JPS5840150A - Catalyst for reducing oxygen - Google Patents

Catalyst for reducing oxygen

Info

Publication number
JPS5840150A
JPS5840150A JP56137249A JP13724981A JPS5840150A JP S5840150 A JPS5840150 A JP S5840150A JP 56137249 A JP56137249 A JP 56137249A JP 13724981 A JP13724981 A JP 13724981A JP S5840150 A JPS5840150 A JP S5840150A
Authority
JP
Japan
Prior art keywords
catalyst
electrode
taa
activity
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56137249A
Other languages
Japanese (ja)
Inventor
Hiroyasu Akashi
明石 景泰
Nobuhiko Suga
菅 伸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56137249A priority Critical patent/JPS5840150A/en
Publication of JPS5840150A publication Critical patent/JPS5840150A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a long-life catalyst derived from Me-TAA (a metal complex of tetraazoanulene), of which the reduction overvoltage of oxygen is reduced. CONSTITUTION:A metal complex shown by the formula (a general name, 6,13- dipyridyl-1,8-dihydrodibenzo[b, i][1, 4, 8, 11]tetraazacyclotetradecine) is supported by an electrode as a catalyst. As an electrolyte to be used with the resulting electrode catalyst, sulfuric acid, phosphoric acid, an aqueous Na2SO4 solution, an aqueous Na3PO4 solution, KOH or NaOH may be used. As an electrode material, carbon or a metal oxide can be used and, in the case of an acidic electrolyte, graphite powder, acetylene, activated carbon, iron, cobalt and perovskite type composite oxide are pref. used. The amount of the catalyst is pref. 0.001-10wt% based on the electrode material powder. Me shows Co, Fe, Ni or Mn.

Description

【発明の詳細な説明】 不発、明は、有用な酸素還元触媒に関し、更に詳しくは
、カソード電極用酸素還元触媒に関し、その、目的とす
ると、ころは、白金以外の物質で、膳素の還元過電圧を
低くシ、かつ寿命の!い触媒を提供することにある。
[Detailed Description of the Invention] The present invention relates to a useful oxygen reduction catalyst, and more particularly, to an oxygen reduction catalyst for cathode electrodes, the purpose of which is to reduce the amount of a nutrient using a substance other than platinum. Low overvoltage and long life! The goal is to provide a new catalyst.

従来、酸素還元触媒としては種々のものが公知である。Conventionally, various oxygen reduction catalysts are known.

これら酸素還元触媒の性能を評価する方法の一つとして
、カソード電極として用いる方法がある・これは、7ノ
ード極の燃料として、水素。
One of the methods to evaluate the performance of these oxygen reduction catalysts is to use them as cathode electrodes.This method uses hydrogen as the fuel for the 7-node electrode.

メタン、メタノール、ギ醗、とドラジン等を用い。Using methane, methanol, vinegar, drazine, etc.

カソード極側に酸素、又は空気を用いて組み立てる燃料
電池等の電気化学的装置のカソード電極用としての評価
法であり、かつ燃料電池用カソード電極の実用評価と一
致している0      ′一方、白金は酸素還元触媒
としてよぐ知ら・れ、触媒性能の優れたものであるが、
コストと千′の資源的制約の問題があり、燃料電池を実
用化するときなどには問題点となっている。そのため、
白金に代わる酸素還元電位の低い高活性な触媒の開発が
望まれ、多くの物質が電極用触媒として評価されてきた
が、未だに高い特性を有する触媒は発見されていない。
This is an evaluation method for cathode electrodes of electrochemical devices such as fuel cells assembled using oxygen or air on the cathode side, and is consistent with practical evaluation of cathode electrodes for fuel cells. is well known as an oxygen reduction catalyst and has excellent catalytic performance.
There are problems with cost and thousands of resource constraints, which are problems when putting fuel cells into practical use. Therefore,
It has been desired to develop a highly active catalyst with a low oxygen reduction potential to replace platinum, and many materials have been evaluated as electrode catalysts, but no catalyst with high properties has yet been discovered.

  − 例えば、近年、エイチーアルド(H,Alt)らによる
ジャーナλ・オプ・エレクトリアナリテイクΦケミスト
リー第3゛1巻19頁(/97/) ;エイチ・グンド
ナー(H,Bindnsr )らによるジャーナル・オ
プ・キャタリシス第コ1巻1頁(/973) ;西独特
公第2oqtJsq号; エフ・ベック(F’、 Be
ak )らによるザイトシュリフト・ツユ・ナチュアホ
ルシュング第コta巻1009頁(/973)などに、
ポルフィリン、ブタロシアニン、テトラアザアヌレン等
の金属錯体が、拳素還元触媒として高い活性があること
が示されており、特に、これらの中でテトラアザアヌレ
ンの金属錯体(次の式(2)に示す構造を有し、M・−
TAAと略記する。M・は金属である。)は、活性が特
に優れていることが報告されているが、いずれも触媒寿
命が短いという欠点があった。
- For example, in recent years, the journal λ op Electrical Analysis Φ Chemistry Vol. 3, p. 19 (/97/) by H. Alt et al.; Catalysis Vol. 1, page 1 (/973); West German Special Publication No. 2 oqtJsq; F', Be
ak) et al., vol. 1009 (/973), etc.
It has been shown that metal complexes such as porphyrins, butalocyanines, and tetraazaannulenes have high activity as hydrogen reduction catalysts. It has a structure, M・-
It is abbreviated as TAA. M. is metal. ) have been reported to have particularly excellent activity, but they all had the drawback of short catalyst life.

そこで、本発明者らは、新たにMs −TAAの誘導体
についての探索を行ない、より寿命が長く、活性も高い
触媒の開発を進め、本発明に至った。
Therefore, the present inventors conducted a new search for derivatives of Ms-TAA, proceeded with the development of a catalyst with a longer life and higher activity, and arrived at the present invention.

本発明で用いる金属錯体の分子構造を式(3)に示す。The molecular structure of the metal complex used in the present invention is shown in formula (3).

式(3)で示される化合物の一般名は、4. /J−ジ
ピリジル−i、r−ジへイドロージベンゾ[b#i )
 [/。
The common name of the compound represented by formula (3) is 4. /J-dipyridyl-i,r-dihydrodibenzo [b#i)
[/.

q、r、u]テトラアザシクロテトラデシンの金属錯体
であり、6位と13位の2つのピリジル基が水素である
ものがテトラアザアヌレン(略してTAA )であると
ころから、略してMの−6,13−ジピリジル−TAA
と呼ばれる。本発明でも以下にこの略称を用いる。
q, r, u] A metal complex of tetraazacyclotetradecine, in which the two pyridyl groups at positions 6 and 13 are hydrogen, is tetraazaannulene (abbreviated as TAA), so it is abbreviated as M. -6,13-dipyridyl-TAA
It is called. This abbreviation will be used hereinafter in the present invention as well.

中心金属は、コバルト、鉄、ニッケル、マンガンにおい
て高い活性と長い触媒寿命を示す。中でもコバルトが活
性寿命の双方において最も優れた特性を示した。
The central metals exhibit high activity and long catalyst life in cobalt, iron, nickel, and manganese. Among them, cobalt showed the best properties in terms of both active life.

上記金属錯体の合成法は、シー・ライハルト(C,R@
1chardt )らにより、ザイトシュリフト・ナチ
ュアホルシュ(Z、Naturlormeh >、第J
Jb巻IQ/コ頁(/971)に報告されている0 電極触媒として使用するときに用いる電解液は、削性で
は、例えば、硫酸、リン酸等、中性では、例えば、1%
804 、1%P04水溶液等、アルカリ性では例えば
、KOH、NaOH等、当分舒で広く使用されている電
解液が使用可能である。
The synthesis method of the above metal complex is based on See Reichardt (C,R@
Seitschrift Naturhorsch (Z, Naturlormeh >, No. J
0 Reported in Volume Jb IQ/Page Co (/971) 0 The electrolytic solution used when used as an electrode catalyst has a machinability such as sulfuric acid or phosphoric acid, and a neutral one such as 1%
804, a 1% P04 aqueous solution, and alkaline electrolytes such as KOH and NaOH, which are widely used in modern society, can be used.

電極材料としては、カーボン、金属、酸化物等が使用で
きる。酸性電解液を用いる場合には、グラファイト粉末
、アセチレン・ブラック、活性炭、チタン、タンタル、
モリブデン、タングステン等が好ましく使用できる。ア
ルカリ性電解液を用いる場合には、グラファイト粉末、
アセチレン・ブラック、活性炭、ニッケル、鉄、コバル
)、ペロブスカイ)41複含酸化物等が好ましく使用で
きる。
Carbon, metal, oxide, etc. can be used as the electrode material. When using an acidic electrolyte, graphite powder, acetylene black, activated carbon, titanium, tantalum,
Molybdenum, tungsten, etc. can be preferably used. When using an alkaline electrolyte, graphite powder,
Acetylene black, activated carbon, nickel, iron, cobal), perovsky) 41 complex oxides, etc. can be preferably used.

触媒の電極への担持法としては、触媒を溶媒中に溶かし
たものに電極を浸す方法、蒸着による方法、スプレーに
よる吹きつけ法、刷毛による塗布法、電極材料粉末と触
媒を混合して電極をつくる方法等があるが、本発明の触
媒は、水溶性があるので、電解液に直接添加することに
よっても使用でき、電極の構造を簡素化できる。触媒の
電解液への溶解量は、/ 9/lから/41までが好ま
しい。
The catalyst can be supported on the electrode by dipping the electrode in a solution of the catalyst in a solvent, by vapor deposition, by spraying, by applying with a brush, and by mixing the electrode material powder and the catalyst. Although there are various methods for making the catalyst, since the catalyst of the present invention is water-soluble, it can also be used by directly adding it to an electrolytic solution, thereby simplifying the structure of the electrode. The amount of catalyst dissolved in the electrolyte is preferably from /9/l to /41/l.

電極材料粉末と触媒を混合して電極を作る方法の場合、
昔通電極材料粉末から電極を作る場合のように、バイン
ダーを使用することができ、混合粉末を加圧プレスする
ことにより、電極とすることができる。バインダーとし
ては、ぎリピニルアルコール、ポリ四フッ化エチレン、
〆リエチレン、ポリプロピレン、〆リスチレン等が使用
できる。
In the case of the method of making electrodes by mixing electrode material powder and catalyst,
As in the case of making electrodes from powdered conductive electrode materials in the past, a binder can be used, and electrodes can be made by pressing the mixed powder under pressure. As a binder, polypinyl alcohol, polytetrafluoroethylene,
Polyethylene, polypropylene, restyrene, etc. can be used.

なお、このように、バインダーを用いて得られた電極は
、さらにアルゴン、又は窒素雰囲気中で熱処理すること
により、電極としての活性が向上する。
Note that the electrode obtained using the binder in this manner is further heat-treated in an argon or nitrogen atmosphere to improve its activity as an electrode.

触媒の混合量は、電極材料粉末の6001重量%から1
0重量−までが好重しい。少なすぎると触媒活性が十分
発揮されなく、又多すぎると電流が流れにくくなる。
The amount of catalyst mixed is from 6001% by weight to 1% by weight of the electrode material powder.
Weight up to 0 weight is preferable. If it is too small, the catalyst activity will not be sufficiently exhibited, and if it is too large, it will be difficult for current to flow.

電極は、室温から110℃まで好ましく使用できるd〕 電極触媒としての活性の測定は、下記の2種類の方法で
行なった。
The electrode can be preferably used from room temperature to 110° C. d] The activity as an electrode catalyst was measured by the following two methods.

測定法l)水素−酸素燃料電池を構成し発生する電流−
電位をm走する。
Measurement method l) Current generated by composing a hydrogen-oxygen fuel cell
Run the potential m.

カソード電極は、以下の方法で作製した。The cathode electrode was produced by the following method.

アセチレン・ブラック等の炭素粉末logと該触媒1O
119をバインダーであるポリ四フッ化エチレン水懸濁
液で攪拌し、これを電子集合体であるチタンメツシュに
吹きつける・さらにその上から多孔性ポリ四7ツ化エチ
レン展をのせ、3009.−の圧力で加圧圧着を行なう
。これを3oo−IIoo″Cでアルゴン、又は窒素雰
囲気中で熱処理を行ない、これをカソード電極とした。
Carbon powder log such as acetylene black and the catalyst 1O
119 is stirred with an aqueous suspension of polytetrafluoroethylene, which is a binder, and this is sprayed onto a titanium mesh, which is an electron assembly. Further, porous polytetrafluoroethylene is placed on top of the titanium mesh, and 3009. - Perform pressure bonding at a pressure of -. This was heat-treated at 3oo-IIoo''C in an argon or nitrogen atmosphere, and was used as a cathode electrode.

同様の作製方法で、触媒として白金黒を用いてアノード
電極を作った。
An anode electrode was fabricated using a similar fabrication method using platinum black as a catalyst.

これらの電極を用いて電解液を/N硫酸とし、カソード
に酸素を、アノードに水素を圧入して、電圧4jOmV
において発生する電流を測定した。
Using these electrodes, the electrolyte is /N sulfuric acid, oxygen is injected into the cathode, hydrogen is injected into the anode, and the voltage is 4jOmV.
The current generated was measured.

−電位を測定する。-Measure the electrical potential.

測定法ハで用いた水素−酸素燃料電池を用し1て。Using the hydrogen-oxygen fuel cell used in measurement method c.

電解液にzoOwi/ノの割合で触媒を添加し、電圧t
lOmVにおいて発生する電流を測定した。
A catalyst is added to the electrolyte at a ratio of zoOwi/no, and the voltage t is
The current generated at lOmV was measured.

以下に本発明の該触媒についての実施例をもって詳細に
説明するが、本発明の該触媒の利用については、実施例
に限定されるものではない。
The catalyst of the present invention will be described in detail below with examples, but the use of the catalyst of the present invention is not limited to the examples.

実施例1 本発明の触媒を用いて測定法l)によって活性を測定し
た。比較のためCo−TAAについても同様の測定を行
なった。結果を下記表7に示す。活性値は、電位4jO
mVにおける発生電流値(単位mA )とし、その経時
変化を示す。
Example 1 The activity of the catalyst of the present invention was measured by measurement method l). For comparison, similar measurements were performed on Co-TAA. The results are shown in Table 7 below. The activation value is the potential 4jO
The generated current value in mV (unit: mA) is shown, and its change over time is shown.

表  1 本発明の触媒は、Co−TAAと比較して初期の発生電
流では同じであるが、Co−TAAが700時間後から
活性が低下し、1OOO時間後にはほとんど活性がなく
なっているのに対し、本発明の触媒は、1ooo時間後
にも高い活性を維持していた。
Table 1 The catalyst of the present invention has the same initial current generation as Co-TAA, but the activity of Co-TAA decreases after 700 hours and has almost no activity after 100 hours. In contrast, the catalyst of the present invention maintained high activity even after 100 hours.

実施例コ 本発明の触媒を用いて、測定法2)によって活性を測定
した。Co−TAAは、非水溶性であるため測定法2)
による活性の測定は出来ない。結果を表2に示す。活性
値は、電位4jOmVにおける発生電流値(単位raA
)とし、その経時変化を示す。
Example Using the catalyst of the present invention, activity was measured by measurement method 2). Co-TAA is water-insoluble, so measurement method 2)
It is not possible to measure activity by The results are shown in Table 2. The activation value is the generated current value (unit: raA) at a potential of 4jOmV.
) and its change over time is shown.

表    2 本発明の触媒は、1OOO時間後でも発生する電流値に
著しい変化はなかった。
Table 2 With the catalyst of the present invention, there was no significant change in the current value generated even after 100 hours.

実施例3 下記の触媒を用いて測定法l)により活性を測定した。Example 3 Activity was measured by measurement method 1) using the following catalyst.

(1)  Fe −4,/j−ジピリジルTAA(2)
  Ni −6,/3−ジピリジルTAA(8)  M
n−4/j−ジピリジルTAA比較のため、Fe −T
AA 、Ni −TAA 、 Mn−TAAについても
同様の条件で測定した〇 上記(1)〜(8)の化合物は、中心金属が同一なTA
Aと比較して高い活性を示し、かつ寿命の面において優
れた結果を示した。
(1) Fe-4,/j-dipyridyl TAA (2)
Ni-6,/3-dipyridyl TAA (8) M
For n-4/j-dipyridyl TAA comparison, Fe-T
AA, Ni-TAA, and Mn-TAA were also measured under the same conditions. The compounds (1) to (8) above were TA with the same central metal.
Compared to A, it showed higher activity and better results in terms of life.

同一配位子における中心金属の活性に対する傾向は、C
o > Mn > Fe > Nlの順であった。
The tendency for central metal activity in the same ligand is C
The order was o>Mn>Fe>Nl.

以上の実施例で具体的に説明したように、本発明の触媒
は最も活性が優れていると報告されているTAA錯体と
同等の活性を持ち、水溶性にすることにより欠点とされ
ていた寿命を著しく改善したものであり、工業的価値は
極めて大きい。
As specifically explained in the examples above, the catalyst of the present invention has an activity equivalent to that of the TAA complex, which is reported to have the best activity, and has a lifespan that was considered a drawback by making it water-soluble. This is a significant improvement over the conventional method, and its industrial value is extremely large.

特許出原人 旭化成工業株式会社Patent originator: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 (す、一般式(1) (M・はコバルト、鉄、ニッケル又はマンガンを表わす
。)で表わされる金属錯体からなる酸素還元触媒。 (2)、中心金属Meがコバルトである特許請求の範囲
第1項記載の酸素還元触媒。
[Claims] (S) An oxygen reduction catalyst consisting of a metal complex represented by the general formula (1) (M represents cobalt, iron, nickel or manganese). (2) The central metal Me is cobalt. An oxygen reduction catalyst according to claim 1.
JP56137249A 1981-09-01 1981-09-01 Catalyst for reducing oxygen Pending JPS5840150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137249A JPS5840150A (en) 1981-09-01 1981-09-01 Catalyst for reducing oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137249A JPS5840150A (en) 1981-09-01 1981-09-01 Catalyst for reducing oxygen

Publications (1)

Publication Number Publication Date
JPS5840150A true JPS5840150A (en) 1983-03-09

Family

ID=15194247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137249A Pending JPS5840150A (en) 1981-09-01 1981-09-01 Catalyst for reducing oxygen

Country Status (1)

Country Link
JP (1) JPS5840150A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104275A1 (en) * 2004-04-22 2005-11-03 Nippon Steel Corporation Fuel cell and gas diffusion electrode for fuel cell
JP2005332807A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Fuel cell
JP2006120335A (en) * 2004-10-19 2006-05-11 Nippon Steel Corp Gas diffusion layer for fuel cell, gas diffusion electrode for the fuel cell and the fuel cell
JP2006156013A (en) * 2004-11-26 2006-06-15 Nippon Steel Corp Catalyst for oxygen electrode in polymer electrolyte fuel cell
JP2006202686A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metallic compound
CN100466345C (en) * 2004-04-22 2009-03-04 新日本制铁株式会社 Fuel cell and gas diffusion electrode for fuel cell
JP2017010853A (en) * 2015-06-24 2017-01-12 国立研究開発法人産業技術総合研究所 Electrochemical oxygen reduction catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104275A1 (en) * 2004-04-22 2005-11-03 Nippon Steel Corporation Fuel cell and gas diffusion electrode for fuel cell
JP2005332807A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Fuel cell
CN100466345C (en) * 2004-04-22 2009-03-04 新日本制铁株式会社 Fuel cell and gas diffusion electrode for fuel cell
US9786925B2 (en) 2004-04-22 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Fuel cell and fuel cell use gas diffusion electrode
JP2006120335A (en) * 2004-10-19 2006-05-11 Nippon Steel Corp Gas diffusion layer for fuel cell, gas diffusion electrode for the fuel cell and the fuel cell
JP4520815B2 (en) * 2004-10-19 2010-08-11 新日本製鐵株式会社 Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell
JP2006156013A (en) * 2004-11-26 2006-06-15 Nippon Steel Corp Catalyst for oxygen electrode in polymer electrolyte fuel cell
JP2006202686A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metallic compound
JP2017010853A (en) * 2015-06-24 2017-01-12 国立研究開発法人産業技術総合研究所 Electrochemical oxygen reduction catalyst

Similar Documents

Publication Publication Date Title
JP4970264B2 (en) Platinum alloy catalyst
US5013618A (en) Ternary alloy fuel cell catalysts and phosphoric acid fuel cell containing the catalysts
US5316990A (en) Catalyst material
US7125820B2 (en) Non-noble metal catalysts for the oxygen reduction reaction
US20110034325A1 (en) High performance orr (oxygen reduction reaction) pgm (pt group metal) free catalyst
JP5138584B2 (en) Method for producing electrode catalyst for fuel cell
US20090047568A1 (en) Electrode catalyst for fuel and fuel cell
US7241717B2 (en) Cathode catalyst for fuel cell
JPH0763627B2 (en) Improved catalytic material
JP2010507220A (en) Catalyst carrier for fuel cells
CN101743655B (en) Electrode catalyst for fuel cell, and solid polymer fuel cell using the electrode catalyst
JPS5840150A (en) Catalyst for reducing oxygen
JPS6327980B2 (en)
JPH01252666A (en) Electron conductive polymer having heteropolyanion added thereto, production thereof, and chemical and electrochemical catalyst
Sheelam et al. Metal-organic complexes,[Co (bpy) 3](NO3) 2 and [Co (bpy) 2NO3] NO3· 5H2O, for oxygen reduction reaction
JP2004510316A (en) Tungsten-containing fuel cell catalyst and method for producing the same
KR20000063843A (en) Platinum-metal oxide catalysts for polymer electrolyte fuel cells
JPH05135772A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH05135773A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JP5055890B2 (en) Catalyst layer and method for producing catalyst layer
JPH11111305A (en) Fuel cell
JP2012110839A (en) Catalyst composition
JPS59138066A (en) Electrode for fuel cell-air cell
Api Oxygen reduction reaction behaviours of carbon nanotubes supporting pt catalyst for proton exchange membrane fuel cell
JP3555370B2 (en) Methanol fuel cell