JP2006202686A - Electrode catalyst for fuel cell of metallic compound - Google Patents

Electrode catalyst for fuel cell of metallic compound Download PDF

Info

Publication number
JP2006202686A
JP2006202686A JP2005015608A JP2005015608A JP2006202686A JP 2006202686 A JP2006202686 A JP 2006202686A JP 2005015608 A JP2005015608 A JP 2005015608A JP 2005015608 A JP2005015608 A JP 2005015608A JP 2006202686 A JP2006202686 A JP 2006202686A
Authority
JP
Japan
Prior art keywords
group
ring
electrode catalyst
fuel cell
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005015608A
Other languages
Japanese (ja)
Inventor
Tamikuni Komatsu
民邦 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Institute
Original Assignee
Asahi Kasei Corp
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Institute filed Critical Asahi Kasei Corp
Priority to JP2005015608A priority Critical patent/JP2006202686A/en
Publication of JP2006202686A publication Critical patent/JP2006202686A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel non-platinum group metallic compound made by molecular design so as be able to make oxidation reduction reaction on the surface of an electrode as electrode catalyst for a fuel cell. <P>SOLUTION: A non-platinum group metallic compound of a heterocyclic aromatic compound having a π-electron donative functional group is to be the electrode catalyst for the fuel cell. The π-electron donative functional group is either a cyano group, amino group, cyanoamino group, or carbodiimide group, a heterocyclic ring of the heterocyclic aromatic compound is either a triazine ring, tris-triazine ring, borazine ring, phosphagen ring, or thiophene ring, and a metal element of the non-platinum group metallic compound is transition metal. The above electrode catalyst is to be one of a hydrogen electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非白金族金属化合物に関するものであり、白金族触媒に代わる燃料電池用電極触媒として使用することができる。   The present invention relates to a non-platinum group metal compound and can be used as an electrode catalyst for a fuel cell instead of a platinum group catalyst.

従来、固体高分子型燃料電池、ダイレクトメタノール燃料電池、ジメチルエーテル燃料電池等の燃料電池用電極触媒として白金、パラジウム、ロジウム、ルテニウム、イリジウム等の白金族元素が使用されている。しかし、これらの白金族元素は希少資源であることから、上記燃料電池の普及が危ぶまれている。また、白金族触媒は水素、酸素、メタノール、ジメチルエーテル等の小分子に対する特異的な活性化能を有することから、従来、白金族触媒と代替可能な非白金族触媒に関する報告は非常に少なく、上記燃料電池用電極触媒としての遷移金属系触媒が非特許文献及び特許文献において数例報告されているにすぎない。例えば、非特許文献1では、カーボンに担持したポルフィリン遷移金属錯体の熱処理物が酸性溶液中で高い酸素還元能を示すことが報告されている。非特許文献2では、μ-hydroxy遷移金属錯体の熱処理物がメタノール中で高い酸素還元能を示すことが報告されている。   Conventionally, platinum group elements such as platinum, palladium, rhodium, ruthenium, and iridium have been used as electrode catalysts for fuel cells such as polymer electrolyte fuel cells, direct methanol fuel cells, and dimethyl ether fuel cells. However, since these platinum group elements are rare resources, the spread of the fuel cell is in danger. In addition, since platinum group catalysts have specific activation ability for small molecules such as hydrogen, oxygen, methanol, dimethyl ether, etc., there are very few reports on non-platinum group catalysts that can replace platinum group catalysts. Only a few examples of transition metal catalysts as electrode catalysts for fuel cells have been reported in non-patent and patent documents. For example, Non-Patent Document 1 reports that a heat-treated product of a porphyrin transition metal complex supported on carbon exhibits high oxygen reducing ability in an acidic solution. Non-Patent Document 2 reports that a heat-treated product of a μ-hydroxy transition metal complex exhibits high oxygen reducing ability in methanol.

特許文献1では、カーボンに担持したN,N’-bis(salicylidene)ethylenediamine、N,N’-mono-8-quinolyl-o-phenylenediamine等の遷移金属錯体と白金化合物の混合物の熱処理物を白金の補助触媒として用いることが開示されている。(なお、以上の生成物は熱処理物であるので元の金属錯体の化学構造が熱分解し原形を留めていないので、金属錯体ではない。)また、以上の熱処理前の金属錯体は酸性条件で容易に分解するので、酸性条件でも使えるように熱処理を行っている。特許文献2では、dithiooxamideの複核銅錯体を水素極として用いることが開示されている。(なお、dithiooxamideは脂肪族分子であり、本発明の複素環芳香族化合物とは化学分類上異なる物質である。)これらの遷移金属系触媒の発見は、希少資源である白金族元素に代わる豊富で安価な電極触媒材料の開発を行なう上で価値ある知見を与えている。
E. Yeager, Electrochim. Acta, 29, 1527-1537 (1984). T. Okada, Y. Suzuki, T. hirose, T. Toda, and T. Ozawa, ChemicalCommunications, 23, 2492-2493 (2001). 特開2002‐329500号公報 特開2004−31174号公報
In Patent Document 1, a heat treatment product of a mixture of a transition metal complex such as N, N′-bis (salicylidene) ethylenediamine, N, N′-mono-8-quinolyl-o-phenylenediamine and a platinum compound supported on carbon is used as platinum. The use as an auxiliary catalyst is disclosed. (Note that the above product is a heat-treated product, so the chemical structure of the original metal complex is thermally decomposed and does not retain its original form, so it is not a metal complex.) The metal complex before the above heat treatment is under acidic conditions. Since it decomposes easily, it is heat-treated so that it can be used even under acidic conditions. Patent Document 2 discloses the use of a dithiooxamide dinuclear copper complex as a hydrogen electrode. (Dithiooxamide is an aliphatic molecule and is a substance that is chemically different from the heterocyclic aromatic compound of the present invention.) The discovery of these transition metal catalysts is abundant in place of the rare platinum group elements. It provides valuable knowledge for the development of cheap and inexpensive electrocatalyst materials.
E. Yeager, Electrochim. Acta, 29, 1527-1537 (1984). T. Okada, Y. Suzuki, T. hirose, T. Toda, and T. Ozawa, Chemical Communications, 23, 2492-2493 (2001). JP 2002-329500 A JP 2004-31174 A

本発明の目的は、上記の事情に鑑み、燃料電池用電極触媒として非白金系の電極触媒材料を提供することである。具体的には、白金族元素の得意としている電極表面での酸化還元反応を非白金族元素でできるように分子設計した新規の非白金系金属化合物を提供することである。   In view of the above circumstances, an object of the present invention is to provide a non-platinum-based electrode catalyst material as a fuel cell electrode catalyst. Specifically, it is to provide a novel non-platinum-based metal compound that is molecularly designed so that the oxidation-reduction reaction on the electrode surface, which is a specialty of platinum group elements, can be performed with non-platinum group elements.

本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、特殊な官能基を有する複素環式化合物の非白金系金属化合物が電極表面での酸化還元反応に有効であることを見いだし、この知見に基づいて本発明を完成させるに至った。
すなわち、本発明は、π電子供与性の官能基を有する複素環式芳香族化合物の非白金系金属化合物を燃料電池用電極触媒として提供するものである。
As a result of intensive studies to achieve the above object, the present inventors have found that a non-platinum metal compound of a heterocyclic compound having a special functional group is effective for the redox reaction on the electrode surface. As a result, the present invention has been completed based on this finding.
That is, the present invention provides a non-platinum metal compound of a heterocyclic aromatic compound having a π electron donating functional group as an electrode catalyst for a fuel cell.

本発明の金属化合物は、従来非白金系の金属触媒では困難であった水素の解離吸着とプロトン捕捉の両方を行うことができる。例えば、トリシアノメラミン銅化合物は室温で水素を解離吸着し、錯体1モル当たり最大3モルのプロトンを吸着することができる。   The metal compound of the present invention can perform both hydrogen dissociation adsorption and proton trapping, which has been difficult with conventional non-platinum metal catalysts. For example, a tricyanomelamine copper compound can dissociate and adsorb hydrogen at room temperature, and can adsorb up to 3 moles of proton per mole of the complex.

以下、本発明を詳細に説明する。
本発明の第1の特徴は、金属化合物の中心金属原子に結合した官能基をπ電子供与性としたことである。π電子供与性の官能基を結合することによって、縮退状態にある金属の最外殻d電子エネルギー準位に大きな配位子場分裂を与えると同時に金属の満ちたdπ電子から配位小分子(水素等)の空軌道への電子の逆供与を行なうことができるので、燃料電池の電極表面に供給される水素、酸素等の化学吸着を容易にし吸着分子を活性化することができる。水素吸着の場合には、金属原子上での吸着水素のプロトン化(=吸着水素からの電子放出)を促進する。このような官能基としては、シアノ基(−C≡N)、イソシアノ基(−N≡C−)、アミノ基(−NH,−NH−,>N−)、シアノアミノ基(−NH−C≡N)、カルボジイミド基(−N=C=N−)、シアン酸基(−O−C≡N)、チオシアン酸基(−S−C≡N)、イソシアネート基(−N=C=O)、チオイソシアネート基(−N=C=S)、カルバミン酸基(−O−CO−NH)、チオカルバミン酸基(−S−CS−NH)、ジチゾン基(−NH−NH−CS−N=N−)、チオカルボニル基(>C=S)、カルボニル基(>C=O)、カルボキシル基(−CO−)、シュウ酸基(−CO−CO−)、ビピリジル基、シクロペンタジエン、第3級ホスフィン、亜リン酸基、チオ基(−S−)、チオール基、アゾ基(−N=N−)、ジアゾ基(−N≡N)、ニトロ基、スルホ基、スルホアミド基、水酸基、ハロゲン基、Schiffの塩基(−CH=N−)、オキシム基(>C=NOH)、等を挙げることができる。これらの中で、シアノ基、アミノ基、シアノアミノ基、カルボジイミド基はπ電子供与性が比較的強いので好ましい。
Hereinafter, the present invention will be described in detail.
The first feature of the present invention is that the functional group bonded to the central metal atom of the metal compound has a π electron donating property. By binding a π-electron donating functional group, a large ligand field splitting is given to the outermost shell d-electron energy level of the degenerate metal, and at the same time a coordination small molecule from the metal-filled d π- electron. Since the reverse donation of electrons to the empty orbit of (hydrogen etc.) can be performed, the chemical adsorption of hydrogen, oxygen etc. supplied to the electrode surface of the fuel cell can be facilitated and the adsorbed molecules can be activated. In the case of hydrogen adsorption, protonation of adsorbed hydrogen on a metal atom (= electron emission from adsorbed hydrogen) is promoted. Examples of such functional groups include a cyano group (—C≡N), an isocyano group (—N≡C—), an amino group (—NH 2 , —NH—,> N—), and a cyanoamino group (—NH—C). ≡N), carbodiimide group (—N═C═N—), cyanate group (—O—C≡N), thiocyanate group (—S—C≡N), isocyanate group (—N═C═O) , thioisocyanate group (-N = C = S), carbamic acid group (-O-CO-NH 2) , thiocarbamate group (-S-CS-NH 2) , dithizone group (-NH-NH-CS- N = N—), thiocarbonyl group (> C═S), carbonyl group (> C═O), carboxyl group (—CO 2 —), oxalic acid group (—CO 2 —CO 2 —), bipyridyl group, Cyclopentadiene, tertiary phosphine, phosphite group, thio group (-S-), thiol group, a Group (—N═N—), diazo group (—N≡N), nitro group, sulfo group, sulfoamide group, hydroxyl group, halogen group, Schiff base (—CH═N—), oxime group (> C═NOH) ), Etc. Among these, a cyano group, an amino group, a cyanoamino group, and a carbodiimide group are preferable because they have a relatively strong π electron donating property.

本発明の第2の特徴は、上記官能基が複素環式芳香族化合物とも結合していることである。複素環式芳香族化合物の複素芳香環は、周期律表における13族から16族の元素である硼素、炭素、窒素、燐、酸素、硫黄等の中の2元素以上から構成され、トリアジン環に代表されるようなヘテロ原子導入環での環状π電子を有する。複素芳香環とπ電子供与性の官能基との結合には共鳴構造が存在するので、相互のπ電子移動が可能である。15族元素である窒素と16族元素である酸素には最外殻軌道に孤立電子対があり、また、炭素よりも電気陰性度が大きいので若干負の電荷を帯びており、プロトンの受取に適している。したがって、本発明の複素環式芳香族化合物は吸着水素から放出されるプロトンを捕捉し、吸着水素からの電子を金属原子とπ電子供与性の官能基を経由して電子求引することができる。このような複素環式芳香族化合物の複素芳香環としては、トリアジン環、ピラジン環、ピリミジン環、ピリジン環、トリアゾール環、イミダゾール環、ビオロゲン、アクリジン環、フラン環、ピロール環、ボラジン環、カルバボラン、ホスファゼン環、チオフェン環、チアジン環、及び/又はこれらの縮合環、等を挙げることができる。これらの中で、トリアジン環、トリアジン環の縮合環であるトリストリアジン環、ホスファゼン環、及びチオフェン環は、π電子供与性の官能基との結合によって多くの共鳴構造をとることができるので好ましく、また電子不足結合をもつボラジン環は電子受容体になるので好ましい。以上の複素環式芳香族化合物はエステル構造ではないので、一般に、強酸性の雰囲気(水素をプロトン化すると強酸性を示す)でも耐加水分解性が高い。また、上記複素芳香環のヘテロ原子の塩基性は低いので、これに緩く結合したプロトン付加物の酸解離定数(pKa)は、通常、7〜10の範囲にあり、100℃以下の加熱と加湿によって容易にプロトンを放出することができる。   The second feature of the present invention is that the functional group is also bonded to a heterocyclic aromatic compound. The heteroaromatic ring of the heterocyclic aromatic compound is composed of two or more elements among boron, carbon, nitrogen, phosphorus, oxygen, sulfur, etc., which are elements of groups 13 to 16 in the periodic table, It has a cyclic π electron in a heteroatom-introduced ring as typified. Since a resonance structure exists in the bond between the heteroaromatic ring and the π-electron donating functional group, mutual π-electron transfer is possible. The group 15 element nitrogen and the group 16 element oxygen have a lone pair of electrons in the outer orbital shell and have a slightly negative charge because they have a higher electronegativity than carbon. Is suitable. Therefore, the heterocyclic aromatic compound of the present invention can capture protons released from adsorbed hydrogen and can withdraw electrons from adsorbed hydrogen via metal atoms and π-electron donating functional groups. . Examples of the heteroaromatic ring of such a heterocyclic aromatic compound include triazine ring, pyrazine ring, pyrimidine ring, pyridine ring, triazole ring, imidazole ring, viologen, acridine ring, furan ring, pyrrole ring, borazine ring, carbaborane, Examples thereof include a phosphazene ring, a thiophene ring, a thiazine ring, and / or a condensed ring thereof. Among these, a triazine ring, a tristriazine ring, which is a condensed ring of a triazine ring, a phosphazene ring, and a thiophene ring are preferable because they can take many resonance structures by bonding with a π-electron-donating functional group, A borazine ring having an electron deficient bond is preferable because it becomes an electron acceptor. Since the above heterocyclic aromatic compounds do not have an ester structure, they generally have high hydrolysis resistance even in a strongly acidic atmosphere (showing strong acidity when hydrogen is protonated). Further, since the heteroatom of the heteroaromatic ring has a low basicity, the acid dissociation constant (pKa) of the proton adduct loosely bound thereto is usually in the range of 7 to 10, and heating and humidification at 100 ° C. or less. Can easily release protons.

本発明の第3の特徴は、非白金系金属化合物を用いることである。従来使用されている
白金触媒は水素のプロトン化能及びプロトンの酸素酸化能が高いのは当然のことであるが、反面、一酸化炭素による触媒被毒を受けやすく、また、酸素極において水和プロトンから過酸化水素及びヒドロキシラジカルを発生するという問題がある。これに対して本発明の非白金系金属化合物はこのような問題がみられないので、固体高分子型燃料電池用電極材料として好ましい。本発明の非白金系金属化合物における金属元素としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、ケイ素、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ニオブ、モリブデン、タングステン、銀、インジウム、スズ、ビスマス、ランタン、サマリウム、セリウム、等を挙げることができる。これらの中で、遷移元素は一般的に触媒活性が高く安定な金属化合物を生成するので好ましい。遷移元素の中では、鉄、コバルト、ニッケル、及び銅が好ましい。
The third feature of the present invention is to use a non-platinum metal compound. The platinum catalyst used in the past is naturally high in proton protonation ability and oxygen oxidation ability of protons, but on the other hand, it is susceptible to catalyst poisoning by carbon monoxide and is hydrated at the oxygen electrode. There is a problem of generating hydrogen peroxide and hydroxy radicals from protons. On the other hand, the non-platinum-based metal compound of the present invention does not have such a problem, and is therefore preferable as an electrode material for a polymer electrolyte fuel cell. As the metal element in the non-platinum-based metal compound of the present invention, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, silicon, gallium, germanium, yttrium, zirconium, niobium, molybdenum, Examples include tungsten, silver, indium, tin, bismuth, lanthanum, samarium, cerium, and the like. Of these, transition elements are preferred because they generally produce stable metal compounds with high catalytic activity. Among the transition elements, iron, cobalt, nickel, and copper are preferable.

本発明の金属化合物は、通常、π電子供与性の官能基を有する複素環式芳香族化合物の有機溶媒溶液又は水溶液と金属塩の有機溶媒溶液又は水溶液を混合、反応させることによって得られる。別の方法としては、π電子供与性の官能基を有する複素環式芳香族化合物の水溶性アルカリ塩、又はアルカリ土類塩を合成し、水溶液中で目的とする金属イオンと金属交換反応を行うことによっても合成することができる。
前記に述べたように、本発明の金属化合物は水素の解離吸着を行いそれによって生成したプロトンと電子を効率的に捕捉することができるので、燃料電池用の電極触媒として、特に水素極の電極触媒として、有効に用いることができる。本発明の金属化合物を含有する水素極触媒は、通常、従来の方法、すなわち、活性炭と金属化合物の混合物を集電材料に塗布する(集電材料の片面には固体高分子電解質膜を塗布している)ことによって作成し、加湿下で用いることができる。
The metal compound of the present invention is usually obtained by mixing and reacting an organic solvent solution or aqueous solution of a heterocyclic aromatic compound having a π electron donating functional group and an organic solvent solution or aqueous solution of a metal salt. As another method, a water-soluble alkali salt or alkaline earth salt of a heterocyclic aromatic compound having a π electron donating functional group is synthesized, and a metal exchange reaction with a target metal ion is performed in an aqueous solution. Can also be synthesized.
As described above, since the metal compound of the present invention can dissociate and adsorb hydrogen and efficiently capture protons and electrons generated thereby, it is particularly suitable as an electrode catalyst for a fuel cell. It can be used effectively as a catalyst. The hydrogen electrode catalyst containing the metal compound of the present invention is usually applied to a current collecting material by a conventional method, that is, a mixture of activated carbon and a metal compound (a solid polymer electrolyte membrane is applied to one side of the current collecting material). And can be used under humidification.

以下に実施例などを挙げて本発明を具体的に説明する。
[実施例1]
トリシアノメラミン金属化合物の合成
メラミン63gとチオシアン酸カリウム150gの混合物を磁製皿に入れ、ホットプレート上、約500℃で揮発性物質の発生がなくなるまで加熱した。これをさらに電気炉で650℃−1.5時間加熱した。室温まで放冷後、生成物を蒸留水に溶解、加熱濃縮、室温放置後、無色の針状結晶を得た。再結晶によって高純度のトリシアノメラミンカリウム塩を48g得た。なお、トリシアノメラミンカリウム塩はメラミンの−NH基が−NH(CN)Kに置換された化合物であり、1モルの価数は3である。得られたトリシアノメラミンカリウム塩10gを蒸留水100gに溶解し、攪拌下、これに各種の遷移金属塩を等当量溶解した5重量%水溶液を滴下した。不溶性物質の生成を確認後(通常、滴下と同時にすぐに反応し不溶性物質が生成する)、反応を完結させるために反応溶液を1時間沸騰させた。室温に放冷後、生成物を減圧濾過、水洗、アセトン洗浄後、120℃−1昼夜真空乾燥した。元素分析、IRスペクトル測定、及び質量分析によって生成物を同定した。表1に得られた金属化合物を示す。
The present invention will be specifically described below with reference to examples.
[Example 1]
Synthesis of Tricyanomelamine Metal Compound A mixture of 63 g of melamine and 150 g of potassium thiocyanate was placed in a porcelain dish and heated on a hot plate at about 500 ° C. until no volatile substances were generated. This was further heated in an electric furnace at 650 ° C. for 1.5 hours. After allowing to cool to room temperature, the product was dissolved in distilled water, concentrated by heating, and allowed to stand at room temperature to obtain colorless needle crystals. 48g of high purity tricyanomelamine potassium salt was obtained by recrystallization. Tricyanomelamine potassium salt is a compound in which the —NH 2 group of melamine is substituted with —NH (CN) K, and the valence of 1 mole is 3. 10 g of the obtained tricyanomelamine potassium salt was dissolved in 100 g of distilled water, and a 5 wt% aqueous solution in which various transition metal salts were dissolved in an equivalent amount was added dropwise thereto with stirring. After confirming the formation of an insoluble substance (usually, it reacts immediately upon dropping to produce an insoluble substance), and the reaction solution was boiled for 1 hour to complete the reaction. After allowing to cool to room temperature, the product was filtered under reduced pressure, washed with water, washed with acetone, and then vacuum-dried at 120 ° C. for 1 day. The product was identified by elemental analysis, IR spectrum measurement, and mass spectrometry. Table 1 shows the metal compounds obtained.

Figure 2006202686
Figure 2006202686

[実施例2]
2,5,8-tricarbodiimide-tris-s-triazine遷移金属化合物の合成
チオシアン酸アンモニウム500gを磁製皿に入れ、ホットプレート上、約500℃で揮発性物質の発生がなくなるまで加熱した。粗製物を熱水洗浄、10%水酸カリウム水溶液洗浄、35%塩酸中で煮沸処理後、水洗、150℃−1昼夜真空乾燥し、2,5,8-triamino-tris-s-triazineの10量体を約50g得た。チオシアン酸カリウム70gを磁製皿に入れホットプレート上で融解し、これに、上記化合物を5回に分けて加え約500℃−5時間加熱した。室温まで放冷後、生成物を蒸留水に溶解、減圧濾過、ろ液を加熱濃縮、室温放置後、無色のフェルト状針状結晶を得た。再結晶によって高純度の2,5,8-tricarbodiimide-tris-s-triazine potassium saltを約25g得た。なお、2,5,8-tricarbodiimide-tris-s-triazine potassium salt は2,5,8-triamino-tris-s-triazineの−NH基が−N=C=N−Kに置換された化合物であり、1モルの価数は3である。得られた2,5,8-tricarbodiimide-tris-s-triazine potassium salt5gを蒸留水100gに溶解し、攪拌下、これに各種の遷移金属塩を等当量溶解した5重量%水溶液を滴下した。不溶性物質の生成を確認後、反応を完結させるために反応溶液を1時間沸騰させた。室温に放冷後、生成物を減圧濾過、水洗、アセトン洗浄後、120℃−1昼夜真空乾燥した。元素分析、IRスペクトル測定、及び質量分析によって生成物を同定した。表2に得られた遷移金属化合物を示す。
[Example 2]
Synthesis of 2,5,8-tricarbodiimide-tris-s-triazine transition metal compound 500 g of ammonium thiocyanate was placed in a porcelain dish and heated on a hot plate at about 500 ° C. until no volatile substances were generated. The crude product was washed with hot water, washed with 10% aqueous potassium hydroxide solution, boiled in 35% hydrochloric acid, washed with water, dried at 150 ° C. for 1 day and night, and dried with 2,5,8-triamino-tris-s-triazine 10 About 50 g of a monomer was obtained. 70 g of potassium thiocyanate was put in a porcelain dish and melted on a hot plate, and the above compound was added in 5 portions thereto and heated at about 500 ° C. for 5 hours. After allowing to cool to room temperature, the product was dissolved in distilled water, filtered under reduced pressure, the filtrate was heated and concentrated, and allowed to stand at room temperature to obtain colorless felt-like needle crystals. About 25 g of high-purity 2,5,8-tricarbodiimide-tris-s-triazine potassium salt was obtained by recrystallization. In addition, 2,5,8-tricarbodiimide-tris-s-triazine potassium salt is a compound in which -NH 2 group of 2,5,8-triamino-tris-s-triazine is substituted with -N = C = NK And the valence of 1 mole is 3. 5 g of the obtained 2,5,8-tricarbodiimide-tris-s-triazine potassium salt was dissolved in 100 g of distilled water, and a 5 wt% aqueous solution in which various equivalent amounts of the transition metal salt were dissolved therein was added dropwise with stirring. After confirming the formation of insoluble materials, the reaction solution was boiled for 1 hour to complete the reaction. After allowing to cool to room temperature, the product was filtered under reduced pressure, washed with water, washed with acetone, and then vacuum-dried at 120 ° C.-1 day and night. The product was identified by elemental analysis, IR spectrum measurement, and mass spectrometry. Table 2 shows the obtained transition metal compounds.

Figure 2006202686
Figure 2006202686

[実施例3]
トリシアノアミノボラジン遷移金属化合物の合成
液体アンモニア40gにナトリウムアミド10gを溶解し、これにトリクロロボラジン(化学式:[B(Cl)NH]3の環状化合物)15gを5回に分けて加え、1時間反応させた。反応後室温に置きアンモニアを蒸発させ、数グラムのメタノールを加え未反応のナトリウ
ムアミドを分解し、トリアミノボラジン(化学式:[B(NH2)NH]3の環状化合物)を定量的に得た。これとチオシアン酸カリウム25gの混合物を磁製皿に入れ、ホットプレート上、約500℃で揮発性物質の発生がなくなるまで加熱した。室温まで放冷後、生成物を蒸留水に溶解、加熱濃縮、室温放置後、無色の針状結晶を得た。再結晶によって高純度のトリシアノアミノボラジンカリウム塩(化学式:[B(NCN)NH]3K3の環状化合物)を約10g得た。得られたカリウム塩10gを蒸留水100gに溶解し、攪拌下、これに硫酸銅水溶液を等当量溶解した5重量%水溶液を滴下した。反応を完結させるために反応溶液を1時間沸騰させた。室温に放冷後、生成物を減圧濾過、水洗、アセトン洗浄後、120℃−1昼夜真空乾燥し、緑黄色の銅化合物(化学式:[B(NCN)NH]3Cu3/2の環状化合物)を約6g得た。
[Example 3]
Synthesis of tricyanoaminoborazine transition metal compound 10 g of sodium amide was dissolved in 40 g of liquid ammonia, and 15 g of trichloroborazine (chemical formula: [B (Cl) NH] 3 cyclic compound) was added in 5 portions and added for 1 hour. Reacted. After the reaction, the ammonia was evaporated at room temperature, and several grams of methanol was added to decompose unreacted sodium amide to quantitatively obtain triaminoborazine (chemical formula: [B (NH 2 ) NH] 3 cyclic compound). . A mixture of this and 25 g of potassium thiocyanate was placed in a porcelain dish and heated on a hot plate at about 500 ° C. until no volatile substances were generated. After allowing to cool to room temperature, the product was dissolved in distilled water, concentrated by heating, and allowed to stand at room temperature to obtain colorless needle crystals. About 10 g of high purity tricyanoaminoborazine potassium salt (chemical formula: [B (NCN) NH] 3 K 3 cyclic compound) was obtained by recrystallization. 10 g of the obtained potassium salt was dissolved in 100 g of distilled water, and a 5 wt% aqueous solution in which an equivalent amount of an aqueous copper sulfate solution was dissolved was added dropwise thereto with stirring. The reaction solution was boiled for 1 hour to complete the reaction. After allowing to cool to room temperature, the product was filtered under reduced pressure, washed with water, washed with acetone, and then vacuum-dried at 120 ° C.-1 day and night to give a greenish yellow copper compound (chemical formula: [B (NCN) NH] 3 Cu 3/2 cyclic compound) About 6g was obtained.

[実施例4]
ホスファゼントリオキシド遷移金属化合物の合成
ヘキサクロロホスファゼン20gを30%水酸化カリウム水溶液100gに加え、沸騰下2時間反応させ、反応後のろ液から再結晶によってホスファゼントリオキシド(化学式:[P(O)N]3の環状化合物)を約10g得た。これを5%硫酸銅水溶液100gに加え、沸騰下1時間反応させ、アメジスト色の銅化合物を約15g得た。
[Example 4]
Synthesis of phosphazene trioxide transition metal compound 20 g of hexachlorophosphazene is added to 100 g of a 30% aqueous potassium hydroxide solution, reacted for 2 hours under boiling, and recrystallized from the filtrate after the reaction by recrystallization (chemical formula: [P (O) N About 10 g of 3 cyclic compounds). This was added to 100 g of 5% aqueous copper sulfate solution and reacted for 1 hour under boiling to obtain about 15 g of amethyst-colored copper compound.

[実施例5]
金属化合物の水素吸脱着
実施例1〜4の金属化合物の微粉末を室温で相対湿度100%の雰囲気中に1時間放置した後、これを赤外拡散反射スペクトル測定用セルの試料台に設置し、水素ガスを導入、排気後、赤外スペクトル測定装置(JASCO FT-IR 460)によって、サンプルに吸着した水素の吸着状態を調べた。代表的なサンプルについての実験結果を以下に説明すると、実施例1の銅化合物は、トリアジン環の窒素原子にプロトンが付加したスペクトルを示した。また、スペクトル強度から金属化合物1モルあたり約3モルのプロトンが付加していることがわかった。実施例2の銅化合物は、金属化合物1モルあたり最大6モルのプロトンが付加していることがわかった。実施例3の銅化合物は、金属化合物1モルあたり約3モルのプロトンが付加していることがわかった。実施例4の銅化合物は、金属化合物1モルあたり約1モルのプロトンが付加していることがわかった。また、試料台を毎分10℃の昇温速度で加熱して脱着挙動を調べると、約60℃からプロトンの脱離が開始することがわかった。これらの結果から、水素分子は金属化合物に解離吸着し、生成したプロトンは錯体の配位分子に効率よく捕捉され、捕捉されたプロトンは温和な加熱によって脱離することがわかった。したがって、本発明の金属化合物は、燃料電池用水素極の電極触媒として利用可能であることがわかる。
[Example 5]
Hydrogen adsorption / desorption of metal compound The fine powder of the metal compound of Examples 1 to 4 was allowed to stand in an atmosphere of 100% relative humidity at room temperature for 1 hour, and then placed on a sample stage of an infrared diffuse reflectance spectrum measurement cell. After introducing and evacuating hydrogen gas, the adsorption state of hydrogen adsorbed on the sample was examined with an infrared spectrum measuring device (JASCO FT-IR 460). The experimental results of a representative sample will be described below. The copper compound of Example 1 showed a spectrum in which protons were added to the nitrogen atom of the triazine ring. Further, it was found from the spectrum intensity that about 3 moles of protons were added per mole of the metal compound. The copper compound of Example 2 was found to have a maximum of 6 moles of proton added per mole of metal compound. The copper compound of Example 3 was found to have about 3 moles of proton added per mole of metal compound. The copper compound of Example 4 was found to have about 1 mole of proton added per mole of metal compound. Further, when the desorption behavior was examined by heating the sample stage at a temperature rising rate of 10 ° C. per minute, it was found that proton desorption started from about 60 ° C. From these results, it was found that hydrogen molecules were dissociated and adsorbed on the metal compound, the generated protons were efficiently captured by the coordination molecule of the complex, and the captured protons were desorbed by mild heating. Therefore, it turns out that the metal compound of this invention can be utilized as an electrode catalyst of the hydrogen electrode for fuel cells.

本発明の金属化合物は燃料電池用電極触媒として有用である。   The metal compound of the present invention is useful as a fuel cell electrode catalyst.

Claims (3)

π電子供与性の官能基を有する複素環式芳香族化合物の非白金系金属化合物から成ることを特徴とする燃料電池用電極触媒。 An electrode catalyst for a fuel cell, comprising a non-platinum metal compound of a heterocyclic aromatic compound having a π-electron donating functional group. π電子供与性の官能基がシアノ基、アミノ基、シアノアミノ基、及びカルボジイミド基であり、複素環式芳香族化合物の複素芳香環がトリアジン環、トリストリアジン環、ボラジン環、ホスファゼン環、及びチオフェン環であり、非白金系金属化合物の金属元素が遷移元素であることを特徴とする請求項1記載の燃料電池用電極触媒。 The π-electron donating functional group is a cyano group, an amino group, a cyanoamino group, and a carbodiimide group, and the heteroaromatic ring of the heterocyclic aromatic compound is a triazine ring, a tristriazine ring, a borazine ring, a phosphazene ring, or a thiophene ring The fuel cell electrode catalyst according to claim 1, wherein the metal element of the non-platinum-based metal compound is a transition element. 請求項1及び2記載の燃料電池用電極触媒を水素極の電極触媒として用いることを特徴とする燃料電池用電極触媒。 3. The fuel cell electrode catalyst according to claim 1, wherein the electrode catalyst for a fuel cell is used as an electrode catalyst for a hydrogen electrode.
JP2005015608A 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metallic compound Pending JP2006202686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015608A JP2006202686A (en) 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015608A JP2006202686A (en) 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metallic compound

Publications (1)

Publication Number Publication Date
JP2006202686A true JP2006202686A (en) 2006-08-03

Family

ID=36960487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015608A Pending JP2006202686A (en) 2005-01-24 2005-01-24 Electrode catalyst for fuel cell of metallic compound

Country Status (1)

Country Link
JP (1) JP2006202686A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090746A1 (en) * 2019-11-08 2021-05-14
CN113651854A (en) * 2021-08-13 2021-11-16 青岛科技大学 Phosphazene compound and preparation method and application thereof
CN116410472A (en) * 2021-12-29 2023-07-11 湘潭大学 Preparation method and application of cross-linked phosphazene copolymer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840150A (en) * 1981-09-01 1983-03-09 Asahi Chem Ind Co Ltd Catalyst for reducing oxygen
JPS58131657A (en) * 1982-01-30 1983-08-05 Pentel Kk Manufacture of air electrode
JPS595566A (en) * 1982-06-30 1984-01-12 Pentel Kk Air pole
JPH02291602A (en) * 1988-12-28 1990-12-03 Idaho Res Found Inc Polymer film of metal polphyrin as conductor for electric catalyst
JPH0330838A (en) * 1989-06-29 1991-02-08 Central Res Inst Of Electric Power Ind Tetraphenylporphyrin derivative and reduction catalyst using it
JPH10249208A (en) * 1997-03-10 1998-09-22 Kagaku Gijutsu Shinko Jigyodan Binucleic iron complex catalyst
JPH11253811A (en) * 1998-03-09 1999-09-21 Japan Science & Technology Corp Oxygen reducing manganese complex catalyst
JP2003151567A (en) * 2001-08-29 2003-05-23 Matsushita Electric Ind Co Ltd Compound electrode for oxygen reduction
WO2003083967A2 (en) * 2002-03-27 2003-10-09 Regenesys Technologies Limited An electrode for the reduction of polysulfide species

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840150A (en) * 1981-09-01 1983-03-09 Asahi Chem Ind Co Ltd Catalyst for reducing oxygen
JPS58131657A (en) * 1982-01-30 1983-08-05 Pentel Kk Manufacture of air electrode
JPS595566A (en) * 1982-06-30 1984-01-12 Pentel Kk Air pole
JPH02291602A (en) * 1988-12-28 1990-12-03 Idaho Res Found Inc Polymer film of metal polphyrin as conductor for electric catalyst
JPH0330838A (en) * 1989-06-29 1991-02-08 Central Res Inst Of Electric Power Ind Tetraphenylporphyrin derivative and reduction catalyst using it
JPH10249208A (en) * 1997-03-10 1998-09-22 Kagaku Gijutsu Shinko Jigyodan Binucleic iron complex catalyst
JPH11253811A (en) * 1998-03-09 1999-09-21 Japan Science & Technology Corp Oxygen reducing manganese complex catalyst
JP2003151567A (en) * 2001-08-29 2003-05-23 Matsushita Electric Ind Co Ltd Compound electrode for oxygen reduction
WO2003083967A2 (en) * 2002-03-27 2003-10-09 Regenesys Technologies Limited An electrode for the reduction of polysulfide species

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090746A1 (en) * 2019-11-08 2021-05-14
WO2021090746A1 (en) * 2019-11-08 2021-05-14 国立研究開発法人産業技術総合研究所 Electrochemical oxygen reduction catalyst
JP7265292B2 (en) 2019-11-08 2023-04-26 国立研究開発法人産業技術総合研究所 Catalyst for electrochemical oxygen reduction
CN113651854A (en) * 2021-08-13 2021-11-16 青岛科技大学 Phosphazene compound and preparation method and application thereof
CN113651854B (en) * 2021-08-13 2022-12-23 青岛科技大学 Phosphazene compound and preparation method and application thereof
CN116410472A (en) * 2021-12-29 2023-07-11 湘潭大学 Preparation method and application of cross-linked phosphazene copolymer

Similar Documents

Publication Publication Date Title
US10305114B2 (en) Non-platinum group metal electrocatalysts using metal organic framework materials and method of preparation
Tripathy et al. Mixed-valence bimetallic Ce/Zr MOF-based nanoarchitecture: a visible-light-active photocatalyst for ciprofloxacin degradation and hydrogen evolution
Zhao et al. 8-hydroxyquinolinate-based metal–organic frameworks: synthesis, tunable luminescent properties, and highly sensitive detection of small molecules and metal ions
US10305115B2 (en) Non-platinum group metal electrocatalysts using metal organic framework materials and method of preparation
Popov et al. A 2, 2′-bipyridine-containing covalent organic framework bearing rhenium (I) tricarbonyl moieties for CO 2 reduction
Jeong et al. Tris (2‐benzimidazolylmethyl) amine‐directed synthesis of single‐atom nickel catalysts for electrochemical CO production from CO2
Scanlon et al. Low-cost industrially available molybdenum boride and carbide as “platinum-like” catalysts for the hydrogen evolution reaction in biphasic liquid systems
Gao et al. Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate
Chen et al. Photoreduction of carbon dioxide under visible light by ultra-small Ag nanoparticles doped into Co-ZIF-9
Rangraz et al. Selenium-doped graphitic carbon nitride decorated with Ag NPs as a practical and recyclable nanocatalyst for the hydrogenation of nitro compounds in aqueous media
CN106232226B (en) C catalyst, electrode and battery
JP2006202688A (en) Electrode catalyst for fuel cell of metal complex
Ghosh et al. Palladium-nitrogen coordinated cobalt alloy towards hydrogen oxidation and oxygen reduction reactions with high catalytic activity in renewable energy generations of proton exchange membrane fuel cell
Neophytides et al. Selective interactive grafting of composite bifunctional electrocatalysts for simultaneous anodic hydrogen and Co oxidation: I. Concepts and embodiment of novel-type composite catalysts
Wakizaka et al. Dehydrogenation of anhydrous methanol at room temperature by o-aminophenol-based photocatalysts
Nowacka et al. Cobalt (II) bipyrazolate metal–organic frameworks as heterogeneous catalysts in cumene aerobic oxidation: A tag-dependent selectivity
US5151515A (en) Oxygen reduction catalyst based upon metal dipyridylamines
Liu et al. Series of Organic–Inorganic Hybrid Rare Earth Derivatives Based on [MnV13O38] 7–Polyoxoanion: Syntheses, Structures, and Magnetic and Electrochemical Properties
JP6007650B2 (en) Photofunctional material, water-splitting photocatalyst, and method for producing photofunctional material
Lopez-Salas et al. Rediscovering forgotten members of the graphene family
Wang et al. Vanadium (VIV)–Porphyrin-Based Metal–Organic Frameworks for Synergistic Bimetallic Activation of Inert C (sp3)–H Bonds
JP2006202686A (en) Electrode catalyst for fuel cell of metallic compound
Zhang et al. Nitrogen reduction utilizing solvated electrons produced by thermal excitation of trapped electrons in reduced titanium oxide
EP0526609A1 (en) Molecular-electronic devices
Zhen et al. A Rhombus-Like Tetrameric Vanadoniobate Containing Pseudo-Sandwich-Type {Li⊂ V2O8 (Nb5O14) 2} and Its Electrocatalytic Activity for the Selective Oxidation of Benzyl Alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207