JP2006156013A - Catalyst for oxygen electrode in polymer electrolyte fuel cell - Google Patents

Catalyst for oxygen electrode in polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2006156013A
JP2006156013A JP2004342296A JP2004342296A JP2006156013A JP 2006156013 A JP2006156013 A JP 2006156013A JP 2004342296 A JP2004342296 A JP 2004342296A JP 2004342296 A JP2004342296 A JP 2004342296A JP 2006156013 A JP2006156013 A JP 2006156013A
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
oxygen electrode
metal
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004342296A
Other languages
Japanese (ja)
Other versions
JP4520833B2 (en
Inventor
Yoichi Matsuzaki
洋市 松崎
Takashi Iijima
孝 飯島
Hiroshi Jodai
洋 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004342296A priority Critical patent/JP4520833B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to US11/587,175 priority patent/US9786925B2/en
Priority to KR1020087024258A priority patent/KR100919326B1/en
Priority to KR1020067021769A priority patent/KR100897637B1/en
Priority to CA2563932A priority patent/CA2563932C/en
Priority to PCT/JP2005/008255 priority patent/WO2005104275A1/en
Priority to EP05736882.1A priority patent/EP1748509B1/en
Publication of JP2006156013A publication Critical patent/JP2006156013A/en
Application granted granted Critical
Publication of JP4520833B2 publication Critical patent/JP4520833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for an oxygen electrode in a polymer electrolyte fuel cell exhibiting a catalyst characteristic equal to that of platinum. <P>SOLUTION: This catalyst for the oxygen electrode in the polymer electrolyte fuel cell includes a metal complex having oxygen gas reduction ability. In the metal complex, an O-O bond distance, which is calculated by a B3LYP density functional method, of oxygen molecules binding to a complex center metal in an absorption structure between the metal complex and the oxygen molecule is 0.131 nm or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高分子固体電解質型燃料電池酸素極用触媒に関し、特に、高性能且つ安価な高分子固体電解質型燃料電池酸素極用触媒に関するものである。   The present invention relates to a polymer solid oxide fuel cell oxygen electrode catalyst, and more particularly to a high performance and inexpensive catalyst for a polymer solid electrolyte fuel cell oxygen electrode.

高分子固体電解質型燃料電池は、高い電流密度が取り出せ、低温作動が可能で、且つコンパクトな電池を設計可能なことから、電気自動車用電源、携帯電子機器用電源等の移動型電源、或いは、家庭用電源等の定置分散型電源としての応用が期待され、実用化に向けた検討が精力的に進められている。   Since the polymer solid electrolyte fuel cell can take out a high current density, can operate at a low temperature, and can design a compact battery, a mobile power source such as a power source for electric vehicles and a power source for portable electronic devices, or The application as a stationary distributed power source such as a household power source is expected, and studies for practical use are energetically advanced.

高分子固体電解質型燃料電池を実用に供するためには、反応を促進させるための触媒が必須であり、触媒として、水素極、酸素極共に、白金、或いは白金合金が主に検討されている(例えば、非特許文献1)。しかしながら、特に、酸素極での過電圧が大きく、単セルの理論出力電圧1.23Vに対して、1A/cm2程度の実用域の電流を取り出そうとすると、通常の触媒担持量(酸素極側で0.1〜0.5mg/cm2)で、酸素極の過電圧は0.3V以上に達してしまう(例えば、非特許文献2)。過電圧を低減する対策として、触媒に用いる白金或いは白金合金の担持量を多くすることが考えられるが、触媒量の増加による過電圧の低減効果は小さく、他方、触媒増に伴うコストアップと言う課題がより一層大きくなり、コストと触媒パフォーマンスの両立が依然大きな課題となっている。 In order to put the polymer solid electrolyte fuel cell into practical use, a catalyst for accelerating the reaction is indispensable, and as a catalyst, platinum or a platinum alloy is mainly studied for both the hydrogen electrode and the oxygen electrode ( For example, Non-Patent Document 1). However, in particular, when the overvoltage at the oxygen electrode is large and a current in the practical range of about 1 A / cm 2 is taken out with respect to the theoretical output voltage of 1.23 V for a single cell, the normal catalyst loading (0.1% on the oxygen electrode side) ˜0.5 mg / cm 2 ), the overvoltage of the oxygen electrode reaches 0.3 V or more (for example, Non-Patent Document 2). As a measure to reduce the overvoltage, it is conceivable to increase the amount of platinum or platinum alloy supported on the catalyst, but the effect of reducing the overvoltage due to an increase in the amount of catalyst is small, while the problem of an increase in cost due to an increase in the catalyst is a problem Increasingly, the balance between cost and catalyst performance remains a major challenge.

上述のようにコスト、並びに過電圧を低減するような白金を代替する新規触媒が切望され、精力的な研究が展開されている。その中でも、酸素還元能を有する触媒として、古くから、ポルフィリン、フタロシアニン、ジベンゾテトラアザアンヌレン等の金属を含有する大環状化合物の錯体が検討されている(非特許文献3)。これらの金属錯体は、生体内の酸素のメディエーターとして知られており、即ち、酸素分子に対する吸着能を活かして、電気化学的な酸素分子の還元反応に適用すると言うのが基本的発想である(非特許文献4)。研究当初は、リン酸型燃料電池の酸素極用触媒としての実用を目指した検討がなされていたが、リン酸による触媒の劣化、触媒活性が白金に比較して低い等の課題が残り、リン酸型燃料電池への適用は未達であった。他方、高分子固体電解質型燃料電池の場合には、酸性環境下での触媒の劣化は回避可能と考えられるため、近年、新たな精力的研究が進展している状況である。   As described above, new catalysts that replace platinum that reduce cost and overvoltage are eagerly awaited, and energetic research is being developed. Among them, as a catalyst having an oxygen reducing ability, a complex of a macrocyclic compound containing a metal such as porphyrin, phthalocyanine, dibenzotetraazaannulene has been studied for a long time (Non-patent Document 3). These metal complexes are known as oxygen mediators in vivo, that is, the basic idea is that they are applied to electrochemical oxygen molecule reduction reactions by utilizing the adsorption ability to oxygen molecules ( Non-patent document 4). At the beginning of the research, studies aimed at practical use as a catalyst for the oxygen electrode of phosphoric acid fuel cells were made, but problems such as deterioration of the catalyst due to phosphoric acid and lower catalytic activity compared to platinum remained, and phosphoric acid fuel cells had problems. Application to acid fuel cells has not been achieved. On the other hand, in the case of a polymer electrolyte fuel cell, since it is considered that catalyst deterioration under an acidic environment can be avoided, new energetic research is progressing in recent years.

これらの金属錯体を触媒として実用の電極に適用するには、触媒の電子伝導体への固定化が必須である。そのために使用されるのが炭素担体である。具体的には、電子伝導性が高く、且つ表面積の大きなカーボンブラックが用いられる。この炭素担体と金属錯体との組み合わせにより、電極触媒としての連続使用が可能となる。   In order to apply these metal complexes as catalysts to practical electrodes, it is essential to immobilize the catalyst on an electronic conductor. For this purpose, a carbon support is used. Specifically, carbon black having high electron conductivity and a large surface area is used. The combination of the carbon support and the metal complex enables continuous use as an electrode catalyst.

これら炭素担体上に担持された金属錯体の酸素還元触媒としての課題は、過電圧が白金触媒よりも大きいこと、還元生成物が水(4電子反応生成物と呼ぶ)だけでなく、過酸化水素(2電子反応生成物と呼ぶ)の混合物であると言う2点である。過電圧に対する対策として、非酸化性雰囲気中での熱処理が提案されている(非特許文献5)。しかしながら、熱処理後の改善された過電圧は、白金に比較して0.1V以上であり、実用には依然として課題が残る。   The problem as an oxygen reduction catalyst of these metal complexes supported on carbon supports is that the overvoltage is larger than that of platinum catalyst, the reduction product is not only water (referred to as 4-electron reaction product), but also hydrogen peroxide ( 2 points to be a mixture of two-electron reaction products). As a countermeasure against overvoltage, heat treatment in a non-oxidizing atmosphere has been proposed (Non-Patent Document 5). However, the improved overvoltage after heat treatment is 0.1 V or more compared to platinum, and there are still problems in practical use.

また、4電子反応生成物の収率の向上として、複核錯体(特許文献1、非特許文献6)、ポルフィリン錯体の2量化(非特許文献7)等が提案されている。しかしながら、合成における収率等の工業的適用が困難なこと、コスト高であること、白金或いは白金合金に比較して過電圧が大きい等の課題が残る。   In order to improve the yield of the 4-electron reaction product, dinuclear complexes (Patent Document 1, Non-Patent Document 6), dimerization of porphyrin complexes (Non-Patent Document 7), and the like have been proposed. However, problems such as difficulty in industrial application such as yield in synthesis, high cost, and large overvoltage compared to platinum or platinum alloys remain.

他方、白金の微粒子化、或いは、白金触媒の利用率の向上による白金の使用量を低減、即ち、コスト削減を狙った触媒の開発が検討されている(例えば、非特許文献1)。しかしながら、白金の使用量低減に伴う出力特性の低下も伴い、実用的には課題が残る。   On the other hand, development of a catalyst aiming at reducing the amount of platinum used by making platinum fine particles or improving the utilization rate of the platinum catalyst, that is, cost reduction has been studied (for example, Non-Patent Document 1). However, a problem remains practically accompanied by a decrease in output characteristics accompanying a reduction in the amount of platinum used.

特開平11-253811号公報Japanese Patent Laid-Open No. 11-253811 平成12年度新エネルギー・産業技術総合開発機構委託研究成果報告書「固体高分子型燃料電池低コスト電極の開発」2000 New Energy and Industrial Technology Development Organization Commissioned Research Results Report “Development of Low Cost Electrode for Solid Polymer Fuel Cell” 平成10年度新エネルギー・産業技術総合開発機構委託研究成果報告書「高耐久性電池実用化のためのイオン交換膜に関する研究」1998 New Energy and Industrial Technology Development Organization Commissioned Research Results Report “Study on Ion Exchange Membranes for Practical Use of High Durability Batteries” H. Jahnke, M. Schonborn, G. Zimmermann, Topics in Current Chemistry, Vol.61, p.133〜181 (1976)H. Jahnke, M. Schonborn, G. Zimmermann, Topics in Current Chemistry, Vol. 61, p.133-181 (1976) 湯浅 真、日本油化学会誌、第49巻、第4号、315〜323頁 (2000)Makoto Yuasa, Journal of Japan Oil Chemists' Society, Vol. 49, No. 4, 315-323 (2000) J. A. R. van Veen et al., J. Chem. Soc., Faraday Trans. 1, Vol.77, p.2827 (1981)J. A. R. van Veen et al., J. Chem. Soc., Faraday Trans. 1, Vol. 77, p. 2827 (1981) F. C. Anson et al., J. Am. Chem. Soc., Vol.113, p.9564 (1991)F. C. Anson et al., J. Am. Chem. Soc., Vol. 113, p. 9564 (1991) J. P. Collman et al., J. Am. Chem. Soc., Vol.102, p.6027 (1980)J. P. Collman et al., J. Am. Chem. Soc., Vol.102, p.6027 (1980)

本発明は、白金と同等の触媒特性を発揮する安価な高分子固体電解質型燃料電池酸素極用触媒の提供を目的とする。   An object of the present invention is to provide an inexpensive polymer solid electrolyte fuel cell oxygen electrode catalyst that exhibits catalytic properties equivalent to platinum.

前記課題の解決は、
(1) 酸素ガス還元能を有する金属錯体を含有する燃料電池用触媒であって、該金属錯体が、B3LYP密度汎関数法により計算される金属錯体と酸素分子の吸着構造における錯体中心金属に結合する酸素分子のO-O結合距離が0.131nm以上であることを特徴とする高分子固体電解質型燃料電池酸素極用触媒、
(2) 前記金属錯体が、N4-キレート型の錯体構造である上記(1)記載の高分子固体電解質型燃料電池酸素極用触媒、
(3) 前記金属錯体が、N4-キレート型であり、かつ中心金属に結合するN原子の内少なくとも2個以上がイミン型である上記(1)又は(2)に記載の高分子固体電解質型燃料電池酸素極用触媒、
(4) 前記N4-キレート型金属錯体が、下記(一般式1)又は(一般式2)の一方又は双方である上記(3)記載の高分子固体電解質型燃料電池酸素極用触媒、
The solution to the problem is
(1) A fuel cell catalyst containing a metal complex capable of reducing oxygen gas, wherein the metal complex binds to a complex center metal in an adsorption structure of a metal complex and an oxygen molecule calculated by a B3LYP density functional method A polymer solid oxide fuel cell oxygen electrode catalyst, characterized in that the OO bond distance of oxygen molecules to be oxidized is 0.131 nm or more,
(2) The solid polymer electrolyte fuel cell oxygen electrode catalyst according to (1), wherein the metal complex has an N 4 -chelate type complex structure,
(3) The polymer solid electrolyte according to the above (1) or (2), wherein the metal complex is an N 4 -chelate type, and at least two of the N atoms bonded to the central metal are an imine type Type fuel cell oxygen electrode catalyst,
(4) The polymer solid oxide fuel cell oxygen electrode catalyst according to (3), wherein the N 4 -chelate metal complex is one or both of the following (General Formula 1) or (General Formula 2):

Figure 2006156013
Figure 2006156013

(但し、Mは金属原子、R1〜R10は、水素又は置換基である。) (Where, M is a metal atom, R 1 to R 10 is a hydrogen or a substituent.)

Figure 2006156013
Figure 2006156013

(但し、Mは金属原子、R11〜R24は水素又は置換基である。)
(5) 前記金属錯体の錯体中心金属が、周期律表第V族、第VI族、第VII 族又は第VIII族の遷移金属から選ばれる1種以上である上記(1)〜(4)のいずれかに記載の高分子固体電解質型燃料電池酸素極用触媒、
(6) 前記遷移金属が、Co又はFeの一方又は双方である上記(5)記載の高分子固体電解質型燃料電池酸素極用触媒、
(7) 前記触媒中に、さらに貴金属を1〜5質量%含有する上記(1)〜(6)のいずれかに記載の高分子固体電解質型燃料電池酸素極用触媒、
(8) 前記金属錯体又は貴金属の一方又は双方が、担体表面に担持されている上記(1)〜(7)のいずれかに記載の高分子固体電解質型燃料電池酸素極用触媒、
(9) 前記担体が炭素材料である上記(8)記載の高分子固体電解質型燃料電池酸素極用触媒、
(10) 前記炭素材料のBET比表面積SBETが1000m2/g以上である上記(9)記載の高分子固体電解質型燃料電池酸素極用触媒、
(11) 前記炭素材料の直径2nm以下のミクロ孔の表面積Smicroと全細孔表面積Stotalとの比Smicro/Stotalが0.3以上である上記(9)又は(10)に記載の高分子固体電解質型燃料電池酸素極用触媒、
(12) 前記炭素材料の直径2nm以下のミクロ孔の細孔直径が1.5nm以下である上記(9)〜(11)に記載の高分子固体電解質型燃料電池酸素極用触媒、
により達成される。
(13) 上記(1)〜(12)のいずれか1項に記載の触媒を用いた高分子固体電解質型燃料電池。
(However, M is a metal atom, and R 11 to R 24 are hydrogen or a substituent.)
(5) In the above (1) to (4), the complex center metal of the metal complex is one or more selected from Group V, Group VI, Group VII or Group VIII transition metal of the periodic table The solid polymer electrolyte fuel cell oxygen electrode catalyst according to any one of the above,
(6) The polymer solid oxide fuel cell oxygen electrode catalyst according to (5), wherein the transition metal is one or both of Co and Fe,
(7) The polymer solid oxide fuel cell oxygen electrode catalyst according to any one of (1) to (6), further containing 1 to 5% by mass of a noble metal in the catalyst,
(8) The polymer solid oxide fuel cell oxygen electrode catalyst according to any one of (1) to (7), wherein one or both of the metal complex or the noble metal is supported on a support surface,
(9) The solid polymer electrolyte fuel cell oxygen electrode catalyst according to (8), wherein the carrier is a carbon material,
(10) The solid polymer electrolyte fuel cell oxygen electrode catalyst according to (9), wherein the carbon material has a BET specific surface area S BET of 1000 m 2 / g or more,
(11) The polymer according to (9) or (10), wherein a ratio S micro / S total of a surface area S micro of a micropore having a diameter of 2 nm or less and a total pore surface area S total of the carbon material is 0.3 or more. Catalyst for oxygen electrode of solid oxide fuel cell,
(12) The solid polymer electrolyte fuel cell oxygen electrode catalyst according to the above (9) to (11), wherein the pore diameter of micropores having a diameter of 2 nm or less of the carbon material is 1.5 nm or less,
Is achieved.
(13) A solid polymer electrolyte fuel cell using the catalyst according to any one of (1) to (12) above.

本発明の触媒は、酸素還元反応における触媒活性、4電子反応率共に良好であり、白金と同等以上の触媒特性を発揮する安価な高分子固体電解質型燃料電池酸素極用触媒を提供することが可能となる。   The catalyst of the present invention provides an inexpensive catalyst for a solid oxide polymer electrolyte fuel cell oxygen electrode that has good catalytic activity and four-electron reaction rate in an oxygen reduction reaction, and exhibits catalytic properties equivalent to or better than platinum. It becomes possible.

以下に、本発明の内容を具体的に説明する。   The contents of the present invention will be specifically described below.

本発明において本質的に重要なことは、
(a) 単独の触媒活性が高い金属錯体を用いること、
(b) 金属錯体と貴金属とを共存させて触媒作用を発現させること、
(c) 前述の触媒を担持させる担体には比表面積の大きい炭素材料を用いること、
の3点である。
Essentially important in the present invention is that
(a) using a single metal complex having high catalytic activity,
(b) coexistence of a metal complex and a noble metal to develop a catalytic action,
(c) using a carbon material having a large specific surface area for the carrier supporting the catalyst,
The three points.

金属錯体による酸素還元反応は、酸素分子が金属錯体の中心に位置する金属原子に吸着することから始まる。特に、中心金属が遷移金属の場合に安定な吸着状態が得られる理由は、酸素分子の結合性軌道から吸着サイトの遷移金属原子の空のs軌道への電荷移動(donation)と、遷移金属原子のd軌道から酸素分子の反結合性軌道への電荷移動(backdonation)が同時に起こるためである(小林久芳, 山口克, 表面, Vol.23, p.311 (1985))。   The oxygen reduction reaction by a metal complex starts when an oxygen molecule is adsorbed on a metal atom located at the center of the metal complex. In particular, the reason why a stable adsorption state is obtained when the central metal is a transition metal is that there is a charge transfer from the binding orbitals of oxygen molecules to the empty s orbitals of the transition metal atoms at the adsorption site, and the transition metal atoms This is because the backdonation from the d-orbital to the antibonding orbital of oxygen molecules occurs simultaneously (Hiyoshi Kobayashi, Katsushi Yamaguchi, Surface, Vol.23, p.311 (1985)).

金属錯体が高い酸素還元活性を有するには、上記2種類の電荷移動の中でも、特にbackdonationの起こり易さが重要である。即ち、酸素分子の電子密度が増加すれば、プロトンに対する親和性が増大し、かつ、酸素分子の反結合性軌道に電子が流入することにより、酸素原子間の結合が弱まるので、O-O結合の切断を伴う4電子還元反応も起こり易くなるからである。したがって、金属原子から酸素分子へのbackdonationの度合いを表す指標である酸素分子のO-O結合距離を計算することによって、酸素還元反応の活性を推定することが可能である。これらの計算は、非経験的分子軌道法や密度汎関数法等の計算方法を用いて行うことができるが、計算が比較的容易で、かつ、高い計算精度が得られる点で密度汎関数法が有効であり、この密度汎関数法としてはB3LYP法を始めとする各種の方法が採用されている。   In order for the metal complex to have high oxygen reduction activity, the ease of backdonation is particularly important among the above two types of charge transfer. In other words, if the electron density of oxygen molecules increases, the affinity for protons increases, and electrons flow into the antibonding orbitals of oxygen molecules, weakening the bonds between oxygen atoms, thus breaking the OO bond. This is because a four-electron reduction reaction accompanied with sulfite tends to occur. Therefore, it is possible to estimate the activity of the oxygen reduction reaction by calculating the O—O bond distance of the oxygen molecule, which is an index representing the degree of backdonation from the metal atom to the oxygen molecule. These calculations can be performed using non-empirical molecular orbital methods or density functional methods, but the density functional method is relatively easy to calculate and provides high calculation accuracy. As the density functional method, various methods such as the B3LYP method are adopted.

そこで、本発明者らは、B3LYP法の計算結果が、実際の触媒活性と相関性があるか否かを検討した。全ての計算は、Gaussian98プログラムを用いて行った。用いた基底関数は、典型元素に対して6-31G基底関数であり、金属元素に対して”gaussian basis sets for molecular calculations”, S. Hujinaga(eds.), Elsevier (1984)に記載の (14s8p5d)/[5s3p2d]である。先ず、ジベンゾテトラアザアヌレンのコバルト(II)錯体(略号CoDTAA)、5,10,15,20-テトラキス-(4-メトキシフェニル)ポルフィリンのコバルト(II)錯体(略号CoTMPP)、5,10,15,20-テトラフェニルポルフィリンのコバルト(II)錯体(略号CoTPP)、フタロシアニンのコバルト(II)錯体(略号CoPc)と、酸素分子の吸着構造をB3LYP法で計算した。その結果、それらのO-O結合距離は、それぞれ0.1305nm、0.1288nm、0.1287nm、0.1254nmであることが判明した。また、CoTMPP、CoTPP、CoPcをカーボンブラック(ライオン(株)社製ケッチェンブラック EC600JD)上に担持し、未熱処理で回転ディスク電極を用いて、電流-電圧特性を測定した。飽和電流値の半分の電流値のときの電位(飽和甘汞電極(SCE)基準)を比較すると、それらはそれぞれ0.119V、0.083V、0.075Vであった。また、文献(H. Jahnke et al., Top. Corr. Chem., Vol.1, p.133 (1976))によれば、CoDTAAはCoTMPPより、さらに高活性であることが報告されている。したがって、以上の検討により、計算で求めたO-O結合距離と酸素還元触媒活性に相関性があることが判明した。   Therefore, the present inventors examined whether the calculation result of the B3LYP method is correlated with the actual catalyst activity. All calculations were performed using the Gaussian 98 program. The basis functions used are 6-31G basis functions for typical elements and are described in “gaussian basis sets for molecular calculations”, S. Hujinaga (eds.), Elsevier (1984) (14s8p5d ) / [5s3p2d]. First, cobalt (II) complex of dibenzotetraazaannulene (abbreviation CoDTAA), cobalt (II) complex of 5,10,15,20-tetrakis- (4-methoxyphenyl) porphyrin (abbreviation CoTMPP), 5,10,15 The adsorption structure of oxygen molecules was calculated by the cobalt (II) complex of a 20-tetraphenylporphyrin (abbreviated CoTPP), the cobalt (II) complex of phthalocyanine (abbreviated CoPc), and oxygen molecules. As a result, it was found that their O—O bond distances were 0.1305 nm, 0.1288 nm, 0.1287 nm, and 0.1254 nm, respectively. In addition, CoTMPP, CoTPP, and CoPc were supported on carbon black (Ketjen Black EC600JD manufactured by Lion Corporation), and current-voltage characteristics were measured using a rotating disk electrode without heat treatment. Comparing the potential at the current value half that of the saturation current value (saturated sweet potato electrode (SCE) standard), they were 0.119V, 0.083V, and 0.075V, respectively. Further, according to the literature (H. Jahnke et al., Top. Corr. Chem., Vol. 1, p.133 (1976)), CoDTAA is reported to be more highly active than CoTMPP. Therefore, the above study revealed that there is a correlation between the calculated O—O bond distance and the oxygen reduction catalytic activity.

そこで、本発明者らは、さらに酸素還元触媒活性の優れた金属錯体の構造を、吸着酸素分子のO-O結合距離を計算することによって種々検討を行った。その結果、   Therefore, the present inventors have conducted various studies on the structure of a metal complex having further excellent oxygen reduction catalytic activity by calculating the O—O bond distance of adsorbed oxygen molecules. as a result,

Figure 2006156013
Figure 2006156013

Figure 2006156013
Figure 2006156013

に示す金属錯体について、酸素吸着構造におけるO-O結合距離は、それぞれ0.1320nm、0.1316nmと計算され、いずれもCoDTAAの場合よりさらに長くなっており、 The O-O bond distance in the oxygen adsorption structure is calculated as 0.1320 nm and 0.1316 nm, respectively, and both are longer than in the case of CoDTAA.

Figure 2006156013
Figure 2006156013

Figure 2006156013
Figure 2006156013

の大環状化合物錯体は、CoDTAA以上の触媒活性を有することが判明した。 This macrocyclic compound complex was found to have a catalytic activity higher than that of CoDTAA.

他方、金属錯体の中心金属原子は、酸素還元時に高酸化状態へ移行しており、次の反応サイクルにおける触媒能を回復するには、中心金属原子が低酸化状態へ還元される必要がある。この還元反応は、錯体配位子の電子吸引性が強いほど容易に進行する。それに対して、前述の吸着酸素分子のO-O結合距離は、金属原子から酸素分子へのbackdonationが強いほど、即ち、配位子の電子供与性が強いほど長くなる傾向がある。以上の点を考慮すると、吸着酸素分子のO-O結合距離が長過ぎる場合は、中心金属の還元反応が困難となる恐れがあるため、前述のO-O結合距離は、0.136nm以下であることが好ましい。   On the other hand, the central metal atom of the metal complex has shifted to a high oxidation state during oxygen reduction, and the central metal atom needs to be reduced to a low oxidation state in order to recover the catalytic ability in the next reaction cycle. This reduction reaction proceeds more easily as the electron withdrawing property of the complex ligand is stronger. On the other hand, the O—O bond distance of the adsorbed oxygen molecule tends to increase as the backdonation from the metal atom to the oxygen molecule increases, that is, as the electron donating property of the ligand increases. Considering the above points, if the O—O bond distance of the adsorbed oxygen molecule is too long, the reduction reaction of the central metal may be difficult. Therefore, the aforementioned O—O bond distance is preferably 0.136 nm or less.

本発明に好適に使用される金属錯体は、中心金属に対して4又は5配位のキレート構造であることが好ましく、更に好ましくはN4-キレート構造である。配位数が多いほど、錯体としての化学的安定性が高まり、即ち、触媒寿命が向上するからである。他方、6配位以上の場合は、配位子との立体反発によって酸素分子の吸着が困難となる恐れがある。 The metal complex suitably used in the present invention preferably has a chelate structure having 4 or 5 coordinates with respect to the central metal, more preferably an N 4 -chelate structure. This is because the greater the coordination number, the higher the chemical stability as a complex, that is, the longer the catalyst life. On the other hand, in the case of 6 or more coordination, there is a possibility that adsorption of oxygen molecules may be difficult due to steric repulsion with the ligand.

本発明で好適に使用される金属錯体の配位子としては、(一般式1)、(一般式2)で示した配位子が例示できる。ここで、R1〜R24で示される置換基は、水素又は置換基であって、置換基としては、同じであっても異なっていても良く、置換・非置換のアルキル基、アリール基等を例示できる。これらの置換基として炭化水素基は好ましい。アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、メトキシ基、エトキシ基等が例示できる。アルキル基は、二つのアルキル基が環状になっていても良く、例えば、R1とR2のアルキル置換基が閉環して、シクロヘキシル環を形成した化合物を例示できる。具体的な配位子としては、5,7,12,14-テトラメチル-1,4,8,11-テトラアザシクロテトラデカ-2,4,6,9,11,13-ヘキサエン、5,7,12,14-テトラメチル-1,4,8,11-テトラアザシクロテトラデカ-4,6,11,13-テトラエン等を例示できる。 Examples of the ligand of the metal complex preferably used in the present invention include the ligands represented by (General Formula 1) and (General Formula 2). Here, the substituents represented by R 1 to R 24 are hydrogen or a substituent, and the substituents may be the same or different, such as a substituted / unsubstituted alkyl group, an aryl group, etc. Can be illustrated. Hydrocarbon groups are preferred as these substituents. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a methoxy group, and an ethoxy group. As the alkyl group, two alkyl groups may be cyclic, and examples thereof include compounds in which the alkyl substituents of R 1 and R 2 are closed to form a cyclohexyl ring. Specific ligands include 5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-2,4,6,9,11,13-hexaene, 5, Examples include 7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-4,6,11,13-tetraene.

アリール基としては、フェニル基、アルキル置換のフェニル基等を例示できる。具体的な配位子としては、6,13-ジフェニル-1,4,8,11-テトラアザシクロテトラデカ-2,4,6,9,11,13-ヘキサエン等を例示できる。   Examples of the aryl group include a phenyl group and an alkyl-substituted phenyl group. Specific examples of the ligand include 6,13-diphenyl-1,4,8,11-tetraazacyclotetradeca-2,4,6,9,11,13-hexaene.

これらの配位子の中では、アルキル基が置換した化合物が容易に合成できるため、好ましい。   Among these ligands, a compound substituted with an alkyl group can be easily synthesized, which is preferable.

また、遷移金属元素の種類によっても触媒活性は変化する。本発明者が鋭意検討した結果、配位子の種類に依存せず高い活性を示すのが、Co又はFeの一方又は双方であり、本発明に好適に使用することができる。   The catalytic activity also varies depending on the type of transition metal element. As a result of intensive studies by the inventor, one or both of Co and Fe exhibiting high activity without depending on the type of the ligand can be suitably used in the present invention.

本発明における金属錯体の担持量は、金属元素の担持量として2質量%以下が好ましく、更に好ましくは1質量%以下である。2質量%を越えて担持すると、金属錯体の触媒作用が相対的に強くなり、貴金属との共存による触媒活性の増加幅が小さくなってしまう。また、触媒としての機能を発現するため、金属錯体の担持量は、金属元素の担持量として0.01質量%以上が好ましく、更に好ましくは、0.05質量%以上である。   The supported amount of the metal complex in the present invention is preferably 2% by mass or less, more preferably 1% by mass or less as the supported amount of the metal element. When the amount exceeds 2% by mass, the catalytic action of the metal complex becomes relatively strong, and the increase in catalytic activity due to the coexistence with the noble metal becomes small. In order to exhibit the function as a catalyst, the supported amount of the metal complex is preferably 0.01% by mass or more, more preferably 0.05% by mass or more as the supported amount of the metal element.

本発明における金属錯体と貴金属との共存と言う複合触媒は、後述の実施例にその具体例を示すように、各々単独の触媒活性よりも、共存した状態の方が触媒活性が高いと言う実験事実に基づくものである。その理論的な解釈は未確定であるが、例えば、貴金属上での4電子還元反応と共に、金属錯体上での2電子反応に引き続き、貴金属上で更に2電子還元反応を生じる等、2つの還元反応パスにより酸素還元反応が行われるために、各々単独の場合よりも、共存した場合の方が触媒活性が促進されると推察される。   In the present invention, the composite catalyst called the coexistence of the metal complex and the noble metal has an experiment in which the catalytic activity is higher in the coexisting state than the individual catalytic activity, as shown in the specific examples in the examples below. It is based on facts. Although its theoretical interpretation is uncertain, for example, two reductions such as a four-electron reduction reaction on a noble metal followed by a two-electron reaction on a metal complex followed by a further two-electron reduction reaction on the noble metal. Since the oxygen reduction reaction is carried out by the reaction path, it is assumed that the catalytic activity is promoted in the case of coexistence rather than in the case of each of them alone.

本発明に用いる貴金属は、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、及び、これらを主成分とする合金を指す。触媒活性の高さから、本発明では、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、及び、これらを主成分とする合金の適用が好ましい。白金を主成分とした合金の適用が更に好ましい。他の貴金属は、白金に比較して触媒活性が低く、金属錯体との共存による触媒活性向上は認められるが、その改善幅は小さい。   The noble metal used in the present invention refers to ruthenium, rhodium, palladium, osmium, iridium, platinum, and alloys containing these as main components. In view of the high catalytic activity, in the present invention, it is preferable to apply ruthenium, rhodium, palladium, osmium, iridium, platinum, and alloys containing these as main components. Application of an alloy mainly composed of platinum is further preferable. Other noble metals have a lower catalytic activity than platinum and an improvement in the catalytic activity due to the coexistence with the metal complex is recognized, but the improvement is small.

本発明の貴金属の担持量は、20質量%以下が好ましい。20質量%を越えて担持すると、貴金属単独の触媒作用が相対的に強くなり、金属錯体との共存による触媒活性の増加幅が小さくなってしまう。更に、触媒のコストと言う観点も考慮すると、貴金属の担持量は15質量%以下がより一層好ましい。また、触媒としての機能を発現するため、貴金属の担持量は、1質量%以上が好ましく、更に好ましくは、2質量%以上である。   The loading amount of the noble metal of the present invention is preferably 20% by mass or less. When the amount exceeds 20% by mass, the catalytic action of the noble metal alone becomes relatively strong, and the increase in the catalytic activity due to the coexistence with the metal complex becomes small. Further, considering the viewpoint of the cost of the catalyst, the amount of the noble metal supported is more preferably 15% by mass or less. In order to exhibit the function as a catalyst, the supported amount of the noble metal is preferably 1% by mass or more, and more preferably 2% by mass or more.

金属錯体と貴金属の共存による触媒活性の向上には、触媒の担体である炭素材料の表面積が大きいことが必須の条件である。触媒担体の効果は、単なる反応の場を広くすると言う物理的効果だけでなく、金属錯体に対する化学的な相互作用を通じた触媒作用の活性化が推察される。前述の通り、金属錯体の触媒反応プロセスにおいて、中心金属原子の還元による触媒機能の回復は、金属原子に対してキレート結合している配位子からの電子移動によって達成される。そして、配位子から金属原子への電子移動を更に容易にするのが、巨大なπ電子系を形成する炭素材料の担体である。   In order to improve the catalytic activity due to the coexistence of the metal complex and the noble metal, it is an essential condition that the surface area of the carbon material as the catalyst support is large. The effect of the catalyst carrier is presumed to be not only a physical effect of widening the reaction field but also activation of the catalytic action through chemical interaction with the metal complex. As described above, in the catalytic reaction process of the metal complex, recovery of the catalytic function by reduction of the central metal atom is achieved by electron transfer from the ligand chelating to the metal atom. Further, it is a carbon material carrier that forms a huge π-electron system that facilitates electron transfer from the ligand to the metal atom.

表面積の大きい炭素材料は一般に活性が高い。その活性は、炭素材料表面に形成される凹凸、微細孔による炭素網面の欠陥やエッジ部分等に起因するものである。本発明では、表面積の大きな(活性の高い)炭素材料を金属錯体触媒の担体に用いることで、炭素材料のπ電子系と配位子のπ電子系との相互作用の増幅を図ったものである。この触媒活性に対応する表面積の大きさの指標には、鋭意検討した結果、窒素ガスの吸着等温線のBET式評価により求められる比表面積(BET比表面積:SBET)が適当であることが分かった。その具体的数値範囲は、1000m2/g以上である。1000m2/g未満では、触媒活性を増幅させると推察される炭素表面の凹凸、微細孔による炭素網面の欠陥、エッジ部分の量が不十分であり、触媒活性の向上は発現しない。他方、3000m2/g以上にまで表面積を大きくすると、炭素内部に深く入り込んだ微細孔が形成され、その微細孔の内部表面が反応場全体に占める比率が高くなるため、酸素の拡散等の物質移動が律速となり、実際の触媒反応の場にはなり得ず、触媒活性はかえって劣化してしまい、本発明には好ましくないことがある。 A carbon material having a large surface area is generally highly active. The activity is attributed to irregularities formed on the surface of the carbon material, defects in the carbon network surface due to fine holes, edge portions, and the like. In the present invention, a carbon material having a large surface area (high activity) is used as the carrier of the metal complex catalyst, thereby amplifying the interaction between the π electron system of the carbon material and the π electron system of the ligand. is there. As a result of diligent investigation, it was found that the specific surface area (BET specific surface area: S BET ) determined by the BET evaluation of the adsorption isotherm of nitrogen gas is appropriate as an index of the surface area size corresponding to this catalytic activity. It was. The specific numerical range is 1000 m 2 / g or more. If it is less than 1000 m 2 / g, the surface roughness of the carbon surface, which is presumed to amplify the catalyst activity, the defects in the carbon network surface due to the fine pores, and the amount of edge portions are insufficient, and the improvement in the catalyst activity does not appear. On the other hand, when the surface area is increased to 3000 m 2 / g or more, micropores that penetrate deeply into the carbon are formed, and the ratio of the internal surface of the micropores to the entire reaction field increases, so that substances such as oxygen diffusion The movement becomes rate-limiting and cannot be a place for an actual catalytic reaction, and the catalytic activity is rather deteriorated, which is not preferable for the present invention.

本発明における重要な構成の一つは、この微細孔の最適な構造を具体的な数値により表現し規定したことである。細孔構造の最適化に関する基本的指針は以下の3点である。即ち、(i)4電子反応率を高めるために、錯体同士が互いに適当な距離を挟んでN4面同士を平行に対向した構造が重要、(ii)上記の錯体の対向構造を形成するような錯体の吸着部位の密度が高いことが重要、(iii)対向した錯体の面間隔を決めるのが細孔サイズと推察されるので、細孔サイズには適当な大きさが要求される、である。 One of the important configurations in the present invention is that the optimum structure of the micropores is expressed and defined by specific numerical values. The basic guidelines for optimizing the pore structure are the following three points. That, (i) in order to enhance the four-electron reaction rate, the structure complex to each other in parallel to oppose the N 4 surfaces together across the appropriate distance from each other is important, so as to form a facing structure of (ii) above complexes It is important that the density of the adsorption sites of the complex is high, and (iii) the pore size is assumed to determine the interplanar spacing of the opposing complex, so an appropriate size is required for the pore size. is there.

この指針に基づき本発明者らが鋭意検討した結果、直径2nm以下のミクロ孔の表面積Smicroと全細孔表面積Stotalとの比Smicro/Stotalが0.3以上であること、細孔直径が1.5nm以下であること、が好ましいことが判った。ここで、これら三つの指標:Smicro、Stotal、細孔直径は、各々、直径2nm以下のミクロ孔の比表面積(m2/g)、炭素材料の全表面積(m2/g)、ミクロ孔の平均直径(nm)を表すものである。いずれの指標も、窒素ガスの吸着等温線の測定値のt-Plot解析により得られるものである。Smicro/Stotalは、吸着部位の密度に相当する指標であって、高い触媒活性を発現するための下限値が0.3であり、より好ましくは0.4以上、更に好ましくは0.5以上である。Smicro/Stotalが0.3未満では、対向位置関係を形成する遷移金属錯体対の密度が少なく、4電子反応率が低下して、酸素還元触媒としては不適当である。また、細孔直径は、対向位置関係を形成する遷移金属錯体対の錯体間の間隔を決める因子であり、酸素還元反応に関して4電子反応率を高める効果を発揮する間隙の上限値が1.5nmであり、より好ましくは1.4nm、更に好ましくは1.3nm以下である。他方、酸素還元反応に有効な遷移金属錯体対の錯体間の間隔の下限値に相当する細孔直径は0.5nmであり、より好ましい細孔直径は0.6nm以上である。細孔直径が1.5nmを超える、或いは、細孔直径が0.5nm未満では、錯体対が実質的に酸素還元反応に有効に作用しないため、酸素還元反応における4電子反応率の向上効果が低くなる恐れが高い。 The present inventors have found based on this guidance intensive studies, the ratio S micro / S total of the surface area S micro and total pore surface area S total of the following micropores diameter 2nm it is 0.3 or more, the pore diameter It was found that the thickness is preferably 1.5 nm or less. Here, these three indices: S micro, S total, pore diameter, respectively, the specific surface area of less micropores diameter 2 nm (m 2 / g), the total surface area of the carbon material (m 2 / g), Micro It represents the average diameter (nm) of the pores. Each index is obtained by t-Plot analysis of the measured value of the adsorption isotherm of nitrogen gas. S micro / S total is an index corresponding to the density of the adsorption site, and the lower limit for expressing high catalytic activity is 0.3, more preferably 0.4 or more, and further preferably 0.5 or more. When S micro / S total is less than 0.3, the density of the transition metal complex pair forming the opposing positional relationship is small, the four-electron reaction rate is lowered, and it is not suitable as an oxygen reduction catalyst. The pore diameter is a factor that determines the distance between the complexes of the transition metal complex pair that forms the opposing positional relationship. The upper limit of the gap that exhibits the effect of increasing the 4-electron reaction rate for the oxygen reduction reaction is 1.5 nm. More preferably 1.4 nm, and still more preferably 1.3 nm or less. On the other hand, the pore diameter corresponding to the lower limit of the distance between the complexes of the transition metal complex pair effective for the oxygen reduction reaction is 0.5 nm, and the more preferable pore diameter is 0.6 nm or more. If the pore diameter exceeds 1.5 nm or the pore diameter is less than 0.5 nm, the complex pair does not substantially act effectively on the oxygen reduction reaction, so the effect of improving the 4-electron reaction rate in the oxygen reduction reaction is reduced. Fear is high.

本発明に好適に用いられる炭素材料は、上記の表面構造を満たすものであれば特に限定されるものではない。例示するならば、いわゆる導電性グレードのカーボンブラック、カーボンナノチューブ、カーボンナノファイバー、各種原料のコークス、ピッチコークス、フェノール系樹脂、フラン系樹脂、ポリ塩化ビニル等の炭化歩留まりの比較的高い樹脂等の有機化合物を挙げることができる。触媒担体として要求される機能として、粒子自体の導電性を高める必要があり、そのため、X線回折のd002回折線による炭素六角網面(グラフェンシート)間の間隔d002が、0.50nm以下、好ましくは、0.45nm以下を好適に適用可能である。また、d002が0.36nmより小さいと、黒鉛結晶性が高過ぎるために、結晶子サイズが大きくなり過ぎ、その結果、本発明に規定する細孔構造を得難く、d002は0.36nm以上であることが好ましい。 The carbon material suitably used in the present invention is not particularly limited as long as it satisfies the above surface structure. For example, carbon black, carbon nanotubes, carbon nanofibers of various conductive grades, coke of various raw materials, pitch coke, phenolic resins, furan resins, resins with a relatively high carbonization yield such as polyvinyl chloride, etc. Mention may be made of organic compounds. As a function required as a catalyst support, it is necessary to increase the conductivity of the particles themselves, and therefore, the distance d 002 between carbon hexagonal network surfaces (graphene sheets) by d 002 diffraction lines of X-ray diffraction is 0.50 nm or less, Preferably, 0.45 nm or less can be suitably applied. On the other hand, if d 002 is smaller than 0.36 nm, the crystallinity is too high and the crystallite size becomes too large.As a result, it is difficult to obtain the pore structure defined in the present invention, and d 002 is 0.36 nm or more. Preferably there is.

本発明に好適に用いられる活性炭の製造法は、特に限定されるものではなく、例示するならば、塩化亜鉛、リン酸、アルカリ金属水酸化物、アルカリ金属炭酸塩、水蒸気、二酸化炭素等の酸化剤を用いた通常の方法による賦活処理を適用することができる。   The production method of the activated carbon suitably used in the present invention is not particularly limited. For example, oxidation of zinc chloride, phosphoric acid, alkali metal hydroxide, alkali metal carbonate, water vapor, carbon dioxide, etc. The activation process by the normal method using an agent can be applied.

本発明の電極触媒の担体として用いられる炭素担体は、触媒である遷移金属錯体を高密度に担持するために、微粒子粉末の形状であることが望ましい。最適な粒子径は、平均直径が10nm以上1μm以下である。カーボンブラックのように最小単位である粒子がそもそもアグリゲート構造のような二次構造を有する場合には、前記平均直径は1次粒子の直径とする。平均直径が10nm未満では、実質的に2nm以下のミクロ孔を担体表面に導入することが困難であり、平均直径が1μmを超えると、触媒反応に有効な表面積を確保するための電極層の厚みが増すために、ガスの拡散抵抗が大きくなって、燃料電池としての性能が低下してしまう。   The carbon support used as the support for the electrode catalyst of the present invention is preferably in the form of fine particle powder in order to support the transition metal complex as a catalyst at a high density. The optimum particle size is an average diameter of 10 nm to 1 μm. When the particles that are the smallest unit such as carbon black have a secondary structure such as an aggregate structure, the average diameter is the diameter of the primary particles. When the average diameter is less than 10 nm, it is difficult to substantially introduce micropores of 2 nm or less on the support surface, and when the average diameter exceeds 1 μm, the thickness of the electrode layer to ensure a surface area effective for catalytic reaction Therefore, the diffusion resistance of the gas increases, and the performance as a fuel cell deteriorates.

本発明において規定する触媒の触媒活性の本質は、炭素材料の表面と金属錯体とのπ電子を通じた相互作用と推察される。そこで、このπ電子相互作用をより強くすることを狙って、触媒の調整方法を鋭意検討した結果、炭素粉末の表面に金属錯体と貴金属とを担持させた後に、非酸化性雰囲気中で700℃〜1100℃の温度で熱処理することにより、高活性な触媒を調製し得ることを見出した。ここで、酸化性雰囲気で処理すると、炭素担体と金属錯体の酸化消耗が発生し、触媒活性を消失することになる。また、700℃未満の温度での熱処理では、炭素担体と金属錯体とのπ電子相互作用が充分でなく、触媒活性が発現しない。他方、1100℃を越える温度での熱処理は、金属錯体の熱的分解を生じるために、触媒活性を消失することになる。この触媒調製法は、遷移金属錯体のみを炭素担体に担持した場合にも同様に有効である。   The essence of the catalytic activity of the catalyst defined in the present invention is presumed to be an interaction through the π electron between the surface of the carbon material and the metal complex. Therefore, as a result of intensive investigations on the catalyst preparation method with the aim of further strengthening this π-electron interaction, after supporting a metal complex and a noble metal on the surface of the carbon powder, 700 ° C. in a non-oxidizing atmosphere. It has been found that a highly active catalyst can be prepared by heat treatment at a temperature of ˜1100 ° C. Here, when the treatment is carried out in an oxidizing atmosphere, oxidation consumption of the carbon support and the metal complex occurs, and the catalytic activity is lost. Further, in the heat treatment at a temperature of less than 700 ° C., the π-electron interaction between the carbon support and the metal complex is not sufficient, and the catalytic activity is not exhibited. On the other hand, the heat treatment at a temperature exceeding 1100 ° C. causes the thermal decomposition of the metal complex, so that the catalytic activity is lost. This catalyst preparation method is also effective when only a transition metal complex is supported on a carbon support.

本発明の触媒は、高分子固体電解質型燃料電池の電極触媒層を形成する通常の方法、例示するならば、触媒と高分子電解質溶液とのスラリーを調製し、それをカーボンペーパーに塗布する方法等に適用することが可能であり、特に、触媒層の形成方法に制限はない。   The catalyst of the present invention is an ordinary method for forming an electrode catalyst layer of a polymer electrolyte fuel cell, for example, a method of preparing a slurry of a catalyst and a polymer electrolyte solution and applying it to carbon paper The method for forming the catalyst layer is not particularly limited.

以下に、本発明にて規定する触媒に関して具体的に説明する。   Below, the catalyst prescribed | regulated by this invention is demonstrated concretely.

(遷移金属錯体の合成方法)
本発明において規定するN4-キレート型遷移金属錯体の合成方法を以下に示す。
(Synthesis method of transition metal complex)
A method for synthesizing the N 4 -chelate transition metal complex defined in the present invention is shown below.

錯体1の合成:文献(R. H. Holm, J. Am. Chem. Soc., Vol.94, p.4529 (1972))に記載の方法により、5,7,12,14-テトラメチル-1,4,8,11-テトラアザシクロテトラデカ-2,4,6,9,11,13-ヘキサエンのコバルト(II)錯体(錯体1と略す)を合成した。収率12%。   Synthesis of complex 1: 5,7,12,14-tetramethyl-1,4 according to the method described in the literature (RH Holm, J. Am. Chem. Soc., Vol. 94, p. 4529 (1972)) , 8,11-Tetraazacyclotetradeca-2,4,6,9,11,13-hexaene cobalt (II) complex (abbreviated as Complex 1) was synthesized. Yield 12%.

錯体2の合成:文献((a) T. Hayashi, Bull. Chem. Soc. Jpn., Vol.54, p.2348 (1981)、 (b) R. H. Holm, Inorg. Syn., Vol.11, p.72, (1968))に記載の方法により、5,7,12,14-テトラメチル-1,4,8,11-テトラアザシクロテトラデカ-4,6,11,13-テトラエンのコバルト(II)錯体(錯体2と略す)を合成した。収率8%。   Synthesis of Complex 2: Literature ((a) T. Hayashi, Bull. Chem. Soc. Jpn., Vol. 54, p. 2348 (1981), (b) RH Holm, Inorg. Syn., Vol. 11, p. .72, (1968)), the cobalt of 5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-4,6,11,13-tetraene ( II) A complex (abbreviated as Complex 2) was synthesized. Yield 8%.

(炭素材料担体)
触媒用の炭素材料担体は、燃料電池触媒用の担体として一般的に使用されているカーボンブラックの中で、バルカンXC72R(キャボット(株)、XC72Rと略す)と、本発明において規定する細孔構造を有する活性炭とを用いた。細孔構造を制御した活性炭は、以下の方法により作製した。原料には、石炭ピッチ系生コークスを、500℃〜900℃の温度範囲で不活性雰囲気中熱処理した後、平均粒子径がサブミクロン程度に遊星ボールミルで粉砕したものを用いた。賦活処理には水蒸気を用い、前記の熱処理コークスを800℃〜1000℃の温度で1〜3時間熱処理することにより、所定の細孔構造を得た。なお、細孔構造の測定には窒素ガス吸着法(BET法)を適用し、日本ベル社製BELSORP36を用いて、吸着等温線を測定した。細孔構造の計算には、いわゆるt-Plot法を適用し、具体的計算には上記装置に付属の解析ソフトを使用した。計算した物性値は、BET解析による比表面積SBET(m2/g)、tPplot解析による直径2nm以下のミクロ孔の表面積と全細孔表面積との比Smicro/Stotalと直径2nm以下のミクロ孔の平均細孔直径(nm)である。上記の条件で作製した活性炭の細孔構造の測定値とXC72Rの測定値を表1にまとめて示す。表から明らかに、XC72Rは本発明にて規定するSBETの条件を満たさず、他方、活性炭1、2は、本発明で規定する細孔構造を満たすものである。
(Carbon material carrier)
The carbon material carrier for catalyst is Vulcan XC72R (Cabot Co., Ltd., abbreviated as XC72R) among carbon blacks generally used as a carrier for fuel cell catalysts, and the pore structure defined in the present invention. And activated carbon having Activated carbon having a controlled pore structure was produced by the following method. The raw material used was coal pitch-based raw coke heat-treated in an inert atmosphere at a temperature range of 500 ° C. to 900 ° C., and then pulverized with a planetary ball mill to an average particle size of about submicron. Steam was used for the activation treatment, and the heat-treated coke was heat-treated at a temperature of 800 ° C. to 1000 ° C. for 1 to 3 hours to obtain a predetermined pore structure. For measurement of the pore structure, a nitrogen gas adsorption method (BET method) was applied, and an adsorption isotherm was measured using BELSORP36 manufactured by Bell Japan. The so-called t-Plot method was applied to the calculation of the pore structure, and the analysis software attached to the above apparatus was used for the specific calculation. The calculated physical properties are the specific surface area S BET (m 2 / g) by BET analysis, the ratio S micro / S total of the surface area of micropores with a diameter of 2 nm or less to the total pore surface area by tPplot analysis, The average pore diameter (nm) of the pores. Table 1 summarizes the measured pore structure and activated XC72R values of activated carbon produced under the above conditions. As is apparent from the table, XC72R does not satisfy the S BET conditions defined in the present invention, while activated carbons 1 and 2 satisfy the pore structure defined in the present invention.

Figure 2006156013
Figure 2006156013

(触媒調製法)
所定の質量%になるように、塩化白金酸6水和物(和光純薬(株)製)を計量し、水で適当量に希釈した水溶液に、担体として用いる炭素材料を加えて十分攪拌した後、超音波発生器にて分散を進行させた。エバポレーターを用いて分散液を乾燥固化させた前駆体を担持した担体を、水素/アルゴン混合ガスを流通させた電気炉(水素ガスの比率;10〜50体積%)で300℃に加熱し、塩化白金酸の還元処理を行った。
(Catalyst preparation method)
A chloroplatinic acid hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was weighed so that the predetermined mass% was obtained, and a carbon material used as a carrier was added to an aqueous solution diluted to an appropriate amount with water, and sufficiently stirred. Thereafter, dispersion was advanced with an ultrasonic generator. A carrier carrying a precursor obtained by drying and solidifying a dispersion using an evaporator is heated to 300 ° C. in an electric furnace (hydrogen gas ratio: 10 to 50% by volume) in which a hydrogen / argon mixed gas is circulated, and then chlorinated. Reduction treatment of platinic acid was performed.

遷移金属元素換算で1質量%になるように、前記の遷移金属錯体を計量し、N,N’-ジメチルフォルムアミド(試薬特級グレード)、又は、ピリジン(試薬特級グレード)を適当量加えた溶液に、上述の白金を担持した炭素材料(Pt-C)を加えて十分に攪拌し、さらに、超音波発生器を用いて分散を進行させた。分散液を70℃のオイルバスにて保温しながら8時間以上還流(アルゴンにフロー下)した後、分散液の5倍量以上の蒸留水に攪拌しながら注ぎ込み、遷移金属錯体のPt-C上への定着を行った。その後、減圧濾過により触媒を分離採取し、再度、60℃程度の温度の蒸留水で洗浄し減圧濾過により触媒を採取し、100℃で真空乾燥した。さらに、アルゴンガス雰囲気中、700℃で1時間処理して、評価用の触媒とした。   A solution in which the above transition metal complex is weighed so as to be 1% by mass in terms of transition metal element, and an appropriate amount of N, N′-dimethylformamide (reagent special grade) or pyridine (reagent special grade) is added. In addition, the above-described platinum-supported carbon material (Pt—C) was added and sufficiently stirred, and further dispersion was advanced using an ultrasonic generator. Reflux the dispersion for 8 hours or more while keeping it in an oil bath at 70 ° C (under a flow of argon), and then pour it into distilled water at least 5 times the amount of the dispersion while stirring, over the transition metal complex Pt-C. Established. Thereafter, the catalyst was separated and collected by vacuum filtration, washed again with distilled water at a temperature of about 60 ° C., collected by vacuum filtration, and vacuum dried at 100 ° C. Further, a catalyst for evaluation was prepared by treating at 700 ° C. for 1 hour in an argon gas atmosphere.

実施例、比較例に用いた遷移金属錯体は、前記錯体1及び錯体2と、5,10,15,20-テトラフェニルポルフィリンのコバルト(II)錯体(CoTPPと略す)である。   The transition metal complexes used in Examples and Comparative Examples are Complex 1 and Complex 2 and a cobalt (II) complex (abbreviated as CoTPP) of 5,10,15,20-tetraphenylporphyrin.

なお、遷移金属錯体のみを担持した触媒の調製は、前述の白金担持プロセスを除いて、遷移金属錯体の担持プロセスのみを行い、他方、白金のみを担持した触媒の調製は、遷移金属錯体の担持プロセスを除いて、白金担持プロセスのみを行って、それぞれの触媒を調製した。   The preparation of the catalyst supporting only the transition metal complex is carried out only by the supporting process of the transition metal complex except for the above-described platinum supporting process, while the preparation of the catalyst supporting only the platinum is performed by supporting the transition metal complex. Except for the process, only the platinum loading process was performed to prepare each catalyst.

(触媒活性の評価法)
(1) 評価用サンプルの調製
触媒を予め乳鉢で粉砕した触媒粉末15mgと高分子固体電解質溶液(米国ElectroChem社のEC-NS-05;ナフィオン5質量%溶液)300mgとエタノール300mgとをサンプル瓶に入れ、攪拌子を用い15分間スターラーで攪拌し、十分に混練されたスラリーを調製した。
(Evaluation method of catalyst activity)
(1) Preparation of sample for evaluation 15 mg of catalyst powder obtained by previously grinding the catalyst in a mortar, 300 mg of polymer solid electrolyte solution (EC-NS-05; Nafion 5% by mass solution of US ElectroChem) and 300 mg of ethanol in a sample bottle The mixture was stirred and stirred with a stirrer for 15 minutes to prepare a fully kneaded slurry.

(2) 試験極の調製
回転リングディスク電極のディスク電極上に、上記のスラリーを塗布し乾燥して、試験極とした。ディスク電極は、グラッシーカーボンで製造された直径6mmの円柱で、その底面にサンプルを塗布する。塗布量は0.03mgとなるように調整した。また、リング電極は、内径7.3mm、外径9.3mmの白金製の円筒であり、回転リングディスク電極は、ディスク電極とリング電極とが同心に位置し、ディスク電極とリング電極の間、並びにリング電極の外側をテフロン樹脂で絶縁した構造になっている。
(2) Preparation of test electrode The slurry was applied onto the disk electrode of the rotating ring disk electrode and dried to obtain a test electrode. The disc electrode is a 6 mm diameter cylinder made of glassy carbon, and a sample is applied to the bottom surface of the cylinder. The coating amount was adjusted to 0.03 mg. The ring electrode is a platinum cylinder with an inner diameter of 7.3mm and an outer diameter of 9.3mm. The outside of the electrode is insulated with Teflon resin.

(3) 評価方法
(有)日厚計測の回転リングディスク評価装置(RRDE-1)を用いて、触媒の電気化学的な活性評価を行った。電気化学的な評価には、ソーラートロン社SI1287を2台用いて、リング電極とディスク電極を独立に制御して、バイポーラー測定を行った。電解液には0.1Nの硫酸水溶液を用い、基準極にSCE電極、対極にPt板を用いるセル構成とした。評価条件は以下の通りである。酸素ガスをバブリングさせ、酸素が飽和した電解液状態で、2500rpmで回転した電極のディスク電極の電位を1.0V(SCE基準)から-0.2Vまで10mV/secの速度で掃引させ、その際、リング電極の電位を1.1V(SCE基準)に保持して、ディスク電極、リング電極に流れる電流の経時変化を測定し、ディスク電極の電位に対するディスク電流、リング電流のプロットを得た。
(3) Evaluation method
The electrochemical activity of the catalyst was evaluated using a rotating ring disk evaluation device (RRDE-1) with day thickness measurement. For electrochemical evaluation, two solartron SI1287 units were used, and the ring electrode and disk electrode were controlled independently, and bipolar measurements were performed. A 0.1N sulfuric acid aqueous solution was used as the electrolyte, and a cell configuration was used in which an SCE electrode was used as the reference electrode and a Pt plate was used as the counter electrode. The evaluation conditions are as follows. Oxygen gas was bubbled, and the electrode potential of the electrode rotated at 2500 rpm was swept from 1.0 V (SCE standard) to -0.2 V at a rate of 10 mV / sec. With the electrode potential held at 1.1 V (SCE standard), the change with time of the current flowing through the disk electrode and the ring electrode was measured, and a plot of the disk current and the ring current with respect to the potential of the disk electrode was obtained.

(4) 過電圧評価法
上記ディスク電位vs.ディスク電流のプロットから、飽和電流値の半分の電流値のときの電位(E1/2)を読み取った。米国ElectroChem社製触媒のEC10PTC(カーボンブラック上に10質量%の白金を担持させた触媒)の飽和電流値の半分の電流値のときの電位E1/2 0を基準として、実施例、比較例の各触媒のΔE1/2=E1/2-E1/2 0を評価した。即ち、ΔE1/2=0でEC10PTCと同等の過電圧で、ΔE1/2>0ならばEC10PTCよりも過電圧が小さく、触媒活性が高いことに対応する。
(4) Overvoltage Evaluation Method The potential (E 1/2 ) at a current value half of the saturation current value was read from the above-mentioned disk potential vs. disk current plot. As a reference potential E 1/2 0 when half the current value of the saturation current value of the US ElectroChem Inc. catalyst EC10PTC (catalyst supported a 10 wt% platinum on carbon black), Example, Comparative Example ΔE 1/2 = E 1/2 -E 1/2 0 was evaluated for each of the catalysts. That is, when ΔE 1/2 = 0, an overvoltage equivalent to EC10PTC is satisfied, and if ΔE 1/2 > 0, this corresponds to an overvoltage smaller than EC10PTC and high catalytic activity.

(5) 4電子反応率の評価法
リング電流とディスク電流のディスク電位に対するプロットから、下式に基づいて4電子反応率ηを計算した。
(5) Four-electron reaction rate evaluation method The four-electron reaction rate η was calculated based on the following equation from a plot of the ring current and the disk current against the disk potential.

η(%)=[Id-(Ir/n)]/[Id+(Ir/n)]
ここで、Idはディスク電流、Irはリング電流を表し、nはリング電極によるディスク反応生成物の捕捉率を表す。
η (%) = [I d- (I r / n)] / [I d + (I r / n)]
Here, I d is the disk current, I r denotes a ring current, n represents represents a capture rate of the disk reaction product from the ring electrode.

捕捉率の実験的な測定法は、藤嶋昭ら、電気化学測定法(下)、技報堂出版(1991)に従って評価した結果、実施例に用いた電極においてはn=0.36であった。   The experimental measurement method of the capture rate was evaluated according to Akira Fujishima et al., Electrochemical measurement method (below), Gihodo Publishing (1991). As a result, n = 0.36 was obtained for the electrodes used in the examples.

また、ディスク電位に応じてηは変化する(電位が卑なほどηは小さくなる)が、触媒によるηの差が明確になるように、本評価においてはディスク電位が0V(SCE基準)のときのηを採用した。   In addition, η changes according to the disk potential (η becomes smaller as the potential is lower), but in this evaluation, the disk potential is 0 V (SCE standard) so that the difference in η due to the catalyst becomes clear. Η was adopted.

表2に、遷移金属種、白金担持量、触媒活性の指標として過電圧値ΔE1/2と4電子反応率ηとをまとめて示した。 Table 2 summarizes the overvoltage value ΔE 1/2 and the four-electron reaction rate η as transition metal species, platinum loading, and catalytic activity indicators.

Figure 2006156013
Figure 2006156013

これらの実施例、比較例の結果から、本発明にて規定している特定の構造の遷移金属錯体は、酸素還元反応における触媒活性、4電子反応率共に良好であることが認められる。また、本発明で規定する遷移金属錯体と白金とを組み合わせた複合触媒は、白金単独、遷移金属錯体単独よりも明らかに優れた触媒特性を示し、遷移金属錯体と白金との協奏効果が認められる。   From the results of these examples and comparative examples, it is recognized that the transition metal complex having a specific structure defined in the present invention has good catalytic activity and four-electron reaction rate in the oxygen reduction reaction. In addition, the composite catalyst obtained by combining the transition metal complex defined in the present invention and platinum exhibits catalytic properties clearly superior to that of platinum alone or the transition metal complex alone, and the concerted effect of the transition metal complex and platinum is recognized. .

他方、担体の効果に関しても、本発明に規定する活性炭を担体に適用することにより、通常のカーボンブラック担体では発揮し得ない、優れた触媒活性の発現が認められる。
On the other hand, regarding the effect of the carrier, by applying the activated carbon defined in the present invention to the carrier, an excellent catalytic activity that cannot be exhibited by a normal carbon black carrier is observed.

Claims (13)

酸素ガス還元能を有する金属錯体を含有する燃料電池用触媒であって、該金属錯体が、B3LYP密度汎関数法により計算される金属錯体と酸素分子の吸着構造における錯体中心金属に結合する酸素分子のO-O結合距離が0.131nm以上であることを特徴とする高分子固体電解質型燃料電池酸素極用触媒。   A fuel cell catalyst comprising a metal complex having oxygen gas reducing ability, wherein the metal complex binds to a complex center metal in an adsorption structure of a metal complex and an oxygen molecule calculated by a B3LYP density functional method A solid polymer electrolyte fuel cell oxygen electrode catalyst characterized by having an OO bond distance of 0.131 nm or more. 前記金属錯体が、N4-キレート型の錯体構造である請求項1記載の高分子固体電解質型燃料電池酸素極用触媒。 2. The polymer solid electrolyte fuel cell oxygen electrode catalyst according to claim 1, wherein the metal complex has an N 4 -chelate type complex structure. 前記金属錯体が、N4-キレート型であり、かつ中心金属に結合するN原子の内少なくとも2個以上がイミン型である請求項1又は2に記載の高分子固体電解質型燃料電池酸素極用触媒。 3. The solid polymer electrolyte fuel cell oxygen electrode according to claim 1, wherein the metal complex is of N 4 -chelate type and at least two of N atoms bonded to the central metal are imine type. catalyst. 前記N4-キレート型金属錯体が、下記(一般式1)又は(一般式2)の一方又は双方である請求項3記載の高分子固体電解質型燃料電池酸素極用触媒。
Figure 2006156013
(但し、Mは金属原子、R1〜R10は、水素又は置換基である。)
Figure 2006156013
(但し、Mは金属原子、R11〜R24は、水素又は置換基である。)
4. The polymer solid oxide fuel cell oxygen electrode catalyst according to claim 3, wherein the N 4 -chelate metal complex is one or both of the following (general formula 1) and (general formula 2).
Figure 2006156013
(Where, M is a metal atom, R 1 to R 10 is a hydrogen or a substituent.)
Figure 2006156013
(However, M is a metal atom, and R 11 to R 24 are hydrogen or a substituent.)
前記金属錯体の錯体中心金属が、周期律表第V族、第VI族、第VII 族又は第VIII族の遷移金属から選ばれる1種以上である請求項1〜4のいずれかに記載の高分子固体電解質型燃料電池酸素極用触媒。   The complex center metal of the metal complex is at least one selected from Group V, Group VI, Group VII, or Group VIII transition metals of the periodic table. Catalyst for molecular solid oxide fuel cell oxygen electrode. 前記遷移金属が、Co又はFeの一方又は双方である請求項5記載の高分子固体電解質型燃料電池酸素極用触媒。   6. The polymer solid oxide fuel cell oxygen electrode catalyst according to claim 5, wherein the transition metal is one or both of Co and Fe. 前記触媒中に、さらに貴金属を含有する請求項1〜6のいずれかに記載の高分子固体電解質型燃料電池酸素極用触媒。   7. The polymer solid oxide fuel cell oxygen electrode catalyst according to claim 1, further comprising a noble metal in the catalyst. 前記金属錯体又は貴金属の一方又は双方が、担体表面に担持されている請求項1〜7のいずれかに記載の高分子固体電解質型燃料電池酸素極用触媒。   8. The polymer solid oxide fuel cell oxygen electrode catalyst according to claim 1, wherein one or both of the metal complex and the noble metal is supported on a support surface. 前記担体が炭素材料である請求項8記載の高分子固体電解質型燃料電池酸素極用触媒。   9. The catalyst for a solid polymer electrolyte fuel cell oxygen electrode according to claim 8, wherein the carrier is a carbon material. 前記炭素材料のBET比表面積SBETが1000m2/g以上である請求項9記載の高分子固体電解質型燃料電池酸素極用触媒。 10. The polymer solid oxide fuel cell oxygen electrode catalyst according to claim 9, wherein the carbon material has a BET specific surface area S BET of 1000 m 2 / g or more. 前記炭素材料の直径2nm以下のミクロ孔の表面積Smicroと全細孔表面積Stotalとの比Smicro/Stotalが0.3以上である請求項9又は10記載の高分子固体電解質型燃料電池酸素極用触媒。 11. The solid polymer electrolyte fuel cell oxygen electrode according to claim 9 or 10, wherein a ratio S micro / S total of a surface area S micro of a micropore having a diameter of 2 nm or less and a total pore surface area S total of the carbon material is 0.3 or more. Catalyst. 前記炭素材料の直径2nm以下のミクロ孔の細孔直径が1.5nm以下である請求項9〜11のいずれかに記載の高分子固体電解質型燃料電池酸素極用触媒。   12. The polymer solid oxide fuel cell oxygen electrode catalyst according to claim 9, wherein the carbon material has a micropore diameter of 2 nm or less and a pore diameter of 1.5 nm or less. 請求項1〜12のいずれか1項に記載の触媒を用いた高分子固体電解質型燃料電池。
A solid polymer electrolyte fuel cell using the catalyst according to claim 1.
JP2004342296A 2004-04-22 2004-11-26 Polymer solid oxide fuel cell oxygen electrode catalyst Expired - Fee Related JP4520833B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004342296A JP4520833B2 (en) 2004-11-26 2004-11-26 Polymer solid oxide fuel cell oxygen electrode catalyst
KR1020087024258A KR100919326B1 (en) 2004-04-22 2005-04-22 Fuel cell and gas diffusion electrode for fuel cell
KR1020067021769A KR100897637B1 (en) 2004-04-22 2005-04-22 Fuel cell and gas diffusion electrode for fuel cell
CA2563932A CA2563932C (en) 2004-04-22 2005-04-22 Fuel cell
US11/587,175 US9786925B2 (en) 2004-04-22 2005-04-22 Fuel cell and fuel cell use gas diffusion electrode
PCT/JP2005/008255 WO2005104275A1 (en) 2004-04-22 2005-04-22 Fuel cell and gas diffusion electrode for fuel cell
EP05736882.1A EP1748509B1 (en) 2004-04-22 2005-04-22 Fuel cell and gas diffusion electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342296A JP4520833B2 (en) 2004-11-26 2004-11-26 Polymer solid oxide fuel cell oxygen electrode catalyst

Publications (2)

Publication Number Publication Date
JP2006156013A true JP2006156013A (en) 2006-06-15
JP4520833B2 JP4520833B2 (en) 2010-08-11

Family

ID=36634055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342296A Expired - Fee Related JP4520833B2 (en) 2004-04-22 2004-11-26 Polymer solid oxide fuel cell oxygen electrode catalyst

Country Status (1)

Country Link
JP (1) JP4520833B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036539A (en) * 2006-08-07 2008-02-21 National Institute Of Advanced Industrial & Technology Catalyst for electrochemically oxidizing carbon monoxide
JP2008130325A (en) * 2006-11-20 2008-06-05 Asahi Kasei Corp Electrode catalyst for fuel cell
JP2008293807A (en) * 2007-05-24 2008-12-04 Toyota Motor Corp Method for evaluating performance of electrode catalyst for cell constituted of n4 chelate type dimerized metal complex
JP2008305561A (en) * 2007-06-05 2008-12-18 Asahi Kasei Corp Electrode catalyst for fuel cell
US8034513B2 (en) 2009-11-16 2011-10-11 Kabushiki Kaisha Toshiba Direct-methanol fuel cell
JP2017018858A (en) * 2015-07-07 2017-01-26 昭和電工株式会社 Method for evaluating oxygen reduction catalyst, and selection method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711924B1 (en) 2015-09-17 2017-03-03 주식회사 엘지화학 A method for evaluating performance of cathode in fuel cell and a fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763137A (en) * 1980-10-04 1982-04-16 Asahi Chem Ind Co Ltd Catalyst for oxygen reduction
JPS5840150A (en) * 1981-09-01 1983-03-09 Asahi Chem Ind Co Ltd Catalyst for reducing oxygen
JP2003109614A (en) * 2001-09-27 2003-04-11 Nippon Steel Corp Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763137A (en) * 1980-10-04 1982-04-16 Asahi Chem Ind Co Ltd Catalyst for oxygen reduction
JPS5840150A (en) * 1981-09-01 1983-03-09 Asahi Chem Ind Co Ltd Catalyst for reducing oxygen
JP2003109614A (en) * 2001-09-27 2003-04-11 Nippon Steel Corp Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036539A (en) * 2006-08-07 2008-02-21 National Institute Of Advanced Industrial & Technology Catalyst for electrochemically oxidizing carbon monoxide
JP4613350B2 (en) * 2006-08-07 2011-01-19 独立行政法人産業技術総合研究所 Catalyst for electrochemical oxidation of carbon monoxide
JP2008130325A (en) * 2006-11-20 2008-06-05 Asahi Kasei Corp Electrode catalyst for fuel cell
JP2008293807A (en) * 2007-05-24 2008-12-04 Toyota Motor Corp Method for evaluating performance of electrode catalyst for cell constituted of n4 chelate type dimerized metal complex
JP2008305561A (en) * 2007-06-05 2008-12-18 Asahi Kasei Corp Electrode catalyst for fuel cell
US8034513B2 (en) 2009-11-16 2011-10-11 Kabushiki Kaisha Toshiba Direct-methanol fuel cell
JP2017018858A (en) * 2015-07-07 2017-01-26 昭和電工株式会社 Method for evaluating oxygen reduction catalyst, and selection method therefor

Also Published As

Publication number Publication date
JP4520833B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP4799897B2 (en) Fuel cell
KR100919326B1 (en) Fuel cell and gas diffusion electrode for fuel cell
Salvador-Pascual et al. Kinetics of oxygen reduction reaction on nanosized Pd electrocatalyst in acid media
Higgins et al. Development and simulation of sulfur‐doped graphene supported platinum with exemplary stability and activity towards oxygen reduction
Lu et al. Well‐combined magnetically separable hybrid cobalt ferrite/nitrogen‐doped graphene as efficient catalyst with superior performance for oxygen reduction reaction
Chetty et al. Effect of reduction temperature on the preparation and characterization of Pt− Ru nanoparticles on multiwalled carbon nanotubes
Jiang et al. Oxygen reduction in the nanocage of metal–organic frameworks with an electron transfer mediator
Vecchio et al. EDTA-derived CoNC and FeNC electro-catalysts for the oxygen reduction reaction in acid environment
JP2003109614A (en) Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same
JP2004532734A (en) Platinum-free chelate catalyst material for selective oxygen reduction and method for producing the same
Wang et al. Impacts of imidazolate ligand on performance of zeolitic-imidazolate framework-derived oxygen reduction catalysts
Ren et al. Highly efficient oxygen reduction electrocatalyst derived from a new three-dimensional polyporphyrin
Yao et al. Porphyrin-based graphene oxide frameworks with ultra-large d-spacings for the electrocatalyzation of oxygen reduction reaction
Yang et al. Fe/N/C electrocatalysts for oxygen reduction reaction in PEM fuel cells using nitrogen-rich ligand as precursor
Cui et al. Fe–N/C catalysts synthesized by heat-treatment of iron triazine carboxylic acid derivative complex for oxygen reduction reaction
Hoque et al. Tin oxide-mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction
Lee et al. Metal-nitrogen intimacy of the nitrogen-doped ruthenium oxide for facilitating electrochemical hydrogen production
Lobato et al. Composite titanium silicon carbide as a promising catalyst support for high‐temperature proton‐exchange membrane fuel cell electrodes
Huang et al. Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)
Li et al. Promotion of oxygen reduction performance by Fe3O4 nanoparticles support nitrogen-doped three dimensional meso/macroporous carbon based electrocatalyst
Zhang et al. Effectively incorporating iron, nitrogen, and sulfur functionalities on carbon surface for a superior electrocatalyst toward oxygen reduction reaction
Liu et al. Tuning Cobalt and Nitrogen Co‐Doped Carbon to Maximize Catalytic Sites on a Superabsorbent Resin for Efficient Oxygen Reduction
Dembinska et al. Carbon dioxide electroreduction at highly porous nitrogen and sulfur co-doped iron-containing heterogeneous carbon gel
Meza et al. Oxygen reduction on carbon supported Pt-W electrocatalysts
Fruehwald et al. Effect of Transition Metals on the Oxygen Reduction Reaction Activity at Metal‐N3/C Active Sites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4520833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees