JPH05135773A - Catalyst for phosphoric acid type fuel cell and manufacture thereof - Google Patents

Catalyst for phosphoric acid type fuel cell and manufacture thereof

Info

Publication number
JPH05135773A
JPH05135773A JP3293495A JP29349591A JPH05135773A JP H05135773 A JPH05135773 A JP H05135773A JP 3293495 A JP3293495 A JP 3293495A JP 29349591 A JP29349591 A JP 29349591A JP H05135773 A JPH05135773 A JP H05135773A
Authority
JP
Japan
Prior art keywords
catalyst
phosphoric acid
fuel cell
platinum
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3293495A
Other languages
Japanese (ja)
Inventor
Hirobumi Enomoto
博文 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3293495A priority Critical patent/JPH05135773A/en
Publication of JPH05135773A publication Critical patent/JPH05135773A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve the initial characteristic and stability of a phosphoric acid type fuel cell using a platinum alloy carrying catalyst. CONSTITUTION:A platinum alloy is a ternary alloy of Pt-Ti-Co. To manufacture it, cobalt nitrate and titanium trichloride are dissolved in hot water, and a homogeneous mixed solution of a hydroxide of Ti and Co is obtained. It is added to the aqueous solution of a platinum carrying catalyst manufactured separately, Pt grains are deposited, then it is filtered, washed, dried, and heat- treated at a high temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燐酸型燃料電池の触媒と
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid fuel cell catalyst and a method for producing the same.

【0002】[0002]

【従来の技術】燐酸型燃料電池は、一般に空気または水
素の流通路を有する電気伝導性に優れた多孔質カーボン
の基材と、その上に形成した触媒層からなる二つのガス
拡散電極間に、マトリックスを挟持した構造を有する。
触媒層は白金(Pt)などの貴金属を担持した触媒粉末
に、適度の撥水性を付与するポリテトラフロロエチレン
を混合したものであり、燐酸型燃料電池は、この触媒層
に供給される反応ガスの酸素または水素と、電解質であ
る燐酸および触媒との三相共存が均一に起こることによ
り、電気化学的な反応を直接電気エネルギーとして取り
出すことができる。
2. Description of the Related Art A phosphoric acid fuel cell generally comprises a porous carbon base material having a flow passage for air or hydrogen and excellent electrical conductivity, and two gas diffusion electrodes each formed of a catalyst layer formed on the base material. , Has a structure sandwiching a matrix.
The catalyst layer is a mixture of a catalyst powder carrying a noble metal such as platinum (Pt) and polytetrafluoroethylene that imparts appropriate water repellency. In a phosphoric acid fuel cell, a reaction gas supplied to this catalyst layer is used. The three-phase coexistence of the oxygen or hydrogen with the phosphoric acid as the electrolyte and the catalyst uniformly takes place, so that the electrochemical reaction can be directly taken out as electric energy.

【0003】従来、燐酸型燃料電池の触媒としては、高
温燐酸に対して耐蝕性のある白金が使用されている。触
媒は電極反応に極めて重要な役割を果たしており、電池
の出力と寿命に対して、触媒の活性度と安定性を高める
ことが必要となる。白金触媒の製造方法は、一般に液相
還元法が用いられており、この方法は、カーボンブラッ
クを液相中に分散しやすくするために、硝酸や氷酢酸等
の酸処理を行ない、次に担持するに必要な白金量相当の
塩化白金酸水溶液を加え、液温を40〜90℃とした
後、還元剤としてヒドラジンや蟻酸を滴下して白金の還
元を行なう。
Conventionally, platinum, which is corrosion resistant to high temperature phosphoric acid, has been used as a catalyst for phosphoric acid fuel cells. The catalyst plays an extremely important role in the electrode reaction, and it is necessary to increase the activity and stability of the catalyst with respect to the output and life of the battery. As a method for producing a platinum catalyst, a liquid phase reduction method is generally used, and in order to make it easier to disperse carbon black in a liquid phase, an acid treatment such as nitric acid or glacial acetic acid is carried out, and then supported. An aqueous solution of chloroplatinic acid corresponding to the necessary amount of platinum is added to bring the liquid temperature to 40 to 90 ° C., and then hydrazine or formic acid as a reducing agent is dropped to reduce platinum.

【0004】さらに、触媒の活性度を高めるために、白
金を担持した触媒に、バナジウム(V),クロム(C
r),コバルト(Co),ニッケル(Ni),鉄(F
e)等の第二の金属成分を加えて合金化を行なう。上述
のようにして得られた白金触媒を再び水溶液中に分散し
て、第二金属の硝酸塩を添加し、水酸化カリウム,水酸
化ナトリウム,アンモニア水等のアルカリ剤により、第
二金属を水酸化物としてカーボン表面に沈着させる。こ
れを濾過水洗し乾燥した後に、不活性ガス雰囲気中で8
00〜1000℃の熱処理を施すことにより、合金触媒
を作製している。
Further, in order to increase the activity of the catalyst, vanadium (V), chromium (C
r), cobalt (Co), nickel (Ni), iron (F)
Alloying is performed by adding a second metal component such as e). The platinum catalyst obtained as described above is dispersed again in an aqueous solution, the nitrate of the second metal is added, and the second metal is hydroxylated with an alkaline agent such as potassium hydroxide, sodium hydroxide or aqueous ammonia. It is deposited as an object on the carbon surface. This is filtered, washed with water, dried and then placed in an inert gas atmosphere for 8 hours.
An alloy catalyst is produced by performing a heat treatment at 00 to 1000 ° C.

【0005】このように、白金触媒にIV〜VIII族の遷移
金属を添加した合金触媒が、触媒の活性度を向上させる
ことは、周知の技術であり、さらに触媒活性の向上を求
めて、例えば特開昭59−141169号公報にPt−
Cr−Co系,特開昭62−163746号公報にPt
−Fe−Co系,特開昭63−190254号公報にP
t−Ni−Co系等の三元合金系触媒も記載されてい
る。
As described above, it is a well-known technique that an alloy catalyst obtained by adding a Group IV to VIII transition metal to a platinum catalyst improves the activity of the catalyst. JP-A-59-141169 discloses Pt-
Cr-Co system, Pt in JP-A-62-163746
-Fe-Co system, P in JP-A-63-190254
A ternary alloy catalyst such as a t-Ni-Co system is also described.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の触媒は、初期活性に優れているものの比較的短時間に
特性が低下する。本発明の目的は、長時間に渡って亘っ
て安定性を維持することができる燐酸型燃料電池の触媒
とその製造方法を提供することにある。
However, although these catalysts have excellent initial activity, their characteristics deteriorate in a relatively short time. An object of the present invention is to provide a phosphoric acid fuel cell catalyst capable of maintaining stability for a long time and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の触媒はPt−Ti−Co三元合金を担持
したものであり、その合金組成をTi10〜25重量
%,Co10〜25重量%,Pt50〜80重量%と
し、その製造方法は、硝酸コバルトと三塩化チタンの混
合溶液にアンモニア水を添加してPH8とし、TiとC
oの水酸化物の均質混合溶液を作製して、この溶液を別
途作製した白金担持触媒の水溶液中に加えて十分に接触
させてPt粒子に沈着させ、その後これを熱処理するこ
とによりPt−Ti−Co三元合金担持触媒を得る。
In order to solve the above-mentioned problems, the catalyst of the present invention carries a Pt-Ti-Co ternary alloy, the alloy composition of which is 10 to 25% by weight of Ti and 10 to 10% of Co. 25% by weight and 50-80% by weight of Pt. The manufacturing method is PH8 by adding ammonia water to a mixed solution of cobalt nitrate and titanium trichloride, and Ti and C.
A homogeneous mixed solution of hydroxide of o was prepared, and this solution was added to an aqueous solution of a platinum-supported catalyst prepared separately, and was sufficiently contacted to deposit Pt particles, and then heat-treated to form Pt-Ti. Obtain a Co ternary alloy supported catalyst.

【0008】[0008]

【作用】以上のようにして得られた本発明の触媒は、従
来、二元合金または三元合金を担持した触媒の中でも、
比較的初期活性が高く安定性に優れている合金成分とし
てTiとCoを選び、これらを組み合わせてPt−Ti
−Coの三元合金を担持させたことにより、触媒活性と
安定性の両者を高めることができる。
The catalyst of the present invention obtained as described above is one of the conventional catalysts carrying a binary alloy or a ternary alloy.
Ti and Co are selected as alloy components having relatively high initial activity and excellent stability, and Pt-Ti is obtained by combining them.
By supporting a ternary alloy of —Co, both catalytic activity and stability can be enhanced.

【0009】[0009]

【実施例】以下、本発明を実施例に基づき説明する。本
発明の触媒は、Pt−Ti−Coからなる三成分系合金
を担持した触媒であり、合金組成は重量でTi10〜2
5%,Co10〜25%とし、残余がPtで50〜80
%となる。TiおよびCoの量をいずれも10〜25%
としたのは、これらが10%以下では特性が不十分であ
り、25%以上になると、触媒の耐蝕性が劣るからであ
る。
EXAMPLES The present invention will be described below based on examples. The catalyst of the present invention is a catalyst carrying a ternary alloy of Pt-Ti-Co, and the alloy composition is Ti10 to 2 by weight.
5%, Co 10 to 25%, and the balance Pt 50 to 80
%. 10 to 25% for both Ti and Co
The reason for this is that if the content is 10% or less, the properties are insufficient, and if it is 25% or more, the corrosion resistance of the catalyst is poor.

【0010】本発明のPt−Ti−Co合金担持触媒は
以下のようにして製造することができる。はじめに、ア
セチレンブラック等のカーボンブラックを9g秤量し、
これを200mlの純水に加える。次に1gの塩化白金
酸水溶液を添加して60℃に昇温する。温度が一定にな
った後に、NaOHの2N溶液でPH10に調整し、3
%ヒドラジン溶液を滴下して、塩化白金酸の還元を行な
う。還元終了後にガラスフィルターで濾過、洗浄し、乾
燥することによって白金担持触媒を得ることができる。
この白金担持触媒の白金結晶子径は28Åである。
The Pt-Ti-Co alloy supported catalyst of the present invention can be manufactured as follows. First, weigh 9g of carbon black such as acetylene black,
This is added to 200 ml of pure water. Next, 1 g of chloroplatinic acid aqueous solution is added and the temperature is raised to 60 ° C. After the temperature became constant, adjust the pH to 10 with 2N NaOH solution, and adjust to 3
% Hydrazine solution is added dropwise to reduce chloroplatinic acid. After completion of the reduction, the platinum-supported catalyst can be obtained by filtering with a glass filter, washing and drying.
The platinum crystallite diameter of this platinum-supported catalyst is 28Å.

【0011】次に、以上のようにして得られた白金担持
触媒の合金化を行なう。まず白金担持触媒を純水200
mlに分散する。これとは別に0.3gの硝酸コバルト
と、0.3gの三塩化チタンを熱水50mlに溶解して
加え、アンモニア水を添加してPH8に調整し、超音波
分散器を用いて水酸化物となったTiとCoとの均質混
合溶液を作製する。この溶液を白金担持触媒が分散され
た溶液中に加え、アンモニア水を滴下してPH11に調
整し、1〜3時間十分に接触させる。そして、ガラスフ
ィルターで濾過、水洗し乾燥した後、窒素気流中で10
00〜1200℃で熱処理を行なう。得られた触媒の三
元合金結晶子径は32Åである。
Next, the platinum-supported catalyst obtained as described above is alloyed. First, the platinum-supported catalyst was replaced with pure water 200
Disperse in ml. Separately, 0.3 g of cobalt nitrate and 0.3 g of titanium trichloride were dissolved in 50 ml of hot water and added, and ammonia water was added to adjust the pH to 8, and a hydroxide was added using an ultrasonic disperser. A homogeneous mixed solution of Ti and Co is prepared. This solution is added to the solution in which the platinum-supported catalyst is dispersed, ammonia water is added dropwise to adjust the pH to 11, and it is sufficiently contacted for 1 to 3 hours. Then, after filtering with a glass filter, washing with water and drying, 10
Heat treatment is performed at 00 to 1200 ° C. The obtained catalyst has a ternary alloy crystallite diameter of 32Å.

【0012】本発明の三元合金担持触媒の初期活性と安
定性について、従来触媒との比較で表1に示す。寿命特
性は電池を1000時間運転した場合の値である。
The initial activity and stability of the ternary alloy-supported catalyst of the present invention are shown in Table 1 in comparison with the conventional catalyst. The life characteristics are values when the battery is operated for 1000 hours.

【表1】 表1からわかるように、本発明の触媒は従来用いられて
きた触媒に比べて、電圧初期特性値は最も高く、試験前
後の合金結晶子径の差が最も小さく安定性に優れてい
る。
[Table 1] As can be seen from Table 1, the catalyst of the present invention has the highest initial voltage characteristic value, the smallest difference in alloy crystallite diameter before and after the test, and excellent stability as compared with the conventionally used catalyst.

【0013】[0013]

【発明の効果】従来のPtまたはその合金を担持した触
媒が燃料電池の初期特性と安定性について不十分あるの
に対して、本発明は実施例で述べた如く、二元合金を担
持した触媒として特性を上げるTiと、三元合金を担持
した触媒に用いて比較的良好なCoとを組み合わせて、
Pt−Ti−Co系の三元合金担持触媒としたために、
従来の触媒に比べて燃料電池の初期特性と安定性を向上
させることができた。
While the conventional catalyst supporting Pt or its alloy is insufficient in the initial characteristics and stability of the fuel cell, the present invention, as described in the embodiment, is a catalyst supporting a binary alloy. As a combination of Ti, which improves the characteristics as described above, and Co, which is relatively good and is used in a catalyst supporting a ternary alloy,
Since it is a Pt-Ti-Co based ternary alloy-supported catalyst,
The initial characteristics and stability of the fuel cell could be improved as compared with the conventional catalyst.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電極基板と触媒層からなるガス拡散電極間
にマトリックスを挟持してなる燐酸型燃料電池の触媒で
あつて、Pt−Ti−Co三元合金を担持したことを特
徴とする燐酸型燃料電池の触媒。
1. A catalyst for a phosphoric acid fuel cell in which a matrix is sandwiched between gas diffusion electrodes composed of an electrode substrate and a catalyst layer, wherein a phosphoric acid carrying a Pt-Ti-Co ternary alloy is carried. Type fuel cell catalyst.
【請求項2】請求項1記載の触媒において、三元合金の
組成は重量比でTi10〜25%,Co10〜25%,
残余Ptとすることを特徴とする燐酸型燃料電池の触
媒。
2. The catalyst according to claim 1, wherein the composition of the ternary alloy is 10 to 25% by weight of Ti, 10 to 25% of Co,
A catalyst for a phosphoric acid fuel cell, characterized in that the balance is Pt.
【請求項3】請求項1または2記載の触媒を製造するに
当たり、硝酸コバルトと三塩化チタンを熱水に溶解しア
ンモニア水を添加してPH8に調整し、超音波分散器を
用いて均質混合溶液を作製した後、この溶液を別途作製
した白金担持触媒の水溶液中に加えて十分に接触させて
濾過、水洗、乾燥し、次いでこれを不活性雰囲気中で8
00〜1000℃で熱処理することを特徴とする燐酸型
燃料電池の触媒の製造方法。
3. In producing the catalyst according to claim 1 or 2, cobalt nitrate and titanium trichloride are dissolved in hot water, ammonia water is added to adjust the pH to 8, and the mixture is homogenized using an ultrasonic disperser. After the solution was prepared, this solution was added to an aqueous solution of a platinum-supported catalyst prepared separately, and sufficiently contacted, filtered, washed with water and dried, and then this was placed in an inert atmosphere for 8 hours.
A method for producing a catalyst for a phosphoric acid fuel cell, which comprises performing a heat treatment at 00 to 1000 ° C.
JP3293495A 1991-11-11 1991-11-11 Catalyst for phosphoric acid type fuel cell and manufacture thereof Pending JPH05135773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3293495A JPH05135773A (en) 1991-11-11 1991-11-11 Catalyst for phosphoric acid type fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3293495A JPH05135773A (en) 1991-11-11 1991-11-11 Catalyst for phosphoric acid type fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05135773A true JPH05135773A (en) 1993-06-01

Family

ID=17795479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3293495A Pending JPH05135773A (en) 1991-11-11 1991-11-11 Catalyst for phosphoric acid type fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05135773A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838872A2 (en) * 1996-10-25 1998-04-29 Johnson Matthey Public Limited Company Improved catalyst
WO2007081774A2 (en) * 2006-01-06 2007-07-19 Honda Motor Co., Ltd Platinum and titanium containing electrocatalysts
US7318977B2 (en) 2006-01-06 2008-01-15 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
WO2008036347A3 (en) * 2006-09-20 2009-06-04 Harvard College Methods and apparatus for stimulating and managing power from microbial fuel cells
US7691522B2 (en) 2006-03-09 2010-04-06 Honda Motor Co., Ltd. Platinum, titanium and copper, manganese and iron containing electrocatalysts
US7704628B2 (en) 2006-05-08 2010-04-27 Honda Motor Co., Ltd. Platinum, titanium, cobalt and palladium containing electrocatalysts
US7740975B2 (en) 2006-01-06 2010-06-22 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
JP2013126651A (en) * 2011-11-17 2013-06-27 Nippon Shokubai Co Ltd Catalyst for electrode, and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838872A2 (en) * 1996-10-25 1998-04-29 Johnson Matthey Public Limited Company Improved catalyst
EP0838872A3 (en) * 1996-10-25 2000-08-02 Johnson Matthey Public Limited Company Improved catalyst
WO2007081774A2 (en) * 2006-01-06 2007-07-19 Honda Motor Co., Ltd Platinum and titanium containing electrocatalysts
WO2007081774A3 (en) * 2006-01-06 2007-09-13 Honda Motor Co Ltd Platinum and titanium containing electrocatalysts
US7318977B2 (en) 2006-01-06 2008-01-15 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
JP2009522100A (en) * 2006-01-06 2009-06-11 本田技研工業株式会社 Electrocatalysts containing platinum and titanium
US7740975B2 (en) 2006-01-06 2010-06-22 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7691522B2 (en) 2006-03-09 2010-04-06 Honda Motor Co., Ltd. Platinum, titanium and copper, manganese and iron containing electrocatalysts
US7704628B2 (en) 2006-05-08 2010-04-27 Honda Motor Co., Ltd. Platinum, titanium, cobalt and palladium containing electrocatalysts
WO2008036347A3 (en) * 2006-09-20 2009-06-04 Harvard College Methods and apparatus for stimulating and managing power from microbial fuel cells
JP2013126651A (en) * 2011-11-17 2013-06-27 Nippon Shokubai Co Ltd Catalyst for electrode, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5138584B2 (en) Method for producing electrode catalyst for fuel cell
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
US4316944A (en) Noble metal-chromium alloy catalysts and electrochemical cell
JPS62269751A (en) Platinum-copper alloy electrode catalyst and electrode for acidic electrolyte fuel cell using said catalyst
JPS62163746A (en) Platinum alloy electrode catalyst and electrode for acidic electrolyte fuel cell using same
EP0512713A1 (en) Catalyst material
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
US20090047568A1 (en) Electrode catalyst for fuel and fuel cell
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
US20120107724A1 (en) Electrode catalyst for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the same
WO2009096356A1 (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
JP5489740B2 (en) Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same
JPS618851A (en) Fuel battery and electrolyte catalyst therefor
JPH05217586A (en) Fuel cell and manufacture thereof
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JPH05135773A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH05135772A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH0629027A (en) Fuel cell and its manufacture
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
JP2013164929A (en) Method of producing electrode catalyst for fuel cell
JPH06124712A (en) Catalyst for phosphoric acid fuel cell and manufacture of the catalyst
JPH11111305A (en) Fuel cell
JP2001015121A (en) Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell