JPH05217586A - Fuel cell and manufacture thereof - Google Patents

Fuel cell and manufacture thereof

Info

Publication number
JPH05217586A
JPH05217586A JP4021483A JP2148392A JPH05217586A JP H05217586 A JPH05217586 A JP H05217586A JP 4021483 A JP4021483 A JP 4021483A JP 2148392 A JP2148392 A JP 2148392A JP H05217586 A JPH05217586 A JP H05217586A
Authority
JP
Japan
Prior art keywords
hydroxide
platinum
fuel cell
catalyst
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4021483A
Other languages
Japanese (ja)
Inventor
Hirobumi Enomoto
博文 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4021483A priority Critical patent/JPH05217586A/en
Publication of JPH05217586A publication Critical patent/JPH05217586A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a fuel cell containing a catalyst excellent in activity and stability and also obtain manufacture thereof. CONSTITUTION:A fuel battery is constituted of an electrode catalytic layer 5 formed on an electrode basic member 1, and the electrode catalytic layer 5 is formed by bonding a catalyst 3A carrying the four-element alloy 2A consisting of Pt, Mo, Ni, and Fe on a carbon carrier. A fuel cell is manufactured through the process for precipitating molybdenum hydroxide, nickel hydroxide, and ferrous hydroxide on the carbon carried by platinum, process for preparing the catalyst by heat-processing the carbon on which the hydroxides are precipitated, at a temperature of 1,000-1,200 deg.C, and a process for preparing an electrode catalytic layer by binding the catalyst by a binder and for laminating the obtained electrode catalytic layer on the electrode basic member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は燃料電池の電極触媒層
およびその製造方法に係り、特に触媒およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode catalyst layer for a fuel cell and a method for producing the same, and more particularly to a catalyst and a method for producing the same.

【0002】[0002]

【従来の技術】一般に燃料電池用ガス拡散電極は電気伝
導性に優れた多孔質なカーボン電極基材上に、貴金属を
担持した触媒粉末をポリテトラフロロエチレンで結着し
た電極触媒層を積層して形成される。
2. Description of the Related Art Generally, a gas diffusion electrode for a fuel cell has a porous carbon electrode substrate having excellent electric conductivity, and an electrode catalyst layer obtained by binding a catalyst powder carrying a noble metal with polytetrafluoroethylene is laminated on the carbon electrode substrate. Formed.

【0003】この電極触媒層において供給される反応ガ
スである酸素または水素と、リン酸電解質および触媒の
三相共存が均一に起こることで電気化学的反応を直接電
気エネルギーとして取り出すことができる。
Oxygen or hydrogen, which is the reaction gas supplied in the electrode catalyst layer, and the phosphoric acid electrolyte and the catalyst coexist three-phase uniformly, so that the electrochemical reaction can be directly taken out as electric energy.

【0004】図1は従来の燃料電池の電極構造を示す断
面図である。燃料電池は空気または水素の流通路を有し
た多孔質カーボンを用いた電極基材1と、白金2を担持
した触媒3に適度なはっ水性を付与するポリテトラフロ
ロエチレンPTFE4を混合した電極触媒層5よりなってい
る。この電極触媒層において、供給される反応ガスであ
る空気および水素と電解質であるリン酸が触媒粒子表面
で三相共存状態を起こすことで電気化学的反応が生じて
直接電気エネルギーを取り出すことができる。
FIG. 1 is a sectional view showing an electrode structure of a conventional fuel cell. The fuel cell is an electrode catalyst in which an electrode base material 1 made of porous carbon having air or hydrogen flow passages and a catalyst 3 carrying platinum 2 are mixed with polytetrafluoroethylene PTFE 4 which imparts appropriate water repellency. It consists of layer 5. In this electrode catalyst layer, the supplied reaction gases, air and hydrogen, and the electrolyte, phosphoric acid, cause a three-phase coexistence state on the surface of the catalyst particles, whereby an electrochemical reaction occurs and electrical energy can be directly extracted. ..

【0005】従来よりリン酸型燃料電池用触媒としては
高温リン酸に対して耐食性のある白金を用いた触媒が使
用されている。触媒は電極反応に極めて重要な役割を果
たしており、電池の出力と寿命の向上のために触媒の活
性度と安定性を高めることが必要である。
Conventionally, as a catalyst for a phosphoric acid fuel cell, a catalyst using platinum, which has corrosion resistance to high temperature phosphoric acid, has been used. Since the catalyst plays an extremely important role in the electrode reaction, it is necessary to enhance the activity and stability of the catalyst in order to improve the output and life of the battery.

【0006】従来の白金触媒の製造方法は、一般に液相
還元法が用いられている。具体的に説明すると白金を担
持するカーボンブラックを液相中に分散し易くするため
に、硝酸や氷酢酸等の酸処理を行い、次に塩化白金酸水
溶液を担持するに必要な白金を加え、液温を40〜90℃に
してから還元剤としてヒドラジンやギ酸を滴下して白金
の還元を行う。
As a conventional method for producing a platinum catalyst, a liquid phase reduction method is generally used. Specifically, in order to facilitate dispersion of carbon black supporting platinum in a liquid phase, an acid treatment such as nitric acid or glacial acetic acid is performed, and then platinum necessary for supporting an aqueous chloroplatinic acid solution is added, After adjusting the liquid temperature to 40 to 90 ° C, hydrazine and formic acid are added dropwise as a reducing agent to reduce platinum.

【0007】さらに触媒の活性度を高めるため白金を担
持した触媒にバナジウム、クロム、コバルト、ニッケ
ル、鉄などの第二金属成分を加えて合金化を行う。まず
前述の白金を還元した触媒を再び水溶液中に分散し、第
二金属の硝酸塩を添加し水酸化カリウム、水酸化ナトリ
ウム、アンモニア水などのアルカリ剤により第二金属を
水酸化物としてカーボン表面に沈着させる。これをろ
過,水洗, 乾燥後に不活性雰囲気中で800 〜1000℃の熱
処理をして合金触媒を作製していた。このように白金触
媒に他のIV〜VIII族の遷移金属を添加した合金触媒は触
媒活性の向上が図れることは周知の技術であり、さらに
活性の向上と安定性を求めて白金─クロム─コバルト
(特開昭59─141169号公報) 、白金─鉄─コバルト( 特
開昭62─163746号公報) 、白金─ニッケル─コバルト(
特開昭63─190254号公報) 等の三元系触媒も紹介されて
いる。
Further, in order to increase the activity of the catalyst, alloying is carried out by adding a second metal component such as vanadium, chromium, cobalt, nickel or iron to the catalyst carrying platinum. First, the catalyst obtained by reducing platinum described above is dispersed again in an aqueous solution, the nitrate of the second metal is added, and the second metal is converted to hydroxide on the carbon surface with an alkali agent such as potassium hydroxide, sodium hydroxide or aqueous ammonia. Deposit. This was filtered, washed with water, dried, and then heat-treated at 800–1000 ° C in an inert atmosphere to produce alloy catalysts. It is a well-known technique that an alloy catalyst obtained by adding another IV to VIII group transition metal to a platinum catalyst can improve the catalytic activity, and platinum-chromium-cobalt is further sought in order to improve the activity and stability. (JP-A-59-141169), platinum-iron-cobalt (JP-A-62-163746), platinum-nickel-cobalt (
Three-way catalysts such as JP-A-63-190254) are also introduced.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
の触媒は、初期活性に優れるものの比較的短時間で特性
低下を示すため安定性の向上を図る必要が残されてい
る。この発明は上述の点に鑑みてなされその目的は、新
規な触媒物質とその製法を開発することにより特性と安
定性に優れる燃料電池を提供することにある。
However, although these catalysts are excellent in initial activity, they show deterioration in characteristics in a relatively short time, so that it is necessary to improve stability. The present invention has been made in view of the above points, and an object thereof is to provide a fuel cell having excellent characteristics and stability by developing a novel catalyst substance and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】上述の目的は第一発明に
よれば、電極基材上に電極触媒層を有し、電極触媒層は
カーボン担体上に白金と、モリブデンと、ニッケルと、
鉄の四元合金を担持した触媒をバインダで結着してなる
ものであること、第二発明によれば、第一工程と、第二
工程と、第三工程とを有し、第一工程は白金の担持され
たカーボンに水酸化モリブデンと、水酸化ニッケルと、
水酸化鉄を沈着させる工程であり、第二工程は前記水酸
化物の沈着したカーボンを温度1000ないし1200
℃で熱処理して触媒を調製する工程であり、第三工程は
前記触媒をバインダーで結着して電極触媒層を調製する
とともに得られた電極触媒層を電極基材上に積層する工
程であること、第三発明によれば、電極基材上に電極触
媒層を有し、電極触媒層はカーボン担体上に白金と、モ
リブデンと、ニッケルと、コバルトの四元合金を担持し
た触媒をバインダで結着してなるものであること、第四
発明によれば第一工程と、第二工程と、第三工程とを有
し、第一工程は白金の担持されたカーボンに水酸化モリ
ブデンと、水酸化ニッケルと、水酸化コバルトを沈着さ
せる工程であり、第二工程は前記水酸化物の沈着したカ
ーボンを温度1000ないし1200℃で熱処理して触
媒を調製する工程であり、第三工程は前記触媒をバイン
ダーで結着して電極触媒層を調製するとともに得られた
電極触媒層を電極基材上に積層する工程であること、第
五発明によれば、電極基材上に電極触媒層を有し、電極
触媒層はカーボン担体上に白金と、モリブデンと、チタ
ンと、コバルトの四元合金を担持した触媒をバインダで
結着してなるものであること、第六発明によれば、第一
工程と、第二工程と、第三工程とを有し、第一工程は白
金の担持されたカーボンに水酸化モリブデンと、水酸化
チタンと、水酸化コバルトを沈着させる工程であり、第
二工程は前記水酸化物の沈着したカーボンを温度900
ないし1100℃で熱処理して触媒を調製する工程であ
り、第三工程は前記触媒をバインダーで結着して電極触
媒層を調製するとともに得られた電極触媒層を電極基材
上に積層する工程であるとすることにより達成される。
According to the first aspect of the present invention, there is provided an electrode catalyst layer on an electrode substrate, the electrode catalyst layer comprising platinum, molybdenum and nickel on a carbon support.
What is formed by binding a catalyst supporting an iron quaternary alloy with a binder, according to the second invention, has a first step, a second step, and a third step, and the first step Is platinum supported carbon on molybdenum hydroxide, nickel hydroxide,
The second step is the step of depositing iron hydroxide, and the second step is to remove the hydroxide-deposited carbon at a temperature of 1000 to 1200.
It is a step of preparing a catalyst by heat treatment at ℃, the third step is a step of binding the catalyst with a binder to prepare an electrode catalyst layer and laminating the obtained electrode catalyst layer on an electrode substrate. According to the third aspect of the invention, the electrode catalyst layer is provided on the electrode base material, and the electrode catalyst layer comprises a catalyst supporting platinum, molybdenum, nickel, and a quaternary alloy of cobalt with a binder. Being formed by binding, according to the fourth invention, a first step, a second step, and a third step, the first step is carbon supported platinum, molybdenum hydroxide, A step of depositing nickel hydroxide and cobalt hydroxide, a second step is a step of heat-treating the hydroxide-deposited carbon at a temperature of 1000 to 1200 ° C. to prepare a catalyst, and a third step is the above The catalyst is bound with a binder and charged. It is a step of preparing a catalyst layer and laminating the obtained electrode catalyst layer on an electrode substrate. According to the fifth invention, the electrode catalyst layer is provided on the electrode substrate, and the electrode catalyst layer is a carbon carrier. Platinum, molybdenum, titanium, and the one that is formed by binding a catalyst supporting a quaternary alloy of cobalt with a binder, according to the sixth invention, a first step, a second step, There is a third step, the first step is a step of depositing molybdenum hydroxide, titanium hydroxide and cobalt hydroxide on the platinum-supported carbon, and the second step is the deposition of the hydroxide. Carbon temperature 900
To 1100 ° C. to prepare a catalyst by heat treatment, and the third step is a step of binding the catalyst with a binder to prepare an electrode catalyst layer and laminating the obtained electrode catalyst layer on an electrode base material. Is achieved.

【0010】[0010]

【作用】二元系触媒で比較的初期活性が高く、安定性に
優れたモリブデンとニッケルと鉄を触媒活性に優れる白
金と組み合わせて白金−モリブデン−ニッケル−鉄の四
元系合金触媒にすることで、触媒活性と安定性に優れる
触媒を得ることしができる。二元系触媒で比較的初期活
性が高く、安定性に優れたモリブデンとニッケルとコバ
ルトを触媒活性に優れる白金と組み合わせて白金−モリ
ブデン−ニッケル−コバルトの四元系合金触媒にするこ
とで、触媒活性と安定性に優れる触媒を得ることしがで
きる。二元系触媒で比較的初期活性が高く、安定性に優
れたモリブデンとチタンとコバルトを触媒活性に優れる
白金と組み合わせて白金−モリブデン−チタン−コバル
トの四元系合金触媒にすることで、触媒活性と安定性に
優れる触媒を得ることしができる。
[Function] A binary-type catalyst having relatively high initial activity and excellent stability, combining molybdenum, nickel and iron with platinum having excellent catalytic activity to form a platinum-molybdenum-nickel-iron quaternary alloy catalyst. Thus, a catalyst having excellent catalytic activity and stability can be obtained. It is a binary catalyst with relatively high initial activity and excellent stability. By combining platinum, which has excellent catalytic activity, with molybdenum, nickel, and cobalt to form a platinum-molybdenum-nickel-cobalt quaternary alloy catalyst, It is possible to obtain a catalyst having excellent activity and stability. It is a binary catalyst with relatively high initial activity and excellent stability, and molybdenum, titanium, and cobalt are combined with platinum with excellent catalytic activity to form a platinum-molybdenum-titanium-cobalt quaternary alloy catalyst. It is possible to obtain a catalyst having excellent activity and stability.

【0011】[0011]

【実施例】本発明を実施例に基づき説明する。 実施例1 図2は第一発明の実施例に係る燃料電池を示す断面図で
ある。従来の白金2に代わって四元合金2Aが用いられ
る。このような電極構造は以下のようにして調製され
る。アセチレンブラック等のカーボンブラックを9g秤取
し、200ml の純水に加える。次に白金(pt)として1gの塩
化白金酸水溶液を添加して60℃に昇温する。温度が一定
になった後にNaOH 2N 溶液でpH10に調整して3%ヒドラジ
ン溶液を滴下して塩化白金酸の還元を行う。還元終了後
にガラスフィルターでろ過・洗浄し乾燥することで白金
担持触媒が得られる。この白金担持触媒の白金結晶子径
は28Åであった。
EXAMPLES The present invention will be described based on examples. Embodiment 1 FIG. 2 is a sectional view showing a fuel cell according to an embodiment of the first invention. The quaternary alloy 2A is used in place of the conventional platinum 2. Such an electrode structure is prepared as follows. Weigh 9g of carbon black such as acetylene black and add to 200ml of pure water. Next, 1 g of chloroplatinic acid aqueous solution was added as platinum (pt) and the temperature was raised to 60 ° C. After the temperature becomes constant, the pH is adjusted to 10 with NaOH 2N solution and 3% hydrazine solution is added dropwise to reduce chloroplatinic acid. After completion of the reduction, a platinum-supported catalyst can be obtained by filtering / washing with a glass filter and drying. The platinum crystallite diameter of this platinum-supported catalyst was 28Å.

【0012】このようにして得られた白金担持触媒の合
金化を次に示す。まず白金担持触媒を純水200ml に分散
する。これとは別にモリブデンとして0.3gの五塩化モリ
ブデンと鉄(Fe)として0.3g の硝酸鉄とニッケルと
してて0.30g の硝酸ニッケルを秤取しエタノール中に溶
解する。さらにこの溶液中にアンモニア水を加えてpH8
に調整し、超音波分散器を用いて水酸化物となったモリ
ブデンとニッケルと鉄の均質混合液を作製する。この溶
液を白金担持触媒が分散された溶液中に加えてアンモニ
ア水を滴下してpH11に調整して1 〜3 時間十分に接触さ
せる。そしてガラスフィルターでろ過・水洗し乾燥後に
窒素気流中で1000〜1200℃で熱処理を行う。このように
して得られた合金化触媒の結晶子径は31Åであった。
The alloying of the platinum-supported catalyst thus obtained is shown below. First, the platinum-supported catalyst is dispersed in 200 ml of pure water. Separately, 0.3 g of molybdenum pentachloride as molybdenum, 0.3 g of iron nitrate as iron (Fe) and 0.30 g of nickel nitrate as nickel are weighed and dissolved in ethanol. Ammonia water was added to this solution to adjust the pH to 8
And prepare an intimate mixture of molybdenum, nickel, and iron that has become hydroxide using an ultrasonic disperser. This solution is added to the solution in which the platinum-supported catalyst is dispersed, ammonia water is added dropwise to adjust the pH to 11, and the solution is sufficiently contacted for 1 to 3 hours. Then, it is filtered with a glass filter, washed with water, dried, and then heat-treated at 1000 to 1200 ° C in a nitrogen stream. The crystallized diameter of the alloyed catalyst thus obtained was 31Å.

【0013】得られた白金─モリブデン−ニッケル−鉄
の四元系合金触媒は従来の合金触媒に比較して初期活性
と安定の両者にすぐれた特性を得ることができた。表1
に初期特性と1000時間後の結晶子径の変化を示す。得ら
れた四元系合金触媒はバインダであるポリテトラフロロ
エチレンPTFE4とともに電極基材1上に塗布されて
焼き付けられる。
The obtained platinum-molybdenum-nickel-iron quaternary alloy catalyst was able to obtain excellent properties in both initial activity and stability as compared with conventional alloy catalysts. table 1
Shows the initial characteristics and the change in crystallite size after 1000 hours. The obtained quaternary alloy catalyst is applied on the electrode base material 1 together with the binder polytetrafluoroethylene PTFE 4 and baked.

【0014】[0014]

【表1】 [Table 1]

【0015】実施例2 アセチレンブラック等のカーボンブラックを9g秤取し、
200ml の純水に加える。次に白金(pt)として1gの塩化白
金酸水溶液を添加して60℃に昇温する。温度が一定にな
った後にNaOH 2N 溶液でpH10に調整して3%ヒドラジン溶
液を滴下して塩化白金酸の還元を行う。還元終了後にガ
ラスフィルターでろ過・洗浄し乾燥することで白金担持
触媒が得られる。この白金担持触媒の白金結晶子径は28
Åであった。
Example 2 9 g of carbon black such as acetylene black was weighed,
Add to 200 ml of pure water. Next, 1 g of chloroplatinic acid aqueous solution was added as platinum (pt) and the temperature was raised to 60 ° C. After the temperature becomes constant, the pH is adjusted to 10 with NaOH 2N solution and 3% hydrazine solution is added dropwise to reduce chloroplatinic acid. After completion of the reduction, a platinum-supported catalyst can be obtained by filtering / washing with a glass filter and drying. The platinum crystallite diameter of this platinum-supported catalyst is 28.
It was Å.

【0016】このようにして得られた白金担持触媒の合
金化を次に示す。まず白金担持触媒を純水200ml に分散
する。これとは別にモリブデンとして0.3gの五塩化モリ
ブデンとコバルト(Co)として0.3g の硝酸コバルト
とニッケルとしてて0.30g の硝酸ニッケルを秤取しメタ
ノール中に溶解する。さらにこの溶液中に水酸化カリウ
ム溶液を加えてpH8 に調整し、超音波分散器を用いて水
酸化物となったモリブデンとニッケルとコバルトの均質
混合液を作製する。この溶液を白金担持触媒が分散され
た溶液中に加えて水酸化カリウム溶液を滴下してpH11に
調整して1 〜3時間十分に接触させる。そしてガラスフ
ィルターでろ過・水洗し乾燥後に窒素気流中で1000〜12
00℃で熱処理を行う。このようにして得られた合金化触
媒の結晶子径は30Åであった。
The alloying of the platinum-supported catalyst thus obtained is shown below. First, the platinum-supported catalyst is dispersed in 200 ml of pure water. Separately, 0.3 g of molybdenum pentachloride as molybdenum, 0.3 g of cobalt nitrate as cobalt (Co) and 0.30 g of nickel nitrate as nickel are weighed and dissolved in methanol. Furthermore, a potassium hydroxide solution is added to this solution to adjust the pH to 8, and an ultrasonic disperser is used to prepare a homogeneous mixed solution of molybdenum, nickel, and cobalt that has become hydroxide. This solution is added to the solution in which the platinum-supported catalyst is dispersed, a potassium hydroxide solution is added dropwise to adjust the pH to 11, and the solution is sufficiently contacted for 1 to 3 hours. Then, it is filtered with a glass filter, washed with water, dried and then 1000 to 12 in a nitrogen stream.
Heat treatment at 00 ° C. The crystallized diameter of the alloyed catalyst thus obtained was 30Å.

【0017】得られた白金─モリブデン−ニッケル−モ
リブデンの四元系合金触媒は従来の合金触媒に比較して
初期活性と安定の両者にすぐれた特性を得ることができ
た。表1 に初期特性と1000時間後の結晶子径の変化を示
す。
The obtained platinum-molybdenum-nickel-molybdenum quaternary alloy catalyst was able to obtain excellent properties in both initial activity and stability as compared with conventional alloy catalysts. Table 1 shows the initial characteristics and the change in crystallite size after 1000 hours.

【0018】実施例3 アセチレンブラック等のカーボンブラックを9g秤取し、
200ml の純水に加える。次に白金(pt)として1gの塩化白
金酸水溶液を添加して60℃に昇温する。温度が一定にな
った後にNaOH 2N 溶液でpH10に調整して3%ヒドラジン溶
液を滴下して塩化白金酸の還元を行う。還元終了後にガ
ラスフィルターでろ過・洗浄し乾燥することで白金担持
触媒が得られる。この白金担持触媒の白金結晶子径は28
Åであった。
Example 3 9 g of carbon black such as acetylene black was weighed,
Add to 200 ml of pure water. Next, 1 g of chloroplatinic acid aqueous solution was added as platinum (pt) and the temperature was raised to 60 ° C. After the temperature becomes constant, the pH is adjusted to 10 with NaOH 2N solution and 3% hydrazine solution is added dropwise to reduce chloroplatinic acid. After completion of the reduction, a platinum-supported catalyst can be obtained by filtering / washing with a glass filter and drying. The platinum crystallite diameter of this platinum-supported catalyst is 28.
It was Å.

【0019】このようにして得られた白金担持触媒の合
金化を次に示す。まず白金担持触媒を純水200ml に分散
する。これとは別にモリブデンとして0.3gの五塩化モリ
ブデンとコバルト(Co)として0.3g の硝酸コバルト
とチタンとしてて0.30g の三塩化チタンを秤取し熱水中
に溶解する。さらにこの溶液中にアンモニア水を加えて
pH8 に調整し、超音波分散器を用いて水酸化物となった
モリブデンとチタンとコバルトの均質混合液を作製す
る。この溶液を白金担持触媒が分散された溶液中に加え
てアンモニア水を滴下してpH11に調整して1 〜3 時間十
分に接触させる。そしてガラスフィルターでろ過・水洗
し乾燥後に窒素気流中で900 〜1100℃で熱処理を行う。
このようにして得られた合金化触媒の結晶子径は32Åで
あった。
The alloying of the platinum-supported catalyst thus obtained is shown below. First, the platinum-supported catalyst is dispersed in 200 ml of pure water. Separately, 0.3 g of molybdenum pentachloride as molybdenum, 0.3 g of cobalt nitrate as cobalt (Co) and 0.30 g of titanium trichloride as titanium are weighed and dissolved in hot water. Ammonia water is added to this solution.
Adjust the pH to 8 and use an ultrasonic disperser to prepare a homogeneous mixture of molybdenum, titanium, and cobalt that has become hydroxide. This solution is added to the solution in which the platinum-supported catalyst is dispersed, ammonia water is added dropwise to adjust the pH to 11, and the solution is sufficiently contacted for 1 to 3 hours. Then, it is filtered with a glass filter, washed with water, dried and then heat-treated at 900-1100 ° C in a nitrogen stream.
The crystallized diameter of the alloyed catalyst thus obtained was 32Å.

【0020】得られた白金─モリブデン−チタン−コバ
ルトの四元系合金触媒は従来の合金触媒に比較して初期
活性と安定の両者にすぐれた特性を得ることができた。
表1に初期特性と1000時間後の結晶子径の変化を示す。
The obtained platinum-molybdenum-titanium-cobalt quaternary alloy catalyst was able to obtain excellent properties in both initial activity and stability as compared with conventional alloy catalysts.
Table 1 shows the initial characteristics and the change in crystallite size after 1000 hours.

【0021】[0021]

【発明の効果】第一発明によれば、電極基材上に電極触
媒層を有し、電極触媒層はカーボン担体上に白金と、モ
リブデンと、ニッケルと、鉄の四元合金を担持した触媒
をバインダで結着してなるものであること、第二発明に
よれば、第一工程と、第二工程と、第三工程とを有し、
第一工程は白金の担持されたカーボンに水酸化モリブデ
ンと、水酸化ニッケルと、水酸化鉄を沈着させる工程で
あり、第二工程は前記水酸化物の沈着したカーボンを温
度1000ないし1200℃で熱処理して触媒を調製す
る工程であり、第三工程は前記触媒をバインダーで結着
して電極触媒層を調製するとともに得られた電極触媒層
を電極基材上に積層する工程であること、第三発明によ
れば、電極基材上に電極触媒層を有し、電極触媒層はカ
ーボン担体上に白金と、モリブデンと、ニッケルと、コ
バルトの四元合金を担持した触媒をバインダで結着して
なるものであること、第四発明によれば第一工程と、第
二工程と、第三工程とを有し、第一工程は白金の担持さ
れたカーボンに水酸化モリブデンと、水酸化ニッケル
と、水酸化コバルトを沈着させる工程であり、第二工程
は前記水酸化物の沈着したカーボンを温度1000ない
し1200℃で熱処理して触媒を調製する工程であり、
第三工程は前記触媒をバインダーで結着して電極触媒層
を調製するとともに得られた電極触媒層を電極基材上に
積層する工程であること、第五発明によれば、電極基材
上に電極触媒層を有し、電極触媒層はカーボン担体上に
白金と、モリブデンと、チタンと、コバルトの四元合金
を担持した触媒をバインダで結着してなるものであるこ
と、第六発明によれば、第一工程と、第二工程と、第三
工程とを有し、第一工程は白金の担持されたカーボンに
水酸化モリブデンと、水酸化チタンと、水酸化コバルト
を沈着させる工程であり、第二工程は前記水酸化物の沈
着したカーボンを温度900ないし1100℃で熱処理
して触媒を調製する工程であり、第三工程は前記触媒を
バインダーで結着して電極触媒層を調製するとともに得
られた電極触媒層を電極基材上に積層する工程であるの
で、結晶子径が小さい上その経時変化が少ない四元系合
金触媒が得られ、その結果特性と安定性に優れる燃料電
池が得られる。
According to the first invention, an electrode catalyst layer is provided on an electrode substrate, and the electrode catalyst layer is a catalyst in which a quaternary alloy of platinum, molybdenum, nickel and iron is supported on a carbon carrier. According to the second invention, the first step, the second step, and the third step,
The first step is a step of depositing molybdenum hydroxide, nickel hydroxide, and iron hydroxide on the platinum-supported carbon, and the second step is to deposit the hydroxide-deposited carbon at a temperature of 1000 to 1200 ° C. It is a step of preparing a catalyst by heat treatment, the third step is a step of binding the catalyst with a binder to prepare an electrode catalyst layer and laminating the obtained electrode catalyst layer on an electrode base material, According to the third invention, the electrode catalyst layer is provided on the electrode base material, and the electrode catalyst layer binds the catalyst supporting platinum, molybdenum, nickel and cobalt quaternary alloy on the carbon support with the binder. According to the fourth invention, it has a first step, a second step, and a third step, and the first step is molybdenum hydroxide on carbon on which platinum is supported, and hydroxide. Nickel and cobalt hydroxide A step of depositing, the second step is a step of preparing a catalyst was heat-treated at 1200 ° C. to not temperature 1000 carbon deposited in the hydroxide,
The third step is a step of binding the catalyst with a binder to prepare an electrode catalyst layer and laminating the obtained electrode catalyst layer on an electrode substrate, according to the fifth invention, on the electrode substrate. The electrode catalyst layer on the carbon carrier, the electrode catalyst layer is formed by binding a catalyst supporting a quaternary alloy of platinum, molybdenum, titanium, and cobalt on a carbon support with a binder. According to the method, it has a first step, a second step, and a third step, and the first step is a step of depositing molybdenum hydroxide, titanium hydroxide, and cobalt hydroxide on platinum-supported carbon. The second step is a step of preparing a catalyst by heat-treating the hydroxide-deposited carbon at a temperature of 900 to 1100 ° C., and the third step is binding the catalyst with a binder to form an electrode catalyst layer. Electrocatalyst layer obtained by preparation Since the step of laminating on the electrode substrate, the change with time on the crystallite diameter is small can be obtained less quaternary alloy catalyst, to obtain a fuel cell having excellent result characteristics and stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の燃料電池の電極構造を示す断面図FIG. 1 is a sectional view showing an electrode structure of a conventional fuel cell.

【図2】第一発明の実施例に係る燃料電池の電極構造を
示す断面図
FIG. 2 is a sectional view showing an electrode structure of a fuel cell according to an embodiment of the first invention.

【符号の説明】[Explanation of symbols]

1 電極基材 2 白金 2A 四元合金 3 触媒 3A 触媒 4 PTFE 5 電極触媒層 1 Electrode Base Material 2 Platinum 2A Quaternary Alloy 3 Catalyst 3A Catalyst 4 PTFE 5 Electrode Catalyst Layer

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 電極基材上に電極触媒層を有し、 電極触媒層はカーボン担体上に白金と、モリブデンと、
ニッケルと、鉄の四元合金を担持した触媒をバインダで
結着してなるものであることを特徴とする燃料電池。
1. An electrode catalyst layer is provided on an electrode base material, and the electrode catalyst layer comprises platinum and molybdenum on a carbon support.
A fuel cell comprising a catalyst supporting a quaternary alloy of nickel and iron bound with a binder.
【請求項2】請求項1記載の燃料電池において、四元合
金の組成はモリブデン、ニッケル、鉄がそれぞれ10な
いし25重量%の範囲にあり、残りが白金であることを
特徴とする燃料電池。
2. The fuel cell according to claim 1, wherein the composition of the quaternary alloy is such that molybdenum, nickel and iron are each in the range of 10 to 25 wt%, and the balance is platinum.
【請求項3】 第一工程と、第二工程と、第三工程とを
有し、 第一工程は白金の担持されたカーボンに水酸化モリブデ
ンと、水酸化ニッケルと、水酸化鉄を沈着させる工程で
あり、 第二工程は前記水酸化物の沈着したカーボンを温度10
00ないし1200℃で熱処理して触媒を調製する工程
であり、 第三工程は前記触媒をバインダーで結着して電極触媒層
を調製するとともに得られた電極触媒層を電極基材上に
積層する工程であることを特徴とする燃料電池の製造方
法。
3. A first step, a second step, and a third step, wherein the first step deposits molybdenum hydroxide, nickel hydroxide, and iron hydroxide on platinum-supported carbon. The second step is the step of removing the hydroxide-deposited carbon at a temperature of 10
The step is a step of preparing a catalyst by heat treatment at 00 to 1200 ° C. The third step is to bind the catalyst with a binder to prepare an electrode catalyst layer and laminate the obtained electrode catalyst layer on an electrode substrate. A method of manufacturing a fuel cell, which is a process.
【請求項4】請求項3記載の製造方法において、水酸化
物の沈着は五塩化モリブデンと硝酸ニッケルと硝酸鉄の
混合エタノール溶液にアンモニア水を加えてpHを8と
し、得られた懸濁液を超音波分散して均質混合液を調製
し、この均質混合液を白金の担持されたカーボンと接触
させ、さらにアンモニア水を加えてpHを11にするも
のであることを特徴とする燃料電池の製造方法。
4. The method according to claim 3, wherein the hydroxide is deposited by adding ammonia water to a mixed ethanol solution of molybdenum pentachloride, nickel nitrate and iron nitrate to adjust the pH to 8 and thereby obtaining a suspension. Is ultrasonically dispersed to prepare a homogeneous mixed solution, and the homogeneous mixed solution is brought into contact with carbon carrying platinum, and further ammonia water is added to adjust the pH to 11. Production method.
【請求項5】 電極基材上に電極触媒層を有し、 電極触媒層はカーボン担体上に白金と、モリブデンと、
ニッケルと、コバルトの四元合金を担持した触媒をバイ
ンダで結着してなるものであることを特徴とする燃料電
池。
5. An electrode catalyst layer is provided on an electrode base material, and the electrode catalyst layer comprises platinum and molybdenum on a carbon carrier.
A fuel cell comprising a catalyst supporting a quaternary alloy of nickel and cobalt bound with a binder.
【請求項6】請求項5記載の燃料電池において、四元合
金の組成はモリブデン、ニッケル、コバルトがそれぞれ
10ないし25重量%の範囲にあり、残りが白金である
ことを特徴とする燃料電池。
6. The fuel cell according to claim 5, wherein the composition of the quaternary alloy is such that molybdenum, nickel and cobalt are each in the range of 10 to 25 wt%, and the balance is platinum.
【請求項7】 第一工程と、第二工程と、第三工程とを
有し、 第一工程は白金の担持されたカーボンに水酸化モリブデ
ンと、水酸化ニッケルと、水酸化コバルトを沈着させる
工程であり、 第二工程は前記水酸化物の沈着したカーボンを温度10
00ないし1200℃で熱処理して触媒を調製する工程
であり、 第三工程は前記触媒をバインダーで結着して電極触媒層
を調製するとともに得られた電極触媒層を電極基材上に
積層する工程であることを特徴とする燃料電池の製造方
法。
7. A first step, a second step, and a third step, wherein the first step deposits molybdenum hydroxide, nickel hydroxide, and cobalt hydroxide on platinum-carrying carbon. The second step is the step of removing the hydroxide-deposited carbon at a temperature of 10
The step is a step of preparing a catalyst by heat treatment at 00 to 1200 ° C. The third step is to bind the catalyst with a binder to prepare an electrode catalyst layer and laminate the obtained electrode catalyst layer on an electrode substrate. A method of manufacturing a fuel cell, which is a process.
【請求項8】請求項7記載の製造方法において、水酸化
物の沈着は五塩化モリブデンと硝酸ニッケルと硝酸コバ
ルトの混合メタノール溶液に水酸化カリウム溶液を加え
てpHを8とし、得られた懸濁液を超音波分散して均質
混合液を調製し、この均質混合液を白金の担持されたカ
ーボンと接触させ、さらに水酸化カリウム溶液を加えて
pHを11にするものであることを特徴とする燃料電池
の製造方法。
8. The method according to claim 7, wherein the hydroxide is deposited by adding potassium hydroxide solution to a mixed methanol solution of molybdenum pentachloride, nickel nitrate and cobalt nitrate to adjust the pH to 8. The suspension is ultrasonically dispersed to prepare a homogeneous mixture, which is brought into contact with platinum-supported carbon, and a potassium hydroxide solution is further added to adjust the pH to 11. Method for manufacturing a fuel cell.
【請求項9】 電極基材上に電極触媒層を有し、 電極触媒層はカーボン担体上に白金と、モリブデンと、
チタンと、コバルトの四元合金を担持した触媒をバイン
ダで結着してなるものであることを特徴とする燃料電
池。
9. An electrode catalyst layer is provided on an electrode base material, and the electrode catalyst layer comprises platinum and molybdenum on a carbon support.
A fuel cell, comprising a catalyst supporting titanium and a quaternary alloy of cobalt bound by a binder.
【請求項10】請求項9記載の燃料電池において、四元
合金の組成はモリブン、チタン、コバルトがそれぞれ1
0ないし25重量%の範囲にあり、残りが白金であるこ
とを特徴とする燃料電池。
10. The fuel cell according to claim 9, wherein the composition of the quaternary alloy is 1 for each of molybdenum, titanium and cobalt.
A fuel cell characterized by being in the range of 0 to 25% by weight, the balance being platinum.
【請求項11】 第一工程と、第二工程と、第三工程と
を有し、 第一工程は白金の担持されたカーボンに水酸化モリブデ
ンと、水酸化チタンと、水酸化コバルトを沈着させる工
程であり、 第二工程は前記水酸化物の沈着したカーボンを温度90
0ないし1100℃で熱処理して触媒を調製する工程で
あり、 第三工程は前記触媒をバインダーで結着して電極触媒層
を調製するとともに得られた電極触媒層を電極基材上に
積層する工程であることを特徴とする燃料電池の製造方
法。
11. A first step, a second step and a third step, wherein the first step deposits molybdenum hydroxide, titanium hydroxide and cobalt hydroxide on platinum-supported carbon. The second step is to remove the hydroxide-deposited carbon at a temperature of 90
It is a step of preparing a catalyst by heat treatment at 0 to 1100 ° C. The third step is to bind the catalyst with a binder to prepare an electrode catalyst layer and to laminate the obtained electrode catalyst layer on an electrode substrate. A method of manufacturing a fuel cell, which is a process.
【請求項12】請求項11記載の製造方法において、水
酸化物の沈着は五塩化リブデンと三塩化チタンと硝酸コ
バルトを熱水に溶解してアンモニア水によりpHを11
にし、得られた懸濁液を超音波分散して均質混合液を調
製し、この均質混合液を白金の担持されたカーボンと接
触させるものであることを特徴とする燃料電池の製造方
法。
12. A method according to claim 11, wherein the hydroxide is deposited by dissolving ribden pentachloride, titanium trichloride and cobalt nitrate in hot water and adjusting the pH to 11 with ammonia water.
The method for producing a fuel cell is characterized in that the obtained suspension is ultrasonically dispersed to prepare a homogeneous mixed solution, and the homogeneous mixed solution is brought into contact with platinum-supported carbon.
【請求項13】請求項3、7、11記載の製造方法にお
いて、熱処理は窒素気流中で行ものであることを特徴と
する燃料電池の製造方法。
13. The method for producing a fuel cell according to claim 3, 7, or 11, wherein the heat treatment is performed in a nitrogen stream.
JP4021483A 1992-02-07 1992-02-07 Fuel cell and manufacture thereof Pending JPH05217586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4021483A JPH05217586A (en) 1992-02-07 1992-02-07 Fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4021483A JPH05217586A (en) 1992-02-07 1992-02-07 Fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05217586A true JPH05217586A (en) 1993-08-27

Family

ID=12056224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4021483A Pending JPH05217586A (en) 1992-02-07 1992-02-07 Fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05217586A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228912A (en) * 1996-10-25 1998-08-25 Johnson Matthey Plc Improved catalyst
JP2003100308A (en) * 2001-09-21 2003-04-04 Mitsubishi Heavy Ind Ltd Cathode electrode catalyst for fuel cell and method of manufacturing the same
WO2003071621A2 (en) * 2002-02-20 2003-08-28 Symyx Technologies, Inc. Fuel cell electrocatalyst of pt-mo-ni/fe/sn/w
EP1526592A1 (en) * 2003-10-23 2005-04-27 Cataler Corporation Cathode catalyst for fuel cell
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same
US7101639B2 (en) 2002-02-12 2006-09-05 Symyx Technologies, Inc. Fuel cell electrocatalyst of Pt-Rh-Mo-Ni/Fe
WO2007081774A2 (en) * 2006-01-06 2007-07-19 Honda Motor Co., Ltd Platinum and titanium containing electrocatalysts
WO2007145216A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
WO2007145215A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Carbon particle having deposited fine particles, process for producing the same, and electrode for fuel cell
US7318977B2 (en) 2006-01-06 2008-01-15 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7691522B2 (en) 2006-03-09 2010-04-06 Honda Motor Co., Ltd. Platinum, titanium and copper, manganese and iron containing electrocatalysts
US7704628B2 (en) 2006-05-08 2010-04-27 Honda Motor Co., Ltd. Platinum, titanium, cobalt and palladium containing electrocatalysts
US7740975B2 (en) 2006-01-06 2010-06-22 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838872A3 (en) * 1996-10-25 2000-08-02 Johnson Matthey Public Limited Company Improved catalyst
JPH10228912A (en) * 1996-10-25 1998-08-25 Johnson Matthey Plc Improved catalyst
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same
JP2003100308A (en) * 2001-09-21 2003-04-04 Mitsubishi Heavy Ind Ltd Cathode electrode catalyst for fuel cell and method of manufacturing the same
US7101639B2 (en) 2002-02-12 2006-09-05 Symyx Technologies, Inc. Fuel cell electrocatalyst of Pt-Rh-Mo-Ni/Fe
WO2003071621A2 (en) * 2002-02-20 2003-08-28 Symyx Technologies, Inc. Fuel cell electrocatalyst of pt-mo-ni/fe/sn/w
WO2003071621A3 (en) * 2002-02-20 2004-12-02 Symyx Technologies Inc Fuel cell electrocatalyst of pt-mo-ni/fe/sn/w
US7241717B2 (en) 2003-10-23 2007-07-10 Cataler Corporation Cathode catalyst for fuel cell
EP1526592A1 (en) * 2003-10-23 2005-04-27 Cataler Corporation Cathode catalyst for fuel cell
WO2007081774A2 (en) * 2006-01-06 2007-07-19 Honda Motor Co., Ltd Platinum and titanium containing electrocatalysts
WO2007081774A3 (en) * 2006-01-06 2007-09-13 Honda Motor Co Ltd Platinum and titanium containing electrocatalysts
US7318977B2 (en) 2006-01-06 2008-01-15 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7740975B2 (en) 2006-01-06 2010-06-22 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7691522B2 (en) 2006-03-09 2010-04-06 Honda Motor Co., Ltd. Platinum, titanium and copper, manganese and iron containing electrocatalysts
US7704628B2 (en) 2006-05-08 2010-04-27 Honda Motor Co., Ltd. Platinum, titanium, cobalt and palladium containing electrocatalysts
WO2007145216A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
WO2007145215A1 (en) 2006-06-13 2007-12-21 Hitachi Maxell, Ltd. Carbon particle having deposited fine particles, process for producing the same, and electrode for fuel cell
US8007691B2 (en) 2006-06-13 2011-08-30 Hitachi Maxell Energy, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell

Similar Documents

Publication Publication Date Title
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
JP5138584B2 (en) Method for producing electrode catalyst for fuel cell
JPS62269751A (en) Platinum-copper alloy electrode catalyst and electrode for acidic electrolyte fuel cell using said catalyst
JPS62163746A (en) Platinum alloy electrode catalyst and electrode for acidic electrolyte fuel cell using same
JPH02236960A (en) Platinum alloy electrode catalyst
JPH0487260A (en) Support platinum quadruple alloy electrode catalyst
JP2002511639A (en) Improved compositions of selective oxidation catalysts for fuel cells
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
JPH01210037A (en) Method of forming alloy on carrier
JP2003092114A (en) Electrode catalyst body for fuel cell and its manufacturing method
JP5665743B2 (en) Continuous production method of catalyst
JPH05217586A (en) Fuel cell and manufacture thereof
WO2009096356A1 (en) Fuel cell electrode catalyst, method for manufacturing the same, and solid polymer type fuel cell using the same
KR102123148B1 (en) Synthesis method of metal catalyst having carbon shell using metal complex
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JPH04141236A (en) Platinoid catalyst and its manufacturing process
JPH0629027A (en) Fuel cell and its manufacture
JP3684570B2 (en) Fuel cell electrode and method of manufacturing the same
JPH05135772A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH05135773A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
JP2003100308A (en) Cathode electrode catalyst for fuel cell and method of manufacturing the same
JPH04141235A (en) Electrode catalyst for an anode pole