JP4087651B2 - Electrocatalyst for solid polymer electrolyte fuel cell - Google Patents

Electrocatalyst for solid polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4087651B2
JP4087651B2 JP2002206216A JP2002206216A JP4087651B2 JP 4087651 B2 JP4087651 B2 JP 4087651B2 JP 2002206216 A JP2002206216 A JP 2002206216A JP 2002206216 A JP2002206216 A JP 2002206216A JP 4087651 B2 JP4087651 B2 JP 4087651B2
Authority
JP
Japan
Prior art keywords
platinum
mea
electrode
catalyst
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002206216A
Other languages
Japanese (ja)
Other versions
JP2004047386A (en
Inventor
正道 上田
浩敏 須藤
寛 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2002206216A priority Critical patent/JP4087651B2/en
Publication of JP2004047386A publication Critical patent/JP2004047386A/en
Application granted granted Critical
Publication of JP4087651B2 publication Critical patent/JP4087651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子電解質型燃料電池に用いられる電極触媒に関する。
【0002】
【従来の技術】
固体高分子電解質型燃料電池は、低温で高い電流密度が取り出せることから、ポータブル電源、電気自動車の駆動電源、また、コージェネレーションの電源として開発が進められている。
【0003】
固体高分子電解質型燃料電池の基本構造は、燃料極(アノード)、空気極(カソード)及び両電極間に配された固体高分子電解質であるイオン交換膜から構成されている。通常、燃料極と空気極の両電極は貴金属が担持された触媒と高分子電解質の混合体から構成される。
【0004】
固体高分子電解質型燃料電池において、水素を燃料とした場合、燃料極では、水素ガスが電極中の細孔を通過して電解質と電極の界面に達し、触媒表面で電子を放出して水素イオンとなる。水素イオンは電極中の電解質および両電極間の固体高分子電解質膜を通じ空気極に達する。放出された電子は電極中の触媒担体を通って外部回路に流れ、外部回路から空気極に達する。一方、酸素を酸化剤とした空気極では、酸素が電極中の細孔を通過して触媒に達し、燃料極から到達した水素イオン、および外部回路により移動した電子と反応して水を生成する。
【0005】
一般的に燃料電池の出力を向上させるには両電極反応を促進させることが必要である。その為には、電極触媒の活性物質である白金や白金合金が両電極反応に対して高活性を有し、さらに、電極内において白金や白金合金が効率的かつ有効に両電極反応に利用されることが必要である。即ち、触媒には高活性な貴金属、特に白金または白金合金をカーボンブラック上に担持した触媒が用いられ、導電性電解質としてはイオン伝導性の高い高分子電解質であるパーフルオロカーボンスルホン酸等が使用され、両者が十分に接触することが求められる。
【0006】
電極の製造方法としてはこれまでに種々の方法が提案されている。
例えば、「電気化学」53、No.10、p.812〜817(1985)には、固体高分子電解質としてパーフルオロカーボンスルホン酸樹脂であるNafion117溶液(商品名、Aldrich Chemical社製、H型、脂肪族アルコールと水の混合溶媒中5%の溶液)を用い、触媒粉末と混合する方法が報告されている。
【0007】
特開平4−162365号公報には、白金触媒担持のカーボンブラックと触媒無担持のカーボンブラックとを、固体高分子電解質であるNafionのブタノール溶液で浸漬処理し、ついでポリテトラフルオロエチレンのディスパージョンで処理することが記載されている。
【0008】
特開平8−418153号公報においては、▲1▼まず触媒粒子として、例えば白金ブラックや白金を担持させたカーボンブラック粒子を製造し、▲2▼この粒子と固体高分子電解質溶液とを、さらに溶媒を加えて均一にすることにより懸濁液を調製し、▲3▼次いで、必要に応じて結合剤としてのポリテトラフルオロエチレン等を混合する方法が記載されている。この方法においては、▲2▼の混合による懸濁液調製工程と、その懸濁液から含まれている溶媒を除去する工程とが特に重要であることが説明されている。
【0009】
特開平8−227716号公報には、電極触媒と固体高分子電解質の混合工程において遊星ボールミルにて物理的に混合する方法を開示されている。
【0010】
【発明が解決しようとする課題】
しかし上記いずれの方法によって得られる電極触媒も、白金を担持させたカーボンブラックの表面はグラファイトの構造と官能基をあわせもつために、親水性部と疎水性部を共有する結果、凝集粒子を生成し易く、高分散を達成することができない。また、Nafion117溶液のようなパーフルオロスルホン酸樹脂が凝集を起こし易かったり、電極触媒とこれらの樹脂との接触が不十分であるという問題を有している。
【0011】
本発明は上記従来の課題を解決するもので、触媒の活性金属がカーボンブラック上に高分散しており、しかも固体高分子電解質、特にパーフルオロカーボンスルホン酸樹脂と親和性の高い電極触媒を提供するものである。
【0012】
【課題を解決するための手段】
上記課題を解決するため、本発明者らは、触媒の担体として用いられるカーボンブラックを酸処理することにより、その表面構造を改質し、パーフルオロカーボンスルホン酸樹脂の凝集抑制と触媒表面への高分散状態での付着を実現し得ることを見出した。
【0013】
すなわち、本発明は、カーボンブラックと、該カーボンブラックに担持された白金または白金合金とからなり、JIS K1474に記載の方法により測定されたpHが2〜7であることを特徴とする、固体高分子型燃料電池用電極触媒を提供する。
【0014】
【発明の実施の形態】
本発明の電極触媒には担体としてカーボンブラックが使用される。
【0015】
本発明の電極触媒には活性金属として白金または白金合金が使用される。白金合金としては、例えば白金−ルテニウム合金、白金−モリブデン合金等があがられ、中でも好ましいのは白金−ルテニウム合金である。白金または白金合金の好ましい担持量は、5〜70質量%、さらに好ましくは10〜60質量%である。
【0016】
本発明の電極触媒は、JIS K1474に記載の方法により測定されたpHが2〜7である点に特徴を有する。pHは、好ましくはpH3〜6の範囲であり、より好ましくは3.5〜5.5の範囲である。pHが低すぎると白金や白金合金が溶出しやすくなる。
【0017】
触媒のpHを調整するのに使用される酸としては、無機酸、有機酸のいずれも使用することができ、無機酸としては、例えば塩酸、硝酸、硫酸などが挙げられ、有機酸としては、例えばギ酸、酢酸、しゅう酸、マロン酸等の脂肪族カルボン酸が挙げられる。なかでも好ましいものは脂肪族有機酸、特にカルボン酸である。
【0018】
本発明の電極触媒の製造方法としては、担体であるカーボンブラックを酸で処理した後に白金または白金合金を担持させる方法でも、カーボンブラックに白金または白金合金を担持させた後に酸で処理する方法でもよい。
このような酸処理により、カーボンブラックの表面状態が疎水性から親水性に変換され、さらに酸との親和状態も良好になる結果、パーフルオロカーボンスルホン酸の良好な接触が得られる。
【0019】
【実施例】
以下に実施例を挙げて本発明を具体的に説明する。
なお、触媒のpHはJIS K1474 5.10の活性炭試験方法のpH値測定方法に従い測定した。具体的には、電極触媒の乾燥カーボン質量で1.0gを秤量し、水100mlを加えて静かに5分間の沸騰後、室温まで冷却後水を加えて100mlにメスアップし、よく攪拌しながら懸濁液のpHを測定した。
【0020】
〔実施例1〕
市販の電極触媒SA50BK(エヌ・イー ケムキャット製 50%Ptカーボンブラック BET比表面積 347m/g、X線回折によるPt粒子径 2.5nm、pH 6.5)を10.0gを秤量し1.5Lの水に懸濁させスラリーとした。次に濃度1モル/Lの硝酸溶液を調製し、これを10mlスラリーに加えた後、スラリー温度を上昇させ、沸騰状態にて3時間還流をおこなった。次に、この触媒を濾別、洗浄、乾燥、粉砕した。このように処理した後の触媒粉末を測定したところ、Pt分析値50%、BET比表面積338m/g、Ptの結晶子径は2.6nm、pH 4.0であった。
【0021】
〔実施例2〕
実施例1において加える酸を1モル/Lの硝酸溶液に変えて蟻酸(和光純薬製純度99%)10mlに変更してPt50%の電極触媒の粉末を調製した。該粉末は、BET比表面積345m/g、Ptの結晶子径は2.5nm、pH 5.8であった。
【0022】
〔実施例3〕
実施例1において加える酸を硝酸に変えて酢酸(和光純薬製 特級 純度99.7%以上)10mlに変更してPt50%の電極触媒の粉末を調製した。 該粉末はBET比表面積346m/g、Ptの結晶子径は2.5nm、pH 4.8であった。
【0023】
〔実施例4〕 実施例1において加える酸を硝酸に変えてしゅう酸2水和物(和光純薬製 特級)10gに変更してPt50%の電極触媒の粉末を調製した。該粉末はBET比表面積345m/g、Ptの結晶子径は2.6nm、pH 5.0であった。
【0024】
〔実施例5〕
市販の電極触媒SA27−13RC(エヌ・イー ケムキャット製 27%Pt13%Ruカーボンブラック BET比表面積 130m/g、X線回折によるPt粒子径 6.2nm、pH 7.5)を10.0gを秤量し1.5Lの水に懸濁させスラリーとした。次に1モル/Lの硝酸溶液を調製し、10mlを加えた後、スラリー温度を上昇させ、沸騰状態にて3時間還流をおこなった。この触媒を濾別、洗浄、乾燥、粉砕した。該粉末は、Pt分析値27%、Ru13%、BET比表面積130m/g、Ptの結晶子径は6.2nm、pH 4.0であった。
【0025】
〔比較例1〕
実施例1で使用した市販の電極触媒SA50BK(エヌ・イー ケムキャット製 50%Ptカーボンブラック BET比表面積 347m/g、X線回折によるPt粒子径 2.5nm、pH 6.5)を使用した。
【0026】
〔比較例2〕
実施例1で添加した硝酸とその添加量を濃硝酸(和光純薬製 特級)50mlとした。該粉末は、Pt分析値47.3%、BET比表面積335m/g、Ptの結晶子径 2.6nm、pH 2.4であった。
【0027】
〔比較例3〕
実施例5で使用した市販の電極触媒SA27−13RC(エヌ・イー ケムキャット製 27%Pt13%Ruカーボンブラック BET比表面積 130m/g、X線回折によるPt粒子径 6.2nm、pH 7.5)を使用した。
【0028】
〔電池性能評価の為の電極調製〕
PTFE(ポリテトラフルオロエチレン、三井フルオロケミカル製:テフロン30J)で撥水処理した50×50mm、厚さ120μmの多孔質カーボンペーパー(東レ製:TGP−H−120)を電極基質として準備した。次に、実施例1〜5および比較例1〜3で得られた白金担持カーボン粉末および白金−ルテニウム担持カーボン粉末触媒それぞれと水、5重量%ナフィオン溶液(アルドリッチ社製)を所定量混ぜ合わせペーストとした。このようにペースト状にしたものを上記電極基質の片面全面に均一に塗布してから乾燥し、触媒層を形成した。こうして、各実施例及び各比較例の白金担持カーボン粉末又は白金−ルテニウム担持カーボン粉末を用いた電極を作成した。
【0029】
次に、実施例1の白金担持カーボン粉末を用いて得た電極二枚を、パーフルオロスルフォン酸電解質膜(デュポン社製、商品名:ナフィオン112)の両面に、それぞれの電極の触媒層側が電解質に接するように重ね合わせ、ホットプレス機で熱圧着して電解質膜−電極接合体MEA−1を得た。
【0030】
次に、実施例2の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−2を作製した。
【0031】
次に、実施例3の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−3を作製した。
【0032】
次に、実施例4の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−4を作製した。
【0033】
次に、比較例1の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−5を作製した。
【0034】
次に、比較例2の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−6を作製した。
【0035】
次に、アノードとなる実施例5の白金−ルテニウム担持カーボン粉末による電極と、カソードとして比較例1の白金担持カーボン粉末による電極を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−7を作製した。
【0036】
次に、アノードとなる比較例3の白金−ルテニウム担持カーボン粉末による電極と、カソードとして比較例1の白金担持カーボン粉末による電極を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−8を作製した。
【0037】
上記のように作製した各MEAを燃料電池単セル評価装置(Scriber Associates製:model890)に組み込み、セル温度を80℃とし、アノードに90℃にて飽和水蒸気で加湿した1気圧の純水素もしくは100ppmCOを含む水素を、カソードには同様に50℃で加湿した1気圧の酸素を、それぞれのガスの利用率が常に50%となるように流量を増加させ単セルを運転した。
【0038】
図1に、電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例1によるMEA−1および比較例1によるMEA−5を用い、アノードガスとして純水素を供給したた場合の電流密度−電圧曲線を示す。硝酸洗浄を行うことにより、特に低電流密度領域において性能の向上が見られる。このような領域における電極性能は、反応界面への反応ガスの拡散や反応生成水の系外への移動といった物質拡散の影響を受けにくく、触媒本来の活性が電極反応を支配する領域であり、触媒粒子とパーフルオロカーボンスルホン酸の接触が良好に保たれることにより得られる。ここで、このような領域に帰属するセル電圧0.85VにおけるIRフリー電流密度を測定し、得られた値を電極幾何面積あたりの白金使用量で割り返したものを触媒の質量活性と規定し計算を行ったところ、比較例1によるMEA−5では305A/g−Ptであるのに対して、実施例1によるMEA−1では345A/g−Ptとなり、活性が大幅に向上していることが分かる。
【0039】
図2に、電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例2によるMEA−2および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。蟻酸洗浄を行うことでも、全ての電流密度領域において性能の向上が見られる。セル電圧0.85VにおけるIRフリー電流密度を測定し、質量活性の計算を行ったところ、比較例1によるMEA−5の305A/g−Ptに対して、実施例2によるMEA−2では325A/g−Ptとなり、活性が向上していることが分かる。
【0040】
図3に、電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例3によるMEA−3および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。酢酸酸洗浄を行うことでも、全ての電流密度領域において性能の向上が見られる。セル電圧0.85VにおけるIRフリー電流密度を測定し、質量活性の計算を行ったところ、比較例1によるMEA−5の305A/g−Ptに対して、実施例3によるMEA−3では386A/g−Ptとなり、活性が大幅に向上していることが分かる。
【0041】
図4に、電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例4によるMEA−4および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。しゅう酸洗浄を行うことでも、全ての電流密度領域において性能の向上が見られる。セル電圧0.85VにおけるIRフリー電流密度を測定し、質量活性の計算を行ったところ、比較例1によるMEA−5の305A/g−Ptに対して、実施例4によるMEA−4では415A/g−Ptとなり、活性が大幅に向上していることが分かる。
【0042】
図5に、電極幾何面積あたりの白金使用量を0.30mg/cmとした比較例2によるMEA−6および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。実施例1と同じ硝酸洗浄でも比較例2のように酸濃度が高いと、触媒中の白金が溶出するため、全ての電流密度領域において性能の低下が見られた。セル電圧0.85VにおけるIRフリー電流密度を測定し、質量活性の計算を行ったところ、比較例1によるMEA−5の305A/g−Ptに対して、比較例2によるMEA−6では266A/g−Ptとなり、活性が大きく低下していることが分かる。
【0043】
以上の性能試験の結果をまとめたものについて表1に示す。ここから、pH3.5−5.5の範囲において良好な質量活性が得られていることがわかる。
【表1】

Figure 0004087651
【0044】
図6に、電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例5によるMEA−7および比較例3によるMEA−8を用い、アノードガスとして100ppmCOを含む水素を供給した場合の電流密度−電圧曲線を示す。硝酸洗浄を行うことにより、全ての電流密度領域においてCO耐性の向上が見られる。電流密度0.5A/cmにおけるセル電圧を比較したところ、比較例3によるMEA−8の0.642Vに対して、実施例5によるMEA−7では0.728Vとなった。
【0045】
以上の性能試験の結果をまとめたものについて表2に示す。
【表2】
Figure 0004087651
【0046】
【発明の効果】
本発明の固体高分子電解質型燃料電池用電極触媒は、活性金属である白金または白金合金がカーボンブラック上に高分散しており、しかも固体高分子電解質、特にパーフルオロカーボンスルホン酸樹脂と親和性に優れている。そのため、このような樹脂と高い接触を実現できるので燃料電池の出力向上に大いに寄与するものである。
【図面の簡単な説明】
【図1】 電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例1によるMEA−1および比較例1によるMEA−5を用い、アノードガスとして純水素を供給したた場合の電流密度−電圧曲線を示す。
【図2】 電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例2によるMEA−2および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。
【図3】 電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例3によるMEA−3および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。
【図4】 電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例4によるMEA−4および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。
【図5】 電極幾何面積あたりの白金使用量を0.30mg/cmとした比較例2によるMEA−6および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。
【図6】 電極幾何面積あたりの白金使用量を0.30mg/cmとした実施例5によるMEA−7および比較例3によるMEA−8を用い、アノードガスとして100ppmCOを含む水素を供給した場合の電流密度−電圧曲線を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode catalyst used for a solid polymer electrolyte fuel cell.
[0002]
[Prior art]
Solid polymer electrolyte fuel cells are being developed as portable power supplies, electric vehicle drive power supplies, and cogeneration power supplies because high current density can be obtained at low temperatures.
[0003]
The basic structure of a solid polymer electrolyte fuel cell is composed of a fuel electrode (anode), an air electrode (cathode), and an ion exchange membrane that is a solid polymer electrolyte disposed between both electrodes. Usually, both the fuel electrode and the air electrode are composed of a mixture of a catalyst carrying a noble metal and a polymer electrolyte.
[0004]
In a solid polymer electrolyte fuel cell, when hydrogen is used as the fuel, hydrogen gas passes through the pores in the electrode and reaches the interface between the electrolyte and the electrode at the fuel electrode. It becomes. Hydrogen ions reach the air electrode through the electrolyte in the electrode and the solid polymer electrolyte membrane between the electrodes. The emitted electrons flow through the catalyst carrier in the electrode to the external circuit, and reach the air electrode from the external circuit. On the other hand, in an air electrode using oxygen as an oxidizing agent, oxygen passes through the pores in the electrode and reaches the catalyst, and reacts with hydrogen ions that have reached from the fuel electrode and electrons that have moved by an external circuit to produce water. .
[0005]
In general, in order to improve the output of the fuel cell, it is necessary to promote the double electrode reaction. To that end, platinum and platinum alloys, which are active substances for electrode catalysts, have high activity for both electrode reactions, and platinum and platinum alloys are efficiently and effectively used for both electrode reactions in the electrodes. It is necessary to That is, a catalyst having a highly active noble metal, especially platinum or a platinum alloy supported on carbon black, is used as the catalyst, and perfluorocarbon sulfonic acid, which is a polymer electrolyte with high ion conductivity, is used as the conductive electrolyte. , Both are required to be in full contact.
[0006]
Various methods for producing electrodes have been proposed so far.
For example, “electrochemistry” 53, no. 10, p. 812-817 (1985) includes a Nafion 117 solution (trade name, manufactured by Aldrich Chemical Co., H-type, 5% solution in a mixed solvent of aliphatic alcohol and water), which is a perfluorocarbon sulfonic acid resin, as a solid polymer electrolyte. A method of using and mixing with catalyst powder has been reported.
[0007]
In JP-A-4-162365, platinum catalyst-supported carbon black and catalyst-free carbon black are immersed in a butanol solution of Nafion, which is a solid polymer electrolyte, and then a polytetrafluoroethylene dispersion is used. Processing is described.
[0008]
In JP-A-8-418153, (1) first, for example, platinum black or carbon black particles carrying platinum are produced as catalyst particles, and (2) the particles and the solid polymer electrolyte solution are further mixed with a solvent. (3) A method of mixing a polytetrafluoroethylene or the like as a binder as required is described. In this method, it is explained that the suspension preparation step by mixing (2) and the step of removing the solvent contained in the suspension are particularly important.
[0009]
Japanese Patent Application Laid-Open No. 8-227716 discloses a method of physical mixing in a planetary ball mill in the step of mixing an electrode catalyst and a solid polymer electrolyte.
[0010]
[Problems to be solved by the invention]
However, the electrocatalyst obtained by any of the above methods produces aggregated particles as a result of sharing the hydrophilic part and the hydrophobic part because the surface of the carbon black carrying platinum has both the structure and functional group of graphite. It is easy to do and high dispersion cannot be achieved. In addition, perfluorosulfonic acid resins such as Nafion 117 solution are prone to agglomeration, and there is a problem that contact between the electrode catalyst and these resins is insufficient.
[0011]
The present invention solves the above-described conventional problems, and provides an electrode catalyst in which an active metal of a catalyst is highly dispersed on carbon black and has a high affinity for a solid polymer electrolyte, particularly perfluorocarbon sulfonic acid resin. Is.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors modified the surface structure of the carbon black used as the catalyst carrier by acid treatment, thereby suppressing the aggregation of the perfluorocarbon sulfonic acid resin and increasing the surface of the catalyst. It has been found that adhesion in a dispersed state can be realized.
[0013]
That is, the present invention comprises carbon black and platinum or a platinum alloy supported on the carbon black, and has a pH of 2 to 7 measured by the method described in JIS K1474. An electrode catalyst for a molecular fuel cell is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Carbon black is used as a support in the electrode catalyst of the present invention.
[0015]
In the electrode catalyst of the present invention, platinum or a platinum alloy is used as an active metal. Examples of the platinum alloy include a platinum-ruthenium alloy and a platinum-molybdenum alloy. Among these, a platinum-ruthenium alloy is preferable. The preferable carrying amount of platinum or platinum alloy is 5 to 70% by mass, more preferably 10 to 60% by mass.
[0016]
The electrode catalyst of the present invention is characterized in that the pH measured by the method described in JIS K1474 is 2-7. The pH is preferably in the range of pH 3-6, more preferably in the range of 3.5-5.5. If the pH is too low, platinum and platinum alloys are likely to elute.
[0017]
As the acid used to adjust the pH of the catalyst, either an inorganic acid or an organic acid can be used. Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, and the like. Examples thereof include aliphatic carboxylic acids such as formic acid, acetic acid, oxalic acid, and malonic acid. Of these, preferred are aliphatic organic acids, particularly carboxylic acids.
[0018]
The method for producing the electrode catalyst of the present invention includes a method in which platinum or a platinum alloy is supported after treating carbon black as a support with an acid, or a method in which platinum or a platinum alloy is supported on carbon black and then treated with an acid. Good.
By such an acid treatment, the surface state of the carbon black is converted from hydrophobic to hydrophilic, and the affinity state with the acid is also improved. As a result, good contact with the perfluorocarbon sulfonic acid is obtained.
[0019]
【Example】
The present invention will be specifically described below with reference to examples.
The pH of the catalyst was measured according to the pH value measurement method of the activated carbon test method of JIS K1474 5.10. Specifically, 1.0 g of the dry carbon mass of the electrode catalyst was weighed, 100 ml of water was added and gently boiled for 5 minutes, then cooled to room temperature, water was added to make up to 100 ml, and stirred well. The pH of the suspension was measured.
[0020]
[Example 1]
10.0 g of commercially available electrocatalyst SA50BK (50% Pt carbon black BET specific surface area 347 m 2 / g, Pt particle size 2.5 nm, pH 6.5 by X-ray diffraction) manufactured by N.E. The slurry was suspended in water. Next, a nitric acid solution having a concentration of 1 mol / L was prepared and added to a 10 ml slurry, and then the slurry temperature was raised and refluxed in a boiling state for 3 hours. Next, the catalyst was filtered off, washed, dried and pulverized. The catalyst powder after the treatment was measured. As a result, the Pt analysis value was 50%, the BET specific surface area was 338 m 2 / g, the crystallite size of Pt was 2.6 nm, and the pH was 4.0.
[0021]
[Example 2]
The acid added in Example 1 was changed to a 1 mol / L nitric acid solution and changed to 10 ml of formic acid (99% purity manufactured by Wako Pure Chemical Industries) to prepare a Pt 50% electrocatalyst powder. The powder had a BET specific surface area of 345 m 2 / g, a Pt crystallite size of 2.5 nm, and a pH of 5.8.
[0022]
Example 3
The acid added in Example 1 was changed to nitric acid and changed to 10 ml of acetic acid (special grade purity 99.7% or more manufactured by Wako Pure Chemical Industries) to prepare an electrode catalyst powder of 50% Pt. The powder had a BET specific surface area of 346 m 2 / g, a Pt crystallite size of 2.5 nm, and a pH of 4.8.
[0023]
[Example 4] The acid added in Example 1 was changed to nitric acid and changed to 10 g of oxalic acid dihydrate (special grade manufactured by Wako Pure Chemical Industries) to prepare an electrode catalyst powder of 50% Pt. The powder had a BET specific surface area of 345 m 2 / g, a Pt crystallite size of 2.6 nm, and a pH of 5.0.
[0024]
Example 5
10.0 g of commercially available electrocatalyst SA27-13RC (27% Pt 13% Ru carbon black, BET specific surface area 130 m 2 / g, Xt diffraction Pt particle diameter 6.2 nm, pH 7.5, manufactured by N.E. Chemcat) was weighed. And suspended in 1.5 L of water to form a slurry. Next, a 1 mol / L nitric acid solution was prepared, 10 ml was added, the slurry temperature was raised, and the mixture was refluxed for 3 hours in a boiling state. The catalyst was filtered off, washed, dried and ground. The powder had a Pt analysis value of 27%, Ru of 13%, a BET specific surface area of 130 m 2 / g, a Pt crystallite size of 6.2 nm, and a pH of 4.0.
[0025]
[Comparative Example 1]
The commercially available electrocatalyst SA50BK used in Example 1 (50% Pt carbon black BET specific surface area 347 m 2 / g, manufactured by N.E. Chemcat, Pt particle diameter 2.5 nm, pH 6.5 by X-ray diffraction) was used.
[0026]
[Comparative Example 2]
The nitric acid added in Example 1 and the amount added were 50 ml of concentrated nitric acid (special grade manufactured by Wako Pure Chemical Industries). The powder had a Pt analysis value of 47.3%, a BET specific surface area of 335 m 2 / g, a Pt crystallite diameter of 2.6 nm, and a pH of 2.4.
[0027]
[Comparative Example 3]
Commercially available electrocatalyst SA27-13RC used in Example 5 (27% Pt 13% Ru carbon black, BET specific surface area 130 m 2 / g, manufactured by N.E. Chemcat, Pt particle diameter 6.2 nm, pH 7.5 by X-ray diffraction) It was used.
[0028]
[Electrode preparation for battery performance evaluation]
A porous carbon paper (made by Toray: TGP-H-120) having a water repellent treatment of 50 × 50 mm and a thickness of 120 μm treated with PTFE (polytetrafluoroethylene, manufactured by Mitsui Fluorochemicals: Teflon 30J) was prepared as an electrode substrate. Next, a predetermined amount of each of the platinum-supported carbon powder and the platinum-ruthenium-supported carbon powder catalyst obtained in Examples 1 to 5 and Comparative Examples 1 to 3, water, and a 5 wt% Nafion solution (manufactured by Aldrich) were mixed in a predetermined amount. It was. The paste in this way was uniformly applied to the entire surface of one side of the electrode substrate and then dried to form a catalyst layer. Thus, an electrode using the platinum-supported carbon powder or platinum-ruthenium-supported carbon powder of each Example and each Comparative Example was prepared.
[0029]
Next, two electrodes obtained by using the platinum-supported carbon powder of Example 1 were placed on both sides of a perfluorosulfonic acid electrolyte membrane (manufactured by DuPont, product name: Nafion 112), and the catalyst layer side of each electrode was an electrolyte. The membranes were stacked so as to be in contact with each other and thermocompression bonded with a hot press machine to obtain an electrolyte membrane-electrode assembly MEA-1.
[0030]
Next, an electrolyte membrane-electrode assembly MEA-2 was produced in the same manner as in the production of MEA-1, except that two electrodes obtained using the platinum-supported carbon powder of Example 2 were used.
[0031]
Next, an electrolyte membrane-electrode assembly MEA-3 was produced in the same manner as in the production of MEA-1, except that two electrodes obtained using the platinum-supported carbon powder of Example 3 were used.
[0032]
Next, an electrolyte membrane-electrode assembly MEA-4 was produced in the same manner as in the production of MEA-1, except that two electrodes obtained using the platinum-supported carbon powder of Example 4 were used.
[0033]
Next, an electrolyte membrane-electrode assembly MEA-5 was produced in the same manner as in the production of MEA-1, except that two electrodes obtained using the platinum-supported carbon powder of Comparative Example 1 were used.
[0034]
Next, an electrolyte membrane-electrode assembly MEA-6 was produced in the same manner as in the production of MEA-1, except that two electrodes obtained using the platinum-supported carbon powder of Comparative Example 2 were used.
[0035]
Next, an electrolyte was prepared in the same manner as in the preparation of MEA-1, except that the electrode made of platinum-ruthenium-supported carbon powder of Example 5 serving as the anode and the electrode made of platinum-supported carbon powder of Comparative Example 1 were used as the cathode. Membrane-electrode assembly MEA-7 was produced.
[0036]
Next, an electrolyte was prepared in the same manner as in the preparation of MEA-1, except that the electrode made of platinum-ruthenium-supported carbon powder of Comparative Example 3 to be the anode and the electrode made of platinum-supported carbon powder of Comparative Example 1 were used as the cathode. Membrane-electrode assembly MEA-8 was produced.
[0037]
Each MEA produced as described above was incorporated into a fuel cell single cell evaluation apparatus (manufactured by Scriber Associates: model 890), the cell temperature was set to 80 ° C., and the anode was heated to 90 ° C. with 1 atmosphere of pure hydrogen or 100 ppm CO A single cell was operated by increasing the flow rate of hydrogen containing 1 and oxygen at 1 atm humidified at 50 ° C. to the cathode in such a manner that the utilization rate of each gas was always 50%.
[0038]
FIG. 1 shows a case where pure hydrogen was supplied as anode gas using MEA-1 according to Example 1 and MEA-5 according to Comparative Example 1 in which the amount of platinum used per electrode geometric area was 0.30 mg / cm 2 . A current density-voltage curve is shown. By performing nitric acid cleaning, performance is improved particularly in a low current density region. The electrode performance in such a region is less affected by material diffusion such as diffusion of reaction gas to the reaction interface and movement of reaction product water out of the system, and the original activity of the catalyst dominates the electrode reaction. It is obtained by maintaining good contact between the catalyst particles and perfluorocarbon sulfonic acid. Here, the IR free current density at a cell voltage of 0.85 V belonging to such a region was measured, and the value obtained by dividing the obtained value by the amount of platinum used per electrode geometric area was defined as the mass activity of the catalyst. As a result of calculation, the MEA-5 according to Comparative Example 1 shows 305 A / g-Pt, whereas the MEA-1 according to Example 1 shows 345 A / g-Pt, and the activity is greatly improved. I understand.
[0039]
FIG. 2 shows the current when MEA-2 according to Example 2 and MEA-5 according to Comparative Example 1 in which the amount of platinum used per electrode geometric area was 0.30 mg / cm 2 was supplied as pure anode gas. A density-voltage curve is shown. By performing formic acid cleaning, performance is improved in all current density regions. When the IR free current density at a cell voltage of 0.85 V was measured and the mass activity was calculated, 305 A / g-Pt of MEA-5 according to Comparative Example 1 was 325 A / g with MEA-2 according to Example 2. It turns out that it is g-Pt and the activity is improved.
[0040]
FIG. 3 shows the current when pure hydrogen was supplied as anode gas using MEA-3 according to Example 3 and MEA-5 according to Comparative Example 1 in which the platinum usage per electrode geometric area was 0.30 mg / cm 2. A density-voltage curve is shown. Even with acetic acid cleaning, performance is improved in all current density regions. When the IR free current density at a cell voltage of 0.85 V was measured and the mass activity was calculated, the MEA-5 according to Comparative Example 1 was 305 A / g-Pt, whereas the MEA-3 according to Example 3 was 386 A / It turns out that it becomes g-Pt and activity is improving significantly.
[0041]
FIG. 4 shows the current when MEA-4 according to Example 4 and MEA-5 according to Comparative Example 1 in which the amount of platinum used per electrode geometric area was 0.30 mg / cm 2 and pure hydrogen was supplied as the anode gas. A density-voltage curve is shown. Even with oxalic acid cleaning, performance is improved in all current density regions. When the IR free current density at a cell voltage of 0.85 V was measured and the mass activity was calculated, the MEA-5 according to Comparative Example 1 was 305 A / g-Pt, whereas the MEA-4 according to Example 4 was 415 A / It turns out that it becomes g-Pt and activity is improving significantly.
[0042]
FIG. 5 shows the current when pure hydrogen is supplied as anode gas using MEA-6 according to Comparative Example 2 and MEA-5 according to Comparative Example 1 in which the amount of platinum used per electrode geometric area is 0.30 mg / cm 2. A density-voltage curve is shown. Even in the same nitric acid cleaning as in Example 1, when the acid concentration was high as in Comparative Example 2, platinum in the catalyst was eluted, so that a decrease in performance was observed in all current density regions. When the IR free current density at a cell voltage of 0.85 V was measured and the mass activity was calculated, the MEA-5 according to Comparative Example 1 was 305 A / g-Pt, whereas the MEA-6 according to Comparative Example 2 was 266 A / It turns out that it becomes g-Pt and activity has fallen large.
[0043]
Table 1 summarizes the results of the above performance tests. From this, it can be seen that good mass activity is obtained in the range of pH 3.5-5.5.
[Table 1]
Figure 0004087651
[0044]
FIG. 6 shows a case where MEA-7 according to Example 5 and MEA-8 according to Comparative Example 3 in which the amount of platinum used per electrode geometric area is 0.30 mg / cm 2 and hydrogen containing 100 ppm CO as an anode gas is supplied. The current density-voltage curve of is shown. By performing nitric acid cleaning, CO resistance is improved in all current density regions. When the cell voltage at a current density of 0.5 A / cm 2 was compared, it was 0.728 V for MEA-7 according to Example 5 compared to 0.642 V for MEA-8 according to Comparative Example 3.
[0045]
The results of the above performance tests are summarized in Table 2.
[Table 2]
Figure 0004087651
[0046]
【The invention's effect】
In the solid polymer electrolyte fuel cell electrode catalyst of the present invention, platinum or platinum alloy, which is an active metal, is highly dispersed on carbon black, and has an affinity for solid polymer electrolytes, particularly perfluorocarbon sulfonic acid resins. Are better. Therefore, since high contact with such a resin can be realized, it greatly contributes to the improvement of the output of the fuel cell.
[Brief description of the drawings]
FIG. 1 shows the case where MEA-1 according to Example 1 and MEA-5 according to Comparative Example 1 in which the amount of platinum used per electrode geometric area is 0.30 mg / cm 2 and pure hydrogen is supplied as an anode gas. A current density-voltage curve is shown.
FIG. 2 shows the current when MEA-2 according to Example 2 and MEA-5 according to Comparative Example 1 in which the amount of platinum used per electrode geometric area is 0.30 mg / cm 2 and when pure hydrogen is supplied as an anode gas. A density-voltage curve is shown.
FIG. 3 shows the current when MEA-3 according to Example 3 and MEA-5 according to Comparative Example 1 in which the amount of platinum used per electrode geometric area was 0.30 mg / cm 2 and pure hydrogen was supplied as anode gas. A density-voltage curve is shown.
FIG. 4 shows the current when MEA-4 according to Example 4 and MEA-5 according to Comparative Example 1 in which the amount of platinum used per electrode geometric area was 0.30 mg / cm 2 and pure hydrogen was supplied as the anode gas. A density-voltage curve is shown.
FIG. 5 shows the electric current when pure hydrogen is supplied as anode gas using MEA-6 according to Comparative Example 2 and MEA-5 according to Comparative Example 1 in which the amount of platinum used per electrode geometric area is 0.30 mg / cm 2. A density-voltage curve is shown.
FIG. 6 shows a case where MEA-7 according to Example 5 and MEA-8 according to Comparative Example 3 in which the amount of platinum used per electrode geometric area is 0.30 mg / cm 2 is used and hydrogen containing 100 ppm CO is supplied as an anode gas. The current density-voltage curve of is shown.

Claims (4)

カーボンブラックと、該カーボンブラックに担持された白金または白金合金とからなり、JIS K1474に記載の方法により測定されたpHが3〜6であることを特徴とする、パーフルオロカーボンスルフォン酸電解質膜を用いた固体高分子型燃料電池用電極触媒。A perfluorocarbon sulfonic acid electrolyte membrane comprising carbon black and platinum or a platinum alloy supported on the carbon black and having a pH of 3 to 6 measured by the method described in JIS K1474 is used. There was a solid polymer fuel cell electrode catalyst. 請求項1に記載の電極触媒であって、前記カーボンブラックに担持された白金合金が白金ルテニウム合金であることを特徴とする上記電極触媒。  2. The electrode catalyst according to claim 1, wherein the platinum alloy supported on the carbon black is a platinum ruthenium alloy. 請求項1又は2に記載の電極触媒であって、前記の触媒のpHが脂肪族有機酸を用いて調整されたことを特徴とする上記電極触媒。  The electrode catalyst according to claim 1 or 2, wherein the pH of the catalyst is adjusted using an aliphatic organic acid. 請求項3に記載の電極触媒であって、前記の脂肪族有機酸がカルボン酸であることを特徴とする上記電極触媒。  4. The electrode catalyst according to claim 3, wherein the aliphatic organic acid is a carboxylic acid.
JP2002206216A 2002-07-15 2002-07-15 Electrocatalyst for solid polymer electrolyte fuel cell Expired - Lifetime JP4087651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206216A JP4087651B2 (en) 2002-07-15 2002-07-15 Electrocatalyst for solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206216A JP4087651B2 (en) 2002-07-15 2002-07-15 Electrocatalyst for solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004047386A JP2004047386A (en) 2004-02-12
JP4087651B2 true JP4087651B2 (en) 2008-05-21

Family

ID=31711302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206216A Expired - Lifetime JP4087651B2 (en) 2002-07-15 2002-07-15 Electrocatalyst for solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4087651B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179427A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Electrode catalyst for fuel cell, and the fuel cell
KR100738062B1 (en) * 2006-05-16 2007-07-10 삼성에스디아이 주식회사 Membrane and electrode assembly, and fuel cell using the same
KR100846478B1 (en) 2006-05-16 2008-07-17 삼성에스디아이 주식회사 Supported Catalyst, manufacturing method thereof, and fuel cell using the same
JP5270468B2 (en) * 2009-06-22 2013-08-21 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, ITS MANUFACTURING METHOD, AND SOLID POLYMER TYPE FUEL CELL USING THE SAME
JP5821330B2 (en) * 2011-02-21 2015-11-24 株式会社エクォス・リサーチ Fuel cell catalyst manufacturing equipment

Also Published As

Publication number Publication date
JP2004047386A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP4083721B2 (en) High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same
CN111900420A (en) Anode catalyst slurry, anode catalyst layer, membrane electrode and fuel cell
US20080020924A1 (en) Method of fabricating platinum alloy electrocatalysts for membrane fuel cell applications
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2006134630A (en) Electrode structure of polymer electrolyte fuel cell
WO2006119147A2 (en) Supports for fuel cell catalysts
WO2007011153A1 (en) Electrode catalyst with improved longevity properties and fuel cell using the same
JPWO2007119640A1 (en) Fuel cell electrode catalyst and method for producing the same
EP1799342A2 (en) Platinum/ruthenium catalyst for direct methanol fuel cells
JP2020047432A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
Armstrong et al. Nanoscale titania ceramic composite supports for PEM fuel cells
KR100541977B1 (en) Carbon nanoball supported Pt/Ru alloy electrode catalysts for direct methanol fuel cell and their preparation method
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
JP4087651B2 (en) Electrocatalyst for solid polymer electrolyte fuel cell
US11901565B2 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
EP3005452B1 (en) Metal alloy catalysts for fuel cell anodes
JP4892811B2 (en) Electrocatalyst
JP7346729B2 (en) Fuel cell catalyst, method for producing the same, and membrane-electrode assembly including the same
JP2006179427A (en) Electrode catalyst for fuel cell, and the fuel cell
JP2005135671A (en) Electrode for fuel cell
KR100599815B1 (en) Catalyst for fuel cell, method of preparation same, and fuel cell system comprising same
US11715833B2 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
JP2005190712A (en) Catalyst carrying electrode, mea for fuel cell, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term