuel cell is assembled as a catalyst for the oxygen electrode of the fuel cell by a conventionally known method, thereby obtaining a fuel cell with superior characteristics and higher power density than the conventional one. be able to. Further, even when a noble metal such as platinum or an alloy thereof is used, it is possible to obtain an excellent fuel cell capable of obtaining a high output density, or a fuel cell excellent in economic efficiency by reducing the amount used compared to the conventional one.

以下、本発明を実施例に基づいて、より詳細に説明するが、本発明はこれらによりなんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited at all by these.

[実施例1]
(導電性担体)
触媒を担持する導電性担体には別途炭素材料を調製し用いた。まず、有機化合物前駆体としてo-ニトロアニリンを用い、水酸化カリウム水溶液に混合・撹拌後、濃縮乾燥させた。得られた固形分をアルゴン雰囲気下700℃25分焼成した。得られたカーボンを中性になるまで十分に水洗し、110℃で乾燥させた。さらに、フリッチュ社製遊星ボールミル装置(窒化珪素製ボール及びポット)を用いて、得られたカーボンを乾式にて微粉砕した後、窒素気流下700℃30分の乾燥を行ない、窒素ドープ炭素担体1を得た。
[Example 1]
(Conductive carrier)
Separately, a carbon material was prepared and used for the conductive carrier supporting the catalyst. First, o-nitroaniline was used as an organic compound precursor, mixed and stirred in an aqueous potassium hydroxide solution, and then concentrated and dried. The obtained solid content was baked at 700 ° C. for 25 minutes in an argon atmosphere. The obtained carbon was sufficiently washed with water until neutral, and dried at 110 ° C. Further, using a planetary ball mill device (silicon nitride ball and pot) manufactured by Fritsch, the obtained carbon was finely pulverized in a dry manner, followed by drying at 700 ° C. for 30 minutes in a nitrogen stream, and a nitrogen-doped carbon carrier 1 Got.

(触媒調製法)
所定量の前記窒素ドープ炭素担体1をアセトン中に分散させ、さらに超音波処理を行ない均質化した。担持する金属錯体としてビス(2,2’-ビピリジン)コバルトテトラシアノキノジメタン(以降Co(bpy)2(TCNQ)2と略記する)を用いた。前記窒素ドープ炭素担体1に対して金属濃度が2mass%となるように調製したアセトン溶液を徐々に滴下しながら、さらに超音波処理を行ない均質化した。アセトン分散溶液を乾燥後、大気中120℃で乾燥した。得られた金属錯体担持窒素ドープ炭素担体1を、窒素気流下赤外線イメージ炉にて、昇温速度50℃/minで700℃まで昇温し、その温度にて30分保持の加熱処理を施し、触媒1を得た。
(Catalyst preparation method)
A predetermined amount of the nitrogen-doped carbon support 1 was dispersed in acetone and further subjected to sonication to be homogenized. Bis (2,2′-bipyridine) cobalt tetracyanoquinodimethane (hereinafter abbreviated as Co (bpy) 2 (TCNQ) 2 ) was used as a supported metal complex. While gradually dropping an acetone solution prepared so as to have a metal concentration of 2 mass% with respect to the nitrogen-doped carbon carrier 1, ultrasonic treatment was further performed to homogenize. The acetone dispersion solution was dried and then dried at 120 ° C. in the atmosphere. The obtained metal complex-supported nitrogen-doped carbon support 1 was heated to 700 ° C. at a temperature increase rate of 50 ° C./min in an infrared image furnace under a nitrogen stream, and subjected to heat treatment for 30 minutes at that temperature, Catalyst 1 was obtained.

(触媒担持法)
調製した触媒1を4mg分取し、200μLのエタノールに分散して超音波均質化処理した。また、別途5%Nafion(登録商標)溶液2μLを200μLのエタノールに溶解して超音波均質化処理したNafion・エタノール溶液から200μL分取し、前記触媒分散液に加えて、20分間の超音波均質化処理した。さらに、均質化処理した触媒・Nafion溶液から4μL分取し、グラッシーカーボン製のディスク電極(日厚計測社製の回転リング・ディスク電極、ディスク径6mm、白金リング)基板へ滴下して分散した。この後、電極面を水平に維持して風乾、次いで60℃、大気中で10分間の乾燥処理を行った。最終的に顕微鏡により均質性を確認した。得られた触媒担持電極を用いて以下の電気化学測定法により触媒活性を評価した。
(Catalyst loading method)
4 mg of the prepared catalyst 1 was collected, dispersed in 200 μL of ethanol, and subjected to ultrasonic homogenization. Separately, 2 μL of 5% Nafion (registered trademark) solution was dissolved in 200 μL of ethanol, and 200 μL was collected from the ultrasonic homogenized Nafion-ethanol solution. In addition to the catalyst dispersion, 20 minutes of ultrasonic homogenization was performed. Processed. Further, 4 μL was taken from the homogenized catalyst / Nafion solution and dropped onto a substrate of a glassy carbon disk electrode (rotary ring disk electrode manufactured by Nisshin Keiki Co., Ltd., disk diameter 6 mm, platinum ring) and dispersed. Thereafter, the electrode surface was kept horizontal and air-dried, followed by drying at 60 ° C. in air for 10 minutes. Finally, homogeneity was confirmed with a microscope. Using the obtained catalyst-carrying electrode, the catalytic activity was evaluated by the following electrochemical measurement method.

(触媒活性の評価法)
評価は、日厚計測社製回転リング・ディスク電極評価装置を用い、作用極を回転装置に固定した前記触媒担持電極、対極を白金線、参照極を飽和カロメル電極とした。また、電解液を0.5mol/Lの硫酸水溶液とし、作用極を1000rpmで回転・維持して、電解質水溶液中に窒素を通気して測定系を窒素飽和した。窒素飽和電解質溶液で触媒担持電極から電気化学溶解がないことを確認した。確認された電極触媒に関しては、この測定を省略した。また、必要に応じて窒素飽和系の測定(50mV/sと5〜10mV/s)を静止電極で行った。酸素通気に切り替え、1000rpm条件で測定系を酸素飽和とした。リング電位1.35V(NHE[標準水素電極]基準)一定、ディスク電位は0.9V(NHE基準)から走査速度1mV/sの走査速度でカソード方向に電位掃引して電流・電位曲線を得た。回転数を変化させる場合には、その都度電解質を交換し、生成した過酸化水素の影響を除いた。
(Evaluation method of catalyst activity)
The evaluation was carried out using a rotating ring / disk electrode evaluation device manufactured by Nisshin Keiki Co., Ltd., the working electrode fixed to the rotating device, the counter electrode as a platinum wire, and the reference electrode as a saturated calomel electrode. In addition, the electrolytic solution was a 0.5 mol / L sulfuric acid aqueous solution, the working electrode was rotated and maintained at 1000 rpm, and nitrogen was passed through the electrolytic aqueous solution to saturate the measurement system with nitrogen. It was confirmed that there was no electrochemical dissolution from the catalyst-carrying electrode with the nitrogen saturated electrolyte solution. This measurement was omitted for the confirmed electrode catalyst. In addition, measurement of nitrogen saturation system (50 mV / s and 5 to 10 mV / s) was performed with a stationary electrode as necessary. Switching to oxygen aeration, the measurement system was oxygen saturated at 1000 rpm. The ring potential was constant 1.35V (NHE [standard hydrogen electrode] reference) constant, the disk potential was swept from 0.9V (NHE reference) to the cathode at a scanning speed of 1mV / s to obtain a current-potential curve. When changing the number of revolutions, the electrolyte was replaced each time to eliminate the influence of the generated hydrogen peroxide.

なお、回転リング・ディスク電極のディスク電流Idとリング電流Irからのディスク電位に対するプロットから、下式に基づいて反応電子数nを算出した。 Note that the plots for the disc potential of the disk current I d and the ring current I r of the rotating ring disk electrode was calculated the number of reaction electrons n based on the following equation.

n=4I/(I+I/N)
ここで、Nは、リング電極における反応補足率であり、本実施例においては、0.446である。
n = 4 I d / (I d + I r / N)
Here, N is the reaction supplement rate at the ring electrode, and is 0.446 in this example.

[実施例2]
導電性担体の有機化合物前駆体として、o-ニトロアニリンの代わりに、ベンゾトリアゾール、尿素、シュウ酸の等モル混合物を用いたこと以外は実施例1と同様に調製し、窒素ドープ炭素担体2及び触媒2を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Example 2]
Prepared in the same manner as in Example 1 except that an equimolar mixture of benzotriazole, urea, and oxalic acid was used instead of o-nitroaniline as the organic compound precursor of the conductive carrier, and the nitrogen-doped carbon carrier 2 and Catalyst 2 was obtained. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[実施例3]
導電性担体の有機化合物前駆体として、o-ニトロアニリンの他にベンゾトリアゾールを等モル混合させたこと以外は実施例1と同様に調製し、窒素ドープ炭素担体3及び触媒3を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Example 3]
A nitrogen-doped carbon carrier 3 and a catalyst 3 were obtained in the same manner as in Example 1 except that equimolar mixture of benzotriazole in addition to o-nitroaniline was used as the organic compound precursor of the conductive carrier. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[実施例4]
導電性担体の有機化合物前駆体として、o-ニトロアニリンの他にオキシキノリンを等モル混合させたこと以外は実施例1と同様に調製し、窒素ドープ炭素担体4及び触媒4を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Example 4]
A nitrogen-doped carbon carrier 4 and a catalyst 4 were obtained in the same manner as in Example 1 except that equimolar oxyquinoline was mixed in addition to o-nitroaniline as the organic compound precursor of the conductive carrier. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[実施例5]
導電性担体に担持させる金属錯体として、(2,2’-ビピリジン)コバルトテトラシアノキノジメタン(Co(bpy)(TCNQ)2)を用いた以外は実施例1と同様に調製し、触媒5を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Example 5]
Prepared in the same manner as in Example 1 except that (2,2′-bipyridine) cobalt tetracyanoquinodimethane (Co (bpy) (TCNQ) 2 ) was used as the metal complex to be supported on the conductive support, and the catalyst 5 Got. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[実施例6]
導電性担体に担持させる金属錯体として、(2,2’-ビピリジン)コバルトテトラシアノキノジメタン(Co(bpy)(TCNQ)2)を用いた以外は実施例2と同様に調製し、触媒6を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Example 6]
A catalyst was prepared in the same manner as in Example 2 except that (2,2′-bipyridine) cobalt tetracyanoquinodimethane (Co (bpy) (TCNQ) 2 ) was used as the metal complex to be supported on the conductive support. Got. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[実施例7]
導電性担体に担持させる金属錯体として、(2,2’-ビピリジン)コバルトテトラシアノキノジメタン(Co(bpy)(TCNQ)2)を用いた以外は実施例3と同様に調製し、触媒7を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Example 7]
Prepared in the same manner as in Example 3 except that (2,2′-bipyridine) cobalt tetracyanoquinodimethane (Co (bpy) (TCNQ) 2 ) was used as the metal complex to be supported on the conductive support, and the catalyst 7 Got. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[実施例8]
導電性担体に担持させる金属錯体として、(2,2’-ビピリジン)コバルトテトラシアノキノジメタン(Co(bpy)(TCNQ)2)を用いた以外は実施例4と同様に調製し、触媒8を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Example 8]
Prepared in the same manner as in Example 4 except that (2,2′-bipyridine) cobalt tetracyanoquinodimethane (Co (bpy) (TCNQ) 2 ) was used as the metal complex to be supported on the conductive support, and catalyst 8 Got. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[実施例9]
導電性担体に担持させる金属錯体として、テトラキス-メトキシフェニル-ポルフィリンコバルト錯体(以降CoPPと略記する)を用いた以外は実施例1と同様に調製し、触媒9を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Example 9]
A catalyst 9 was obtained in the same manner as in Example 1 except that a tetrakis-methoxyphenyl-porphyrin cobalt complex (hereinafter abbreviated as CoPP) was used as the metal complex supported on the conductive carrier. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[実施例10]
実施例8で得られた触媒8を分散させたアセトン溶液に超音波処理を施し、均質化した。次いで、触媒8に対して白金原子計算で20mass%となる量のヘキサクロロ白金酸6水和物水溶液を、超音波均質化処理しながら上記触媒8分散アセトン溶液に徐々に滴下し、滴下終了後さらに均質化処理を継続した。分散液を熱水浴上で乾燥後、得られた粉体を機械的に均質化した。次いで、アルゴン気流下850℃の加熱処理を30分間行ない、触媒10を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Example 10]
The acetone solution in which the catalyst 8 obtained in Example 8 was dispersed was subjected to ultrasonic treatment and homogenized. Next, hexachloroplatinic acid hexahydrate aqueous solution in an amount of 20 mass% by platinum atom calculation with respect to catalyst 8 is gradually added dropwise to the catalyst 8 dispersed acetone solution while ultrasonic homogenization treatment, and after completion of the addition, The homogenization process was continued. After the dispersion was dried on a hot water bath, the obtained powder was mechanically homogenized. Next, heat treatment was performed at 850 ° C. for 30 minutes under an argon stream to obtain Catalyst 10. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[比較例1]
導電性担体として、ライオン(株)社製ケッチェンブラック[商品名ケッチェンブラックEC600JD(以降EC600JDと略記する)]を用いた以外は実施例1と同様に調製し、触媒11を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Comparative Example 1]
A catalyst 11 was obtained in the same manner as in Example 1 except that Ketjen Black [trade name Ketjen Black EC600JD (hereinafter abbreviated as EC600JD)] manufactured by Lion Corporation was used as the conductive carrier. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[比較例2]
導電性担体に担持させる金属錯体として、(2,2’-ビピリジン)コバルトテトラシアノキノジメタン(Co(bpy)(TCNQ)2)を用いた以外は比較例1と同様に調製し、触媒12を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Comparative Example 2]
Prepared in the same manner as in Comparative Example 1 except that (2,2′-bipyridine) cobalt tetracyanoquinodimethane (Co (bpy) (TCNQ) 2 ) was used as the metal complex to be supported on the conductive support, and the catalyst 12 Got. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[比較例3]
導電性担体として、ライオン(株)社製ケッチェンブラック[商品名ケッチェンブラックEC600JD(以降EC600JDと略記する)]を用いた以外は実施例9と同様に調製し、触媒13を得た。さらに、触媒担持法及び評価法についても実施例1と同様に行なった。
[Comparative Example 3]
A catalyst 13 was obtained in the same manner as in Example 9 except that Ketjen Black [trade name Ketjen Black EC600JD (hereinafter abbreviated as EC600JD)] manufactured by Lion Corporation was used as the conductive carrier. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 1.

[比較例4]
金属錯体を担持させずに調製させたこと以外は実施例8と同様に調製した導電性担体を用い、実施例10と同様の工程にて白金を担持させ、触媒14を得た。さらに、触媒担持法及び評価法についても実施例10と同様に行なった。
[Comparative Example 4]
A catalyst 14 was obtained by supporting platinum in the same process as in Example 10, using a conductive carrier prepared in the same manner as in Example 8, except that the metal complex was not supported. Further, the catalyst loading method and the evaluation method were performed in the same manner as in Example 10.

表1は、実施例1〜10及び比較例1〜4の導電性担体の材料及びその物性の測定値の一覧である。   Table 1 is a list of materials of the conductive carriers of Examples 1 to 10 and Comparative Examples 1 to 4 and measured values of their physical properties.

表2は、実施例1〜10及び比較例1〜4における、使用導電性担体、金属錯体の組み合わせの一覧である。   Table 2 is a list of combinations of conductive carriers and metal complexes used in Examples 1 to 10 and Comparative Examples 1 to 4.

Figure 0005068029
Figure 0005068029

Figure 0005068029
Figure 0005068029

図1は、上記実施例1〜4及び比較例1における各触媒の酸素還元特性の比較図である。また、図2は、上記実施例5〜8及び比較例2について各触媒の酸素還元特性の比較図である。この結果の比較より、同一の金属錯体を用いて導電性担体を比較した結果、窒素ドープ炭素担体の酸素還元活性はケチェンブラックより大きく、本発明における窒素ドープ炭素担体の金属錯体担持の効果は明確である。   FIG. 1 is a comparison diagram of oxygen reduction characteristics of each catalyst in Examples 1 to 4 and Comparative Example 1. FIG. 2 is a comparison diagram of oxygen reduction characteristics of the catalysts for Examples 5 to 8 and Comparative Example 2 described above. From the comparison of the results, as a result of comparing the conductive support using the same metal complex, the oxygen reduction activity of the nitrogen-doped carbon support is larger than that of Ketjen Black, and the effect of the metal complex support of the nitrogen-doped carbon support in the present invention is It is clear.

図3は、上記実施例1、9及び比較例3における各触媒の酸素還元電子数の比較図である。この結果の比較より、本発明における効果により、明確に酸素還元電子数が向上し、過酸化水素の生成を抑制できていることは明確である。   FIG. 3 is a comparison diagram of the number of oxygen reducing electrons of each catalyst in Examples 1 and 9 and Comparative Example 3 described above. From the comparison of the results, it is clear that the number of oxygen-reduced electrons is clearly improved and the production of hydrogen peroxide can be suppressed by the effect of the present invention.

図4、図5さらに図6は、実施例10及び比較例4における、サイクリックボルタモグラム、酸素還元特性及び酸素還元電子数の比較図である。さらに、図7は、実施例10及び比較例4における、比較例4を基準にした酸素還元電流比と酸素還元電子数比である。この結果の比較より、担持させた金属錯体のみでは酸素還元活性が発現しない0.7Vより貴な電位においても、白金との相乗効果により酸素還元電流が向上し、酸素還元活性が向上できると言う、本発明の効果が得られていることは明確である。   4, FIG. 5 and FIG. 6 are comparison charts of the cyclic voltammogram, the oxygen reduction characteristics and the number of oxygen reducing electrons in Example 10 and Comparative Example 4. Further, FIG. 7 shows the oxygen reduction current ratio and oxygen reduction electron number ratio based on Comparative Example 4 in Example 10 and Comparative Example 4. From the comparison of the results, the oxygen reduction current is improved by the synergistic effect with platinum even at a potential nobler than 0.7 V where the oxygen reduction activity is not expressed only by the supported metal complex, and the oxygen reduction activity can be improved. It is clear that the effects of the present invention are obtained.

したがって、以上の結果から、本発明の酸素還元複合触媒が、従来の大環状有機化合物にて従来の炭素担体表面を修飾するよりも、酸素の4電子還元反応効率が向上でき、酸素還元特性に優れ有効であることが分かる。
さらに、本発明の酸素還元複合触媒が、従来と等量の白金使用量においてもより酸素還元特性に優れた酸素還元触媒であることが分かる。
Therefore, from the above results, the oxygen reduction composite catalyst of the present invention can improve the 4-electron reduction reaction efficiency of oxygen compared with the conventional macrocyclic organic compound modified with the conventional carbon support surface, and the oxygen reduction characteristics can be improved. It turns out that it is excellent and effective.
Furthermore, it can be seen that the oxygen reduction composite catalyst of the present invention is an oxygen reduction catalyst that is more excellent in oxygen reduction characteristics even in the same amount of platinum used as before.

実施例1〜4及び比較例1における各触媒の酸素活性特性比較図である。2 is a comparison diagram of oxygen activity characteristics of each catalyst in Examples 1 to 4 and Comparative Example 1. FIG. 実施例5〜8及び比較例2における各触媒の酸素活性特性比較図である。3 is a comparison diagram of oxygen activity characteristics of respective catalysts in Examples 5 to 8 and Comparative Example 2. FIG. 実施例1、9及び比較例3における各触媒の酸素還元電子数比較図である。3 is a comparison diagram of the number of oxygen-reduced electrons of each catalyst in Examples 1 and 9 and Comparative Example 3. FIG. 実施例10及び比較例4におけるサイクリックボルタモグラムである。4 is a cyclic voltammogram in Example 10 and Comparative Example 4. 実施例10及び比較例4における各触媒の酸素活性特性比較図である。6 is a comparison diagram of oxygen activity characteristics of respective catalysts in Example 10 and Comparative Example 4. FIG. 実施例10及び比較例4における各触媒の酸素還元電子数比較図である。6 is a comparison diagram of the number of oxygen-reduced electrons of each catalyst in Example 10 and Comparative Example 4. FIG. 比較例4に対する実施例10の酸素還元電流比及び酸素還元電子数比を示す図である。FIG. 4 is a graph showing the oxygen reduction current ratio and oxygen reduction electron number ratio of Example 10 with respect to Comparative Example 4.

Claims (15)

配位結合又は共有結合の少なくとも一方で金属原子と結合可能な表面部位を有する導電性担体が、ヘテロ原子含有有機化合物を配位子として有する金属錯体を少なくとも担持してなる酸素還元複合触媒であって、
前記導電性担体が、ヘテロ原子を分子内に含む有機化合物を水酸化ナトリウムと混合して、不活性ガス環境にて加熱炭化をしてなる炭素材料であることを特徴とする酸素還元複合触媒。
The conductive support having a surface portion capable of binding to a metal atom at least one of a coordination bond and a covalent bond is an oxygen reduction composite catalyst comprising at least a metal complex having a heteroatom-containing organic compound as a ligand. And
The oxygen-reducing composite catalyst, wherein the conductive carrier is a carbon material obtained by mixing an organic compound containing a hetero atom in a molecule with sodium hydroxide and performing heat carbonization in an inert gas environment .
前記導電性担体が、窒素、酸素、硫黄、リン又は炭素からなる群から選ばれる少なくとも1種の元素を含有し、該元素と前記金属錯体中の金属原子が、配位結合または共有結合の少なくとも一方で結合している請求項1記載の酸素還元複合触媒。   The conductive support contains at least one element selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus or carbon, and the metal atom in the metal complex is at least a coordinate bond or a covalent bond. The oxygen reduction composite catalyst according to claim 1, which is bonded on the one hand. 前記導電性担体が、窒素、酸素、硫黄又はリンの少なくとも1種を含有する炭素材料からなる請求項1又は2に記載の酸素還元複合触媒。   The oxygen-reducing composite catalyst according to claim 1 or 2, wherein the conductive support is made of a carbon material containing at least one of nitrogen, oxygen, sulfur, and phosphorus. 前記ヘテロ原子含有有機化合物が、窒素、酸素、硫黄又はリンからなる群から選ばれる少なくとも1種の原子を含む請求項1記載の酸素還元複合触媒。   The oxygen reduction composite catalyst according to claim 1, wherein the heteroatom-containing organic compound contains at least one atom selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus. 前記ヘテロ原子含有有機化合物が、含窒素環状化合物である請求項4に記載の酸素還元複合触媒。   The oxygen reduction composite catalyst according to claim 4, wherein the heteroatom-containing organic compound is a nitrogen-containing cyclic compound. 前記含窒素環状化合物が、ピリジン類、ビピリジン類、ターピリジン類、フェナントロリン類、ピラジン類又はイミダゾール類からなる群から選ばれる少なくとも1種の含窒素芳香族化合物である請求項5記載の酸素還元複合触媒。   6. The oxygen-reducing composite catalyst according to claim 5, wherein the nitrogen-containing cyclic compound is at least one nitrogen-containing aromatic compound selected from the group consisting of pyridines, bipyridines, terpyridines, phenanthrolines, pyrazines or imidazoles. . 前記ヘテロ原子含有有機化合物が、テトラシアノキノジメタン又はその塩である請求項1、4又は5に記載の酸素還元複合触媒。   The oxygen reduction composite catalyst according to claim 1, 4 or 5, wherein the heteroatom-containing organic compound is tetracyanoquinodimethane or a salt thereof. 前記金属錯体の中心金属が、第4〜第6周期遷移金属元素からなる群の少なくとも1種から選ばれる金属である請求項1又は2に記載の酸素還元複合触媒。   The oxygen reduction composite catalyst according to claim 1 or 2, wherein a central metal of the metal complex is a metal selected from at least one member selected from the group consisting of fourth to sixth periodic transition metal elements. 前記金属錯体の中心金属が、コバルト、鉄、銅から選ばれる1種又は2種以上の金属である請求項1、2又は8に記載の酸素還元複合触媒。   The oxygen reduction composite catalyst according to claim 1, 2, or 8, wherein a central metal of the metal complex is one or more metals selected from cobalt, iron, and copper. さらに、貴金属もしくはその合金を担持してなる請求項1〜9のいずれか1項に記載の酸素還元複合触媒。   Furthermore, the oxygen reduction composite catalyst of any one of Claims 1-9 which carry | supports a noble metal or its alloy. 前記貴金属が、白金もしくはその合金である請求項10記載の酸素還元複合触媒。   The oxygen-reducing composite catalyst according to claim 10, wherein the noble metal is platinum or an alloy thereof. ヘテロ原子を分子内に含む有機化合物を水酸化ナトリウムと混合して、不活性ガス環境にて加熱炭化をすることで、配位結合又は共有結合の少なくとも一方で金属原子と結合可能な表面部位を有した導電性担体を得、該導電性担体に、ヘテロ原子含有有機化合物を配位子として有する金属錯体を少なくとも担持させた後、熱処理して酸素還元複合触媒を製造することを特徴とする酸素還元複合触媒の製造方法。 An organic compound containing a heteroatom in the molecule is mixed with sodium hydroxide and heated and carbonized in an inert gas environment to form a surface site capable of binding to a metal atom at least one of a coordination bond and a covalent bond. An oxygen reduction composite catalyst is obtained by carrying at least a metal complex having a heteroatom-containing organic compound as a ligand on the conductive carrier and then heat-treating the conductive carrier. A method for producing a reduced composite catalyst. 前記熱処理後に、貴金属もしくはその合金を担持する請求項12記載の酸素還元複合触媒の製造方法。   The method for producing an oxygen reduction composite catalyst according to claim 12, wherein a noble metal or an alloy thereof is supported after the heat treatment. 請求項1〜13のいずれか1項に記載の酸素還元複合触媒を用いてなる燃料電池。   A fuel cell comprising the oxygen reduction composite catalyst according to any one of claims 1 to 13. 前記燃料電池が、固体高分子型燃料電池又は直接酸化燃料電池である請求項14記載の燃料電池。   The fuel cell according to claim 14, wherein the fuel cell is a solid polymer fuel cell or a direct oxidation fuel cell.
JP2006099584A 2006-03-31 2006-03-31 Oxygen reduction composite catalyst, method for producing the same, and fuel cell using the same Expired - Fee Related JP5068029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099584A JP5068029B2 (en) 2006-03-31 2006-03-31 Oxygen reduction composite catalyst, method for producing the same, and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099584A JP5068029B2 (en) 2006-03-31 2006-03-31 Oxygen reduction composite catalyst, method for producing the same, and fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2007273371A JP2007273371A (en) 2007-10-18
JP5068029B2 true JP5068029B2 (en) 2012-11-07

Family

ID=38675945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099584A Expired - Fee Related JP5068029B2 (en) 2006-03-31 2006-03-31 Oxygen reduction composite catalyst, method for producing the same, and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP5068029B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239261B2 (en) * 2007-03-08 2013-07-17 住友化学株式会社 Porous organometallic complex, method for producing the same, method for occluding and separating unsaturated organic molecules using the same
JP2009277360A (en) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method for them
JP5386978B2 (en) * 2008-06-06 2014-01-15 東洋紡株式会社 Fuel cell catalyst, membrane electrode assembly, fuel cell, and redox catalyst using heat-treated coordination polymer metal complex containing fine metal particles
JP5386979B2 (en) * 2008-06-06 2014-01-15 東洋紡株式会社 Fuel cell catalyst, membrane electrode assembly, fuel cell, and oxidation-reduction catalyst using heat-treated coordination polymer metal complex.
JP5386977B2 (en) * 2008-06-06 2014-01-15 東洋紡株式会社 Fuel cell catalyst using metal complex, membrane electrode assembly, fuel cell, and oxidation-reduction catalyst
DE102008063727A1 (en) * 2008-12-18 2010-06-24 Bayer Technology Services Gmbh Electrochemical process for the reduction of molecular oxygen
JP2010221126A (en) * 2009-03-24 2010-10-07 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method therefor
KR101358837B1 (en) 2009-06-10 2014-02-10 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Electrode catalyst for fuel cell and use thereof
CN102639236B (en) 2009-11-05 2015-09-30 国立大学法人群马大学 C catalyst, its preparation method and use electrode and the battery of described C catalyst
EP2562860B1 (en) * 2010-04-20 2018-04-18 Nisshinbo Holdings Inc. Carbon catalyst for direct fuel cell cathode, and direct fuel cell cathode and direct fuel cell using same
CN106935867B (en) * 2010-12-22 2020-05-12 昭和电工株式会社 Method for producing electrode catalyst for fuel cell and use thereof
JP5893305B2 (en) * 2011-09-09 2016-03-23 国立大学法人東京工業大学 Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
JP5854427B2 (en) * 2012-01-25 2016-02-09 日産自動車株式会社 Hydrogen storage material
JP6266203B2 (en) * 2012-11-14 2018-01-24 旭化成株式会社 Nitrogen-containing carbon material, method for producing the same, and electrode for fuel cell
EP2945735B1 (en) * 2013-01-16 2018-12-05 Stc.Unm Methods for forming catalytic materials and catalytic materials
JP6315708B2 (en) * 2015-06-22 2018-04-25 日本電信電話株式会社 Lithium-air secondary battery, method for producing lithium-air secondary battery, and apparatus equipped with lithium-air secondary battery
CN110492117A (en) * 2019-08-27 2019-11-22 北京化工大学 A kind of double ligand strategies prepare non noble metal oxygen reduction elctro-catalyst
CN112993282A (en) * 2019-12-13 2021-06-18 长春理工大学 Bipyridine cobalt/graphene composite material and preparation method thereof
CN114180549B (en) * 2021-11-15 2023-02-10 华南理工大学 Preparation method and application of carbon material containing 3d metal monoatomic atoms and nitrogen and oxygen codoped

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208073A (en) * 1981-06-17 1982-12-21 Toshiba Corp Porous catalyst layer of air electrode
JP4645015B2 (en) * 2003-10-24 2011-03-09 株式会社日立製作所 Catalyst material and fuel cell using the same
JP4799897B2 (en) * 2004-04-22 2011-10-26 新日本製鐵株式会社 Fuel cell
JP4587027B2 (en) * 2004-06-07 2010-11-24 株式会社豊田中央研究所 Nitrogen-containing carbon-based composite material
JP4461427B2 (en) * 2004-07-30 2010-05-12 株式会社豊田中央研究所 Electrode catalyst body and method for producing the same

Also Published As

Publication number Publication date
JP2007273371A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5068029B2 (en) Oxygen reduction composite catalyst, method for producing the same, and fuel cell using the same
Jahan et al. A Graphene oxide and copper‐centered metal organic framework composite as a tri‐functional catalyst for HER, OER, and ORR
US9825308B1 (en) Low platinum catalyst and method of preparation
Bezerra et al. A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction
Olson et al. Anion-exchange membrane fuel cells: dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt− polypyrrole electrocatalysts
Fu et al. FeCo–Nx embedded graphene as high performance catalysts for oxygen reduction reaction
Zhang et al. Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for oxygen reduction
Deng et al. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells
Popov et al. Power source research at USC: Development of advanced electrocatalysts for polymer electrolyte membrane fuel cells
US9379388B2 (en) Catalyst for oxygen reduction reaction in fuel cells
Kruusenberg et al. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell
US20100048380A1 (en) Novel catalyst for oxygen reduction reaction in fuel cells
US8338051B2 (en) Electrode catalyst for fuel cell, method for producing the same, and fuel cell using the electrode catalyst
Praats et al. Electroreduction of oxygen on cobalt phthalocyanine-modified carbide-derived carbon/carbon nanotube composite catalysts
Chao et al. Varying N content and N/C ratio of the nitrogen precursor to synthesize highly active Co-Nx/C non-precious metal catalyst
Ghosh et al. Palladium-nitrogen coordinated cobalt alloy towards hydrogen oxidation and oxygen reduction reactions with high catalytic activity in renewable energy generations of proton exchange membrane fuel cell
Lee et al. A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oyxgen reduction
JP2003109614A (en) Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same
Du et al. Applications of RDE and RRDE methods in oxygen reduction reaction
KR101838287B1 (en) Method for preparing N-doped carbon shell protected ordered PtFe nanoparticle and ordered PtFe nanoparticle obtained thereof and uses thereof
JP5540294B2 (en) Method for producing electrode catalyst for fuel cell
Hu et al. High crystallinity binuclear iron phthalocyanine catalyst with enhanced performance for oxygen reduction reaction
Li et al. Development of durable carbon black/titanium dioxide supported macrocycle catalysts for oxygen reduction reaction
JP6028027B2 (en) Electrocatalyst composite material, method of producing the composite material, and method of using the same
Bhunia et al. Cobalt nanoparticle-integrated nitrogen-doped carbon nanotube as an efficient bifunctional electrocatalyst for direct methanol fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees