JP4998984B2 - Electrode active material and positive electrode oxygen reduction electrode using the same - Google Patents
Electrode active material and positive electrode oxygen reduction electrode using the same Download PDFInfo
- Publication number
- JP4998984B2 JP4998984B2 JP2006290789A JP2006290789A JP4998984B2 JP 4998984 B2 JP4998984 B2 JP 4998984B2 JP 2006290789 A JP2006290789 A JP 2006290789A JP 2006290789 A JP2006290789 A JP 2006290789A JP 4998984 B2 JP4998984 B2 JP 4998984B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- oxygen reduction
- active material
- tacn
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052760 oxygen Inorganic materials 0.000 title claims description 57
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 55
- 239000001301 oxygen Substances 0.000 title claims description 55
- 239000007772 electrode material Substances 0.000 title claims description 29
- 239000000446 fuel Substances 0.000 claims description 33
- 239000005518 polymer electrolyte Substances 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000000634 powder X-ray diffraction Methods 0.000 claims 1
- 238000006722 reduction reaction Methods 0.000 description 48
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 42
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 36
- 230000003197 catalytic effect Effects 0.000 description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- 239000000843 powder Substances 0.000 description 16
- 238000004544 sputter deposition Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- -1 oxynitrides Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- 229910021480 group 4 element Inorganic materials 0.000 description 2
- 229910021478 group 5 element Inorganic materials 0.000 description 2
- 229910021476 group 6 element Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000001652 electrophoretic deposition Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、固体高分子形燃料電池に用いられる酸素還元電極に関する。 The present invention relates to an oxygen reduction electrode used in a polymer electrolyte fuel cell.
固体高分子形(PEFC)燃料電池は100℃以下の低温で作動するので、装置にプラスチックや安価な金属を使用できるという利点があり、携帯用途,移動電源,分散電源への開発が進んでいる。このタイプの燃料電池は、プロトン導電性の高分子電解質膜を負極及び正極で挟み込み、負極に水素又は水素を含む燃料(メタノール水溶液等)を供給し、正極に空気を供給する構造を有している。そして、負極では水素(燃料)が酸化され、正極では酸素が還元されて外部に電気エネルギーが取り出される。
固体高分子形燃料電池は、水素ガスを負極に供給する水素形と、メタノール等の液体燃料を直接燃料として用いる直接形があり、後者は水素ガスボンベが必要でなく構造が単純であるという特徴がある。
Solid polymer electrolyte (PEFC) fuel cells operate at a low temperature of 100 ° C or lower, which has the advantage that plastics and inexpensive metals can be used in the equipment, and are being developed for portable applications, mobile power supplies, and distributed power supplies. . This type of fuel cell has a structure in which a proton conductive polymer electrolyte membrane is sandwiched between a negative electrode and a positive electrode, hydrogen or a hydrogen-containing fuel (such as an aqueous methanol solution) is supplied to the negative electrode, and air is supplied to the positive electrode. Yes. Then, hydrogen (fuel) is oxidized at the negative electrode, and oxygen is reduced at the positive electrode, and electric energy is extracted outside.
Solid polymer fuel cells are divided into a hydrogen type that supplies hydrogen gas to the negative electrode and a direct type that uses liquid fuel such as methanol as the direct fuel. The latter is characterized by a simple structure without the need for a hydrogen gas cylinder. is there.
従来、上記正極としてはカーボンブラック上に白金を担持したものが一般的であるが、高価な白金を用いずに金属化合物を電極活物質として使用することが検討されている。このような金属化合物として、金属の酸化物、酸窒化物、及び窒化物が提案されている(例えば、非特許文献1、2参照)。 Conventionally, as the positive electrode, a material in which platinum is supported on carbon black is generally used, but it has been studied to use a metal compound as an electrode active material without using expensive platinum. As such metal compounds, metal oxides, oxynitrides, and nitrides have been proposed (see, for example, Non-Patent Documents 1 and 2).
しかしながら、金属の酸化物、酸窒化物、及び窒化物は、固体高分子形燃料電池の正極用酸素還元電極に用いる活物質としては触媒能が依然として充分とはいえなかった。
従って、本発明の目的は、固体高分子形燃料電池の酸素還元触媒能を向上させることができる電極活物質、及びそれを用いた正極用酸素還元電極を提供することにある。
However, metal oxides, oxynitrides, and nitrides still have insufficient catalytic ability as active materials used for positive electrode oxygen reduction electrodes of polymer electrolyte fuel cells.
Accordingly, an object of the present invention is to provide an electrode active material capable of improving the oxygen reduction catalytic ability of a polymer electrolyte fuel cell, and an oxygen reduction electrode for a positive electrode using the same.
本発明の電極活物質は、固体高分子形燃料電池の正極として用いられる酸素還元電極用の電極活物質であって、Ta、CrまたはZrの炭窒化物からなる。 The electrode active material of the present invention is an electrode active material for an oxygen reduction electrode used as a positive electrode of a polymer electrolyte fuel cell, and is made of a carbonitride of Ta, Cr or Zr .
前記元素はTaであり、X線粉末回折法で得られた35°近傍のピークの半値全幅の逆数が0.4であることが好ましい。
Before SL element is Ta, it is preferred that the reciprocal of the full width at half maximum of the peak of 35 ° near obtained by X-ray powder diffractometry is 0.4.
本発明の正極用酸素還元電極は、前記電極活物質を担持してなる。 The oxygen reduction electrode for positive electrode of the present invention carries the electrode active material.
本発明によれば、固体高分子形燃料電池用酸素還元電極の非白金酸素還元触媒として、高い性能を示す。 According to the present invention, it exhibits high performance as a non-platinum oxygen reduction catalyst for an oxygen reduction electrode for a polymer electrolyte fuel cell.
以下、本発明の実施形態について説明する。なお、以下の説明及び図表に用いる電位は可逆水素電極電位基準とし、必要に応じてこれをRHEと表示する。 Hereinafter, embodiments of the present invention will be described. In addition, the potential used in the following description and chart is based on the reversible hydrogen electrode potential reference, and this is indicated as RHE as necessary.
<直接形燃料電池>
本発明の電極活物質は、固体高分子形燃料電池の正極(空気極)として用いられる酸素還元電極に担持される。固体高分子形燃料電池は、電解質膜を正極と負極で挟み込み、負極の外側から水素又は水素を含む燃料(メタノール水溶液等)を供給し、正極の外側から酸素含有ガス(通常は空気)を供給して外部に電気エネルギーを取り出すようになっている。
負極と正極は、通常、多孔質の電極基材の表面に電極活物質を触媒として塗布等して形成される。
上記燃料としては、例えばアルコール、エーテル等、化学構造中に炭素原子と水素原子を含むものを用いることができる。燃料として具体的には、メタノール,エタノール,グリコール,アセタール、ジメチルエーテル等を例示することができるが,特に酸化反応の活性化エネルギーが小さいメタノールを燃料とすると燃料電池のエネルギー変換効率の向上に有効である。
<Direct fuel cell>
The electrode active material of the present invention is supported on an oxygen reduction electrode used as a positive electrode (air electrode) of a polymer electrolyte fuel cell. A polymer electrolyte fuel cell sandwiches an electrolyte membrane between a positive electrode and a negative electrode, supplies hydrogen or a hydrogen-containing fuel (such as an aqueous methanol solution) from the outside of the negative electrode, and supplies an oxygen-containing gas (usually air) from the outside of the positive electrode Then, the electric energy is taken out to the outside.
The negative electrode and the positive electrode are usually formed by applying an electrode active material as a catalyst on the surface of a porous electrode substrate.
As said fuel, what contains a carbon atom and a hydrogen atom in chemical structures, such as alcohol and ether, can be used, for example. Specific examples of the fuel include methanol, ethanol, glycol, acetal, dimethyl ether, etc. However, it is effective for improving the energy conversion efficiency of the fuel cell, particularly when methanol is used as the fuel having a small activation energy for the oxidation reaction. is there.
<電極活物質>
本発明の電極活物質は、Vを除く5族元素、Tiを除く4族元素、及び6族元素の群から選ばれる1種以上の元素の炭窒化物からなる。本発明者らが鋭意検討したところ、後述するように、他の化合物(例えば炭化物)に比べ、上記元素の炭窒化物の酸素還元触媒能が高いことが判明した。
5族元素としてはNb,Taが挙げられ、4族元素としてはZr,Hfが挙げられ、6族元素としてはCr,Mo,Wが挙げられる。
VおよびTiを除く理由は、酸性電解質中で溶解し、不安定であるためである。
なお、本発明において、TaCNの表記は、Ta,C,Nの非晶質物質及び所定の原子比の結晶を含む。他の化合物も同様である。
<Electrode active material>
The electrode active material of the present invention comprises a carbonitride of one or more elements selected from the group consisting of Group 5 elements excluding V, Group 4 elements excluding Ti, and Group 6 elements. As a result of extensive studies by the present inventors, it has been found that the oxygen reduction catalytic ability of carbonitrides of the above elements is higher than that of other compounds (for example, carbides).
Examples of the Group 5 element include Nb and Ta, examples of the Group 4 element include Zr and Hf, and examples of the Group 6 element include Cr, Mo, and W.
The reason for removing V and Ti is that it dissolves in an acidic electrolyte and is unstable.
In the present invention, TaCN includes an amorphous substance of Ta, C, and N and a crystal having a predetermined atomic ratio. The same applies to other compounds.
<酸素還元電極>
上記電極活物質を電極基材表面に担持した酸素還元電極は、例えば上記組成を有する粉末を電極基材表面に担持させる他、蒸着やスパッタリングにより電極基材表面に上記組成を有する皮膜を成膜することにより、製造することができる。
電極基材としては、例えば炭素粉末、導電性酸化物粉末を用いることができる。
<Oxygen reduction electrode>
The oxygen reduction electrode in which the electrode active material is supported on the surface of the electrode base material, for example, supports the powder having the above composition on the surface of the electrode base material, and forms a film having the above composition on the surface of the electrode base material by vapor deposition or sputtering. By doing so, it can be manufactured.
As the electrode base material, for example, carbon powder and conductive oxide powder can be used.
以下に、実施例によって本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(TaCN,CrCN及びZrCNを担持した電極の作製)
スパッタリングによりTaCN担持電極を作製した。ターゲットとしてTaCを用い、全圧が0.47PaになるようにAr流量5sccm、窒素流量25sccmの雰囲気とした。この雰囲気中で、直径5.2mmの円柱状グラッシーカーボンを電極基材とし、ハロゲンランプを用い、成膜時の基板温度を800℃に加熱した。基材底面にスパッタリングを施し、窒素を含む皮膜を成膜した。水晶振動子式膜厚計を用いて皮膜の膜厚を測定し、膜厚を10nmに管理した。CrCN及びZrCNについては、ターゲットをそれぞれCrC,ZrCに変えたこと以外はTaCNの場合と同様にして電極を作製した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
(Production of electrodes carrying TaCN, CrCN and ZrCN)
A TaCN supported electrode was prepared by sputtering. TaC was used as a target, and the atmosphere was set to an Ar flow rate of 5 sccm and a nitrogen flow rate of 25 sccm so that the total pressure was 0.47 Pa. In this atmosphere, columnar glassy carbon having a diameter of 5.2 mm was used as an electrode base material, and a substrate temperature during film formation was heated to 800 ° C. using a halogen lamp. Sputtering was performed on the bottom surface of the base material to form a film containing nitrogen. The film thickness of the film was measured using a quartz oscillator type film thickness meter, and the film thickness was controlled to 10 nm. For CrCN and ZrCN, electrodes were prepared in the same manner as in TaCN except that the targets were changed to CrC and ZrC, respectively.
(電極活物質のキャラクタリゼーション)
上記したTaCN薄膜の結晶構造のXRD(X線回折)パターンを図1に示す。電極基材を800℃に加熱してスパッタした場合、TaCとTaNに由来するピーク(回折角約35°)が見られ、Ta-C-N化合物(一部結晶化)が生じたことが確認された。これは、固溶しているため単一なピークとして現れたと考えられる。同様にCrCN薄膜の結晶構造のXRDパターンを図2に示す。電極基材を800℃に加熱してスパッタした場合、Cr3C2,CrN,Cr2N0.29C0.61に由来するピークが見られ、Cr-C-N化合物(一部結晶化)が生じたことが確認された。
他の化合物を電極活物質に用いた電極についても、同様にXRD測定によりキャラクタリゼーションを行った。
又、スパッタ法においてスパッタ時の電極基材温度を変化させた場合のTaCNの成分組成を表1に示す。組成はRBS(ラザフォード後方散乱分析)で求めた。
The XRD (X-ray diffraction) pattern of the crystal structure of the above TaCN thin film is shown in FIG. When the electrode substrate was sputtered by heating to 800 ° C., peaks derived from TaC and TaN (diffraction angle of about 35 °) were observed, confirming that a Ta—CN compound (partially crystallized) was generated. . This is considered to have appeared as a single peak due to the solid solution. Similarly, the XRD pattern of the crystal structure of the CrCN thin film is shown in FIG. When the electrode substrate was sputtered by heating to 800 ° C., a peak derived from Cr 3 C 2 , CrN, Cr 2 N 0.29 C 0.61 was observed, and a Cr—CN compound (partially crystallized) was generated. confirmed.
The electrodes using other compounds as electrode active materials were similarly characterized by XRD measurement.
Table 1 shows the TaCN component composition when the electrode substrate temperature during sputtering is changed in the sputtering method. The composition was determined by RBS (Rutherford backscattering analysis).
(酸素還元電極の触媒能の評価)
0.1mol・dm−3の硫酸溶液に上記した方法で作製した各酸素還元電極を浸漬し、30℃、大気圧、窒素及び酸素雰囲気で、0.4Vにおける酸素還元電流密度を測定した。参照電極として同濃度硫酸溶液中での可逆水素電極を用いた。電流密度の表示は幾何面積当たりとした。
(Evaluation of catalytic performance of oxygen reduction electrode)
Each oxygen reduction electrode produced by the method described above was immersed in a 0.1 mol · dm −3 sulfuric acid solution, and the oxygen reduction current density at 0.4 V was measured in an atmosphere of 30 ° C., atmospheric pressure, nitrogen, and oxygen. A reversible hydrogen electrode in the same concentration sulfuric acid solution was used as a reference electrode. The display of current density was per geometric area.
<酸素還元触媒能の比較>
図3は、本発明の電極活物質の1つであるTaCN(Taの炭窒化物),CrCN及びZrCNを電極活物質に用いた場合と、他の化合物であるTaC,CrC及びZrCを電極活物質に用いた場合の酸素還元電極の触媒能の比較を示す。TaCN,CrCN及びZrCNを担持した電極の作製は上記と同様な方法とした。
(TaC,CrC及びZrCを担持した電極の作製)
TaC,CrC及びZrCを担持した電極は、それぞれターゲットとしてTaC,CrC及びZrCを用いたスパッタリングにより行い、スパッタ雰囲気をArのみとしたこと以外はTaCN,CrCN及びZrCNを担持した電極と同様にして作製した。これらの電極について、上記と同様にXRD測定を行い、TaCが生じていることを確認した。
<Comparison of oxygen reduction catalytic ability>
FIG. 3 shows a case where TaCN (Ta carbonitride), CrCN and ZrCN, which are one of the electrode active materials of the present invention, are used as an electrode active material, and TaC, CrC and ZrC which are other compounds as electrode active materials. The comparison of the catalytic ability of the oxygen reduction electrode when used as a substance is shown. The electrodes carrying TaCN, CrCN and ZrCN were prepared in the same manner as described above.
(Production of electrodes carrying TaC, CrC and ZrC)
Electrodes carrying TaC, CrC and ZrC were prepared in the same manner as electrodes carrying TaCN, CrCN and ZrCN, except that sputtering was performed using TaC, CrC and ZrC as targets, respectively, and the sputtering atmosphere was only Ar. did. About these electrodes, the XRD measurement was performed similarly to the above, and it confirmed that TaC had arisen.
(酸素還元電極の触媒能の評価)
上記と同様な方法で、電位を変化させた時の酸素還元電流−電位曲線を測定した。
(結果)
図3から明らかなように、TaC,CrC及びZrCを用いた電極の場合、約0.5V付近から酸素還元電流が観察されたが、これは酸素還元触媒能が非常に低いことを示す。一方、TaCN,CrCN及びZrCNを電極活物質として担持した電極の場合、0.75Vから酸素還元が開始するとともに酸素還元電流も大きく、酸素還元触媒能に優れることがわかった。
このことより、電極活物質である化合物内にNを含むことが重要であることがわかった。
(Evaluation of catalytic performance of oxygen reduction electrode)
The oxygen reduction current-potential curve when the potential was changed was measured by the same method as described above.
(result)
As is apparent from FIG. 3, in the case of the electrode using TaC, CrC and ZrC, an oxygen reduction current was observed from around 0.5 V, which indicates that the oxygen reduction catalytic ability is very low. On the other hand, in the case of an electrode carrying TaCN, CrCN and ZrCN as an electrode active material, it was found that oxygen reduction started from 0.75 V and the oxygen reduction current was large, and the oxygen reduction catalytic ability was excellent.
From this, it was found that it is important to include N in the compound which is an electrode active material.
<酸素還元電極の電気化学的安定性の評価>
上記TaCN,CrCN及びZrCNを用いた電極の電流−電位曲線(サイクリックボルタモグラム:CV)を測定した。CVは、30℃、窒素雰囲気中で0.05Vから1.0Vの間の電位で50mV/sで走査させて行った。電解質として、0.1mol/Lの硫酸水溶液を用いた。
結果を図4に示す。CVの形状は典型的なコンデンサの充放電電流を示すが、各電極においてCVの形状は変化せず、反応に基づく酸化電流や還元電流は観察されなかった。したがって、各電極は硫酸(酸性電解質)中で0.05から1.0Vの範囲で極めて安定であることがわかった。
<Evaluation of electrochemical stability of oxygen reduction electrode>
The current-potential curve (cyclic voltammogram: CV) of the electrode using the above TaCN, CrCN and ZrCN was measured. CV was performed by scanning at 50 mV / s at a potential between 0.05 V and 1.0 V in a nitrogen atmosphere at 30 ° C. As an electrolyte, a 0.1 mol / L sulfuric acid aqueous solution was used.
The results are shown in FIG. Although the shape of CV shows a typical charge / discharge current of a capacitor, the shape of CV did not change in each electrode, and oxidation current and reduction current based on reaction were not observed. Therefore, each electrode was found to be extremely stable in sulfuric acid (acid electrolyte) in the range of 0.05 to 1.0 V.
<粉末法によるTaCN電極の作製とキャラクタリゼーション>
Ta2O5粉末と炭素粉末を均一に混合し窒素雰囲気中、1600℃で熱処理を行いTaCxNy粉末を作製した。組成(x,y)は炭素の混合量によって調整した。これを出発物質として泳動電着法を用い、さらに熱処理して電極を作製した。泳動電着法に用いる電着浴は100mgのTaCxNy粉末を50mLの0.2gdm-3ヨウ素−アセトン中に分散したものとした。この浴中で陽極-陰極間に100V直流電圧を60秒印加し、陰極側の10×10mmのTi基板に電着させた。次に、微量酸素を含むN2/H2(2%)雰囲気中、600℃−1400℃の温度範囲で基板に1hの熱処理を行った。
(キャラクタリゼーション)
図5は、電着後の熱処理をしなかったもの及び熱処理温度600℃−1400℃で作製したTaCN電極のXRDパターンを示す。X線強度はそれぞれの回折線の最強ピーク強度で規格化した。熱処理なし、熱処理温度600℃、800℃の場合、TaC0.56N0.44(Cubic)に相当するピークのみ見られた。一方、熱処理温度1000℃〜1400℃の場合、TaC0.56N0.44とTa2O5(Orthorhombic)が認められた。また、熱処理温度の上昇とともに相対的にTaC0.56N0.44のピークが減少し、Ta2O5のピークが増加した。これより、熱処理温度の上昇とともに熱処理雰囲気中の微量酸素の影響により、徐々に酸化が進行したと考えられる。
<Preparation and characterization of TaCN electrode by powder method>
Ta 2 O 5 powder and carbon powder were uniformly mixed and heat-treated at 1600 ° C. in a nitrogen atmosphere to prepare TaC x N y powder. The composition (x, y) was adjusted by the amount of carbon mixed. Using this as a starting material, an electrophoretic electrodeposition method was used, followed by further heat treatment to produce an electrode. Electrodeposition bath for use in electrophoretic deposition method of TaC x N y powder 100mg 0.2gdm -3 iodine in 50 mL - was assumed dispersed in acetone. In this bath, a 100 V DC voltage was applied for 60 seconds between the anode and the cathode, and electrodeposited onto a 10 × 10 mm Ti substrate on the cathode side. Next, the substrate was subjected to heat treatment for 1 hour in a temperature range of 600 ° C. to 1400 ° C. in an N 2 / H 2 (2%) atmosphere containing a trace amount of oxygen.
(characterization)
FIG. 5 shows an XRD pattern of a TaCN electrode that was not heat-treated after electrodeposition and was produced at a heat treatment temperature of 600 ° C. to 1400 ° C. The X-ray intensity was normalized by the strongest peak intensity of each diffraction line. In the case of no heat treatment and heat treatment temperatures of 600 ° C. and 800 ° C., only a peak corresponding to TaC 0.56 N 0.44 (Cubic) was observed. On the other hand, when the heat treatment temperature was 1000 ° C. to 1400 ° C., TaC 0.56 N 0.44 and Ta 2 O 5 (Orthorhombic) were observed. In addition, the TaC 0.56 N 0.44 peak decreased relatively and the Ta 2 O 5 peak increased as the heat treatment temperature increased. From this, it is considered that the oxidation gradually progressed due to the influence of a trace amount of oxygen in the heat treatment atmosphere as the heat treatment temperature increased.
<TaCNの結晶性と触媒能との関係>
それぞれ上記したスパッタ法及び粉末法で作製したTaCN電極において、図1及び図5に示したXRDパターンからTaCNの結晶性を求めた。結晶性は、回折角35°のピークの半値全幅の逆数(FWHM−1)を用いた。FWHM−1が大きいほど、結晶化が進んでいることを示す。
次に、図1及び図5に示した各温度(スパッタ法の場合はスパッタ時の電極基材温度、粉末法の場合は熱処理温度)において、上記と同様にして0.4Vでの酸素還元電流密度を測定した。そして、各温度におけるFWHM−1と酸素還元電流密度との関係を以下の図6にプロットした。
<Relationship between crystallinity and catalytic ability of TaCN>
The TaCN crystallinity was determined from the XRD patterns shown in FIGS. 1 and 5 in the TaCN electrodes prepared by the sputtering method and the powder method, respectively. For the crystallinity, the reciprocal of the full width at half maximum (FWHM −1 ) of the peak at a diffraction angle of 35 ° was used. It shows that crystallization is progressing, so that FWHM- 1 is large.
Next, at each temperature shown in FIGS. 1 and 5 (in the case of sputtering, the electrode substrate temperature during sputtering, and in the case of powder, the heat treatment temperature), the oxygen reduction current density at 0.4 V in the same manner as described above. Was measured. And the relationship between FWHM- 1 and oxygen reduction current density in each temperature was plotted in the following FIG.
図6に、スパッタ法及び粉末法によるTaCN電極について得られたFWHM−1と酸素還元電流密度との関係を示す。この図から明らかなように、TaCNの結晶性が高くなるほど(FWHM−1が大きくなるほど)、酸素還元電流密度も高くなり、触媒能が向上することがわかった。
次に、実際の燃料電池に要求される触媒能を発揮するためのFWHM−1の好ましい閾値(最小値)を算出する。実際の携帯用燃料電池のセル電圧は0.3Vであるが、燃料極の電圧ロスを0.1Vと見積ると、空気極では可逆水素電極基準として0.4Vの電圧で反応が進む。従って、0.4Vで測定を行った図6の値をそのまま参照することができる。
FIG. 6 shows the relationship between the FWHM- 1 obtained for the TaCN electrode by the sputtering method and the powder method and the oxygen reduction current density. As is clear from this figure, it was found that the higher the crystallinity of TaCN (the higher the FWHM- 1 ), the higher the oxygen reduction current density and the better the catalytic ability.
Next, a preferable threshold value (minimum value) of FWHM −1 for exhibiting the catalytic ability required for an actual fuel cell is calculated. The cell voltage of an actual portable fuel cell is 0.3V, but if the voltage loss of the fuel electrode is estimated to be 0.1V, the reaction proceeds at a voltage of 0.4V at the air electrode as a reversible hydrogen electrode reference. Therefore, the value of FIG. 6 measured at 0.4 V can be referred to as it is.
ここで、上記携帯用燃料電池に要求される出力(電流密度)は、セル幾何面積基準で100mA/cm2とされている。セル幾何面積とは、実際の電池の膜−電極接合体の見掛けの幾何面積であり、実際に燃料電池を作製し、触媒粉末を基材に塗布して電極化する際の基材の幾何面積のことである。
そして、一般の燃料電池に用いられる白金触媒はセル幾何面積基準で1mg/cm2程度担持されている。白金は平均粒子径2〜3nmの微粒子であり、表面積が増大しているため、白金触媒の電極実表面積はセル幾何面積に対し、約500cm2(実表面積)/1cm2(セル幾何面積)の関係(比が500)にある。
Here, the output (current density) required for the portable fuel cell is 100 mA / cm 2 on the basis of the cell geometric area. The cell geometric area is the apparent geometric area of the membrane-electrode assembly of the actual battery. The geometric area of the substrate when the fuel cell is actually produced and the catalyst powder is applied to the substrate to form an electrode. That is.
A platinum catalyst used in a general fuel cell is supported on the order of 1 mg / cm 2 on the basis of the cell geometric area. Since platinum is a fine particle with an average particle diameter of 2 to 3 nm and the surface area is increased, the actual electrode surface area of the platinum catalyst is approximately 500 cm 2 (actual surface area) / 1 cm 2 (cell geometric area) relative to the cell geometric area. There is a relationship (ratio 500).
上記をもとに、白金の代替として本発明の電極活物質を用いた場合の、実表面積基準の出力(電流密度、図6の縦軸の値)を求める。本発明の電極活物質は白金より安価であるため、電極への担持量を白金より10倍以上多くすることができる。いま、本発明の電極活物質において、セル幾何面積に対する実表面積の比を白金触媒と同程度(=500)とすると、本発明の電極活物質の実表面積は、5000cm2(実表面積)/1cm2(セル幾何面積)となる。一方、上記したように、実際の燃料電池に要求されるセル幾何面積基準の出力(電流密度)は100mA/cm2である。
従って、本発明の電極活物質を用いた場合の、実表面積基準の出力(電流密度)は、
{100mA/cm2(セル幾何面積)}/{5000cm2(実表面積)/1cm2(セル幾何面積)}
=20μA/cm2(実表面積)となる。
Based on the above, the actual surface area based output (current density, the value on the vertical axis in FIG. 6) when the electrode active material of the present invention is used as an alternative to platinum is obtained. Since the electrode active material of the present invention is cheaper than platinum, the amount supported on the electrode can be increased 10 times or more than platinum. Now, in the electrode active material of the present invention, assuming that the ratio of the actual surface area to the cell geometric area is about the same as that of the platinum catalyst (= 500), the actual surface area of the electrode active material of the present invention is 5000 cm 2 (actual surface area) / 1 cm. 2 (cell geometric area). On the other hand, as described above, the output (current density) based on the cell geometric area required for an actual fuel cell is 100 mA / cm 2 .
Therefore, when using the electrode active material of the present invention, the output (current density) based on the actual surface area is
{100mA / cm 2 (cell geometric area)} / {5000cm 2 (actual surface area) / 1cm 2 (cell geometric area)}
= 20 μA / cm 2 (actual surface area).
ここで、図6の縦軸の酸素還元電流密度の値は、上記した実際の電池の膜−電極接合体のセル幾何面積とは別の、第2の幾何面積を基準とする。第2の幾何面積は、図6の実験で用いる基材(グラッシーカーボン)の表面積である。
従って、本発明の電極活物質において、第2の幾何面積に対する実表面積の比が必要となるが、本実施例で示したように、スパッタ法により作製した薄膜電極は表面の凹凸が少ないため、第2の幾何面積と実表面積とはほぼ等しい。従って、図6において、20μA/cm2以上の酸素還元電流が確保できれば、携帯用燃料電池に必要とされる性能を満足することになり、このときのFWHM−1は0.4以上である。したがって、FWHM−1は0.4以上であることが好ましい。
Here, the value of the oxygen reduction current density on the vertical axis in FIG. 6 is based on a second geometric area different from the cell geometric area of the membrane-electrode assembly of the actual battery described above. The second geometric area is the surface area of the substrate (glassy carbon) used in the experiment of FIG.
Therefore, in the electrode active material of the present invention, the ratio of the actual surface area to the second geometric area is required, but as shown in this example, the thin film electrode produced by the sputtering method has few surface irregularities, The second geometric area and the actual surface area are approximately equal. Therefore, in FIG. 6, if an oxygen reduction current of 20 μA / cm 2 or more can be secured, the performance required for the portable fuel cell is satisfied, and the FWHM −1 at this time is 0.4 or more. Therefore, FWHM −1 is preferably 0.4 or more.
<TaCNの組成と触媒能との関係>
上記粉末法によりTaCN電極を作製した。粉末調製時の炭素の混合量によってTaCxNy粉末の組成(x,y)を調整した。得られたTaCN電極について、酸素還元触媒能の比較1の場合と同様にして0.4Vでの酸素還元電流密度を測定した。
得られた結果を図7に示す。図7より、TaCNの組成がTaC0.99N0.01,TaC0.58N0.42, TaC0.28N0.72 のいずれの場合も、熱処理温度が1000℃において酸素還元電流密度が高いことがわかった。一方、Ta2O5を用いた電極の場合、酸素還元電流がほとんど生じなかった。
このことより、TaCNの組成として、Cの含有割合が多いもの(例えば0.99)も、少ないもの(例えば0.28)も触媒能が高く、TaCNの組成を広範囲に設定することができるので、電極活物質の生産性も向上する。
<Relationship between TaCN composition and catalytic activity>
A TaCN electrode was produced by the above powder method. The composition (x, y) of TaC x N y powder was adjusted according to the amount of carbon mixed during powder preparation. For the obtained TaCN electrode, the oxygen reduction current density at 0.4 V was measured in the same manner as in the case of Comparative Example 1 for oxygen reduction catalytic ability.
The obtained results are shown in FIG. FIG. 7 shows that the oxygen reduction current density is high at a heat treatment temperature of 1000 ° C. when the TaCN composition is TaC 0.99 N 0.01 , TaC 0.58 N 0.42 , or TaC 0.28 N 0.72 . On the other hand, in the case of an electrode using Ta 2 O 5 , almost no oxygen reduction current was generated.
As a result, the composition of TaCN is high (for example, 0.99) and low (for example, 0.28), which has a high catalytic ability, and the composition of TaCN can be set in a wide range. Productivity is also improved.
<メタノールによる酸素還元反応への影響>
直接形燃料電池では燃料極からメタノールに代表される液体燃料が電解質膜を通して透過し、空気極の触媒上で反応する。このため空気極がメタノールに反応すると電位が低下し、その結果電池電圧が低下する減少を引き起こす。
そこで、TaCN電極による酸素還元反応がメタノールの有無によって影響を受けるかを測定した。測定は、上記と同様な方法で、電位を変化させた時の酸素還元電流−電位曲線を測定した。又、メタノールの影響を調べる場合、電解質にメタノールを0.1mol/L添加した。
得られた電流−電位曲線を図8に示す。TaCN電極による酸素還元反応は、メタノールの影響を全く受けないことがわかり、このことから本発明による電極活物質は直接形燃料電池の空気極触媒への実用性が高いことが期待される。
<Influence on oxygen reduction reaction by methanol>
In the direct fuel cell, liquid fuel typified by methanol passes through the electrolyte membrane from the fuel electrode and reacts on the catalyst of the air electrode. For this reason, when the air electrode reacts with methanol, the potential decreases, and as a result, the battery voltage decreases.
Therefore, it was measured whether the oxygen reduction reaction at the TaCN electrode was affected by the presence or absence of methanol. In the measurement, the oxygen reduction current-potential curve when the potential was changed was measured by the same method as described above. When investigating the influence of methanol, 0.1 mol / L of methanol was added to the electrolyte.
The obtained current-potential curve is shown in FIG. It can be seen that the oxygen reduction reaction by the TaCN electrode is not affected by methanol at all, and from this, the electrode active material according to the present invention is expected to have high practicality as an air electrode catalyst of a direct fuel cell.
以上の実施例の結果をまとめると、
1)TaCN,CrCN及びZrCNを担持した電極は、他の化合物を用いた電極に比べ、酸素還元触媒能に優れていた。
2)TaCN,CrCN及びZrCNを担持した電極は硫酸(酸性電解質)中で極めて安定であることがわかった。
3)TaCNの結晶性が高いほど、酸素還元触媒能が高くなった。
4)TaCNの組成の広い範囲で酸素還元触媒能が維持された。
5)TaCN電極はメタノールによる酸素還元反応への影響を受けなかった。
To summarize the results of the above examples,
1) The electrode carrying TaCN, CrCN and ZrCN was superior in oxygen reduction catalytic ability as compared with the electrode using other compounds.
2) It was found that the electrode carrying TaCN, CrCN and ZrCN is extremely stable in sulfuric acid (acidic electrolyte).
3) The higher the crystallinity of TaCN, the higher the oxygen reduction catalytic ability.
4) The oxygen reduction catalytic ability was maintained over a wide range of TaCN composition.
5) The TaCN electrode was not affected by the oxygen reduction reaction by methanol.
Claims (3)
Ta、CrまたはZrの炭窒化物からなる電極活物質。 An electrode active material for an oxygen reduction electrode used as a positive electrode of a polymer electrolyte fuel cell,
An electrode active material comprising a carbonitride of Ta, Cr or Zr .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006290789A JP4998984B2 (en) | 2006-10-26 | 2006-10-26 | Electrode active material and positive electrode oxygen reduction electrode using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006290789A JP4998984B2 (en) | 2006-10-26 | 2006-10-26 | Electrode active material and positive electrode oxygen reduction electrode using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008108594A JP2008108594A (en) | 2008-05-08 |
JP4998984B2 true JP4998984B2 (en) | 2012-08-15 |
Family
ID=39441762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006290789A Expired - Fee Related JP4998984B2 (en) | 2006-10-26 | 2006-10-26 | Electrode active material and positive electrode oxygen reduction electrode using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4998984B2 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2218503A4 (en) * | 2007-11-05 | 2010-11-10 | Nat Univ Corp Yokohama Nat Uni | Electrode catalyst and oxygen reduction electrode for positive electrode using the electrode catalyst |
CA2721912A1 (en) | 2008-01-18 | 2009-07-23 | Showa Denko K.K. | Catalyst, process for production of the same, and use of the same |
JP5374387B2 (en) * | 2008-01-18 | 2013-12-25 | 昭和電工株式会社 | Catalyst, method for producing the same and use thereof |
KR101202104B1 (en) * | 2008-02-28 | 2012-11-15 | 쇼와 덴코 가부시키가이샤 | Catalyst, method for producing the same, and use of the same |
CA2719313A1 (en) * | 2008-03-24 | 2009-10-01 | Showa Denko K.K. | Catalyst and manufacturing method and use therefor |
CA2718893A1 (en) * | 2008-03-24 | 2009-10-01 | Takuya Imai | Method for producing fuel cell catalyst and fuel cell catalyst |
EP2347996B1 (en) | 2008-10-06 | 2014-12-31 | Showa Denko K.K. | Method for producing carbonitride mixture particle or oxycarbonitride mixture particle, and use thereof |
JP5106342B2 (en) * | 2008-10-06 | 2012-12-26 | 昭和電工株式会社 | Catalyst, method for producing the same and use thereof |
WO2010041650A1 (en) * | 2008-10-06 | 2010-04-15 | 昭和電工株式会社 | Catalyst, method for producing the same, and use thereof |
JP5537433B2 (en) * | 2008-10-06 | 2014-07-02 | 昭和電工株式会社 | Catalyst, method for producing the same and use thereof |
JP5037696B2 (en) * | 2008-10-06 | 2012-10-03 | 昭和電工株式会社 | Catalyst, method for producing the same and use thereof |
EP2428268B1 (en) | 2009-04-28 | 2017-03-01 | Showa Denko K.K. | Method for production of a catalyst |
US20120070763A1 (en) * | 2009-05-11 | 2012-03-22 | Showa Denko K.K. | Catalyst, production process therefor and use thereof |
WO2011007790A1 (en) * | 2009-07-16 | 2011-01-20 | 昭和電工株式会社 | Process for production of fuel cell catalyst, fuel cell catalyst produced by the process, and use of the fuel cell catalyst |
WO2011040061A1 (en) * | 2009-09-29 | 2011-04-07 | 凸版印刷株式会社 | Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell equipped with same |
EP2518806B1 (en) * | 2009-12-25 | 2015-08-19 | Showa Denko K.K. | Ink, fuel cell catalyst layer formed by using the ink and uses thereof |
JP4947243B2 (en) * | 2010-03-16 | 2012-06-06 | 凸版印刷株式会社 | Method for producing cathode catalyst layer for fuel cell, cathode catalyst layer, and membrane electrode assembly for polymer electrolyte fuel cell |
JP5388979B2 (en) * | 2010-09-27 | 2014-01-15 | 株式会社東芝 | A fuel cell catalyst, a membrane electrode assembly using the fuel cell, a fuel cell and a method for producing the fuel cell catalyst. |
JP5855023B2 (en) | 2011-01-20 | 2016-02-09 | 昭和電工株式会社 | Method for producing catalyst carrier, method for producing composite catalyst, composite catalyst, and fuel cell using the same |
CN103889571B (en) | 2011-09-06 | 2016-06-15 | 松下电器产业株式会社 | Semiconductor material and employ its light hydrogen generation apparatus and method for preparing hydrogen |
JP6143663B2 (en) | 2013-12-19 | 2017-06-07 | 株式会社東芝 | Porous catalyst layer, method for producing the same, membrane electrode assembly, and electrochemical cell |
JP6290056B2 (en) | 2014-09-22 | 2018-03-07 | 株式会社東芝 | Catalyst layer, production method thereof, membrane electrode assembly, and electrochemical cell |
JP6971534B2 (en) | 2015-08-20 | 2021-11-24 | 株式会社東芝 | Membrane electrode complex and electrochemical cell |
US10648092B2 (en) | 2015-11-10 | 2020-05-12 | Kabushiki Kaisha Toshiba | Electrode, membrane electrode assembly, electrochemical cell, and stack |
US10777821B2 (en) | 2018-03-22 | 2020-09-15 | Kabushiki Kaisha Toshiba | Catalyst, anode, membrane electrode assembly, water electrolysis cell, stack, water electrolyzer, and hydrogen utilizing system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006134603A (en) * | 2004-11-02 | 2006-05-25 | Bridgestone Corp | Catalyst structure and film-electrode junction for solid, polymer type fuel cell using the same |
JP2006164658A (en) * | 2004-12-06 | 2006-06-22 | Mitsubishi Plastics Ind Ltd | Structure for fuel cell |
JP2006198570A (en) * | 2005-01-24 | 2006-08-03 | Sumitomo Chemical Co Ltd | Production method for electrode catalyst |
JP4877732B2 (en) * | 2005-12-27 | 2012-02-15 | 旭化成株式会社 | Catalyst for fuel cell electrode |
JP2007257888A (en) * | 2006-03-20 | 2007-10-04 | Allied Material Corp | Oxygen pole catalyst for solid polymer fuel cell, oxygen reduction electrode using it, and manufacturing method of those |
US9799893B2 (en) * | 2006-10-18 | 2017-10-24 | Daimler Ag | Catalyst support for fuel cell |
-
2006
- 2006-10-26 JP JP2006290789A patent/JP4998984B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008108594A (en) | 2008-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4998984B2 (en) | Electrode active material and positive electrode oxygen reduction electrode using the same | |
Wang et al. | Porous Ni2P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium | |
Trotochaud et al. | Precise oxygen evolution catalysts: Status and opportunities | |
Ishihara et al. | Tantalum (oxy) nitrides prepared using reactive sputtering for new nonplatinum cathodes of polymer electrolyte fuel cell | |
US20200407858A1 (en) | Titanium base material, method for producing titanium base material, electrode for water electrolysis, and water electrolysis device | |
US20020034676A1 (en) | Method of fabricating catalyzed porous carbon electrode for fuel cell | |
WO2010131636A1 (en) | Catalyst, process for production thereof, and use thereof | |
JP2007031781A (en) | Oxygen reduction electrode | |
Yoshinaga et al. | Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution | |
US20200147590A1 (en) | Oxygen reduction catalyst, membrane electrode assembly, and fuel cell | |
Nash et al. | Elucidation of the active phase and deactivation mechanisms of chromium nitride in the electrochemical nitrogen reduction reaction | |
Singh et al. | Preparation and electrochemical characterization of a new NiMoO 4 catalyst for electrochemical O 2 evolution | |
Liu et al. | Influence of sputtering power on oxygen reduction reaction activity of zirconium oxides prepared by radio frequency reactive sputtering | |
Al-Akraa et al. | A promising amendment for water splitters: boosted oxygen evolution at a platinum, titanium oxide and manganese oxide hybrid catalyst | |
Ohgi et al. | Catalytic activity of partially oxidized transition-metal carbide–nitride for oxygen reduction reaction in sulfuric acid | |
Cheng et al. | Pd nanofilm supported on C@ TiO2 nanocone core/shell nanoarrays: a facile preparation of high performance electrocatalyst for H2O2 electroreduction in acid medium | |
Kim et al. | Oxygen reduction reaction of Ta-CN prepared by reactive sputtering with heat treatment | |
Hofer et al. | Properties, performance and stability of iridium-coated water oxidation electrodes based on anodized titanium felts | |
Wang et al. | Investigation of the performance decay of anodic PtRu catalyst with working time of direct methanol fuel cells | |
US20230143743A1 (en) | Titanium substrate, method for producing titanium substrate, electrode for water electrolysis, and water electrolysis apparatus | |
Doan et al. | Study on the effect of IrO2/TiO2 catalyst composition coated on porous transport layer on the performance and durability of polymer electrolyte membrane water electrolysis | |
US20100279202A1 (en) | Electrode catalyst and oxygen reduction electrode for cathode using the same | |
JP2006334542A (en) | Method for manufacturing electrode catalyst made of metal oxynitride | |
Kim et al. | New non-platinum cathode based on chromium for PEFC | |
WO2013085022A1 (en) | Nitrate reduction method, nitrate reduction catalyst, nitrate reduction electrode, fuel cell, and water treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120510 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4998984 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150525 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |