JP2001015121A - Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell - Google Patents

Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell

Info

Publication number
JP2001015121A
JP2001015121A JP11185210A JP18521099A JP2001015121A JP 2001015121 A JP2001015121 A JP 2001015121A JP 11185210 A JP11185210 A JP 11185210A JP 18521099 A JP18521099 A JP 18521099A JP 2001015121 A JP2001015121 A JP 2001015121A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
fuel cell
ruthenium
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11185210A
Other languages
Japanese (ja)
Inventor
Tomoyuki Tada
多田  智之
Masahiko Inoue
井上  昌彦
Yumi Yamamoto
夕美 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP11185210A priority Critical patent/JP2001015121A/en
Publication of JP2001015121A publication Critical patent/JP2001015121A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for a polymer solid electrolyte type fuel cell having excellent electrode performance and carbon monoxide catalyst poisoning resistance, and a low manufacturing cost, and to provide a polymer solid electrolyte type fuel cell. SOLUTION: In a catalyst for a polymer solid electrolyte type fuel cell wherein platinum and two or more kinds of metals are supported on carbon powder carrier, platinum, ruthenium, and molybdenum are supported at the ratio of 1:(0.25-1)(0.2-0.5) (mole ratio). And platinum, ruthenium, and tungsten are supported at the ratio of 1:(0.25-2):(0.25-0.5) (mole ratio). When the particles of each precious metal are supported in such a condition that they are closer to form an alloy, these catalysts improve the carbon monoxide catalyst poisoning resistance of the catalyst more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高分子固体電解質型
燃料電池用触媒、特に、製造コストが低減され耐一酸化
炭素触媒被毒性に優れる高分子固体電解質型燃料電池用
触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for a solid polymer electrolyte fuel cell, and more particularly to a solid polymer electrolyte fuel cell catalyst which is reduced in production cost and excellent in poisoning of a carbon monoxide resistant catalyst.

【0002】[0002]

【従来の技術】燃料電池は次世代の発電システムとして
大いに期待されるものであり、その中で高分子固体電解
質を電解質として用いる高分子固体電解質型燃料電池
は、他の型の燃料電池と比較して低い温度で電力を取り
出せ、かつコンパクトであることから、電気自動車用電
源として有望視されている。
2. Description of the Related Art Fuel cells are greatly expected as a next-generation power generation system. Among them, a solid polymer electrolyte fuel cell using a solid polymer electrolyte as an electrolyte is compared with other types of fuel cells. It is promising as a power source for electric vehicles because it can take out power at a low temperature and is compact.

【0003】高分子固体電解質型燃料電池は、水素極及
び空気極の2つの電極層と、これら電極に挟持される高
分子固体電解質層とからなる積層構造として形成され、
水素極に水素を空気極には酸素又は空気を供給し、それ
ぞれの電極で生じる酸化、還元反応により電力を取り出
すようにしている。そして、高分子固体電解質型燃料電
池の両電極としては、電気化学的反応を促進させるため
の貴金属触媒、特に、白金を担持させた白金触媒と、水
素極で発生する水素イオンを空気極まで伝達させるため
の固体電解質、との混合体が一般に適用されている。
A solid polymer electrolyte fuel cell is formed as a laminated structure including two electrode layers, a hydrogen electrode and an air electrode, and a polymer solid electrolyte layer sandwiched between these electrodes.
Hydrogen is supplied to the hydrogen electrode, and oxygen or air is supplied to the air electrode, and power is taken out by oxidation and reduction reactions generated at the respective electrodes. The two electrodes of a solid polymer electrolyte fuel cell use a noble metal catalyst to promote the electrochemical reaction, particularly a platinum catalyst carrying platinum, and transfer hydrogen ions generated at the hydrogen electrode to the air electrode. In general, a mixture with a solid electrolyte for causing the mixture to be used.

【0004】ところで、高分子固体電解質型燃料電池の
水素極へ燃料として供給される水素としては、その取り
扱い性や、経済性等の観点から、メタノール等の液体燃
料を改質して得られる水素の適用が検討されている。し
かしながら、この改質によって得られる水素中には微量
ながら不純物として一酸化炭素が含まれており、これが
触媒を失活させるという問題がある。これは、一酸化炭
素が水素に比して白金に対する吸着能が高いことから、
優先的に白金に吸着し水素の吸着・反応を阻害すること
によるものである。そして、このような燃料中の一酸化
炭素による触媒被毒は、今後の燃料電池の普及に影響を
及ぼすものである。
Incidentally, hydrogen supplied as a fuel to the hydrogen electrode of a polymer solid oxide fuel cell is hydrogen obtained by reforming a liquid fuel such as methanol from the viewpoint of handleability and economy. Is being considered for application. However, the hydrogen obtained by this reforming contains carbon monoxide as an impurity in a small amount, which has the problem of deactivating the catalyst. This is because carbon monoxide has a higher adsorption capacity for platinum than hydrogen.
This is due to preferential adsorption on platinum to inhibit hydrogen adsorption / reaction. Such catalyst poisoning due to carbon monoxide in the fuel will affect the spread of fuel cells in the future.

【0005】従来、この一酸化炭素による触媒被毒の問
題に対しては、白金粒子が単独で担持される触媒に替え
て、更にルテニウムを担持させた2元系触媒が有効であ
ることが知られている。これは、ルテニウムの親水性を
利用して、このルテニウムと結合したOHが近接する
白金上に吸着した一酸化炭素を酸化、除去させることに
より達成されるものと考えられている。そして、この触
媒を固体電解質型燃料電池に適用するためには、ルテニ
ウムを白金と同等以上の割合で担持させることが実用上
必要であるとの認識がなされている。
Conventionally, to solve the problem of catalyst poisoning due to carbon monoxide, it has been known that a binary catalyst further supporting ruthenium is effective instead of a catalyst supporting platinum particles alone. Have been. It is believed that this is achieved by utilizing the hydrophilicity of ruthenium to oxidize and remove the carbon monoxide adsorbed on platinum adjacent to the OH bonded to the ruthenium. It has been recognized that in order to apply this catalyst to a solid oxide fuel cell, it is practically necessary to support ruthenium at a ratio equal to or higher than that of platinum.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ルテニ
ウムは埋蔵量の少ない白金族金属の一つであり、高価で
あるという難点を有している。そして、従来のようにル
テニウムを白金と同等あるいはそれ以上の比率で担持さ
せた触媒を適用していくことは、燃料電池のコスト上昇
の原因になり得る。
However, ruthenium is one of the platinum group metals having a small reserve, and has a disadvantage that it is expensive. Applying a catalyst in which ruthenium is supported at a ratio equal to or higher than that of platinum as in the related art can cause an increase in the cost of the fuel cell.

【0007】特に、高分子固体電解質型燃料電池は、上
述のように自動車などの一般消費材への適用が有望視さ
れていることから、ルテニウムの需要は今後ますます拡
大しその価格も更に上昇するおそれがある。従って、高
分子固体電解質型燃料電池の更なる普及を図るために
も、使用される触媒のコストダウンの必要性は極めて高
いということができる。
[0007] In particular, since the polymer solid electrolyte fuel cell is expected to be applied to general consumer materials such as automobiles as described above, the demand for ruthenium will further expand in the future, and the price thereof will further increase. There is a possibility that. Therefore, it can be said that the need for reducing the cost of the catalyst used is extremely high in order to further spread the solid polymer electrolyte fuel cell.

【0008】そこで、本発明は、電極性能を悪化させる
ことなく耐一酸化炭素触媒被毒性に優れ、かつ、製造コ
ストが低廉な高分子固体電解質型燃料電池用触媒及び高
分子固体電解質型燃料電池を提供することを目的とす
る。
Accordingly, the present invention provides a catalyst for a solid polymer electrolyte fuel cell, which is excellent in the poisoning of a carbon monoxide catalyst without deteriorating the electrode performance, and whose production cost is low, and a solid polymer electrolyte fuel cell. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、まず、従来の白金とルテニウムとが担持
された高分子固体電解質型燃料電池用触媒について検討
を行った。第1図は白金/ルテニウム2元系触媒のルテ
ニウムの比率を変化させた触媒を用いて、水素極側ハー
フセルテストにて一酸化炭素混合水素ガス中での分極値
を測定したときの結果を模式的に示したものである。第
1図から明らかなように、白金/ルテニウム2元系触媒
においては、ルテニウムの担持比率を増加させるに従
い、分極値、即ちその触媒の耐一酸化炭素触媒被毒性が
向上する。しかし、この傾向はルテニウムを白金の約
1.5倍担持させたときに限界点が生じ、それ以上のル
テニウム添加によっても分極値の低下は見られない。
Means for Solving the Problems In order to achieve the above object, the present inventors first studied a conventional catalyst for a solid polymer electrolyte fuel cell supporting platinum and ruthenium. FIG. 1 is a schematic diagram showing the result of measuring the polarization value in a carbon monoxide mixed hydrogen gas in a hydrogen electrode side half-cell test using a platinum / ruthenium binary catalyst having a changed ruthenium ratio. It is shown in a typical manner. As is clear from FIG. 1, in the platinum / ruthenium binary catalyst, as the supported ratio of ruthenium is increased, the polarization value, that is, the poisoning resistance of the catalyst to the carbon monoxide catalyst is improved. However, this tendency has a limit point when ruthenium is supported about 1.5 times as much as platinum, and no decrease in the polarization value is observed even when ruthenium is further added.

【0010】本発明者らは、このような白金/ルテニウ
ム2元系触媒の限界点を見極め、ルテニウムの担持比率
を低減させつつも、この2元系触媒が有する耐一酸化炭
素触媒被毒性の限界点に極力近い特性を有する触媒を開
発することとした。そして、鋭意研究の結果、白金/ル
テニウム2元系触媒に更に微量の金属元素を担持させる
ことで、十分な耐一酸化炭素触媒被毒性を発揮する触媒
が得られることを見出したのである。これが、請求項1
及び請求項2に記載の、白金とルテニウムとモリブデン
とが1:0.25〜1:0.2〜0.5(モル比)の比
率で担持されている高分子固体電解質型燃料電池用触
媒、及び、白金とルテニウムとタングステンとが1:
0.25〜2:0.2〜0.5(モル比)の比率で担持
されている高分子固体電解質型燃料電池用触媒である。
[0010] The present inventors have determined the limit of such a platinum / ruthenium binary catalyst, and while reducing the loading ratio of ruthenium, have found that the binary catalyst has a low carbon monoxide resistant poisoning resistance. We decided to develop a catalyst with characteristics as close as possible to the critical point. As a result of intensive studies, they have found that a catalyst exhibiting sufficient carbon monoxide catalyst poisoning resistance can be obtained by supporting a small amount of a metal element on a platinum / ruthenium binary catalyst. This is claim 1
And a catalyst for a solid polymer electrolyte fuel cell according to claim 2, wherein platinum, ruthenium, and molybdenum are supported at a ratio of 1: 0.25 to 1: 0.2 to 0.5 (molar ratio). And platinum, ruthenium and tungsten:
A catalyst for a solid polymer electrolyte fuel cell supported in a ratio of 0.25 to 2: 0.2 to 0.5 (molar ratio).

【0011】本発明によれば、モリブデン又はタングス
テンを0.25〜0.5の比率(白金を1とする)で担
持させることで、ルテニウムの担持比率を最小で0.2
5(白金を1とする)にまで低減させることができる。
そしてその結果、触媒全体のコストを低減させることが
できる。ここで、モリブデン又はタングステンの担持比
率を0.25〜0.5(白金基準)の範囲にするのは、
この範囲外の量を担持させた場合、触媒の耐一酸化炭素
触媒被毒性が却って悪化するからである。
According to the present invention, by supporting molybdenum or tungsten at a ratio of 0.25 to 0.5 (platinum is defined as 1), the supported ratio of ruthenium is reduced to a minimum of 0.2.
It can be reduced to 5 (the platinum is 1).
As a result, the cost of the entire catalyst can be reduced. Here, the molybdenum or tungsten loading ratio is set in the range of 0.25 to 0.5 (based on platinum).
This is because when the amount is outside the above range, the poisoning of the catalyst by the carbon monoxide catalyst is rather deteriorated.

【0012】更に、本発明に係る高分子固体電解質型燃
料電池用触媒は、各金属が合金化した状態である方が耐
一酸化炭素触媒被毒性に優れる。この白金とルテニウム
とモリブデン又はタングステンが合金化した触媒は、触
媒に熱処理を施すことで製造することができる。そし
て、この熱処理による合金化は600℃〜900℃の範
囲で行うのが好ましい。600℃以下では貴金属粒子の
合金化が不完全である一方、900℃以上では触媒粒子
の凝集が進んで粒径が過大となり、触媒の活性に影響を
与えるからである。
Furthermore, the catalyst for a polymer solid oxide fuel cell according to the present invention is more excellent in the carbon monoxide catalyst poisoning resistance when the respective metals are in an alloyed state. The catalyst in which platinum, ruthenium, molybdenum or tungsten is alloyed can be produced by subjecting the catalyst to heat treatment. The alloying by this heat treatment is preferably performed at a temperature in the range of 600 ° C to 900 ° C. At a temperature of 600 ° C. or less, the alloying of the noble metal particles is incomplete, while at a temperature of 900 ° C. or more, the agglomeration of the catalyst particles progresses and the particle size becomes excessive, which affects the activity of the catalyst.

【0013】以上のように、本発明においては、従来の
白金/ルテニウム2元系触媒に更に第3の金属としてモ
リブデン又はタングステンを所定比率で担持させること
で、優れた耐一酸化炭素触媒被毒性を示すものである。
ここで、本発明者らは、この触媒をより有効に機能させ
るため、これら貴金属を担持させる担体について更に検
討を行った。その結果、直径60オングストローム以下
の細孔を全細孔に対して20%以下の割合で有し、比表
面積が600〜1200m/g の炭素粉末が担体とし
て特に好ましいとの結論に至った。その理由としては以
下のようなものが考えられている。
As described above, according to the present invention, the conventional platinum / ruthenium binary catalyst is further supported with molybdenum or tungsten as a third metal at a predetermined ratio, thereby providing an excellent carbon monoxide resistant poisoning catalyst. It shows.
Here, in order to make this catalyst function more effectively, the present inventors further studied a support for supporting these noble metals. As a result, it was concluded that carbon powder having pores having a diameter of 60 angstroms or less at a ratio of 20% or less to all the pores and a specific surface area of 600 to 1200 m 2 / g was particularly preferable as a carrier. The following are considered as the reasons.

【0014】上述したように、高分子固体電解質型燃料
電池の水素極の電極は、電極反応を促進させる触媒と電
極反応により生じる水素イオンを伝達させる固体電解質
との混合体である。そして、触媒の担体となる炭素微粉
末は無数の細孔を有し貴金属粒子はこの細孔の内部にま
で担持されている。しかし、固体電解質粒子は貴金属粒
子に比べて粒径が過大であり、直径60オングストロー
ム以下の極微小細孔には侵入することができない。従っ
て、このような極微小細孔中にある貴金属粒子上で生じ
た水素イオンは固体電解質に伝達されない。即ち、高分
子固体電解質型燃料電池用触媒にあっては、担体中の極
微小細孔が全細孔に占める割合と触媒の利用効率とに密
接な関係がある。そこで、本発明では、担体の細孔分布
を細孔の全細孔に対する割合を20%以下と制限し、触
媒の利用効率を確保することとしたものである。
As described above, the electrode of the hydrogen electrode of the polymer solid oxide fuel cell is a mixture of a catalyst for accelerating the electrode reaction and a solid electrolyte for transmitting hydrogen ions generated by the electrode reaction. The carbon fine powder serving as a carrier of the catalyst has countless fine pores, and the noble metal particles are supported inside the fine pores. However, the solid electrolyte particles have an excessively large particle size as compared with the noble metal particles, and cannot penetrate into extremely small pores having a diameter of 60 Å or less. Therefore, the hydrogen ions generated on the noble metal particles in the micropores are not transmitted to the solid electrolyte. In other words, in the catalyst for a solid polymer electrolyte fuel cell, there is a close relationship between the ratio of the very fine pores in the carrier to all the pores and the utilization efficiency of the catalyst. Therefore, in the present invention, the distribution of the pores of the carrier is limited to 20% or less of the total of the pores, and the utilization efficiency of the catalyst is secured.

【0015】また、担体の比表面積を600〜1200
/gの範囲とするのは、比表面積を600m/g以
上とし、触媒が付着する面積を増加させることができる
ので貴金属粒子を高い状態で分散することができる一
方、比表面積1200m/g以上とあまりに大きくす
ると、触媒の利用効率を低下させる極微小細孔の割合が
増加するからである。即ち、比表面積を上記の範囲とす
ることで、貴金属粒子を高い状態で分散させ触媒単位質
量あたりの活性を向上させる一方、触媒の利用効率を確
保することができる。
Further, the specific surface area of the carrier is preferably from 600 to 1200.
in the range of m 2 / g, the specific surface area as 600 meters 2 / g or more, while the noble metal particles it is possible to increase the area in which the catalyst is adhered can be dispersed in a state of high specific surface area 1200 m 2 This is because if the ratio is too large, i.e., not less than / g, the ratio of ultrafine pores that lowers the utilization efficiency of the catalyst increases. That is, by setting the specific surface area within the above range, the noble metal particles are dispersed in a high state, and the activity per unit mass of the catalyst is improved, while the utilization efficiency of the catalyst can be secured.

【0016】このように、本発明に係る高分子固体電解
質型燃料電池用触媒は、ルテニウムの担持比率を減少さ
せつつも耐一酸化炭素触媒被毒性に優れていることか
ら、この高分子固体電解質型燃料電池用触媒を含んでな
る電極を水素極として備える高分子固体電解質型燃料電
池は、一酸化炭素による電極性能の悪化も少なく、か
つ、製造コストが低廉な高分子固体電解質型燃料電池用
触媒ということができる。
As described above, the catalyst for a solid polymer electrolyte fuel cell according to the present invention is excellent in the poisoning resistance of the carbon monoxide catalyst while reducing the loading ratio of ruthenium. Solid electrolyte fuel cell equipped with an electrode containing a catalyst for a solid fuel cell as a hydrogen electrode is a polymer solid electrolyte fuel cell that is less likely to deteriorate electrode performance due to carbon monoxide and has a low manufacturing cost. It can be called a catalyst.

【0017】[0017]

【発明の実施の形態】以下に本発明の好適な実施例を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0018】第1実施形態:本実施形態では、白金/ル
テニウム/モリブデン3元系触媒を製造した。この3元
系触媒は、予め上記炭素粉末に白金を担持させた白金触
媒を作製し、これにルテニウム担持させることで、まず
白金/ルテニウム2元系触媒を製造し、更にこれをモリ
ブデン化合物溶液に含浸させることでモリブデンを担持
させることにより製造した。このように各金属の担持工
程を別々にするのは、白金とルテニウムとがなるべく近
接した状態で担持されるようにするためである。以下に
詳しく説明する。
First Embodiment In this embodiment, a ternary platinum / ruthenium / molybdenum catalyst was manufactured. This ternary catalyst is prepared in advance by preparing a platinum catalyst in which platinum is supported on the above carbon powder, and then supporting ruthenium on the catalyst to first produce a platinum / ruthenium binary catalyst, which is further converted to a molybdenum compound solution. It was manufactured by supporting molybdenum by impregnation. The reason for carrying out the step of supporting each metal separately is to ensure that platinum and ruthenium are supported as close as possible. This will be described in detail below.

【0019】〔担体の選択〕本実施形態で担体として使
用した炭素微粉末(商品名:ケッチェンブラックEC)
の細孔分布を図2に示す。細孔分布の測定はガス吸着法
により行っている。この図で示されるように、本実施形
態で使用した本発明に係る触媒の担体となる炭素粉末
は、数十オングストロームオーダーの微小径細孔の全細
孔に対する比率が低い。また、この担体の比表面積をB
ET1点法にて測定したところ、800m /gであっ
た。
[Selection of carrier]
Carbon fine powder used (trade name: Ketjen Black EC)
2 shows the pore distribution. Measurement of pore distribution is gas adsorption method
It is done by. As shown in FIG.
Powder used as a carrier of the catalyst according to the present invention used in the state
Is a fine pore with a small diameter of the order of tens of angstroms.
Low ratio to holes. Also, the specific surface area of this carrier is B
800m when measured by the ET one-point method 2/ G
Was.

【0020】[白金触媒の調整]0.3wt%の白金溶液
2233g(白金含有量:6.70g)に前記炭素粉末
を10g混合させ攪拌後、還元剤として100%エタノ
ール250ml添加した。この溶液を沸点(約95℃)
で6時間、攪拌、混合し、白金を炭素粉末に担持させ
た。
[Preparation of Platinum Catalyst] 10 g of the above carbon powder was mixed with 2233 g (platinum content: 6.70 g) of 0.3 wt% platinum solution and stirred, and then 250 ml of 100% ethanol was added as a reducing agent. The boiling point of this solution (about 95 ° C)
For 6 hours, and the platinum was supported on the carbon powder.

【0021】[ルテニウムの担持]0.3wt%のルテニ
ウム溶液777g(ルテニウム含有量:2.33g)に、
上記白金触媒15gを浸漬させた。さらに100%エタ
ノール86mlを添加し、この混合溶液を沸点(約95
℃)で6時間、攪拌させて反応させた。反応終了後、ろ
過、洗浄して60℃で乾燥させて触媒を得た。
[Support of Ruthenium] To 777 g of a 0.3 wt% ruthenium solution (ruthenium content: 2.33 g),
15 g of the platinum catalyst was immersed. Further, 86 ml of 100% ethanol was added, and the mixed solution was brought to the boiling point (about 95%).
C.) for 6 hours with stirring. After completion of the reaction, the mixture was filtered, washed and dried at 60 ° C. to obtain a catalyst.

【0022】〔モリブデンの担持〕0.4wt%のモリ
ブデン溶液218g(モリブデン:0.87g)に、以上
の操作により製造した白金/ルテニウム2元系触媒1
5.38gを浸漬させた。そして、この混合溶液を1時
間、攪拌し、ろ過、洗浄して60℃で乾燥させて触媒を
得た。
[Support of molybdenum] The platinum / ruthenium binary catalyst 1 prepared by the above operation was added to 218 g of a 0.4 wt% molybdenum solution (molybdenum: 0.87 g).
5.38 g were immersed. Then, the mixed solution was stirred for 1 hour, filtered, washed, and dried at 60 ° C. to obtain a catalyst.

【0023】[熱処理]白金とルテニウムとモリブデンと
の合金化熱処理は、50%水素ガス(窒素バランス)中
で、1時間、900℃に保持することにより行った。
[Heat Treatment] The heat treatment for alloying platinum, ruthenium, and molybdenum was carried out in a 50% hydrogen gas (nitrogen balance) at 900 ° C. for one hour.

【0024】以上の操作により製造される、白金/ルテ
ニウム/モリブデン触媒の各担持金属の比率は1:0.
75:0.33である。この比率は、混合溶液中のルテ
ニウム含有量及びモリブデン含有量を変化させることに
より容易に制御することができる。
The ratio of each supported metal of the platinum / ruthenium / molybdenum catalyst produced by the above operation is 1: 0.
75: 0.33. This ratio can be easily controlled by changing the ruthenium content and the molybdenum content in the mixed solution.

【0025】[0025]

【実験例1】以上の製造方法により製造した白金/ルテ
ニウム/モリブデン触媒について、ルテニウムの担持比
率を固定し、モリブデンの担持比率を変化させて水素極
側ハーフセルテストを行い、耐一酸化炭素触媒被毒性を
確認した。その検討結果を図3に示す。測定は100p
pmの一酸化炭素を混合した水素ガス中で行った。ま
た、図2では、縦軸に電流密度500mA/cmにお
ける分極値を、横軸には白金を1としたときのモリブデ
ンの担持比率をとり、各比率で作製された電極触媒の分
極値をプロットした。また、図3には、比較のため、同
一条件で測定した白金/ルテニウム2元系触媒(白金:
ルテニウム=4:6)より作成したハーフセルの分極値
(40mV)を示している。白金:ルテニウム=4:6
の触媒の分極値を記載したのは、本発明者らの予備試験
の結果、この組成の白金/ルテニウム2元系触媒が最も
高い耐一酸化炭素触媒被毒性を示すからである。
[Experimental Example 1] With respect to the platinum / ruthenium / molybdenum catalyst produced by the above-mentioned production method, the hydrogen electrode side half-cell test was carried out while the ruthenium loading ratio was fixed and the molybdenum loading ratio was changed. Toxicity confirmed. The result of the study is shown in FIG. Measurement is 100p
The test was performed in hydrogen gas mixed with pm carbon monoxide. In FIG. 2, the ordinate represents the polarization value at a current density of 500 mA / cm 2 , and the abscissa represents the molybdenum loading ratio when platinum is set to 1, and the polarization value of the electrode catalyst produced at each ratio. Plotted. FIG. 3 shows a platinum / ruthenium binary catalyst (platinum: ruthenium) measured under the same conditions for comparison.
The polarization value (40 mV) of a half cell prepared from ruthenium (4: 6) is shown. Platinum: ruthenium = 4: 6
The reason why the polarization value of the catalyst is described is that the platinum / ruthenium binary catalyst of this composition shows the highest poisoning resistance to the carbon monoxide catalyst as a result of the preliminary test by the present inventors.

【0026】図3から、本発明のようにモリブデンを
0.2〜0.5の比率で添加した白金/ルテニウム/モ
リブデン触媒は、白金/ルテニウム2元系触媒の分極値
とほぼ同等であり、本発明に係る触媒は、十分な耐一酸
化炭素触媒被毒性を示すことが確認された。
FIG. 3 shows that the platinum / ruthenium / molybdenum catalyst to which molybdenum is added in a ratio of 0.2 to 0.5 as in the present invention has almost the same polarization value as the platinum / ruthenium binary catalyst. It was confirmed that the catalyst according to the present invention exhibited sufficient resistance to carbon monoxide catalyst poisoning.

【0027】[0027]

【実験例2】次に、モリブデンの添加によるルテニウム
比率の低減効果についての確認を行った。図4は、モリ
ブデン担持率を0.3に固定し(白金を1とする)、ル
テニウムの比率を変化させた白金/ルテニウム/モリブ
デン触媒のハーフセル分極値を示す。測定は、上記と同
様、100ppmの一酸化炭素を混合した水素ガス中で
行っている。また、図4には上記と同様、同一条件で測
定した白金/ルテニウム2元系触媒(白金:ルテニウム
=4:6)より作成したハーフセルの分極値(40m
V)を示している、
Experimental Example 2 Next, the effect of reducing the ruthenium ratio by adding molybdenum was confirmed. FIG. 4 shows half-cell polarization values of a platinum / ruthenium / molybdenum catalyst in which the ratio of ruthenium was changed while the molybdenum loading rate was fixed at 0.3 (with platinum being 1). The measurement is performed in a hydrogen gas mixed with 100 ppm of carbon monoxide, as described above. FIG. 4 shows the polarization value (40 m) of a half cell prepared from a platinum / ruthenium binary catalyst (platinum: ruthenium = 4: 6) measured under the same conditions as described above.
V)

【0028】この図4より明らかなように、本発明のよ
うに白金/ルテニウム2元系触媒に更にモリブデンを担
持させた触媒の分極値は、ルテニウムの比率を1以下に
しても、従来の白金/ルテニウム2元系触媒とほぼ同等
の分極値を示す。即ち、モリブデンの添加によりルテニ
ウム比率を低減させても、ほぼ同様の耐一酸化炭素触媒
被毒性を示すことが確認された。
As is apparent from FIG. 4, the polarization value of a catalyst in which molybdenum is further supported on a platinum / ruthenium binary catalyst as in the present invention is smaller than that of a conventional platinum / ruthenium catalyst even if the ruthenium ratio is 1 or less. / Shows almost the same polarization value as the ruthenium binary catalyst. That is, it was confirmed that even when the ruthenium ratio was reduced by the addition of molybdenum, substantially the same poisoning resistance to the carbon monoxide catalyst was exhibited.

【0029】第2実施形態:本実施形態では、白金/ル
テニウム/タングステン3元系触媒を製造した。但し、
本実施形態における3元系触媒で使用した担体、及び、
ルテニウムの担持工程、及び、熱処理については、第1
実施形態と同様である。従って、重複する記載は避け、
特徴のあるタングステンの担持工程のみについて説明す
る。
Second Embodiment In this embodiment, a ternary platinum / ruthenium / tungsten catalyst was manufactured. However,
A carrier used in the ternary catalyst in the present embodiment, and
The ruthenium loading step and the heat treatment
This is the same as the embodiment. Therefore, avoid duplicate descriptions,
Only the characteristic step of supporting tungsten will be described.

【0030】〔タングステンの担持〕0.4wt%のタ
ングステン溶液415g(タングステン含有量:1.6
6g)に、白金/ルテニウム2元系触媒15.38gを
浸漬させた。そしてこの混合溶液を1時間、攪拌し、ろ
過、洗浄して60℃で乾燥させて触媒を得た。
[Tungsten loading] 415 g of a 0.4 wt% tungsten solution (tungsten content: 1.6)
In 6 g), 15.38 g of a platinum / ruthenium binary catalyst was immersed. Then, the mixed solution was stirred for 1 hour, filtered, washed, and dried at 60 ° C. to obtain a catalyst.

【0031】以上の操作により製造される、白金/ルテ
ニウム/タングステン触媒の各担持金属の比率は1:
0.75:0.33である。この比率は、第1実施形態
の場合と同様、混合溶液中の金属含有量の変化により容
易に制御することができる。
The ratio of each supported metal of the platinum / ruthenium / tungsten catalyst produced by the above operation is 1:
0.75: 0.33. This ratio can be easily controlled by changing the metal content in the mixed solution, as in the case of the first embodiment.

【0032】[0032]

【実験例3】以上の製造方法により製造した白金/ルテ
ニウム/タングステン触媒について、実験例1と同様に
タングステンの担持比率を変化させて水素極側ハーフセ
ルテストを行い、各触媒の耐一酸化炭素触媒被毒性の評
価を行った。その測定結果を図5に示す。測定条件は実
験例1と同様である。尚、この際のルテニウムの担持率
は、0.75(白金を1とする)である。
[Experimental Example 3] The platinum / ruthenium / tungsten catalyst produced by the above-described production method was subjected to a half-cell test on the hydrogen electrode side while changing the tungsten loading ratio in the same manner as in Experimental Example 1, and the carbon monoxide resistant catalyst of each catalyst was obtained. Toxicity was evaluated. FIG. 5 shows the measurement results. The measurement conditions are the same as in Experimental Example 1. In this case, the loading ratio of ruthenium is 0.75 (platinum is 1).

【0033】図5から、本発明のようにタングステンを
0.2〜0.5の比率で添加した白金/ルテニウム/タ
ングステン触媒は、白金/ルテニウム2元系触媒の分極
値とほぼ同等であり、本発明に係る触媒は、十分な耐一
酸化炭素触媒被毒性を示すことが確認された。
FIG. 5 shows that the platinum / ruthenium / tungsten catalyst to which tungsten is added in a ratio of 0.2 to 0.5 as in the present invention has almost the same polarization value as the platinum / ruthenium binary catalyst. It was confirmed that the catalyst according to the present invention exhibited sufficient resistance to carbon monoxide catalyst poisoning.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、ル
テニウムの担持比率を従来より減少させつつ、耐一酸化
炭素触媒被毒性に優れた高分子固体電解質型燃料電池用
触媒を得ることができる。そして、その結果、触媒のコ
ストを大幅に低減させることができる。また、本発明の
触媒は、適当な炭素微粉末を担体として用い、金属担持
後に熱処理を施すことで担持された金属を合金化させる
ことができ、より高い耐一酸化炭素触媒被毒性を有する
触媒を製造することができる。
As described above, according to the present invention, it is possible to obtain a catalyst for a polymer solid oxide fuel cell excellent in the poisoning resistance of a carbon monoxide catalyst while reducing the ruthenium loading ratio as compared with the conventional one. it can. As a result, the cost of the catalyst can be significantly reduced. Further, the catalyst of the present invention can use a suitable fine carbon powder as a carrier, and heat-treat the metal after carrying the metal to alloy the supported metal. Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の白金/ルテニウム2元系触媒のルテニウ
ム担持率を変化させた場合の耐一酸化炭素触媒被毒性
(分極値)の変化を模式的に示すグラフ。
FIG. 1 is a graph schematically showing a change in poisoning (polarization value) of a carbon monoxide resistant catalyst when the ruthenium loading rate of a conventional platinum / ruthenium binary catalyst is changed.

【図2】第1及び第2実施形態で用いた炭素粉末の細孔
分布を示すグラフ。
FIG. 2 is a graph showing a pore distribution of carbon powder used in the first and second embodiments.

【図3】モリブデンの比率を変化させたときの、白金/
ルテニウム/モリブデン触媒の水素極ハーフセル電池性
能の比較を示すグラフ。
FIG. 3 shows the results obtained by changing the ratio of molybdenum to platinum / molybdenum.
7 is a graph showing a comparison of hydrogen electrode half-cell battery performance of a ruthenium / molybdenum catalyst.

【図4】異なる白金/ルテニウム/モリブデン比で担持
させた複合触媒の水素極ハーフセル電池性能の比較を示
すグラフ。
FIG. 4 is a graph showing a comparison of the anode half-cell battery performance of composite catalysts supported at different platinum / ruthenium / molybdenum ratios.

【図5】タングステンの比率を変化させたときの、白金
/ルテニウム/タングステン触媒の水素極ハーフセル電
池性能の比較を示すグラフ。
FIG. 5 is a graph showing a comparison of the hydrogen electrode half-cell battery performance of a platinum / ruthenium / tungsten catalyst when the tungsten ratio is changed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/92 H01M 8/10 8/10 B01J 23/64 103M (72)発明者 井上 昌彦 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内 (72)発明者 山本 夕美 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内 Fターム(参考) 4G069 AA03 AA08 BA08A BA08B BB02A BB02B BC59A BC59B BC60A BC60B BC70A BC70B BC75A BC75B CC32 EC04X EC04Y EC05X EC18X EC18Y EC20 ED07 FA01 FB44 FC08 5H018 AA06 AS02 EE02 EE03 EE05 EE10 HH02 HH04 HH05 5H026 AA06 EE02 EE05 EE08 HH02 HH04 HH05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/92 H01M 8/10 8/10 B01J 23/64 103M (72) Inventor Masahiko Inoue Hiratsuka-shi, Kanagawa No. 2-3, Shinmachi Tanaka Kikinzoku Kogyo Co., Ltd. Technology Development Center (72) Inventor Yumi Yamamoto No. 2-3, Shinmachi, Hiratsuka-shi, Kanagawa Prefecture Tanaka Kikinzoku Kogyo Co., Ltd. Technology Development Center F term (reference) 4G069 AA03 AA08 BA08A BA08B BB02A BB02B BC59A BC59B BC60A BC60B BC70A BC70B BC75A BC75B CC32 EC04X EC04Y EC05X EC18X EC18Y EC20 ED07 FA01 FB44 FC08 5H018 AA06 AS02 EE02 EE03 EE05 EE10 HH02 HH04 HH05 5H005 AA06 EE02 H02H02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炭素粉末担体上に白金と2種以上の金属と
が担持された高分子固体電解質型燃料電池用触媒におい
て、白金とルテニウムとモリブデンとが1:0.25〜
1:0.2〜0.5(モル比)の比率で担持されている
ことを特徴とする固体電解質型燃料電池用触媒。
1. A catalyst for a solid polymer electrolyte fuel cell in which platinum and two or more metals are supported on a carbon powder carrier, wherein platinum, ruthenium and molybdenum are mixed in a ratio of 1: 0.25 to 1.25.
1: A catalyst for a solid oxide fuel cell, which is supported at a ratio of 0.2 to 0.5 (molar ratio).
【請求項2】炭素粉末担体上に白金と2種以上の金属と
が担持された高分子固体電解質型燃料電池用触媒におい
て、白金とルテニウムとタングステンとが1:0.25
〜2:0.25〜0.5(モル比)の比率で担持されて
いることを特徴とする高分子固体電解質型燃料電池用触
媒。
2. A catalyst for a solid polymer electrolyte fuel cell in which platinum and two or more metals are supported on a carbon powder carrier, wherein platinum, ruthenium and tungsten are mixed in a ratio of 1: 0.25.
(2) A catalyst for a solid polymer electrolyte fuel cell, which is supported at a ratio of 0.25 to 0.5 (molar ratio).
【請求項3】担体上の金属粒子が合金化した状態で担持
されている請求項1又は請求項2のいずれかに記載の高
分子固体電解質型燃料電池用触媒。
3. The catalyst for a solid polymer electrolyte fuel cell according to claim 1, wherein the metal particles on the carrier are supported in an alloyed state.
【請求項4】担体は、直径60オングストローム以下の
細孔を全細孔に対して20%以下の割合で有し、比表面
積が600〜1200m/gの炭素粉末である請求項
1〜請求項3のいずれかに記載の高分子固体電解質型燃
料電池用触媒。
4. The carrier is a carbon powder having pores having a diameter of 60 angstrom or less at a ratio of 20% or less to all the pores and a specific surface area of 600 to 1200 m 2 / g. Item 4. The catalyst for a polymer solid oxide fuel cell according to any one of Items 3 to 7.
【請求項5】請求項1〜請求項4のいずれかに記載の高
分子固体電解質型燃料電池用触媒を含んでなる電極を水
素極として備える高分子固体電解質型燃料電池。
5. A solid polymer electrolyte fuel cell comprising an electrode comprising the catalyst for a solid polymer electrolyte fuel cell according to claim 1 as a hydrogen electrode.
JP11185210A 1999-06-30 1999-06-30 Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell Pending JP2001015121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11185210A JP2001015121A (en) 1999-06-30 1999-06-30 Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11185210A JP2001015121A (en) 1999-06-30 1999-06-30 Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JP2001015121A true JP2001015121A (en) 2001-01-19

Family

ID=16166807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11185210A Pending JP2001015121A (en) 1999-06-30 1999-06-30 Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JP2001015121A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057080A1 (en) * 2004-11-25 2006-06-01 Ricoh Company, Ltd. Electrode catalyst, method for preparation thereof, direct alcohol fuel cell
JP2008091102A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel electrode catalyst for fuel cell, electrode/membrane assembly, fuel cell equipped with electrode/membrane assembly, and fuel cell system
JP2008091101A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell and fuel cell power generating system
JP2009072710A (en) * 2007-09-21 2009-04-09 Toshiba Corp Methanol oxidation catalyst and its manufacturing method
WO2011065471A1 (en) 2009-11-27 2011-06-03 国立大学法人山梨大学 Oxide-based stable high-potential carrier for solid polymer fuel cell
US7960070B2 (en) 2002-10-11 2011-06-14 Isamu Uchida Electrocatalyst for ethanol oxidation and direct ethanol fuel cell using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960070B2 (en) 2002-10-11 2011-06-14 Isamu Uchida Electrocatalyst for ethanol oxidation and direct ethanol fuel cell using the same
WO2006057080A1 (en) * 2004-11-25 2006-06-01 Ricoh Company, Ltd. Electrode catalyst, method for preparation thereof, direct alcohol fuel cell
JP2006179445A (en) * 2004-11-25 2006-07-06 Ricoh Co Ltd Electrode catalyst, method for manufacturing the same, and direct alcohol fuel cell
JP2008091102A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel electrode catalyst for fuel cell, electrode/membrane assembly, fuel cell equipped with electrode/membrane assembly, and fuel cell system
JP2008091101A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell and fuel cell power generating system
JP2009072710A (en) * 2007-09-21 2009-04-09 Toshiba Corp Methanol oxidation catalyst and its manufacturing method
WO2011065471A1 (en) 2009-11-27 2011-06-03 国立大学法人山梨大学 Oxide-based stable high-potential carrier for solid polymer fuel cell

Similar Documents

Publication Publication Date Title
Salgado et al. Pt–Ru electrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell
US6797667B2 (en) Process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
US6007934A (en) Co-tolerant anode catalyst for PEM fuel cells and a process for its preparation
JP5138584B2 (en) Method for producing electrode catalyst for fuel cell
US20030008197A1 (en) Platinum-ruthenium-nickel alloy for use as a fuel cell catalyst
JPH05129023A (en) Improved catalyst material
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
WO1999053557A1 (en) Improved composition of a selective oxidation catalyst for use in fuel cells
JPH0510979B2 (en)
EP1773488A2 (en) Catalyst support for an electrochemical fuel cell
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
JP5235863B2 (en) Fuel cell
US6339038B1 (en) Catalyst for a fuel cell containing polymer solid electrolyte and method for producing catalyst thereof
JP2003308849A (en) Catalyst for fuel electrode of high polymer solid electrolyte fuel cell
Du et al. Applications of RDE and RRDE methods in oxygen reduction reaction
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
US20090068546A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
EP0899348B1 (en) Co-tolerant platinum-zinc alloy suitable for use in a fuel cell electrode
JPH1074523A (en) Anode catalyst for fuel cell, its manufacture, anode for fuel cell, and fuel cell
JP2001015121A (en) Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
KR102234245B1 (en) Catalyst for solid polymer fuel cell and method for manufacturing same
JP2001015120A (en) Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
JP3098219B2 (en) Fuel electrode catalyst layer of polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090514