JPH0629027A - Fuel cell and its manufacture - Google Patents

Fuel cell and its manufacture

Info

Publication number
JPH0629027A
JPH0629027A JP4182728A JP18272892A JPH0629027A JP H0629027 A JPH0629027 A JP H0629027A JP 4182728 A JP4182728 A JP 4182728A JP 18272892 A JP18272892 A JP 18272892A JP H0629027 A JPH0629027 A JP H0629027A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
fuel cell
electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4182728A
Other languages
Japanese (ja)
Inventor
Hirobumi Enomoto
博文 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4182728A priority Critical patent/JPH0629027A/en
Publication of JPH0629027A publication Critical patent/JPH0629027A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enhance the initial characteristics and secular stability of a fuel cell by structuring a catalyst so that a ternary alloy of platinum, titanium, and nickel is borne by a carrier consisting of carbon, and fastening the catalyst onto an electrode base material using a binder. CONSTITUTION:A catalyst 3 is structured so that a ternary alloy 2A consisting of 10-30% titanium, 10-30% nickel, and platinum for remainder is borne by a carrier of carbon. An electrode catalyst layer 5 is formed by laying this catalyst 3 on an electrode base material 1 using a binder. This ternary alloy catalyst has a small dia. of crystallite and presents lesser secular change. This achieves a fuel cell excellent in the initial characteristics and secular stability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は燃料電池の電極触媒層
に係り、特にその触媒物質およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode catalyst layer of a fuel cell, and more particularly to a catalyst material and a method for producing the same.

【0002】[0002]

【従来の技術】一般に燃料電池用ガス拡散電極は電気伝
導性に優れた多孔質なカーボン電極基材上に、貴金属を
担持した触媒粉末をポリテトラフロロエチレンで結着し
た電極触媒層を積層して形成される。
2. Description of the Related Art In general, a gas diffusion electrode for a fuel cell has a porous carbon electrode substrate having excellent electric conductivity, and an electrode catalyst layer obtained by binding a catalyst powder carrying a noble metal with polytetrafluoroethylene. Formed.

【0003】この電極触媒層において供給される反応ガ
スである酸素または水素と、リン酸電解質および触媒の
三相共存が均一に起こることで電気化学的反応を直接電
気エネルギーとして取り出すことができる。
The three-phase coexistence of oxygen or hydrogen, which is the reaction gas supplied in the electrode catalyst layer, with the phosphoric acid electrolyte and the catalyst uniformly occurs, so that the electrochemical reaction can be directly taken out as electric energy.

【0004】図1は燃料電池の電極構造を示す模式的断
面図である。燃料電池は空気または水素の流通路を有し
た多孔質カーボンを用いた電極基材1と、白金触媒2を
担持した触媒3に適度なはっ水性を付与するPTFE4を混
合した電極触媒層5よりなっている。この電極触媒層に
おいて、供給される反応ガスである空気および水素と電
解質であるリン酸が触媒粒子表面で三相共存状態を起こ
すことで電気化学的反応が生じて直接電気エネルギーを
取り出すことができる。
FIG. 1 is a schematic sectional view showing an electrode structure of a fuel cell. The fuel cell has an electrode catalyst layer 5 in which an electrode base material 1 made of porous carbon having a flow passage for air or hydrogen and a catalyst 3 carrying a platinum catalyst 2 and PTFE 4 for imparting appropriate water repellency are mixed. Has become. In this electrode catalyst layer, the supplied reaction gases, air and hydrogen, and the electrolyte, phosphoric acid, cause a three-phase coexistence state on the surface of the catalyst particles, whereby an electrochemical reaction occurs and electrical energy can be directly extracted. .

【0005】従来よりリン酸型燃料電池用触媒としては
高温リン酸に対して耐食性のある白金を用いた触媒が使
用されている。触媒は電極反応に極めて重要な役割を果
たしており、電池の出力と寿命の向上のために触媒の活
性度と安定性を高めることが必要である。
Conventionally, as a phosphoric acid fuel cell catalyst, a catalyst using platinum, which has corrosion resistance to high-temperature phosphoric acid, has been used. The catalyst plays an extremely important role in the electrode reaction, and it is necessary to enhance the activity and stability of the catalyst in order to improve the output and life of the battery.

【0006】従来の白金触媒の製造方法は、一般に液相
還元法が用いられている。具体的に説明すると白金を担
持するカーボンブラックを液相中に分散し易くするため
に、硝酸や氷酢酸等の酸処理を行い、次に塩化白金酸水
溶液を担持するに必要な白金を加え、液温を40〜90℃に
してから還元剤としてヒドラジンやギ酸を滴加して白金
の還元を行う。
As a conventional method for producing a platinum catalyst, a liquid phase reduction method is generally used. Specifically, in order to facilitate dispersion of carbon black supporting platinum in the liquid phase, acid treatment such as nitric acid or glacial acetic acid is performed, and then platinum necessary for supporting an aqueous chloroplatinic acid solution is added, After adjusting the liquid temperature to 40-90 ℃, hydrazine and formic acid are added dropwise as a reducing agent to reduce platinum.

【0007】さらに触媒の活性度を高めるため白金を担
持した触媒にバナジウム、クロム、コバルト、ニッケ
ル、鉄などの第二金属成分を加えて合金化を行う。まず
前述の白金を還元した触媒を再び水溶液中に分散し、第
二金属の硝酸塩を添加し水酸化カリウム、水酸化ナトリ
ウム、アンモニア水などのアルカリ剤により第二金属を
水酸化物としてカーボン表面に沈着させる。これをろ過
水洗, 乾燥後に不活性雰囲気中で800 〜1000℃の熱処理
をして合金触媒を作製していた。このように白金触媒に
他のIV〜VIII族の遷移金属を添加した合金触媒は触媒活
性の向上が図れることは周知の技術であり、さらに活性
の向上と安定性を求めて白金─クロム─コバルト(特開
昭59─141169号公報) 、白金─鉄─コバルト( 特開昭62
─163746号公報) 、白金─ニッケル─コバルト( 特開昭
63─190254号公報) 等の三元系触媒も紹介されている。
Further, in order to increase the activity of the catalyst, alloying is carried out by adding a second metal component such as vanadium, chromium, cobalt, nickel or iron to the catalyst carrying platinum. First, the platinum-reduced catalyst is dispersed again in an aqueous solution, the nitrate of the second metal is added, and the second metal is converted to hydroxide on the carbon surface with an alkaline agent such as potassium hydroxide, sodium hydroxide, or ammonia water. Deposit. This was filtered, washed with water, dried, and then heat-treated at 800 to 1000 ° C in an inert atmosphere to prepare an alloy catalyst. It is a well-known technique that an alloy catalyst obtained by adding another IV-VIII group transition metal to a platinum catalyst can improve the catalytic activity, and platinum-chromium-cobalt is further sought in order to improve the activity and stability. (JP-A-59-141169), platinum-iron-cobalt (JP-A-62-141169)
─163746), platinum-nickel-cobalt (JP
63-190254) and other three-way catalysts are also introduced.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
の触媒は、初期活性に優れるものの比較的短時間で特性
低下を示すため安定性の向上を図る必要が残されてい
る。この発明は上述の点に鑑みてなされその目的は、新
規な触媒物質とその製法を開発することにより初期特性
と経時安定性に優れる燃料電池を提供することにある。
However, although these catalysts are excellent in initial activity, they show deterioration in characteristics in a relatively short time, so that it is necessary to improve stability. The present invention has been made in view of the above points, and an object thereof is to provide a fuel cell having excellent initial characteristics and stability over time by developing a novel catalyst substance and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】上述の目的は第一の発明
によれば、電極基材上に電極触媒層を有し、電極触媒層
はカーボン担体上に白金とチタンとニッケルの三元合金
を担持した触媒をバインダで結着してなるものであると
すること、また第二の発明によれば、第一工程と、第二
工程と、第三工程とを有し、第一工程は白金の担持され
たカーボンに水酸化ニッケルと水酸化チタンを沈着させ
る工程であり、第二工程は前記水酸化物の沈着したカー
ボンを温度800ないし1000℃で熱処理して触媒を
調製する工程であり、第三工程は前記触媒をバインダー
で結着して電極触媒層を調製し次いでこの電極触媒層を
電極基材上に積層する工程であるとすることにより達成
される。
According to the first aspect of the present invention, an electrode catalyst layer is provided on an electrode substrate, and the electrode catalyst layer is a ternary alloy of platinum, titanium and nickel on a carbon support. According to the second aspect of the invention, the catalyst supporting the above is bound with a binder, and has a first step, a second step, and a third step. The step of depositing nickel hydroxide and titanium hydroxide on the platinum-supported carbon, and the second step is the step of heat-treating the hydroxide-deposited carbon at a temperature of 800 to 1000 ° C. to prepare a catalyst. The third step is achieved by binding the catalyst with a binder to prepare an electrode catalyst layer and then laminating the electrode catalyst layer on an electrode substrate.

【0010】[0010]

【作用】二元系触媒で比較的初期活性が高く、安定性に
優れたチタンとニッケルを組み合わせた白金─チタン─
ニッケルの三元系合金触媒にすることで、触媒活性と経
時安定性の両者を向上させることができる。
[Function] Platinum-titanium-combining titanium and nickel, which is a binary catalyst with relatively high initial activity and excellent stability
By using a nickel ternary alloy catalyst, both catalytic activity and temporal stability can be improved.

【0011】[0011]

【実施例】本発明を実施例に基づき説明する。アセチレ
ンブラック等のカーボンブラックを9g秤取し200ml の純
水に加える。次に白金(pt)として1gの塩化白金酸水溶液
を添加して60℃に昇温する。温度が一定になった後にNa
OH 2N 溶液でpH10に調整して3%ヒドラジン溶液を滴加し
て塩化白金酸の還元を行う。還元終了後にガラスフィル
ターでろ過・洗浄し乾燥することで白金担持触媒が得ら
れる。この白金担持触媒の白金結晶子径は28Åであっ
た。
EXAMPLES The present invention will be described based on examples. Weigh out 9g of carbon black such as acetylene black and add to 200ml of pure water. Next, 1 g of chloroplatinic acid aqueous solution was added as platinum (pt) and the temperature was raised to 60 ° C. Na after the temperature becomes constant
Adjust pH to 10 with OH 2 N solution and add 3% hydrazine solution dropwise to reduce chloroplatinic acid. After completion of the reduction, a platinum-supported catalyst can be obtained by filtering, washing and drying with a glass filter. The platinum crystallite diameter of this platinum-supported catalyst was 28Å.

【0012】このようにして得られた白金担持触媒の合
金化を次に示す。まず白金担持触媒を純水200ml に分散
する。これとは別にニッケル(Ni)として0.30g の硝酸ニ
ッケルとチタン(Ti) として0.30g の三塩化チタンを秤
取し純水30ml中に溶解する。さらにこの溶液中にアンモ
ニア水を加えてpH8 に調整し、超音波分散器を用いて水
酸化物となったチタンとニッケルの均質混合液を作製す
る。この溶液を白金担持触媒が分散された溶液中に加え
てアンモニア水を滴加してpH11に調整して1 〜3 時間十
分に接触させる。そしてガラスフィルターでろ過・水洗
し乾燥後に窒素気流中で800 〜1000℃で熱処理を行う。
このようにして三元合金2Aを担持した触媒が得られ
る。
The alloying of the platinum-supported catalyst thus obtained is shown below. First, the platinum-supported catalyst is dispersed in 200 ml of pure water. Separately, 0.30 g of nickel nitrate as nickel (Ni) and 0.30 g of titanium trichloride as titanium (Ti) are weighed and dissolved in 30 ml of pure water. Further, ammonia water is added to this solution to adjust the pH to 8, and an ultrasonic disperser is used to prepare a homogeneous mixed liquid of titanium and nickel that has become hydroxide. This solution is added to the solution in which the platinum-supported catalyst is dispersed, ammonia water is added dropwise to adjust the pH to 11, and the mixture is sufficiently contacted for 1 to 3 hours. Then, it is filtered with a glass filter, washed with water, dried, and then heat-treated at 800-1000 ° C in a nitrogen stream.
Thus, the catalyst supporting the ternary alloy 2A is obtained.

【0013】この方法により作製した合金化触媒の結晶
子径は33Åであった。得られた白金─チタン─ニッケル
三元系合金触媒は従来の合金触媒に比較して初期活性と
安定性の両者にすぐれた特性を得ることができた。表1
に初期特性と500 h 後の結晶子径の変化を示す。
The crystallite diameter of the alloying catalyst produced by this method was 33Å. The obtained platinum-titanium-nickel ternary alloy catalyst has excellent initial activity and stability in comparison with the conventional alloy catalyst. table 1
Shows the initial characteristics and the change in crystallite size after 500 h.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】第一の発明によれば、電極基材上に電極
触媒層を有し、電極触媒層はカーボン担体上に白金とチ
タンとニッケルの三元合金を担持した触媒をバインダで
結着してなるものであること、また第二の発明によれば
第一工程と、第二工程と、第三工程とを有し、第一工程
は白金の担持されたカーボンに水酸化ニッケルと水酸化
チタンを沈着させる工程であり、第二工程は前記水酸化
物の沈着したカーボンを温度800ないし1000℃で
熱処理して触媒を調製する工程であり、第三工程は前記
触媒をバインダーで結着して電極触媒層を調製し次いで
この電極触媒層を電極基材上に積層する工程であるの
で、結晶子径が小さい上にその経時変化の少ない三元系
合金触媒が得られ、その結果初期特性と経時安定性に優
れる燃料電池が得られる。
According to the first aspect of the invention, the electrode catalyst layer is provided on the electrode base material, and the electrode catalyst layer binds the catalyst in which the ternary alloy of platinum, titanium and nickel is supported on the carbon support with the binder. According to the second invention, it has a first step, a second step, and a third step, and the first step is a carbon carrying platinum and nickel hydroxide. Titanium hydroxide is deposited, the second step is heat treatment of the hydroxide-deposited carbon at a temperature of 800 to 1000 ° C. to prepare a catalyst, and the third step is binding the catalyst with a binder. It is a step of depositing an electrode catalyst layer and then laminating this electrode catalyst layer on an electrode base material, so that a ternary alloy catalyst having a small crystallite diameter and little change over time is obtained. A fuel cell with excellent initial characteristics and stability over time was obtained. That.

【図面の簡単な説明】[Brief description of drawings]

【図1】燃料電池の電極構造を示す模式的断面図FIG. 1 is a schematic sectional view showing an electrode structure of a fuel cell.

【符号の説明】[Explanation of symbols]

1 電極基材 2 白金 2A 三元合金 3 触媒 4 PTFE 5 電極触媒層 1 electrode base material 2 platinum 2A ternary alloy 3 catalyst 4 PTFE 5 electrode catalyst layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電極基材上に電極触媒層を有し、 電極触媒層はカーボン担体上に白金とチタンとニッケル
の三元合金を担持した触媒をバインダで結着してなるも
のであることを特徴とする燃料電池。
1. An electrode catalyst layer is provided on an electrode substrate, and the electrode catalyst layer is formed by binding a catalyst supporting a ternary alloy of platinum, titanium and nickel on a carbon carrier with a binder. Is a fuel cell.
【請求項2】請求項1記載の燃料電池において、三元合
金の組成はチタンが10ないし30%、ニッケルが10
ないし30%、残余が白金であることを特徴とする燃料
電池。
2. The fuel cell according to claim 1, wherein the composition of the ternary alloy is 10 to 30% titanium and 10 nickel.
To 30%, the balance being platinum.
【請求項3】 第一工程と、第二工程と、第三工程とを
有し、 第一工程は白金の担持されたカーボンに水酸化ニッケル
と水酸化チタンを沈着させる工程であり、 第二工程は前記水酸化物の沈着したカーボンを温度80
0ないし1000℃で熱処理して触媒を調製する工程で
あり、 第三工程は前記触媒をバインダーで結着して電極触媒層
を調製し次いでこの電極触媒層を電極基材上に積層する
工程であることを特徴とする燃料電池の製造方法。
3. A first step, a second step, and a third step, wherein the first step is a step of depositing nickel hydroxide and titanium hydroxide on platinum-carrying carbon. In the process, the carbon deposited with the hydroxide is heated to a temperature of 80.
A step of preparing a catalyst by heat treatment at 0 to 1000 ° C., and a third step is a step of binding the catalyst with a binder to prepare an electrode catalyst layer, and then laminating the electrode catalyst layer on an electrode substrate. A method for manufacturing a fuel cell, characterized in that
【請求項4】請求項3記載の製造方法において、水酸化
物の沈着は、硝酸ニッケルと三塩化チタンの混合溶液に
アンモニア水を加えてpHを8とした懸濁液を超音波分
散して均質混合液を調製し、この均質混合液を白金の担
持されたカーボンと接触させ、さらにpHを11にする
ものであることを特徴とする燃料電池の製造方法。
4. The deposition method according to claim 3, wherein the hydroxide is deposited by ultrasonically dispersing a suspension having a pH of 8 by adding aqueous ammonia to a mixed solution of nickel nitrate and titanium trichloride. A method for producing a fuel cell, comprising preparing a homogeneous mixed solution, bringing the homogeneous mixed solution into contact with platinum-supported carbon, and further adjusting the pH to 11.
【請求項5】請求項3記載の製造方法において、熱処理
は窒素気流中で行うものであることを特徴とする燃料電
池の製造方法。
5. The method for producing a fuel cell according to claim 3, wherein the heat treatment is performed in a nitrogen stream.
JP4182728A 1992-07-10 1992-07-10 Fuel cell and its manufacture Pending JPH0629027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4182728A JPH0629027A (en) 1992-07-10 1992-07-10 Fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4182728A JPH0629027A (en) 1992-07-10 1992-07-10 Fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH0629027A true JPH0629027A (en) 1994-02-04

Family

ID=16123410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4182728A Pending JPH0629027A (en) 1992-07-10 1992-07-10 Fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH0629027A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838872A2 (en) * 1996-10-25 1998-04-29 Johnson Matthey Public Limited Company Improved catalyst
US6095444A (en) * 1996-01-24 2000-08-01 Daiwa Seiko, Inc. Attachment unit for a double bearing type reel for fishing
JP2006253145A (en) * 2005-03-09 2006-09-21 Samsung Sdi Co Ltd Carried catalyst for electrode and its manufacturing method, electrode for proton exchange membrane fuel cell and proton exchange membrane fuel cell
WO2007081774A2 (en) * 2006-01-06 2007-07-19 Honda Motor Co., Ltd Platinum and titanium containing electrocatalysts
US7318977B2 (en) 2006-01-06 2008-01-15 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7691522B2 (en) 2006-03-09 2010-04-06 Honda Motor Co., Ltd. Platinum, titanium and copper, manganese and iron containing electrocatalysts
US7704628B2 (en) 2006-05-08 2010-04-27 Honda Motor Co., Ltd. Platinum, titanium, cobalt and palladium containing electrocatalysts
US7740975B2 (en) 2006-01-06 2010-06-22 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095444A (en) * 1996-01-24 2000-08-01 Daiwa Seiko, Inc. Attachment unit for a double bearing type reel for fishing
EP0838872A2 (en) * 1996-10-25 1998-04-29 Johnson Matthey Public Limited Company Improved catalyst
EP0838872A3 (en) * 1996-10-25 2000-08-02 Johnson Matthey Public Limited Company Improved catalyst
JP2006253145A (en) * 2005-03-09 2006-09-21 Samsung Sdi Co Ltd Carried catalyst for electrode and its manufacturing method, electrode for proton exchange membrane fuel cell and proton exchange membrane fuel cell
WO2007081774A2 (en) * 2006-01-06 2007-07-19 Honda Motor Co., Ltd Platinum and titanium containing electrocatalysts
WO2007081774A3 (en) * 2006-01-06 2007-09-13 Honda Motor Co Ltd Platinum and titanium containing electrocatalysts
US7318977B2 (en) 2006-01-06 2008-01-15 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7740975B2 (en) 2006-01-06 2010-06-22 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7691522B2 (en) 2006-03-09 2010-04-06 Honda Motor Co., Ltd. Platinum, titanium and copper, manganese and iron containing electrocatalysts
US7704628B2 (en) 2006-05-08 2010-04-27 Honda Motor Co., Ltd. Platinum, titanium, cobalt and palladium containing electrocatalysts

Similar Documents

Publication Publication Date Title
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
JP5138584B2 (en) Method for producing electrode catalyst for fuel cell
JPS59141169A (en) 3-element metal alloy catalyst for fuel battery and method of producing same
JPH04141233A (en) Electrode catalyst
JPS62269751A (en) Platinum-copper alloy electrode catalyst and electrode for acidic electrolyte fuel cell using said catalyst
JPH05129023A (en) Improved catalyst material
JPS62163746A (en) Platinum alloy electrode catalyst and electrode for acidic electrolyte fuel cell using same
JP2002511639A (en) Improved compositions of selective oxidation catalysts for fuel cells
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
JPH01210037A (en) Method of forming alloy on carrier
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
GB2242203A (en) Catalyst material comprising platinum alloy supported on carbon
WO2021114056A1 (en) Fuel cell cathode catalyst and preparation method therefor, membrane electrode and fuel cell
JPH05217586A (en) Fuel cell and manufacture thereof
JP2012500720A (en) Continuous production method of catalyst
JPH04141236A (en) Platinoid catalyst and its manufacturing process
JPH0629027A (en) Fuel cell and its manufacture
JP3613330B2 (en) Catalyst for fuel cell, method for producing the same, and electrode for fuel cell
CN110600752B (en) H2Method for preparing carbon-supported Pt alloy catalyst by gas-phase thermal reduction
JPH05135773A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
US4613582A (en) Method for making ternary fuel cell catalysts containing platinum cobalt and chromium
JPH05135772A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH04141235A (en) Electrode catalyst for an anode pole
JPH0629028A (en) Fuel cell and its manufacture
JPH04366558A (en) Fuel cell and manufacture thereof