WO2006008929A1 - Fuel cell cathode manufacturing method and fuel cell manufacturing method - Google Patents

Fuel cell cathode manufacturing method and fuel cell manufacturing method Download PDF

Info

Publication number
WO2006008929A1
WO2006008929A1 PCT/JP2005/011966 JP2005011966W WO2006008929A1 WO 2006008929 A1 WO2006008929 A1 WO 2006008929A1 JP 2005011966 W JP2005011966 W JP 2005011966W WO 2006008929 A1 WO2006008929 A1 WO 2006008929A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
potential
catalyst
metal complex
manufacturing
Prior art date
Application number
PCT/JP2005/011966
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Sano
Satoshi Maruyama
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to JP2005518127A priority Critical patent/JPWO2006008929A1/en
Priority to US10/591,016 priority patent/US7927762B2/en
Publication of WO2006008929A1 publication Critical patent/WO2006008929A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a method for manufacturing a fuel cell power sword and a method for manufacturing a fuel cell.
  • a fuel cell may be a low temperature operation fuel cell such as an alkaline type, a solid polymer type, or a phosphoric acid type, and a high temperature operation fuel cell such as a molten carbonate type or a solid oxide type.
  • a polymer electrolyte fuel cell (PEFC) using a solid polymer as an electrolyte can achieve high density and high output with a compact structure, and can be operated with a simple system. Therefore, it has been widely researched not only for stationary distributed power sources but also for power sources for vehicles, etc. and is expected to be put to practical use.
  • DMFC direct alcohol fuel cell
  • anode fuel electrode
  • hydrogen ions are generated.
  • the hydrogen ions move through the electrolyte and reach the force sword (air electrode), which is supplied to the cathode to reduce oxygen. Based on these redox reactions, current flows between the two electrodes.
  • the direct alcohol fuel cell can be directly used for power generation without reforming the alcohol as a fuel into hydrogen or the like, it is not necessary to provide a separate fuel reforming device. It will have a structure. For this reason, the direct alcohol fuel cell is extremely easy to reduce in size and weight, and can be suitably used for portable power supply applications and the like.
  • the anode and force sword of these PEFCs are composed of, for example, two layers of a catalyst layer serving as a reaction field for electrode reaction and a diffusion layer for supplying reactants to the catalyst layer, transferring electrons, etc.
  • a catalyst contained in the catalyst layer a noble metal such as platinum or a noble metal alloy is generally used.
  • platinum is widely used as a force sword catalyst because it can maximize the current density of oxygen reduction when an electrode is formed and is stable even at a high potential.
  • an alloy of platinum and another metal is widely used as an anode catalyst.
  • Patent Document 1 describes the use of a mixture of a metal complex and a metal oxide as a force sword catalyst. And it is described that the 4-electron reduction reaction of oxygen proceeds apparently.
  • Patent Document 1 JP 2003-151567 A
  • Patent Document 1 when the catalyst described in Patent Document 1 is used as a force sword, it is difficult to obtain a sufficient current density that is significantly lower than that when platinum is used. There is a problem that.
  • the present invention has been made in view of the above-described problems of the prior art, and a method of manufacturing a fuel cell cathode capable of improving the current density per unit area of an electrode in a fuel cell. And it aims at providing the manufacturing method of a fuel cell.
  • the present invention provides a method for producing a power sword for a fuel cell comprising a catalyst layer containing a catalyst, wherein the precursor layer containing the catalyst is based on a standard hydrogen electrode.
  • a method for producing a power sword for a fuel cell comprising a potential application step of forming a catalyst layer by applying a potential nobler than 3 V.
  • the catalytic activity can be improved by applying a potential to the precursor layer containing the catalyst in the potential applying step.
  • the catalyst activity The present inventors speculate that the improvement in the property is due to the oxidation of impurities in the precursor layer by applying a potential and the improvement in the conductivity of the catalyst.
  • the current density of the electrode current density per unit electrode area when the fuel cell is constructed and used.
  • the cell voltage can be improved.
  • the potential application step it is preferable to apply a potential of 1.6 V or less to the precursor layer with reference to a standard hydrogen electrode.
  • the catalyst can be more activated and the current density tends to be further improved.
  • the cell voltage tends to be further improved by increasing the potential of the force sword.
  • this potential is 1.3 V or less, the activation of the catalyst is insufficient and the current density is insufficiently improved.
  • the potential exceeds 1.6 V the catalyst is oxidatively decomposed and the catalytic activity is immediately reduced. .
  • the potential application step it is preferable to apply a potential to the precursor layer by a potential sweep.
  • a potential to the precursor layer by potential sweeping the catalyst can be activated efficiently and sufficiently, and the current density of the electrode can be more sufficiently improved.
  • the catalyst is preferably a metal complex and Z or a fired metal complex obtained by firing the metal complex.
  • the effect of improving the catalytic activity by the production method of the present invention can be obtained particularly effectively when a metal complex and Z or a fired product of a metal complex are used as a catalyst. This is considered to be because, by applying a potential, the valence of the central metal of the metal complex and Z or the fired product of the metal complex takes a highly oxidized state and the catalytic activity is improved. Therefore, when a metal complex and Z or a fired product of a metal complex are used as a catalyst, the current density of the electrode can be dramatically improved.
  • the metal complex preferably has a porphyrin ring or a phthalocyanine ring.
  • the catalytic activity can be remarkably improved by the potential application step, and the current density of the electrode can be remarkably improved.
  • the activation of the catalyst improves the cycle characteristics, and an electrode with high output and high stability can be obtained.
  • Such an effect can be obtained by doping the crystalline or amorphous porphyrin layer hair dione in the potential application step to significantly improve the conductivity, or by rearranging the porphyrin layer by applying the potential, and thereby effective ions and ions.
  • the present inventors infer that it is obtained by forming an electron conductive path.
  • the metal complex is composed of at least one metal selected from the group consisting of Co, Fe, Ni, Cu, Mn, V and Ru as a central metal. It is preferable that
  • the precursor layer is formed by a coating method using a coating solution composed of the catalyst and a solvent capable of dissolving or dispersing the catalyst before the potential application step. It is preferable to include a body layer forming step.
  • the present invention is also a method for producing a fuel cell comprising an anode, a force sword, and a solid polymer electrolyte membrane disposed between the anode and the force sword.
  • the present invention also provides a method for producing a fuel cell, comprising an electrode forming step formed by the method for producing a power sword for a fuel cell of the present invention.
  • the current density of the obtained fuel cell is improved, and the fuel cell system is improved.
  • the energy density can be sufficiently improved.
  • the cell voltage can be improved sufficiently.
  • FIG. 1 is a schematic cross-sectional view showing a fuel cell including a cathode obtained by a preferred embodiment of a method for producing a power sword for a fuel cell of the present invention.
  • FIG. 2 is a graph showing the relationship between the potential and the current density in the potential sweep at the 50th cycle in Example 1.
  • FIG. 3 is a graph showing the relationship between the potential and the current density in the potential sweep at the 50th cycle in Example 2.
  • FIG. 4 is a graph showing the relationship between potential and current density in each electrode of Example 1 and Comparative Example 1.
  • FIG. 1 is a schematic cross-sectional view showing a fuel cell including an electrode obtained by a preferred embodiment of the method for producing a power sword for a fuel cell of the present invention.
  • the fuel cell 10 shown in FIG. 1 has a so-called membrane electrode assembly (MEA) form.
  • a fuel cell 10 shown in FIG. 1 mainly includes a solid polymer electrolyte membrane 1, an anode catalyst layer 2 and a force sword catalyst layer 3 that are in close contact with the membrane surface of the electrolyte membrane 1, and an outer surface of the anode catalyst layer 2.
  • the gas diffusion layer 4a is in close contact
  • the gas diffusion layer 4b is in close contact with the outer surface of the force sword catalyst layer 3, and the gas seal body 6.
  • separators 5 each having a groove 5a serving as a flow path for reactants to be supplied to the gas diffusion layers 4a and 4b are formed. .
  • the anode 20 is composed of the anode catalyst layer 2 and the gas diffusion layer 4a
  • the force sword 30 is composed of the force sword catalyst layer 3 and the gas diffusion layer 4b.
  • the gas diffusion layer 4a and the gas diffusion layer 4b in the anode 20 and the force sword 30 are usually porous. Made of a conductive base material.
  • Each of the diffusion layers 4a and 4b is not an essential component in the fuel cell 10, but promotes the diffusion of fuel into the anode catalyst layer 2 and the diffusion of gas into the force sword catalyst layer 3, and functions as a current collector. Therefore, it is preferable that the anode 20 and the force sword 30 are provided with the respective diffusion layers 4 and 5.
  • the method for producing a force sword according to the present invention is a method characterized in that the force sword catalyst layer 3 is formed through a potential applying step.
  • This potential application step is a step of applying a potential to the precursor layer that is the precursor of the force sword catalyst layer 3.
  • the precursor layer is a layer containing a catalyst to be contained in the force sword catalyst layer 3.
  • the configuration is not particularly limited.
  • the configuration includes only the catalyst, the configuration including the catalyst and an ion exchange resin capable of binding the catalyst, and the catalyst as a carbon material. Examples include a configuration including a supported catalyst and an ion exchange resin.
  • examples of the catalyst include precious metals, precious metal alloys, metal complexes, and fired metal complexes formed by firing a metal complex.
  • noble metal is Pt.
  • noble metal alloy examples include alloys of Pt and Ru, Sn, Mo, Ni, Co and the like.
  • Examples of the metal complex include metal phthalocyanines such as iron phthalocyanine, cobalt phthalocyanine, copper phthalocyanine, mangan phthalocyanine, and zinc phthalocyanine, iron tetraphenyl porphyrin, copper tetraphenylporphyrin, zinc tetraphenylporphyrin, cononorte tetraphenyl.
  • metal phthalocyanines such as iron phthalocyanine, cobalt phthalocyanine, copper phthalocyanine, mangan phthalocyanine, and zinc phthalocyanine
  • iron tetraphenyl porphyrin copper tetraphenylporphyrin
  • zinc tetraphenylporphyrin zinc tetraphenylporphyrin
  • cononorte tetraphenyl cononorte tetraphenyl.
  • metal porphyrins such as porphyrins, metal
  • the metal complex has a porphyrin ring or a phthalocyanine ring. Furthermore, the metal complex mainly includes at least one metal selected from the group consisting of Co, Fe, Ni, Cu, Mn, and V. More preferably, it is a metal.
  • Examples of the fired metal complex include those obtained by firing the above metal complexes, and those obtained by firing a metal complex having a borphyrin ring or a phthalocyanine ring are preferred. It is more preferable to fire a metal complex having at least one metal selected from the group consisting of e, Ni, Cu, Mn and V as a central metal.
  • the fired metal complex in the case of obtaining a fired metal complex, can be performed by treatment in an inert atmosphere at 500 to 800 ° C for 1 to 20 hours.
  • the above-mentioned supported catalyst it is preferable to carry out calcination after the metal complex is supported on the carbon material. This tends to make it possible to obtain a supported catalyst in which the fired metal complex is in a highly dispersed state and is in close contact with the carbon material.
  • the three-phase interface in which the reactant, the catalyst, and the electrolyte membrane 1 are present simultaneously can be increased, so that the electrode reaction can be improved. ] Can be generated efficiently.
  • a metal complex and / or a fired product of a metal complex it is preferable to use a metal complex and / or a fired product of a metal complex in the present invention.
  • a metal complex and / or metal complex fired product the current density is greatly increased because the valence of the central metal of the metal complex and / or metal complex fired product takes a highly oxidized state due to potential application and the catalytic activity is improved. Can be improved.
  • the conductivity is greatly improved by doping the crystalline or amorphous porphyrin layer hairion by applying a potential.
  • the rearrangement of the crystalline or amorphous vorphyrin layer by applying a potential will form an effective ion and electron conduction path, which can dramatically improve the current density.
  • the activation of the catalyst improves the cycle characteristics, and an electrode having high output and high stability can be obtained.
  • the average particle size of these catalysts is preferably:! To 2 Onm.
  • the carbon material include carbon black, activated carbon, carbon nanotube, and carbon nanohorn.
  • carbon black is preferable.
  • the specific surface area is preferably 250 to 1000 m 2 Zg from the viewpoint of forming a larger three-phase interface. From the same viewpoint, the average primary particle diameter of the carbon material is preferably 5 to 500 nm.
  • the supported amount of the catalyst is 10 to 85 on the basis of the total amount of the supported catalyst. It is preferable that it is mass%. If the supported amount is less than 10% by mass, the amount of the catalyst in the catalyst layer is insufficient, and the three-phase interface tends to be insufficient. On the other hand, if the supported amount exceeds 85% by mass, the catalysts agglomerate and the catalytic activity tends to be reduced.
  • the ion exchange resin contained in the precursor layer as necessary functions as a binder for binding the supported catalyst.
  • the strong ion exchange resin is not particularly limited as long as it can bind the supported catalyst, but has the same ion exchange property as the ion exchange resin used for the electrolyte membrane 1 constituting the fuel cell 10. It is preferable to have it. That is, it is preferable to use an anion exchange resin if the electrolyte membrane 1 is made of an anion exchange resin, and use a cation exchange resin if the electrolyte membrane 1 is made of a cation exchange resin. As a result, ion conduction is performed satisfactorily at the contact interface between the ion exchange resin, the catalyst, and the electrolyte membrane 1, and the energy density tends to be improved.
  • the anion exchange resin is preferably made of a polymer compound having a cationic group in the molecule.
  • the cationic group is preferably at least one selected from the group consisting of a pyridinium group, an alkylammonium group, and an imidazolium group.
  • anion exchange resins include quaternary ammonia-treated poly-4-bulupyridine, poly-2-bulupyridine, poly-2-methyl-5-bulupyridine, poly_1_pyridine-l-ylcarbonyl. Roxyethylene etc. are mentioned.
  • the quaternary ammonium-forming treatment of poly (4-bulupyridine) can be carried out by reacting poly (4-bulupyridine) with an alkyl halide such as methyl bromide or bromide acetyl.
  • a perfluorocarbon polymer having a sulfonic acid group for example, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group can be used.
  • the content of the ion exchange resin is preferably 10 to 50% by mass based on the total amount of the precursor layer.
  • the precursor layer can be formed by, for example, a vacuum deposition method or a coating method.
  • a coating solution comprising a catalyst and a solvent capable of dissolving or dispersing the catalyst is applied on the gas diffusion layer 4b.
  • the precursor layer can be formed by applying and drying.
  • a doctor blade method, a noznore method, screen printing, a gravure coat, a die coater, or the like can be employed.
  • the precursor layer has a structure including a catalyst and an ion exchange resin
  • the precursor layer can be formed by, for example, the above-described coating method.
  • the solvent used here is one that can dissolve or disperse the catalyst and can dissolve or disperse the ion exchange resin.
  • the precursor layer has a structure including a supported catalyst in which a catalyst is supported on a carbon material and an ion exchange resin
  • the precursor layer can be formed by the following procedure, for example.
  • a supported catalyst is obtained by mixing a catalyst and a carbon material by a ball mill or the like.
  • the mixing method can be appropriately selected and may be dry or wet.
  • a binder solution is prepared by dissolving or dispersing an ion exchange resin as a binder in a solvent, and a supported catalyst is placed in the binder solution, mixed, kneaded, and made into a paint.
  • kneading and coating can be performed by a commonly used kneader such as a ball mill, a twin-screw kneader, or a twin-screw extruder.
  • the obtained paint is applied onto the gas diffusion layer 4b and dried to form a precursor layer.
  • a coating method a doctor blade method, a nozzle method, screen printing, gravure coating, die coater or the like can be employed.
  • the gas diffusion layer 4b is formed of, for example, a porous body having electron conductivity.
  • the thickness of the gas diffusion layer 4b is preferably 10 to 300 zm.
  • a force sword catalyst layer 3 is formed by applying a noble potential from 1.3 V to the precursor layer with reference to the standard hydrogen electrode.
  • the applied potential is 1.3V It is preferable that the potential is 1.6 V or less. 1.4 V to: 1. 6 V is more preferable.
  • Application of a potential to the precursor layer in the potential application step can be performed by, for example, potential sweeping, constant potential holding, constant current electrolysis, or the like.
  • the cutoff potential is set to 1.4 V and 1.6 V, and the potential is swept at a sweep rate of about 0.1 mVZs to 500 mV / s.
  • activation is performed by using a galvanostat charging / discharging device to pass a current that makes the force sword potential nobler than 1.3 V for a certain period of time. can do.
  • a method of manufacturing a fuel cell 10 includes a method of manufacturing a fuel cell including an anode 20, a force sword 30, and a solid polymer electrolyte membrane 1 disposed between the anode 20 and the force sword 30.
  • a method comprising an electrode forming step of forming the force sword 30 by the above-described fuel cell force sword manufacturing method.
  • an anion exchange membrane or a cation exchange membrane is used as the electrolyte membrane 1.
  • the anion exchange resin and the cation exchange resin contained in the precursor layer as necessary are used.
  • the thickness of the electrolyte membrane 1 to be applied is preferably 10 to 300 ⁇ m.
  • the separator 5 is formed of a material having electronic conductivity, and examples of the material that can be used include carbon, resin-molded carbon, titanium, and stainless steel.
  • the anode 20 can be manufactured in the same manner as the force sword 30 described above except that the potential applying step is not performed.
  • the catalyst used for the anode catalyst layer 2 is preferably a noble metal alloy, a metal complex and / or a fired metal complex.
  • the noble metal alloy in particular, Pt—Ru, which hardly causes poisoning of the catalyst, is preferable.
  • the potential applying step may also be performed when the anode catalyst layer 2 is formed. in this case
  • the conductivity of the anode 20 tends to be improved.
  • the fuel cell 10 includes the electrolyte membrane 1 sandwiched between the anode 20 and the force sword 30, and further sandwiched between the separators 5 and sealed with the gas seal body 6. It can produce by doing.
  • the force sword is formed by the above-described method for manufacturing a power sword for a fuel cell, so that the current density is improved and the energy density of the fuel cell system is sufficiently high. Be improved. In addition, the cell voltage is sufficiently improved.
  • the fuel cell 10 thus obtained can use various fuels such as hydrogen and methanol as reactants supplied to the anode 20, and can be suitably applied as PEFC or DMFC.
  • the precursor layer serving as the precursor of the catalyst layer is formed by vapor deposition or coating on a substrate such as carbon paper, PET film, or PTFE film, or directly vapor deposited or coated on the electrolyte membrane 1. Can be formed. In this state, the precursor layer And a catalyst layer can be formed by performing an electric potential provision process.
  • the catalyst layer is transferred from the base material to the electrolyte membrane 1 when the fuel cell 10 is formed.
  • the transfer can be performed by, for example, a method of bonding the catalyst layers 2 and 3 to the electrolyte membrane 1 by hot pressing or the like and then peeling the substrate.
  • a laminate in which a precursor layer is formed on the disk electrode is used as a working electrode, platinum is used as a counter electrode, a standard hydrogen electrode (SHE) is used as a reference electrode, and oxygen is used as an electrolyte.
  • SHE standard hydrogen electrode
  • oxygen is used as an electrolyte.
  • potential was applied to the laminate by sweeping the potential for 50 cycles at lOOmVZs in the range of 1.4 V to 0.05 V.
  • a catalyst layer was formed, and the production of the electrode was completed.
  • Figure 2 shows the relationship between the potential and the current density in the 50th cycle potential sweep.
  • Example 2 An electrode of Example 2 was produced in the same manner as Example 1 except that the potential sweep for the laminate was performed in the range of 1.6 V to 0.05 V. The relationship between the potential and the current density in the potential sweep at the 50th cycle in Example 2 is shown in FIG.
  • a metal complex 20 mg of 5, 10, 15, 20-tetraphenylporphyrinatocobalt (II) (manufactured by Aldrich) was dissolved in 10 ml of N-methylpyrrolidone to prepare a coating solution. This coating solution was dropped onto a glassy carbon 6 mm ⁇ disk electrode to form a uniform coating film and dried to form a precursor layer made of a metal complex. At this time, it was confirmed from the weight change before and after the formation of the precursor layer that the coating amount of the metal complex was 20 ⁇ g / cm 2 .
  • a laminate in which a precursor layer is formed on this disk electrode is used as a working electrode, platinum is used as a counter electrode, a standard hydrogen electrode (SHE) is used as a reference electrode, and oxygen is used as an electrolyte.
  • SHE standard hydrogen electrode
  • oxygen is used as an electrolyte.
  • potential was applied to the laminate by sweeping the potential for 50 cycles at lOOmVZs in the range of 1.4 V to 0.05 V.
  • a catalyst layer was formed, and the production of the electrode was completed.
  • a coating solution was prepared by dissolving 20 mg of 5, 10, 15, 20-tetraphenylporphyrinatoiron (III) chloride (manufactured by Aldrich) in 10 ml of N-methylpyrrolidone as a metal complex.
  • This coating solution was dropped on a glassy carbon 6mm ⁇ disk electrode to form a uniform coating film and dried to form a precursor layer having a metal complex strength. At this time, it was confirmed from the weight change before and after the precursor layer formation that the coating amount of the metal complex was 20 ⁇ g / cm 2 .
  • a laminate in which a precursor layer is formed on the disk electrode is used as a working electrode, platinum is used as a counter electrode, a standard hydrogen electrode (SHE) is used as a reference electrode, and oxygen is saturated in an electrolyte.
  • SHE standard hydrogen electrode
  • a 0.5 M sulfuric acid aqueous solution was used to apply a potential by sweeping the laminate for 50 cycles at 100 mV / s in the range of 1.4 V to 0.05 V.
  • a catalyst layer was formed, and the production of the electrode was completed.
  • a coating solution was prepared by dissolving 20 mg of nickel (II) phthalocyanine (manufactured by Aldrich) as a metal complex in 10 ml of N-methylpyrrolidone. This coating solution was dropped onto a glassy carbon 6 mm ⁇ disk electrode to form a uniform coating film and dried to form a precursor layer made of a metal complex. At this time, it was confirmed from the weight change before and after the precursor layer formation that the coating amount of the metal complex was 20 ⁇ gZcm 2 .
  • a laminate in which a precursor layer is formed on the disk electrode is used as a working electrode, platinum is used as a counter electrode, a standard hydrogen electrode (SHE) is used as a reference electrode, and oxygen is used as an electrolyte.
  • SHE standard hydrogen electrode
  • oxygen is used as an electrolyte.
  • potential was applied to the laminate by sweeping the potential for 50 cycles at lOOmVZs in the range of 1.4 V to 0.05 V. This forms a catalyst layer, The production of the electrode was completed.
  • An electrode of Comparative Example 1 was produced in the same manner as Example 1 except that no potential sweep was performed on the laminate.
  • the potential sweep for the laminate is 1.1V to 0.05V in Comparative Example 2, 1.3V to 0.05V in Comparative Example 3, 1.3V to 0.05V in Comparative Example 4.
  • the electrodes of Comparative Examples 2 to 4 were produced in the same manner as in Example 1 except that the above steps were performed.
  • FIG. 4 shows the relationship between potential and current density for each electrode of Example 1 and Comparative Example 1.
  • the force sword is formed by the method of manufacturing the force sword of the present invention, so that the current density of the obtained fuel cell can be improved.
  • a method for producing a power sword for a fuel cell capable of improving the current density and a method for producing a fuel cell capable of improving the energy density. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

There is provided a fuel cell cathode manufacturing method which is a method for manufacturing a fuel cell cathode including a catalyst layer containing catalyst. The method includes a potential application process for forming the catalyst layer by applying noble potential higher than 1.3V, assuming the standard hydrogen electrode as a reference, to a precursor layer containing the catalyst.

Description

明 細 書  Specification
燃料電池用力ソードの製造方法及び燃料電池の製造方法  Method for producing power sword for fuel cell and method for producing fuel cell
技術分野  Technical field
[0001] 本発明は、燃料電池用力ソードの製造方法及び燃料電池の製造方法に関する。  The present invention relates to a method for manufacturing a fuel cell power sword and a method for manufacturing a fuel cell.
背景技術  Background art
[0002] 近年、燃料電池は、発電効率が高ぐ反応生成物が原理的には水のみであり、環 境性にも優れているエネルギー供給源として注目されている。このような燃料電池は 、用いられる電解質の種類により、アルカリ型、固体高分子型、リン酸型等の低温動 作燃料電池と、溶融炭酸塩型、固体酸化物型等の高温動作燃料電池とに大別され る。なかでも、電解質に固体高分子を用いた固体高分子型燃料電池(PEFC : Polym er Electrolyte Fuel Cell)は、コンパクトな構造で高密度 ·高出力が得られ、かつ簡易 なシステムで運転が可能なことから、定置用分散電源だけでなく車両用等の電源とし ても広く研究され、実用化が大いに期待されている。  In recent years, fuel cells are attracting attention as an energy supply source in which the reaction product with high power generation efficiency is only water in principle and has excellent environmental properties. Depending on the type of electrolyte used, such a fuel cell may be a low temperature operation fuel cell such as an alkaline type, a solid polymer type, or a phosphoric acid type, and a high temperature operation fuel cell such as a molten carbonate type or a solid oxide type. It is roughly divided into In particular, a polymer electrolyte fuel cell (PEFC) using a solid polymer as an electrolyte can achieve high density and high output with a compact structure, and can be operated with a simple system. Therefore, it has been widely researched not only for stationary distributed power sources but also for power sources for vehicles, etc. and is expected to be put to practical use.
[0003] このような PEFCの一つとして、アルコール類を直接燃料として使用する直接アルコ ール型燃料電池があり、特に燃料にメタノールを用いた直接メタノール型燃料電池( DMFC: Direct Methanol Fuel Cell)が知られている。 DMFCにおいては、アノード( 燃料極)にメタノール及び水を供給すると、メタノールが水により酸化されて水素ィォ ンが生じる。この水素イオンは電解質を移動して力ソード(空気極)に到達し、このカソ ードに供給されてレ、る酸素を還元する。これらの酸化還元反応に基づレ、て両極間に 電流が流れる。  [0003] As one of such PEFCs, there is a direct alcohol fuel cell that uses alcohol as a direct fuel, especially a direct methanol fuel cell (DMFC) that uses methanol as the fuel. It has been known. In DMFC, when methanol and water are supplied to the anode (fuel electrode), methanol is oxidized by water and hydrogen ions are generated. The hydrogen ions move through the electrolyte and reach the force sword (air electrode), which is supplied to the cathode to reduce oxygen. Based on these redox reactions, current flows between the two electrodes.
[0004] このように、直接アルコール型燃料電池は、燃料であるアルコールを水素等に改質 することなく直接発電に用いることができることから、燃料改質用の装置を別途設ける 必要がなぐシンプノレな構造を有するものとなる。このため、直接アルコール型燃料 電池は、小型化及び軽量化が極めて容易であり、ポータブル型電源用途等に好適 に用いることができる。  [0004] As described above, since the direct alcohol fuel cell can be directly used for power generation without reforming the alcohol as a fuel into hydrogen or the like, it is not necessary to provide a separate fuel reforming device. It will have a structure. For this reason, the direct alcohol fuel cell is extremely easy to reduce in size and weight, and can be suitably used for portable power supply applications and the like.
[0005] これら PEFCのアノード及び力ソードは、例えば、電極反応の反応場となる触媒層と 、触媒層への反応物質の供給、電子の授受等を行うための拡散層との二層で構成さ れており、触媒層に含有される触媒としては、白金等の貴金属や貴金属合金等が一 般的に用いられている。 [0005] The anode and force sword of these PEFCs are composed of, for example, two layers of a catalyst layer serving as a reaction field for electrode reaction and a diffusion layer for supplying reactants to the catalyst layer, transferring electrons, etc. The As a catalyst contained in the catalyst layer, a noble metal such as platinum or a noble metal alloy is generally used.
[0006] 白金は、貴金属の中でも電極を形成した際に酸素還元の電流密度を最も大きくで き、高電位においても安定であるため、力ソードの触媒として広く用いられている。ま た、アノードの触媒としては、白金と他の金属との合金が広く用いられている。  [0006] Among noble metals, platinum is widely used as a force sword catalyst because it can maximize the current density of oxygen reduction when an electrode is formed and is stable even at a high potential. As an anode catalyst, an alloy of platinum and another metal is widely used.
[0007] しかし、白金は高価であるため、燃料電池普及のためのコスト削減と量産化の大き な障害になっている。そこで、白金に代わる触媒の検討がなされており、例えば、特 許文献 1には、力ソードの触媒として金属錯体と金属酸化物との混合物を用いること が記載されている。そして、これによつて見かけ上、酸素の 4電子還元反応が進行す ることが記載されている。  [0007] However, since platinum is expensive, it is a major obstacle to cost reduction and mass production for the spread of fuel cells. In view of this, a catalyst that replaces platinum has been studied. For example, Patent Document 1 describes the use of a mixture of a metal complex and a metal oxide as a force sword catalyst. And it is described that the 4-electron reduction reaction of oxygen proceeds apparently.
特許文献 1 :特開 2003— 151567号公報  Patent Document 1: JP 2003-151567 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力 ながら、上記特許文献 1に記載の触媒を力ソードに用いた場合には、酸素還 元電位が白金を用いた場合に比べて著しく低ぐ十分な電流密度を得ることが困難 であるという問題がある。 However, when the catalyst described in Patent Document 1 is used as a force sword, it is difficult to obtain a sufficient current density that is significantly lower than that when platinum is used. There is a problem that.
[0009] また、白金を触媒として用いた場合にも電流密度が十分高いとは言えず、このよう な電極においても電流密度の更なる向上が望まれている。 [0009] In addition, even when platinum is used as a catalyst, it cannot be said that the current density is sufficiently high, and further improvement of the current density is desired even in such an electrode.
[0010] 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、燃料電池に おける電極の単位面積当たりの電流密度を向上させることが可能な燃料電池用カソ ードの製造方法及び燃料電池の製造方法を提供することを目的とする。 [0010] The present invention has been made in view of the above-described problems of the prior art, and a method of manufacturing a fuel cell cathode capable of improving the current density per unit area of an electrode in a fuel cell. And it aims at providing the manufacturing method of a fuel cell.
課題を解決するための手段  Means for solving the problem
[0011] 上記目的を達成するために、本発明は、触媒を含有する触媒層を備える燃料電池 用力ソードの製造方法であって、上記触媒を含有する前駆体層に、標準水素電極を 基準として 1. 3Vより貴な電位を付与して上記触媒層を形成する電位付与工程を含 むことを特徴とする燃料電池用力ソードの製造方法を提供する。  [0011] In order to achieve the above object, the present invention provides a method for producing a power sword for a fuel cell comprising a catalyst layer containing a catalyst, wherein the precursor layer containing the catalyst is based on a standard hydrogen electrode. 1. A method for producing a power sword for a fuel cell, comprising a potential application step of forming a catalyst layer by applying a potential nobler than 3 V.
[0012] 力かる製造方法によれば、上記電位付与工程において触媒を含有する前駆体層 に電位を付与することにより、触媒活性を向上させることができる。このように触媒活 性が向上するのは、電位付与により前駆体層中の不純物が酸化除去されるとともに、 触媒の導電性が向上することによるものと本発明者らは推察する。そして、触媒活性 を向上させることにより、電極の電流密度 (燃料電池を構成し、それを使用する際の 電極単位面積当たりの電流密度)を向上させることができる。更に、上記電位付与ェ 程により力ソードの持つ固有の電位を上昇させることが可能であるため、セル電圧を 向上させることが可能となる。 [0012] According to the powerful manufacturing method, the catalytic activity can be improved by applying a potential to the precursor layer containing the catalyst in the potential applying step. Thus, the catalyst activity The present inventors speculate that the improvement in the property is due to the oxidation of impurities in the precursor layer by applying a potential and the improvement in the conductivity of the catalyst. By improving the catalytic activity, it is possible to improve the current density of the electrode (current density per unit electrode area when the fuel cell is constructed and used). Furthermore, since the inherent potential of the force sword can be increased by the potential application step, the cell voltage can be improved.
[0013] また、上記電位付与工程において、上記前駆体層に、標準水素電極を基準として 1. 6V以下の電位を付与することが好ましい。  [0013] In the potential application step, it is preferable to apply a potential of 1.6 V or less to the precursor layer with reference to a standard hydrogen electrode.
[0014] このような電位を付与することにより、触媒をより活性化させることができ、電流密度 をより向上させることができる傾向がある。また、力ソードの電位の上昇により、セル電 圧をより向上させることができる傾向がある。なお、この電位が 1. 3V以下では、触媒 の活性化が不十分となって電流密度の向上が不十分となり、 1. 6Vを超えると、触媒 の酸化分解が生じやすぐ触媒活性が低下する。  [0014] By applying such a potential, the catalyst can be more activated and the current density tends to be further improved. In addition, the cell voltage tends to be further improved by increasing the potential of the force sword. When this potential is 1.3 V or less, the activation of the catalyst is insufficient and the current density is insufficiently improved. When the potential exceeds 1.6 V, the catalyst is oxidatively decomposed and the catalytic activity is immediately reduced. .
[0015] また、上記電位付与工程において、上記前駆体層への電位の付与は、電位掃引 により行うことが好ましい。電位掃引により前駆体層への電位の付与を行うことにより、 触媒の活性化を効率的に且つ十分に行うことができ、電極の電流密度をより十分に 向上させることができる。  [0015] In addition, in the potential application step, it is preferable to apply a potential to the precursor layer by a potential sweep. By applying a potential to the precursor layer by potential sweeping, the catalyst can be activated efficiently and sufficiently, and the current density of the electrode can be more sufficiently improved.
[0016] また、上記製造方法において、上記触媒は、金属錯体及び Z又は該金属錯体を 焼成してなる金属錯体焼成物であることが好ましい。  [0016] In the above production method, the catalyst is preferably a metal complex and Z or a fired metal complex obtained by firing the metal complex.
[0017] 本発明の製造方法による触媒活性の向上効果は、金属錯体及び Z又は金属錯体 焼成物を触媒として用いた場合に特に有効に得ることができる。これは、電位を付与 することにより、金属錯体及び Z又は金属錯体焼成物の中心金属の価数が高酸化 状態を取り、触媒活性が向上するためであると考えられる。したがって、金属錯体及 び Z又は金属錯体焼成物を触媒として用いた場合に、電極の電流密度を飛躍的に 向上させることができる。  [0017] The effect of improving the catalytic activity by the production method of the present invention can be obtained particularly effectively when a metal complex and Z or a fired product of a metal complex are used as a catalyst. This is considered to be because, by applying a potential, the valence of the central metal of the metal complex and Z or the fired product of the metal complex takes a highly oxidized state and the catalytic activity is improved. Therefore, when a metal complex and Z or a fired product of a metal complex are used as a catalyst, the current density of the electrode can be dramatically improved.
[0018] 更に、上記金属錯体は、ポルフィリン環又はフタロシアニン環を有するものであるこ とが好ましい。  [0018] Further, the metal complex preferably has a porphyrin ring or a phthalocyanine ring.
[0019] かかる金属錯体及び/又は該金属錯体を焼成してなる金属錯体焼成物を用いると 、電位付与工程によって触媒活性が飛躍的に向上し、電極の電流密度を飛躍的に 向上させることができる。また、触媒の活性化によりサイクル特性も向上し、高出力で 安定性の高い電極を得ることができる。かかる効果は、電位付与工程によって、結晶 あるいはアモルファス状のポルフィリン層ヘア二オンがドーピングされて導電性が大 幅に向上したり、上記ポルフィリン層が電位付与により再配列することによって、有効 なイオン及び電子の導電パスが形成されることで得られるものであると本発明者らは 推察する。 [0019] When a metal complex and / or a fired metal complex formed by firing the metal complex is used. In addition, the catalytic activity can be remarkably improved by the potential application step, and the current density of the electrode can be remarkably improved. In addition, the activation of the catalyst improves the cycle characteristics, and an electrode with high output and high stability can be obtained. Such an effect can be obtained by doping the crystalline or amorphous porphyrin layer hair dione in the potential application step to significantly improve the conductivity, or by rearranging the porphyrin layer by applying the potential, and thereby effective ions and ions. The present inventors infer that it is obtained by forming an electron conductive path.
[0020] また更に、上記効果をより効率的に得るために、上記金属錯体は、 Co、 Fe、 Ni、 C u、 Mn、 V及び Ruからなる群より選択される少なくとも一種の金属を中心金属とする ものであることが好ましい。  [0020] Furthermore, in order to obtain the above-described effect more efficiently, the metal complex is composed of at least one metal selected from the group consisting of Co, Fe, Ni, Cu, Mn, V and Ru as a central metal. It is preferable that
[0021] また、上記製造方法は、上記電位付与工程の前に、上記触媒と該触媒を溶解又は 分散可能な溶媒とからなる塗布液を用いて、塗布法により上記前駆体層を形成する 前駆体層形成工程を含むことが好ましい。前駆体層を塗布法により形成することによ り、上記電位付与工程による触媒活性の向上効果がより十分に得られ、電極の電流 密度をより十分に向上させることができる。  [0021] Further, in the above production method, the precursor layer is formed by a coating method using a coating solution composed of the catalyst and a solvent capable of dissolving or dispersing the catalyst before the potential application step. It is preferable to include a body layer forming step. By forming the precursor layer by a coating method, the effect of improving the catalytic activity by the potential application step can be more sufficiently obtained, and the current density of the electrode can be more sufficiently improved.
[0022] 本発明はまた、アノードと、力ソードと、上記アノードと上記力ソードとの間に配置さ れる固体高分子電解質膜と、を備える燃料電池の製造方法であって、上記力ソード を、上記本発明の燃料電池用力ソードの製造方法により形成する電極形成工程を含 むことを特徴とする燃料電池の製造方法を提供する。  [0022] The present invention is also a method for producing a fuel cell comprising an anode, a force sword, and a solid polymer electrolyte membrane disposed between the anode and the force sword. The present invention also provides a method for producing a fuel cell, comprising an electrode forming step formed by the method for producing a power sword for a fuel cell of the present invention.
[0023] 力かる燃料電池の製造方法によれば、力ソードを本発明の力ソードの製造方法によ り形成しているため、得られる燃料電池の電流密度が向上し、燃料電池システムのェ ネルギー密度を十分に向上させることができる。また、セル電圧を十分に向上させる こと力 Sできる。  [0023] According to the method for manufacturing a fuel cell, since the force sword is formed by the method for manufacturing the force sword of the present invention, the current density of the obtained fuel cell is improved, and the fuel cell system is improved. The energy density can be sufficiently improved. In addition, the cell voltage can be improved sufficiently.
発明の効果  The invention's effect
[0024] 本発明によれば、電流密度を向上させることが可能な燃料電池用力ソードの製造 方法、及び、エネルギー密度を向上させることが可能な燃料電池の製造方法を提供 すること力 Sできる。  [0024] According to the present invention, it is possible to provide a method for producing a fuel cell power sword capable of improving the current density and a method for producing a fuel cell capable of improving the energy density.
図面の簡単な説明 [0025] [図 1]本発明の燃料電池用力ソードの製造方法の好適な実施形態により得られたカソ ードを備える燃料電池を示す模式断面図である。 Brief Description of Drawings FIG. 1 is a schematic cross-sectional view showing a fuel cell including a cathode obtained by a preferred embodiment of a method for producing a power sword for a fuel cell of the present invention.
[図 2]実施例 1の 50サイクル目の電位掃引における電位と電流密度との関係を示す グラフである。  FIG. 2 is a graph showing the relationship between the potential and the current density in the potential sweep at the 50th cycle in Example 1.
[図 3]実施例 2の 50サイクル目の電位掃引における電位と電流密度との関係を示す グラフである。  FIG. 3 is a graph showing the relationship between the potential and the current density in the potential sweep at the 50th cycle in Example 2.
[図 4]実施例 1及び比較例 1の各電極における電位と電流密度との関係を示すグラフ である。  FIG. 4 is a graph showing the relationship between potential and current density in each electrode of Example 1 and Comparative Example 1.
符号の説明  Explanation of symbols
[0026] 1…固体高分子電解質膜、 2…アノード触媒層、 3…力ソード触媒層、 4a, 4b…ガス 拡散層、 5…セパレータ、 5a…セパレータ 5のガス供給溝、 6…ガスシーノレ体、 10· · · 燃料電池。  [0026] 1 ... solid polymer electrolyte membrane, 2 ... anode catalyst layer, 3 ... force sword catalyst layer, 4a, 4b ... gas diffusion layer, 5 ... separator, 5a ... gas supply groove of separator 5, 6 ... gas sheath body, 10 ··· Fuel cell.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。な お、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省 略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and duplicate descriptions are omitted.
[0028] 図 1は、本発明の燃料電池用力ソードの製造方法の好適な実施形態により得られ た電極を備える燃料電池を示す模式断面図である。図 1に示す燃料電池 10は、いわ ゆる膜電極接合体(MEA : Membrane Electrode Assembly)の形態を有している。図 1に示す燃料電池 10は、主として、固体高分子電解質膜 1と、この電解質膜 1の膜面 に密着したアノード触媒層 2及び力ソード触媒層 3と、アノード触媒層 2の外側の面に 密着したガス拡散層 4aと、力ソード触媒層 3の外側の面に密着したガス拡散層 4bと、 ガスシール体 6とにより構成されている。また、このガス拡散層 4a, 4bの外側には、こ れらに供給すべき反応物の流路となる溝 5aを当該ガス拡散層 4a, 4b側に備えるセ パレータ 5がそれぞれ形成されている。  FIG. 1 is a schematic cross-sectional view showing a fuel cell including an electrode obtained by a preferred embodiment of the method for producing a power sword for a fuel cell of the present invention. The fuel cell 10 shown in FIG. 1 has a so-called membrane electrode assembly (MEA) form. A fuel cell 10 shown in FIG. 1 mainly includes a solid polymer electrolyte membrane 1, an anode catalyst layer 2 and a force sword catalyst layer 3 that are in close contact with the membrane surface of the electrolyte membrane 1, and an outer surface of the anode catalyst layer 2. The gas diffusion layer 4a is in close contact, the gas diffusion layer 4b is in close contact with the outer surface of the force sword catalyst layer 3, and the gas seal body 6. Further, on the outside of the gas diffusion layers 4a and 4b, separators 5 each having a groove 5a serving as a flow path for reactants to be supplied to the gas diffusion layers 4a and 4b are formed. .
[0029] 燃料電池 10においては、アノード 20はアノード触媒層 2とガス拡散層 4aと力 構成 され、力ソード 30は力ソード触媒層 3とガス拡散層 4bとから構成されている。これらの アノード 20及び力ソード 30におけるガス拡散層 4a及びガス拡散層 4bは、通常、多孔 性の導電性基材からなる。各拡散層 4a及び 4bは、燃料電池 10において必須の構 成ではないが、アノード触媒層 2への燃料の拡散及び力ソード触媒層 3へのガスの拡 散を促進し、集電体の機能も同時に有することから、アノード 20及び力ソード 30には これら各拡散層 4及び 5が設けられていることが好ましい。 [0029] In the fuel cell 10, the anode 20 is composed of the anode catalyst layer 2 and the gas diffusion layer 4a, and the force sword 30 is composed of the force sword catalyst layer 3 and the gas diffusion layer 4b. The gas diffusion layer 4a and the gas diffusion layer 4b in the anode 20 and the force sword 30 are usually porous. Made of a conductive base material. Each of the diffusion layers 4a and 4b is not an essential component in the fuel cell 10, but promotes the diffusion of fuel into the anode catalyst layer 2 and the diffusion of gas into the force sword catalyst layer 3, and functions as a current collector. Therefore, it is preferable that the anode 20 and the force sword 30 are provided with the respective diffusion layers 4 and 5.
[0030] 以下、このような燃料電池 10における力ソード 30を製造する方法の好適な一実施 形態について説明する。  Hereinafter, a preferred embodiment of a method for producing the force sword 30 in the fuel cell 10 will be described.
[0031] 本発明の力ソードの製造方法は、力ソード触媒層 3を、電位付与工程を経て形成す ることを特徴とする方法である。この電位付与工程は、力ソード触媒層 3の前駆体とな る前駆体層に電位を付与する工程である。  [0031] The method for producing a force sword according to the present invention is a method characterized in that the force sword catalyst layer 3 is formed through a potential applying step. This potential application step is a step of applying a potential to the precursor layer that is the precursor of the force sword catalyst layer 3.
[0032] まず、前駆体層について説明する。前駆体層は、力ソード触媒層 3に含有されるべ き触媒を含有する層である。上記触媒を含有する限りにおいては、その構成は特に 制限されず、例えば、触媒のみからなる構成、触媒と該触媒を結着可能なイオン交 換樹脂とを含む構成、及び、触媒をカーボン材料に担持した担持触媒とイオン交換 樹脂とを含む構成等が挙げられる。  First, the precursor layer will be described. The precursor layer is a layer containing a catalyst to be contained in the force sword catalyst layer 3. As long as the catalyst is contained, the configuration is not particularly limited. For example, the configuration includes only the catalyst, the configuration including the catalyst and an ion exchange resin capable of binding the catalyst, and the catalyst as a carbon material. Examples include a configuration including a supported catalyst and an ion exchange resin.
[0033] ここで、上記触媒としては、例えば、貴金属、貴金属合金、金属錯体、金属錯体を 焼成してなる金属錯体焼成物等が挙げられる。  [0033] Here, examples of the catalyst include precious metals, precious metal alloys, metal complexes, and fired metal complexes formed by firing a metal complex.
[0034] 貴金属としては、例えば、 Ptが挙げられる。また、貴金属合金としては、例えば、 Pt と、 Ru、 Sn、 Mo、 Ni、 Co等との合金が挙げられる。  [0034] An example of the noble metal is Pt. Examples of the noble metal alloy include alloys of Pt and Ru, Sn, Mo, Ni, Co and the like.
[0035] 金属錯体としては、鉄フタロシアニン、コバルトフタロシアニン、銅フタロシアニン、マ ンガンフタロシアニン、亜鉛フタロシアニン等の金属フタロシアニン、鉄テトラフェニル ポルフィリン、銅テトラフヱ二ルポルフィリン、亜鉛テトラフヱ二ルポルフィリン、コノ ノレト テトラフヱ二ルポルフィリン等の金属ポリフィリン、ルテニウムアンミン錯体、コバルトァ ンミン錯体、コバルトエチレンジアミン錯体等の金属錯体等が挙げられる。これらの中 でも、金属錯体は、ポルフィリン環又はフタロシアニン環を有するものであることが好 ましぐ更に、 Co、 Fe、 Ni、 Cu、 Mn及び Vからなる群より選択される少なくとも一種の 金属を中心金属とするものであることがより好ましい。  [0035] Examples of the metal complex include metal phthalocyanines such as iron phthalocyanine, cobalt phthalocyanine, copper phthalocyanine, mangan phthalocyanine, and zinc phthalocyanine, iron tetraphenyl porphyrin, copper tetraphenylporphyrin, zinc tetraphenylporphyrin, cononorte tetraphenyl. Examples thereof include metal porphyrins such as porphyrins, metal complexes such as ruthenium ammine complexes, cobaltamine complexes, and cobalt ethylenediamine complexes. Among these, it is preferable that the metal complex has a porphyrin ring or a phthalocyanine ring. Furthermore, the metal complex mainly includes at least one metal selected from the group consisting of Co, Fe, Ni, Cu, Mn, and V. More preferably, it is a metal.
[0036] 金属錯体焼成物としては、上記の金属錯体を焼成したものが挙げられ、ボルフイリ ン環又はフタロシアニン環を有する金属錯体を焼成したものが好ましぐ更に、 Co、 F e、 Ni、 Cu、 Mn及び Vからなる群より選択される少なくとも一種の金属を中心金属と する金属錯体を焼成したものがより好ましい。 [0036] Examples of the fired metal complex include those obtained by firing the above metal complexes, and those obtained by firing a metal complex having a borphyrin ring or a phthalocyanine ring are preferred. It is more preferable to fire a metal complex having at least one metal selected from the group consisting of e, Ni, Cu, Mn and V as a central metal.
[0037] ここで、金属錯体焼成物を得る場合、金属錯体の焼成は、 500〜800°Cの不活性 雰囲気中で 1〜20時間処理することにより行うことができる。なお、上述した担持触媒 を用いる場合は、金属錯体をカーボン材料に担持させた後に焼成を行うことが好まし レ、。これにより、金属錯体焼成物が高分散状態でカーボン材料に密着した担持触媒 を得ることが可能となる傾向がある。このような担持触媒を用いると、反応物と、触媒と 、電解質膜 1とが同時に存在する三相界面を増大させることができるため、電極反応 を ¾!]率よく生じさせることができる。  [0037] Here, in the case of obtaining a fired metal complex, the fired metal complex can be performed by treatment in an inert atmosphere at 500 to 800 ° C for 1 to 20 hours. In the case of using the above-mentioned supported catalyst, it is preferable to carry out calcination after the metal complex is supported on the carbon material. This tends to make it possible to obtain a supported catalyst in which the fired metal complex is in a highly dispersed state and is in close contact with the carbon material. When such a supported catalyst is used, the three-phase interface in which the reactant, the catalyst, and the electrolyte membrane 1 are present simultaneously can be increased, so that the electrode reaction can be improved. ] Can be generated efficiently.
[0038] これらの触媒のうちでも、本発明においては、金属錯体及び/又は金属錯体焼成 物を用いることが好ましい。金属錯体及び/又は金属錯体焼成物を用いると、電位 の付与によって金属錯体及び/又は金属錯体焼成物の中心金属の価数が高酸化 状態を取り、触媒活性が向上するため、電流密度を大幅に向上させることができる。 特に、金属錯体及び/又は金属錯体焼成物の中でも上述した好ましレ、ものを用いる と、電位の付与によって、結晶あるいはアモルファス状のポルフィリン層ヘア二オンが ドーピングされて導電性が大幅に向上したり、結晶あるいはアモルファス状のボルフ ィリン層が電位付与により再配列することで、有効なイオン及び電子の導電パスが形 成され、電流密度を飛躍的に向上させることができると考えられる。また、触媒の活性 化によりサイクル特性も向上し、高出力で安定性の高い電極を得ることができる。  [0038] Among these catalysts, it is preferable to use a metal complex and / or a fired product of a metal complex in the present invention. When a metal complex and / or metal complex fired product is used, the current density is greatly increased because the valence of the central metal of the metal complex and / or metal complex fired product takes a highly oxidized state due to potential application and the catalytic activity is improved. Can be improved. In particular, when the preferred ones mentioned above are used among the metal complexes and / or the fired metal complex, the conductivity is greatly improved by doping the crystalline or amorphous porphyrin layer hairion by applying a potential. In addition, the rearrangement of the crystalline or amorphous vorphyrin layer by applying a potential will form an effective ion and electron conduction path, which can dramatically improve the current density. In addition, the activation of the catalyst improves the cycle characteristics, and an electrode having high output and high stability can be obtained.
[0039] また、これらの触媒の平均粒子径は、より大きな三相界面を形成する観点から:!〜 2 Onmであることが好ましい。  [0039] From the viewpoint of forming a larger three-phase interface, the average particle size of these catalysts is preferably:! To 2 Onm.
[0040] このような触媒をカーボン材料に担持させる場合、カーボン材料としては、例えば、 カーボンブラック、活性炭、カーボンナノチューブ、カーボンナノホーン等が挙げられ る。これらの中でもカーボンブラックが好ましい。カーボン材料としてカーボンブラック を用いる場合、その比表面積は 250〜: 1000m2Zgであることが、より大きな三相界 面を形成する観点から好ましい。また、同様の観点から、カーボン材料の平均一次粒 子径は 5〜500nmであることが好ましい。 [0040] When such a catalyst is supported on a carbon material, examples of the carbon material include carbon black, activated carbon, carbon nanotube, and carbon nanohorn. Among these, carbon black is preferable. When carbon black is used as the carbon material, the specific surface area is preferably 250 to 1000 m 2 Zg from the viewpoint of forming a larger three-phase interface. From the same viewpoint, the average primary particle diameter of the carbon material is preferably 5 to 500 nm.
[0041] 更に、担持触媒において、触媒の担持量は、担持触媒全量を基準として 10〜85 質量%であることが好ましい。担持量が 10質量%未満であると、触媒層中の触媒の 量が不十分となり三相界面を十分に確保できなくなる傾向にある。一方、担持量が 8 5質量%を超えると、触媒同士の凝集が生じ、触媒活性が低下する傾向にある。 [0041] Further, in the supported catalyst, the supported amount of the catalyst is 10 to 85 on the basis of the total amount of the supported catalyst. It is preferable that it is mass%. If the supported amount is less than 10% by mass, the amount of the catalyst in the catalyst layer is insufficient, and the three-phase interface tends to be insufficient. On the other hand, if the supported amount exceeds 85% by mass, the catalysts agglomerate and the catalytic activity tends to be reduced.
[0042] 前駆体層に必要に応じて含有されるイオン交換樹脂は、上記担持触媒を結着させ るバインダーとして機能するものである。力かるイオン交換樹脂としては、上記担持触 媒を結着させることが可能なものであれば特に制限されないが、燃料電池 10を構成 する電解質膜 1に使用するイオン交換樹脂と同じイオン交換性を有するものであるこ とが好ましい。すなわち、電解質膜 1がァニオン交換樹脂により形成されていればァ 二オン交換樹脂、電解質膜 1がカチオン交換樹脂により形成されていればカチオン 交換樹脂を用いることが好ましい。これにより、当該イオン交換樹脂と触媒と電解質 膜 1との接触界面において、イオン伝導が良好に行われることとなり、エネルギー密 度を向上させることが可能となる傾向がある。  [0042] The ion exchange resin contained in the precursor layer as necessary functions as a binder for binding the supported catalyst. The strong ion exchange resin is not particularly limited as long as it can bind the supported catalyst, but has the same ion exchange property as the ion exchange resin used for the electrolyte membrane 1 constituting the fuel cell 10. It is preferable to have it. That is, it is preferable to use an anion exchange resin if the electrolyte membrane 1 is made of an anion exchange resin, and use a cation exchange resin if the electrolyte membrane 1 is made of a cation exchange resin. As a result, ion conduction is performed satisfactorily at the contact interface between the ion exchange resin, the catalyst, and the electrolyte membrane 1, and the energy density tends to be improved.
[0043] 上記ァニオン交換樹脂としては、分子内にカチオン基を有する高分子化合物から なるものが好ましい。また、上記カチオン基は、ピリジニゥム基、アルキルアンモニゥム 基及びイミダゾリゥム基からなる群より選択される少なくとも一種であることが好ましレ、 。このようなァニオン交換樹脂としては、例えば、 4級アンモニゥム化処理したポリー4 —ビュルピリジン、ポリ一 2—ビュルピリジン、ポリ一 2—メチル 5—ビュルピリジン、 ポリ _ 1 _ピリジン一 4—ィルカルボ二ロキシエチレン等が挙げられる。ここで、ポリ一 4—ビュルピリジンの 4級アンモニゥム化処理は、ポリ _4—ビュルピリジンを、臭化メ チル、臭化工チル等のアルキルノヽライドと反応させることによって行うことができる。  [0043] The anion exchange resin is preferably made of a polymer compound having a cationic group in the molecule. The cationic group is preferably at least one selected from the group consisting of a pyridinium group, an alkylammonium group, and an imidazolium group. Examples of such anion exchange resins include quaternary ammonia-treated poly-4-bulupyridine, poly-2-bulupyridine, poly-2-methyl-5-bulupyridine, poly_1_pyridine-l-ylcarbonyl. Roxyethylene etc. are mentioned. Here, the quaternary ammonium-forming treatment of poly (4-bulupyridine) can be carried out by reacting poly (4-bulupyridine) with an alkyl halide such as methyl bromide or bromide acetyl.
[0044] また、上記カチオン交換樹脂としては、例えば、スルホン酸基を有するパーフルォ 口カーボン重合体、ポリサルホン樹脂、ホスホン酸基又はカルボン酸基を有するパー フルォロカーボン重合体等を用いることができる。  [0044] Further, as the cation exchange resin, for example, a perfluorocarbon polymer having a sulfonic acid group, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group can be used.
[0045] また、かかるイオン交換樹脂の含有量は、前駆体層全量を基準として 10〜50質量 %であることが好ましい。  [0045] The content of the ion exchange resin is preferably 10 to 50% by mass based on the total amount of the precursor layer.
[0046] 前駆体層が触媒のみからなる構成を有するものである場合、当該前駆体層は、例 えば、真空蒸着法や塗布法により形成することができる。塗布法により形成する場合 は、触媒と該触媒を溶解又は分散可能な溶媒とからなる塗布液をガス拡散層 4b上に 塗布し、乾燥させることにより前駆体層を形成することができる。なお、塗布の方法と してはドクターブレード法ゃノズノレ法、スクリーン印刷やグラビアコート、ダイコーター 等を採用することができる。 [0046] When the precursor layer has a configuration composed only of a catalyst, the precursor layer can be formed by, for example, a vacuum deposition method or a coating method. When forming by a coating method, a coating solution comprising a catalyst and a solvent capable of dissolving or dispersing the catalyst is applied on the gas diffusion layer 4b. The precursor layer can be formed by applying and drying. As a coating method, a doctor blade method, a noznore method, screen printing, a gravure coat, a die coater, or the like can be employed.
[0047] 前駆体層が触媒とイオン交換樹脂とを含む構成を有するものである場合、当該前 駆体層は、例えば、上述の塗布法により形成することができる。なお、このときの溶媒 としては、触媒を溶解又は分散可能であるとともに、イオン交換樹脂を溶解又は分散 可能なものを用いる。  [0047] When the precursor layer has a structure including a catalyst and an ion exchange resin, the precursor layer can be formed by, for example, the above-described coating method. The solvent used here is one that can dissolve or disperse the catalyst and can dissolve or disperse the ion exchange resin.
[0048] 前駆体層が触媒をカーボン材料に担持した担持触媒とイオン交換樹脂とを含む構 成を有するものである場合、当該前駆体層は、例えば以下の手順で形成することが できる。  [0048] When the precursor layer has a structure including a supported catalyst in which a catalyst is supported on a carbon material and an ion exchange resin, the precursor layer can be formed by the following procedure, for example.
[0049] まず、触媒とカーボン材料とをボールミル等によって混合して担持触媒を得る。混 合方法は適宜選択することができ、乾式であっても湿式であってもよい。なお、触媒と して金属錯体焼成物を用いる場合には、混合した後に焼成を行って担持触媒とする ことが好ましい。  [0049] First, a supported catalyst is obtained by mixing a catalyst and a carbon material by a ball mill or the like. The mixing method can be appropriately selected and may be dry or wet. In the case of using a metal complex fired product as the catalyst, it is preferable to perform firing after mixing to obtain a supported catalyst.
[0050] その後、ノくインダ一としてのイオン交換樹脂を溶媒に溶解又は分散させたバインダ 一液を調製し、このバインダー液中に担持触媒を入れて混合、混練し、塗料化する。 ここで、混鍊、塗料化はボールミルや 2軸混鍊機、 2軸押し出し機等、通常用いられる 混鍊機により行うことができる。  [0050] Thereafter, a binder solution is prepared by dissolving or dispersing an ion exchange resin as a binder in a solvent, and a supported catalyst is placed in the binder solution, mixed, kneaded, and made into a paint. Here, kneading and coating can be performed by a commonly used kneader such as a ball mill, a twin-screw kneader, or a twin-screw extruder.
[0051] そして、得られた塗料をガス拡散層 4b上に塗布し、乾燥することによって前駆体層 を形成する。なお、塗布の方法としてはドクターブレード法やノズル法、スクリーン印 刷やグラビアコート、ダイコーター等を採用することができる。 [0051] Then, the obtained paint is applied onto the gas diffusion layer 4b and dried to form a precursor layer. As a coating method, a doctor blade method, a nozzle method, screen printing, gravure coating, die coater or the like can be employed.
[0052] ここで、ガス拡散層 4bは、例えば、電子伝導性を有する多孔質体により構成される[0052] Here, the gas diffusion layer 4b is formed of, for example, a porous body having electron conductivity.
。このような多孔質体としては、カーボンクロス、カーボンペーパー等が好ましい。 . As such a porous body, carbon cloth, carbon paper and the like are preferable.
[0053] また、ガス拡散層 4bの厚さは、 10〜 300 z mであることが好ましい。 [0053] The thickness of the gas diffusion layer 4b is preferably 10 to 300 zm.
[0054] 次に、上述した構成を有する前駆体層に対して電位を付与する電位付与工程につ いて説明する。 [0054] Next, a potential application step for applying a potential to the precursor layer having the above-described configuration will be described.
[0055] 電位付与工程においては、前駆体層に対し、標準水素電極を基準として 1. 3Vより 貴な電位を付与して力ソード触媒層 3を形成する。ここで、付与する電位は、 1. 3Vよ り貴であり、且つ、 1. 6V以下である電位であることが好ましぐ 1. 4V〜: 1. 6Vの範囲 の電位であることがより好ましい。 [0055] In the potential application step, a force sword catalyst layer 3 is formed by applying a noble potential from 1.3 V to the precursor layer with reference to the standard hydrogen electrode. Here, the applied potential is 1.3V It is preferable that the potential is 1.6 V or less. 1.4 V to: 1. 6 V is more preferable.
[0056] 電位付与工程における前駆体層に対する電位の付与は、例えば、電位掃引、定電 位保持、定電流電解等によって行うことができる。 [0056] Application of a potential to the precursor layer in the potential application step can be performed by, for example, potential sweeping, constant potential holding, constant current electrolysis, or the like.
[0057] 電位掃引により電位を付与する場合には、例えば、カットオフ電位を 1. 4Vと 1. 6V に設定し、掃引速度 0. lmVZs〜500mV/s程度で電位を掃引することによって活 性化することができる。 [0057] When applying a potential by sweeping the potential, for example, the cutoff potential is set to 1.4 V and 1.6 V, and the potential is swept at a sweep rate of about 0.1 mVZs to 500 mV / s. Can be
[0058] 定電位保持により電位を付与する場合には、例えば、ポテンシヨスタツトを用いて、 1 . 5Vの一定電位で一定時間電位を保持することにより活性化することができる。  [0058] In the case of applying a potential by holding a constant potential, for example, it can be activated by holding a potential at a constant potential of 1.5 V for a fixed time using a potentiostat.
[0059] 定電流電解により電位を付与する場合には、ガルバノスタツトゃ充放電装置を用い て、力ソード電位が 1. 3Vより貴な電位になるような電流を一定時間流すことによって 活性化することができる。  [0059] When applying a potential by constant-current electrolysis, activation is performed by using a galvanostat charging / discharging device to pass a current that makes the force sword potential nobler than 1.3 V for a certain period of time. can do.
[0060] かかる電位付与工程を行うことにより、前駆体層中の不純物が酸化除去されるととも に、触媒の導電性が向上し、触媒活性を向上させることができる。これにより、得られ る電極の電流密度を向上させることができる。また、力ソードの電位を上昇させ、セル 電圧を向上させることができる。なお、付与する電位が 1. 3V以下では、触媒の活性 化が不十分となって電流密度の向上が不十分となり、 1. 6Vを超えると、触媒の酸化 分解が生じやす 触媒活性が低下する。  By performing such a potential application step, impurities in the precursor layer are removed by oxidation, and the conductivity of the catalyst is improved, so that the catalytic activity can be improved. Thereby, the current density of the obtained electrode can be improved. Also, the cell voltage can be improved by increasing the potential of the force sword. When the applied potential is 1.3 V or less, the activation of the catalyst is insufficient and the current density is insufficiently improved. When the applied potential exceeds 1.6 V, the catalyst is liable to undergo oxidative decomposition. .
[0061] なお、電位掃引により前駆体層に上記範囲の電位を付与する場合には、電位掃引 を行う際の最大電位が上記範囲内となるようにして行う。  [0061] Note that when the potential in the above range is applied to the precursor layer by the potential sweep, the maximum potential when performing the potential sweep is in the above range.
[0062] 力かる電位付与工程により触媒層 3を形成することで燃料電池用力ソードの作製を 完了する。  [0062] The formation of the fuel cell power sword is completed by forming the catalyst layer 3 by a strong potential application step.
[0063] 次に、燃料電池 10の製造方法について説明する。  Next, a method for manufacturing the fuel cell 10 will be described.
[0064] 燃料電池 10の製造方法は、アノード 20と、力ソード 30と、上記アノード 20と上記力 ソード 30との間に配置される固体高分子電解質膜 1と、を備える燃料電池の製造方 法であって、上記力ソード 30を、上述した燃料電池用力ソードの製造方法により形成 する電極形成工程を含むことを特徴とする方法である。  [0064] A method of manufacturing a fuel cell 10 includes a method of manufacturing a fuel cell including an anode 20, a force sword 30, and a solid polymer electrolyte membrane 1 disposed between the anode 20 and the force sword 30. A method comprising an electrode forming step of forming the force sword 30 by the above-described fuel cell force sword manufacturing method.
[0065] ここで、電解質膜 1としては、ァニオン交換膜又はカチオン交換膜が用いられる。か 力るァニオン交換膜、カチオン交換膜の構成材料としては、上記前駆体層に必要に 応じて含有される上記ァニオン交換樹脂、上記カチオン交換樹脂がそれぞれ用いら れる。 Here, as the electrolyte membrane 1, an anion exchange membrane or a cation exchange membrane is used. Or As the constituent material of the strong anion exchange membrane and cation exchange membrane, the anion exchange resin and the cation exchange resin contained in the precursor layer as necessary are used.
[0066] また、力かる電解質膜 1の厚さは、 10〜300 μ mであることが好ましい。  [0066] Further, the thickness of the electrolyte membrane 1 to be applied is preferably 10 to 300 µm.
[0067] セパレータ 5は、電子伝導性を有する材料で形成されており、力かる材料としては、 例えば、カーボン、樹脂モールドカーボン、チタン、ステンレス等が挙げられる。  [0067] The separator 5 is formed of a material having electronic conductivity, and examples of the material that can be used include carbon, resin-molded carbon, titanium, and stainless steel.
[0068] また、アノード 20は、電位付与工程を行わない以外は上述した力ソード 30と同様に して作製することができる。アノード触媒層 2に使用する触媒としては、貴金属合金、 金属錯体及び/又は金属錯体焼成物が好ましい。貴金属合金としては、特に触媒 の被毒が生じにくい Pt— Ruが好ましい。 [0068] Further, the anode 20 can be manufactured in the same manner as the force sword 30 described above except that the potential applying step is not performed. The catalyst used for the anode catalyst layer 2 is preferably a noble metal alloy, a metal complex and / or a fired metal complex. As the noble metal alloy, in particular, Pt—Ru, which hardly causes poisoning of the catalyst, is preferable.
[0069] なお、アノード触媒層 2を形成する際にも、電位付与工程を行ってもよい。この場合[0069] It should be noted that the potential applying step may also be performed when the anode catalyst layer 2 is formed. in this case
、アノード 20の導電性が向上する傾向がある。 The conductivity of the anode 20 tends to be improved.
[0070] 燃料電池 10の製造方法において、燃料電池 10は、上記電解質膜 1を上記ァノー ド 20及び上記力ソード 30で挟み込み、これを更に、セパレータ 5で挟み込み、ガスシ ール体 6で封止することによって作製することができる。 In the method of manufacturing the fuel cell 10, the fuel cell 10 includes the electrolyte membrane 1 sandwiched between the anode 20 and the force sword 30, and further sandwiched between the separators 5 and sealed with the gas seal body 6. It can produce by doing.
[0071] このようにして作製された燃料電池 10は、力ソードが上述した燃料電池用力ソード の製造方法により形成されているため、電流密度が向上し、燃料電池システムのエネ ルギー密度が十分に向上される。また、セル電圧が十分に向上される。 [0071] In the fuel cell 10 manufactured in this manner, the force sword is formed by the above-described method for manufacturing a power sword for a fuel cell, so that the current density is improved and the energy density of the fuel cell system is sufficiently high. Be improved. In addition, the cell voltage is sufficiently improved.
[0072] また、こうして得られた燃料電池 10は、アノード 20に供給される反応物として水素 やメタノールなど種々の燃料を用いることができ、 PEFC又は DMFCとして好適に適 用できる。 [0072] Further, the fuel cell 10 thus obtained can use various fuels such as hydrogen and methanol as reactants supplied to the anode 20, and can be suitably applied as PEFC or DMFC.
[0073] 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施 形態に限定されるものではない。例えば、上記実施形態の説明においては、力ソード が触媒層と拡散層とから構成される場合について説明したが、本発明の力ソードの製 造方法は、力ソードが拡散層を有しない場合にも適用できる。  [0073] While the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments. For example, in the description of the above embodiment, the case where the force sword is composed of the catalyst layer and the diffusion layer has been described. Is also applicable.
[0074] この場合、触媒層の前駆体となる前駆体層は、例えば、カーボンペーパーや PET フィルム、 PTFEフィルム等の基材に蒸着あるいは塗布して形成したり、電解質膜 1に 直接蒸着あるいは塗布して形成することができる。そして、この状態で前駆体層に対 して電位付与工程を行うことで触媒層を形成することができる。 [0074] In this case, the precursor layer serving as the precursor of the catalyst layer is formed by vapor deposition or coating on a substrate such as carbon paper, PET film, or PTFE film, or directly vapor deposited or coated on the electrolyte membrane 1. Can be formed. In this state, the precursor layer And a catalyst layer can be formed by performing an electric potential provision process.
[0075] なお、触媒層を基材上に形成した場合には、燃料電池 10を形成する際に基材から 電解質膜 1に転写する。転写は、ホットプレス等により電解質膜 1に各触媒層 2及び 3 を接合し、その後基材を剥離する方法等により行うことができる。 When the catalyst layer is formed on the base material, the catalyst layer is transferred from the base material to the electrolyte membrane 1 when the fuel cell 10 is formed. The transfer can be performed by, for example, a method of bonding the catalyst layers 2 and 3 to the electrolyte membrane 1 by hot pressing or the like and then peeling the substrate.
実施例  Example
[0076] 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は 以下の実施例に限定されるものではない。  [0076] Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
[0077] [実施例 1]  [0077] [Example 1]
金属錯体として 5, 10, 15, 20—テトラフエ二ルポルフイリナトコバルト(II) (アルドリ ツチ社製)を、グラッシ一カーボン製の 6mm φディスク電極に真空蒸着法により蒸着 し、金属錯体力 なる前駆体層を形成した。このとき、蒸着前後の重量変化から、金 属錯体の被覆量が 20 μ gZcm2であることを確認した。 5, 10, 15, 20—Tetraphenylporphyrinatocobalt (II) (Aldrich Co.) is deposited on a glassy carbon 6mm φ disk electrode by vacuum deposition to produce a metal complex precursor. A body layer was formed. At this time, it was confirmed from the weight change before and after the vapor deposition that the coating amount of the metal complex was 20 μgZcm 2 .
[0078] 次に、このディスク電極上に前駆体層が形成された積層体を作用極とし、対極には 白金、参照極には標準水素電極(SHE)を用レ、、電解液には酸素飽和させた 0. 5M 硫酸水溶液を用いて、積層体を 1. 4V〜0. 05Vの範囲において lOOmVZsで 50 サイクル電位掃引することにより電位の付与を行った。これにより触媒層を形成して、 電極の作製を完了した。なお、 50サイクル目の電位掃引における電位と電流密度と の関係を図 2に示す。  Next, a laminate in which a precursor layer is formed on the disk electrode is used as a working electrode, platinum is used as a counter electrode, a standard hydrogen electrode (SHE) is used as a reference electrode, and oxygen is used as an electrolyte. Using a saturated 0.5 M aqueous sulfuric acid solution, potential was applied to the laminate by sweeping the potential for 50 cycles at lOOmVZs in the range of 1.4 V to 0.05 V. Thus, a catalyst layer was formed, and the production of the electrode was completed. Figure 2 shows the relationship between the potential and the current density in the 50th cycle potential sweep.
[0079] [実施例 2]  [0079] [Example 2]
積層体に対する電位掃引を、 1. 6V〜0. 05Vの範囲で行った以外は実施例 1と同 様にして、実施例 2の電極を作製した。なお、実施例 2の 50サイクル目の電位掃引に おける電位と電流密度との関係を図 3に示す  An electrode of Example 2 was produced in the same manner as Example 1 except that the potential sweep for the laminate was performed in the range of 1.6 V to 0.05 V. The relationship between the potential and the current density in the potential sweep at the 50th cycle in Example 2 is shown in FIG.
[0080] [実施例 3]  [0080] [Example 3]
金属錯体として 5, 10, 15, 20—テトラフエ二ルポルフイリナトコバルト(II) (アルドリ ツチ社製) 20mgを、 N—メチルピロリドン 10mlに溶解して塗布液を調製した。この塗 布液をグラッシ一カーボン製の 6mm φディスク電極に滴下して均一な塗膜を形成し 、乾燥させることにより、金属錯体からなる前駆体層を形成した。このとき、前駆体層 形成前後の重量変化から、金属錯体の被覆量が 20 μ g/cm2であることを確認した [0081] 次に、このディスク電極上に前駆体層が形成された積層体を作用極とし、対極には 白金、参照極には標準水素電極(SHE)を用レ、、電解液には酸素飽和させた 0. 5M 硫酸水溶液を用いて、積層体を 1. 4V〜0. 05Vの範囲において lOOmVZsで 50 サイクル電位掃引することにより電位の付与を行った。これにより触媒層を形成して、 電極の作製を完了した。 As a metal complex, 20 mg of 5, 10, 15, 20-tetraphenylporphyrinatocobalt (II) (manufactured by Aldrich) was dissolved in 10 ml of N-methylpyrrolidone to prepare a coating solution. This coating solution was dropped onto a glassy carbon 6 mmφ disk electrode to form a uniform coating film and dried to form a precursor layer made of a metal complex. At this time, it was confirmed from the weight change before and after the formation of the precursor layer that the coating amount of the metal complex was 20 μg / cm 2 . Next, a laminate in which a precursor layer is formed on this disk electrode is used as a working electrode, platinum is used as a counter electrode, a standard hydrogen electrode (SHE) is used as a reference electrode, and oxygen is used as an electrolyte. Using a saturated 0.5 M aqueous sulfuric acid solution, potential was applied to the laminate by sweeping the potential for 50 cycles at lOOmVZs in the range of 1.4 V to 0.05 V. Thus, a catalyst layer was formed, and the production of the electrode was completed.
[0082] [実施例 4]  [Example 4]
金属錯体として 5, 10, 15, 20—テトラフエ二ルポルフイリナト鉄(III)クロライド(ァ ルドリッチ社製) 20mgを、 N—メチルピロリドン 10mlに溶解して塗布液を調製した。こ の塗布液をグラッシ一カーボン製の 6mm φディスク電極に滴下して均一な塗膜を形 成し、乾燥させることにより、金属錯体力もなる前駆体層を形成した。このとき、前駆体 層形成前後の重量変化から、金属錯体の被覆量が 20 μ g/cm2であることを確認し た。 A coating solution was prepared by dissolving 20 mg of 5, 10, 15, 20-tetraphenylporphyrinatoiron (III) chloride (manufactured by Aldrich) in 10 ml of N-methylpyrrolidone as a metal complex. This coating solution was dropped on a glassy carbon 6mmφ disk electrode to form a uniform coating film and dried to form a precursor layer having a metal complex strength. At this time, it was confirmed from the weight change before and after the precursor layer formation that the coating amount of the metal complex was 20 μg / cm 2 .
[0083] 次に、このディスク電極上に前駆体層が形成された積層体を作用極とし、対極には 白金、参照極には標準水素電極(SHE)を用い、電解液には酸素飽和させた 0. 5M 硫酸水溶液を用いて、積層体を 1. 4V〜0. 05Vの範囲において 100mV/sで 50 サイクル電位掃引することにより電位の付与を行った。これにより触媒層を形成して、 電極の作製を完了した。  Next, a laminate in which a precursor layer is formed on the disk electrode is used as a working electrode, platinum is used as a counter electrode, a standard hydrogen electrode (SHE) is used as a reference electrode, and oxygen is saturated in an electrolyte. A 0.5 M sulfuric acid aqueous solution was used to apply a potential by sweeping the laminate for 50 cycles at 100 mV / s in the range of 1.4 V to 0.05 V. Thus, a catalyst layer was formed, and the production of the electrode was completed.
[0084] [実施例 5]  [0084] [Example 5]
金属錯体としてニッケル(II)フタロシアニン(アルドリッチ社製) 20mgを、 N—メチル ピロリドン 10mlに溶解して塗布液を調製した。この塗布液をグラッシ一カーボン製の 6mm φディスク電極に滴下して均一な塗膜を形成し、乾燥させることにより、金属錯 体からなる前駆体層を形成した。このとき、前駆体層形成前後の重量変化から、金属 錯体の被覆量が 20 μ gZcm2であることを確認した。 A coating solution was prepared by dissolving 20 mg of nickel (II) phthalocyanine (manufactured by Aldrich) as a metal complex in 10 ml of N-methylpyrrolidone. This coating solution was dropped onto a glassy carbon 6 mmφ disk electrode to form a uniform coating film and dried to form a precursor layer made of a metal complex. At this time, it was confirmed from the weight change before and after the precursor layer formation that the coating amount of the metal complex was 20 μgZcm 2 .
[0085] 次に、このディスク電極上に前駆体層が形成された積層体を作用極とし、対極には 白金、参照極には標準水素電極(SHE)を用レ、、電解液には酸素飽和させた 0. 5M 硫酸水溶液を用いて、積層体を 1. 4V〜0. 05Vの範囲において lOOmVZsで 50 サイクル電位掃引することにより電位の付与を行った。これにより触媒層を形成して、 電極の作製を完了した。 Next, a laminate in which a precursor layer is formed on the disk electrode is used as a working electrode, platinum is used as a counter electrode, a standard hydrogen electrode (SHE) is used as a reference electrode, and oxygen is used as an electrolyte. Using a saturated 0.5 M aqueous sulfuric acid solution, potential was applied to the laminate by sweeping the potential for 50 cycles at lOOmVZs in the range of 1.4 V to 0.05 V. This forms a catalyst layer, The production of the electrode was completed.
[0086] [比較例 1]  [0086] [Comparative Example 1]
積層体に対する電位掃引を行わなかった以外は実施例 1と同様にして、比較例 1 の電極を作製した。  An electrode of Comparative Example 1 was produced in the same manner as Example 1 except that no potential sweep was performed on the laminate.
[0087] [比較例 2〜4] [0087] [Comparative Examples 2 to 4]
積層体に対する電位掃引を、比較例 2においては 1. 1V〜0. 05Vの範囲、比較例 3においては 1. 2V〜0. 05Vの範囲、比較例 4においては 1. 3V〜0. 05Vの範囲 でそれぞれ行った以外は実施例 1と同様にして、比較例 2〜4の電極を作製した。  The potential sweep for the laminate is 1.1V to 0.05V in Comparative Example 2, 1.3V to 0.05V in Comparative Example 3, 1.3V to 0.05V in Comparative Example 4. The electrodes of Comparative Examples 2 to 4 were produced in the same manner as in Example 1 except that the above steps were performed.
[0088] (酸素還元電流密度の測定) [0088] (Measurement of oxygen reduction current density)
実施例:!〜 5及び比較例:!〜 4について、 0. 05Vにおける酸素還元電流密度を測 定した。その結果を表 1に示す。  For Examples:! To 5 and Comparative Examples:! To 4, the oxygen reduction current density at 0.05 V was measured. The results are shown in Table 1.
[0089] [表 1] [0089] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0090] 表 1に示した結果から明らかなように、実施例:!〜 5の電極では、比較例:!〜 4の電 極と比較して格段に大きな酸素還元電流密度が得られることが確認された。 [0090] As is apparent from the results shown in Table 1, the electrodes of Examples:! To 5 can obtain a significantly larger oxygen reduction current density than the electrodes of Comparative Examples:! To 4. confirmed.
[0091] (電流密度の評価)  [0091] (Evaluation of current density)
実施例 1、 4、 5及び比較例 1の電極を回転ディスク電極として用い、 1. 0V〜0. 05 Vの電位範囲において 100mV/sでサイクリックボルタンメトリーを行レ、、酸素還元電 流密度を測定した。このとき、実施例 1、 4、 5及び比較例 1の電極をそれぞれ作用極 として用い、対極には白金、参照極には標準水素電極(SHE)を用レ、、電解液には 酸素飽和させた 0. 5M硫酸水溶液を用いた。これらのうち、実施例 1及び比較例 1の 各電極について、電位と電流密度との関係を図 4に示す。このとき、実施例 1及び比 較例 1のレ、ずれの電極におレ、ても電位が 0. 2 V以下の領域でほぼ一定の電流が流 れており、限界拡散電流に達していることが確認された。実施例 1、 4、 5及び比較例 1のそれぞれの電極を用いた場合について、電位が 0. 2Vのときの回転数 2500rpm における電流密度を表 2に示す。 Using the electrodes of Examples 1, 4, 5 and Comparative Example 1 as rotating disk electrodes, cyclic voltammetry was performed at 100 mV / s in the potential range of 1.0 V to 0.05 V, and the oxygen reduction current density was It was measured. At this time, the electrodes of Examples 1, 4, 5 and Comparative Example 1 were respectively connected to the working electrode. The counter electrode was platinum, the reference electrode was a standard hydrogen electrode (SHE), and the electrolyte was an oxygen-saturated 0.5M aqueous sulfuric acid solution. Among these, FIG. 4 shows the relationship between potential and current density for each electrode of Example 1 and Comparative Example 1. At this time, even in the electrodes of Example 1 and Comparative Example 1 and the misaligned electrodes, a substantially constant current flows in the region where the potential is 0.2 V or less, and the critical diffusion current is reached. It was confirmed. Table 2 shows the current density at a rotational speed of 2500 rpm when the potential is 0.2 V when the electrodes of Examples 1, 4, and 5 and Comparative Example 1 are used.
[表 2]  [Table 2]
Figure imgf000017_0001
Figure imgf000017_0001
[0093] 表 2に示した結果から明らかなように、実施例 1、 4及び 5の電極によれば、比較例 1 の電極と比較して、 0. 2V (SHE基準)での酸素還元の電流密度が向上していること が確認された。 [0093] As is apparent from the results shown in Table 2, according to the electrodes of Examples 1, 4 and 5, compared with the electrode of Comparative Example 1, the oxygen reduction at 0.2 V (SHE standard) It was confirmed that the current density was improved.
[0094] 以上より、本発明の燃料電池用力ソードの製造方法によれば、得られる電極の電流 密度を向上させることができることが確認された。  From the above, it was confirmed that the current density of the obtained electrode can be improved according to the method for producing a power sword for a fuel cell of the present invention.
[0095] また、本発明の燃料電池の製造方法によれば、力ソードを本発明の力ソードの製造 方法により形成するため、得られる燃料電池の電流密度を向上させることが可能であ る。 [0095] Further, according to the method of manufacturing a fuel cell of the present invention, the force sword is formed by the method of manufacturing the force sword of the present invention, so that the current density of the obtained fuel cell can be improved.
産業上の利用可能性  Industrial applicability
[0096] 以上説明したように、本発明によれば、電流密度を向上させることが可能な燃料電 池用力ソードの製造方法、及び、エネルギー密度を向上させることが可能な燃料電 池の製造方法を提供することができる。 [0096] As described above, according to the present invention, a method for producing a power sword for a fuel cell capable of improving the current density, and a method for producing a fuel cell capable of improving the energy density. Can be provided.

Claims

請求の範囲 The scope of the claims
[1] 触媒を含有する触媒層を備える燃料電池用力ソードの製造方法であって、  [1] A method for producing a power sword for a fuel cell comprising a catalyst layer containing a catalyst,
前記触媒を含有する前駆体層に、標準水素電極を基準として 1. 3Vより貴な電位 を付与して前記触媒層を形成する電位付与工程を含むことを特徴とする燃料電池用 力ソードの製造方法。  Production of a power sword for a fuel cell, comprising a step of applying a potential to the precursor layer containing the catalyst by applying a potential nobler than 1.3 V with respect to a standard hydrogen electrode as a reference. Method.
[2] 前記電位付与工程において、前記前駆体層に、標準水素電極を基準として 1. 6V 以下の電位を付与することを特徴とする請求項 1記載の燃料電池用力ソードの製造 方法。  2. The method for producing a fuel cell power sword according to claim 1, wherein in the potential application step, a potential of 1.6 V or less is applied to the precursor layer with reference to a standard hydrogen electrode.
[3] 前記電位付与工程において、前記前駆体層への電位の付与を、電位掃引により行 うことを特徴とする請求項 1又は 2記載の燃料電池用力ソードの製造方法。  [3] The method for producing a power sword for a fuel cell according to claim 1 or 2, wherein in the step of applying a potential, the potential is applied to the precursor layer by a potential sweep.
[4] 前記触媒は、金属錯体及び/又は該金属錯体を焼成してなる金属錯体焼成物で あることを特徴とする請求項 1〜3のうちのいずれか一項に記載の燃料電池用カソー ドの製造方法。  [4] The fuel cell cathode according to any one of claims 1 to 3, wherein the catalyst is a metal complex and / or a fired metal complex obtained by firing the metal complex. Manufacturing method.
[5] 前記金属錯体は、ポルフィリン環又はフタロシアニン環を有するものであることを特 徴とする請求項 4記載の燃料電池用力ソードの製造方法。  5. The method for producing a fuel cell power sword according to claim 4, wherein the metal complex has a porphyrin ring or a phthalocyanine ring.
[6] 前記金属錯体は、 Co、 Fe、 Ni、 Cu、 Mn、 V及び Ruからなる群より選択される少な くとも一種の金属を中心金属とするものであることを特徴とする請求項 5記載の燃料 電池用力ソードの製造方法。 6. The metal complex is characterized in that the central metal is at least one metal selected from the group consisting of Co, Fe, Ni, Cu, Mn, V, and Ru. The manufacturing method of the power sword for fuel cells as described.
[7] 前記電位付与工程の前に、前記触媒と該触媒を溶解又は分散可能な溶媒とから なる塗布液を用いて、塗布法により前記前駆体層を形成する前駆体層形成工程を含 むことを特徴とする請求項 1〜6のうちのいずれか一項に記載の燃料電池用力ソード の製造方法。 [7] A precursor layer forming step of forming the precursor layer by a coating method using a coating solution comprising the catalyst and a solvent capable of dissolving or dispersing the catalyst is included before the potential application step. The manufacturing method of the power sword for fuel cells as described in any one of Claims 1-6 characterized by the above-mentioned.
[8] アノードと、力ソードと、前記アノードと前記力ソードとの間に配置される固体高分子 電解質膜と、を備える燃料電池の製造方法であって、  [8] A method for producing a fuel cell comprising an anode, a force sword, and a solid polymer electrolyte membrane disposed between the anode and the force sword,
前記力ソードを、請求項 1〜7のうちのいずれか一項に記載の燃料電池用力ソード の製造方法により形成する電極形成工程を含むことを特徴とする燃料電池の製造方 法。  A method for manufacturing a fuel cell, comprising an electrode forming step of forming the force sword by the method for manufacturing a power sword for a fuel cell according to any one of claims 1 to 7.
PCT/JP2005/011966 2004-06-30 2005-06-29 Fuel cell cathode manufacturing method and fuel cell manufacturing method WO2006008929A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005518127A JPWO2006008929A1 (en) 2004-06-30 2005-06-29 Method for producing cathode for fuel cell and method for producing fuel cell
US10/591,016 US7927762B2 (en) 2004-06-30 2005-06-29 Fuel cell cathode manufacturing method and fuel cell manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004194660 2004-06-30
JP2004-194660 2004-06-30

Publications (1)

Publication Number Publication Date
WO2006008929A1 true WO2006008929A1 (en) 2006-01-26

Family

ID=35785049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011966 WO2006008929A1 (en) 2004-06-30 2005-06-29 Fuel cell cathode manufacturing method and fuel cell manufacturing method

Country Status (4)

Country Link
US (1) US7927762B2 (en)
JP (1) JPWO2006008929A1 (en)
TW (1) TW200618384A (en)
WO (1) WO2006008929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273278A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Catalyst layer for fuel cell, and catalyst layer-electrolyte film laminate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010035592A1 (en) * 2010-08-27 2012-03-01 Elcomax Gmbh Electro-mechanical deposition of nanocrystalline Pt and Pt alloy catalyst layers on carbon fiber paper using a hydrogen-consuming anode
DE102013215605A1 (en) * 2013-08-07 2015-02-12 Bayerische Motoren Werke Aktiengesellschaft Method for producing a fuel cell and a fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129023A (en) * 1991-05-04 1993-05-25 Johnson Matthey Plc Improved catalyst material
JPH0822827A (en) * 1994-07-07 1996-01-23 Toshiba Corp Fuel cell electrode and its manufacture
JPH0927327A (en) * 1995-07-13 1997-01-28 Toshiba Corp Fuel cell electrode and manufacture thereof
JPH09293517A (en) * 1996-04-26 1997-11-11 Toshiba Corp Manufacture of electrode catalyst layer for phosphoric acid type fuel cell
JP2003109614A (en) * 2001-09-27 2003-04-11 Nippon Steel Corp Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2164785B (en) 1984-09-06 1988-02-24 Nat Res Dev Electrode for reducing oxygen
DE10132490B4 (en) 2001-07-03 2007-04-12 Hahn-Meitner-Institut Berlin Gmbh Platinum-free chelate catalyst material for selective oxygen reduction and process for its preparation
EP1289035A2 (en) * 2001-08-29 2003-03-05 Matsushita Electric Industrial Co., Ltd. Composite electrode for reducing oxygen
JP4025150B2 (en) 2001-08-29 2007-12-19 松下電器産業株式会社 Driving method of power generation cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129023A (en) * 1991-05-04 1993-05-25 Johnson Matthey Plc Improved catalyst material
JPH0822827A (en) * 1994-07-07 1996-01-23 Toshiba Corp Fuel cell electrode and its manufacture
JPH0927327A (en) * 1995-07-13 1997-01-28 Toshiba Corp Fuel cell electrode and manufacture thereof
JPH09293517A (en) * 1996-04-26 1997-11-11 Toshiba Corp Manufacture of electrode catalyst layer for phosphoric acid type fuel cell
JP2003109614A (en) * 2001-09-27 2003-04-11 Nippon Steel Corp Catalyst for high molecular solid electrolyte fuel cell oxygen pole and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273278A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Catalyst layer for fuel cell, and catalyst layer-electrolyte film laminate

Also Published As

Publication number Publication date
TW200618384A (en) 2006-06-01
US20070167313A1 (en) 2007-07-19
JPWO2006008929A1 (en) 2008-05-22
US7927762B2 (en) 2011-04-19

Similar Documents

Publication Publication Date Title
JP5407065B2 (en) Direct alcohol fuel cell and method for manufacturing the same
KR100590555B1 (en) Supported catalyst and fuel cell using the same
JP2012143753A (en) Active particle-containing catalyst, method for producing the same, fuel cell containing the same, electrode for lithium-air battery containing active particles thereof, and lithium-air battery having electrode thereof
US20070161501A1 (en) Method for making carbon nanotube-supported platinum alloy electrocatalysts
JP2007307554A (en) Supported catalyst, its manufacturing method, electrode using this, and fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
EP1905113A1 (en) Electrode catalyst with improved longevity properties and fuel cell using the same
JP7368853B2 (en) Multifunctional electrode additive
Choudhary et al. Enhancement of ethanol electrooxidation in half cell and single direct ethanol fuel cell (DEFC) using post-treated polyol synthesized Pt-Ru nano electrocatalysts supported on HNO3-functionalized acetylene black carbon
JP2022513631A (en) The catalyst, its manufacturing method, the electrodes containing it, the membrane-electrode assembly containing it, and the fuel cell containing it.
CN113226545A (en) Catalyst, method of preparing the same, electrode including the same, membrane-electrode assembly including the electrode, and fuel cell including the assembly
Beydaghi et al. Preparation and Characterization of Electrocatalyst Nanoparticles for Direct Methanol Fuel Cell Applications Using β-D-glucose as Protection Agent
KR101904719B1 (en) Irreversible adsorption catalyst, manufacturing method of the same and fuel cell including the irreversible adsorption catalyst
WO2012160957A1 (en) Electrode catalyst and method for producing same
JPWO2006114942A1 (en) Carbon particle, particle comprising platinum and ruthenium oxide and method for producing the same
TW200405608A (en) Conductive carbon, electrode catalyst for fuel cell using the same, fuel cell and fuel cell apparatus
KR100981283B1 (en) Process for the polymer electrolyte composite catalysts attached with ionomers
CN111342068B (en) Sandwich type catalyst and preparation method and application thereof
WO2006008929A1 (en) Fuel cell cathode manufacturing method and fuel cell manufacturing method
JP2008016344A (en) Direct alcohol type fuel cell
TWI288027B (en) Manufacturing method of platinum alloy electrochemical catalyst carried by carbon nanotube
US7825057B2 (en) Method for preparing the mixed electrode catalyst materials for a PEM fuel cell
JP2005302365A (en) Complex catalyst, electrode for fuel cell, and fuel cell
JP4239917B2 (en) Fuel cell electrode, fuel cell and manufacturing method thereof
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005518127

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007167313

Country of ref document: US

Ref document number: 10591016

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10591016

Country of ref document: US

122 Ep: pct application non-entry in european phase