JP2005190712A - Catalyst carrying electrode, mea for fuel cell, and fuel cell - Google Patents

Catalyst carrying electrode, mea for fuel cell, and fuel cell Download PDF

Info

Publication number
JP2005190712A
JP2005190712A JP2003427489A JP2003427489A JP2005190712A JP 2005190712 A JP2005190712 A JP 2005190712A JP 2003427489 A JP2003427489 A JP 2003427489A JP 2003427489 A JP2003427489 A JP 2003427489A JP 2005190712 A JP2005190712 A JP 2005190712A
Authority
JP
Japan
Prior art keywords
catalyst
electrode
platinum
electrode catalyst
carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003427489A
Other languages
Japanese (ja)
Inventor
Satoshi Ichikawa
聡 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003427489A priority Critical patent/JP2005190712A/en
Publication of JP2005190712A publication Critical patent/JP2005190712A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst carrying electrode, an MEA, and a fuel cell, which are superior in catalyst utilization rate and durability. <P>SOLUTION: There is provided the catalyst carrying electrode in which an electrocatalyst is a mixture of at least two or more electrocatalysts having different catalyst utilization rates in the catalyst carrying electrode which contains the electrocatalyst that carries catalyst metal particulates composed of platinum or platinum alloys on a conductive carrier and an electrolyte polymer. By a sacrificial corrosion effect of the electrocatalyst having lower catalyst utilization rate, corrosion of the electrocatalyst having higher catalyst utilization rate is prevented, and the catalyst utilization rate and the durability of the catalyst as a whole are improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電極触媒を構成する導電性担体の細孔内部に電解質ポリマーが充填される電極触媒と、充填されない電極触媒とを含む触媒担持電極、燃料電池用MEAおよび燃料電池に関する。   The present invention relates to a catalyst-carrying electrode, an MEA for a fuel cell, and a fuel cell, each of which includes an electrode catalyst in which an electrolyte polymer is filled in the pores of a conductive support constituting the electrode catalyst and an electrode catalyst that is not filled.

近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、常温でも作動し高出力密度が得られる固体高分子型燃料電池が電気自動車用電源、定置型電源として注目されている。固体高分子型燃料電池は、フィルム状の固体高分子膜からなる電解質層を用い、一般的には、膜−電極接合体(以下、「MEA」とも称する。)をセパレータで積層した構造を内蔵している。   In recent years, in response to social demands and trends against the background of energy and environmental issues, polymer electrolyte fuel cells that can operate at room temperature and obtain high output density have attracted attention as power sources for electric vehicles and stationary power sources. . A polymer electrolyte fuel cell uses an electrolyte layer made of a film-like solid polymer membrane, and generally has a built-in structure in which a membrane-electrode assembly (hereinafter also referred to as “MEA”) is laminated with a separator. doing.

MEAは、電解質層がカソードとアノードとにより挟持されてなり、従って、電極触媒層は少なくとも片面が電解質層に接する構造となっている。   In the MEA, the electrolyte layer is sandwiched between the cathode and the anode, and therefore, the electrode catalyst layer has a structure in which at least one surface is in contact with the electrolyte layer.

従来の電極触媒では、カソードおよびアノードともに白金または白金合金等の触媒金属を微細化して、カーボンブラック等の比表面積の大きい担体に高分散担持させた電極触媒が用いられている。このような電極触媒は、触媒金属表面の電極反応面積が大きいため、触媒活性を高くすることができる。   In the conventional electrode catalyst, an electrode catalyst is used in which a catalyst metal such as platinum or a platinum alloy is made fine for both the cathode and the anode and is supported on a carrier having a large specific surface area such as carbon black in a highly dispersed manner. Since such an electrode catalyst has a large electrode reaction area on the surface of the catalytic metal, the catalytic activity can be increased.

しかし、カソードにおける酸素還元反応は活性化エネルギーが大きく、カソードに過電圧(抵抗)が生じ、0.8V以上の貴電位環境となった場合や、起動−停止を繰返す間に、触媒成分であるPtの溶出やカーボン担体の腐食が発生する。特に、カソードでは、アノード側で水素から得たプロトンがカソード側に供給される酸素と結合して水を生成するため、下記化学式を経て二酸化炭素を生成する反応が進行すると考えられる。   However, the oxygen reduction reaction at the cathode has a large activation energy, and an overvoltage (resistance) is generated at the cathode, resulting in a noble potential environment of 0.8 V or more, or during repeated start-stop, Pt which is a catalyst component. Elution and corrosion of the carbon support occurs. In particular, at the cathode, protons obtained from hydrogen on the anode side are combined with oxygen supplied to the cathode side to generate water, so that it is considered that a reaction for generating carbon dioxide proceeds through the following chemical formula.

これにより担体が消失し、担体表面に担持される触媒金属も遊離・凝集し、結果として触媒活性の低下、および電池性能を低下させる要因となる。   As a result, the carrier disappears, and the catalytic metal supported on the surface of the carrier is liberated and aggregated. As a result, the catalytic activity is lowered and the battery performance is lowered.

一方、アノードにおいて燃料不足が起こった場合、所望の電流密度を保つために燃料の酸化反応に代わって水の電気分解や担体の酸化が発生する。従って、カソードの場合と同様にアノードにおいても担体が腐食・消失し、触媒金属の遊離・凝集が起こる。   On the other hand, when fuel shortage occurs in the anode, water electrolysis or carrier oxidation occurs in place of the fuel oxidation reaction in order to maintain a desired current density. Therefore, as in the case of the cathode, the support also corrodes and disappears in the anode, and the catalyst metal is liberated and agglomerated.

カーボンブラックの腐食を防止して寿命特性を向上するために、使用するカーボンブラックをあらかじめ高温で熱処理して結晶化度を上げて高耐食性の黒鉛化度を高める方法が採られ、熱処理温度が高いほど耐食性が向上するとし、熱処理されたカーボンブラックの結晶化度が規定されている(特許文献1、特許文献2、特許文献3、特許文献4)。また、加熱処理する際に、触媒担持カーボンに黒鉛化を促進する物質を混合して低い熱処理温度でカーボンの黒鉛化を行い、かつ黒鉛化の前または後で水蒸気等による賦活処理を行なって、寿命が長くしかも触媒貴金属を高分散状態に担持した触媒もある(特許文献5)。   In order to prevent the corrosion of carbon black and improve the life characteristics, the carbon black to be used is preheated at a high temperature to increase the crystallinity and increase the graphitization degree of high corrosion resistance, and the heat treatment temperature is high. As the corrosion resistance is improved, the crystallinity of the heat-treated carbon black is defined (Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4). In addition, when the heat treatment is performed, the catalyst-supporting carbon is mixed with a substance that promotes graphitization to perform graphitization of the carbon at a low heat treatment temperature, and an activation treatment with water vapor or the like is performed before or after graphitization, There is also a catalyst having a long life and carrying a catalyst noble metal in a highly dispersed state (Patent Document 5).

一方、大量のカーボンブラック粒子を一定の温度で制御することは困難であり、熱処理温度が不安定になった結果、触媒活性と耐腐食性が得られない場合がある。そこで、異なる熱処理温度で熱処理された2種類以上のカーボンにそれぞれ白金に担持して得た異なる電極触媒を混合して燃料電池用電極触媒を形成する方法も提案されている(特許文献6)。
特開2000−268828号公報 特開2001−357857号公報 特開2002−15745号公報 特開2003−36859号公報 特開2000−273351号公報 特開2002−73224号公報
On the other hand, it is difficult to control a large amount of carbon black particles at a constant temperature, and as a result of the heat treatment temperature becoming unstable, catalytic activity and corrosion resistance may not be obtained. Therefore, a method of forming an electrode catalyst for a fuel cell by mixing two or more types of carbon heat-treated at different heat treatment temperatures with different electrode catalysts obtained by carrying them on platinum has been proposed (Patent Document 6).
JP 2000-268828 A JP 2001-357857 A JP 2002-15745 A JP 2003-36859 A JP 2000-273351 A Japanese Patent Laid-Open No. 2002-73224

上記文献1、2、3および4に記載するように、カーボンブラックの腐食を防止して寿命特性を向上するためにカーボンブラックを熱処理する方法では、熱処理温度が高いほどカーボンブラックの耐食性は向上する方向にある。しかしながら、同時にカーボンブラックのBET比表面積は減少する傾向にあり、カーボンブラック上に担持された白金微粒子はカーボンブラックの熱処理温度が高いほど粒子径が大きくかつ分散度が低下し、触媒活性が低下して燃料電池の発電セル電圧が低くなる。   As described in the above-mentioned documents 1, 2, 3 and 4, in the method of heat treating carbon black in order to prevent the corrosion of carbon black and improve the life characteristics, the corrosion resistance of carbon black improves as the heat treatment temperature increases. In the direction. However, at the same time, the BET specific surface area of carbon black tends to decrease, and the platinum fine particles supported on the carbon black have a larger particle size and lower dispersibility as the heat treatment temperature of the carbon black is higher, resulting in lower catalytic activity. As a result, the power generation cell voltage of the fuel cell is lowered.

また、上記文献5の方法でカーボンの黒鉛化を行うと、黒鉛化の前または後で水蒸気等による賦活処理を行なう必要があり、操作が煩雑である。   Further, when carbon is graphitized by the method described in Document 5, it is necessary to perform activation treatment with water vapor or the like before or after graphitization, and the operation is complicated.

また、上記文献6の方法では、カーボンを異なる温度で処理するため、工程が増えるという問題があった。   Moreover, the method of the above-mentioned document 6 has a problem that the number of steps increases because carbon is processed at different temperatures.

そこで、本発明が目的とするところは、初期セル電圧が高く、かつ耐久性に優れ、このため長期にわたり高い触媒活性を示す触媒担持電極を提供することである。   Accordingly, an object of the present invention is to provide a catalyst-carrying electrode having a high initial cell voltage and excellent durability, and thus exhibiting high catalytic activity over a long period of time.

上記目的を達成するため、燃料電池用電極について詳細に検討した結果、カーボン腐食の発生原因といわゆる三相界面との間で、次に示す特定の関係を見出した。MEAのカソード、アノードでは、ガスと電解質ポリマーと電極触媒との三相界面で水素と酸素の電気化学的な反応が進行し、電解質ポリマーと電極触媒との接触率が重要な要素となる。電極触媒は、カーボンブラックなどの導電性担体に白金微粒子などを担持したものである。該担体は1次粒子の凝集体の形態を取る場合が多く、1次粒子表面および1次粒子の凝集体の隙間には微細な細孔が多数存在するが、その製造工程から判断して担体の表面の細孔および1次粒子の凝集体の隙間には白金などの金属触媒粒子が担持されるが、電解質ポリマーはこれらの細孔内に入り得ない。このため、細孔内部には三相界面の形成に寄与しない触媒金属粒子が存在する。このような電極触媒において、カーボンとその表面に担持されている白金との界面でカーボン腐食が発生し、特に、三相界面を形成している反応ガス、プロトン、電子のいずれかが来ない場合や、三相界面が形成されない電極触媒で発生しやすいことが判明した。なお、三相界面の形成に寄与しない触媒金属微粒子を含む触媒は、触媒利用率が低い。そこで、触媒利用率が高い電極触媒と触媒利用率が低い電極触媒とを併用することで、触媒利用率の低い電極触媒による犠牲的腐食効果によって触媒利用率の高い電極触媒の腐食を回避し、全体として触媒利用率を向上させ、かつ耐久性も向上させ得ることを見出し本発明を完成させた。   As a result of detailed examination of the fuel cell electrode in order to achieve the above object, the following specific relationship was found between the cause of carbon corrosion and the so-called three-phase interface. In the MEA cathode and anode, the electrochemical reaction of hydrogen and oxygen proceeds at the three-phase interface of the gas, the electrolyte polymer, and the electrode catalyst, and the contact rate between the electrolyte polymer and the electrode catalyst becomes an important factor. The electrode catalyst is obtained by supporting platinum fine particles on a conductive carrier such as carbon black. The carrier often takes the form of aggregates of primary particles, and there are many fine pores in the gaps between the primary particle surface and the aggregates of the primary particles. Metal catalyst particles such as platinum are supported in the gaps between the surface pores and the aggregates of the primary particles, but the electrolyte polymer cannot enter these pores. For this reason, there are catalytic metal particles that do not contribute to the formation of the three-phase interface inside the pores. In such an electrode catalyst, carbon corrosion occurs at the interface between carbon and platinum supported on the surface thereof, and in particular, any of the reaction gas, proton, or electron that forms the three-phase interface does not come. It has also been found that it is likely to occur with an electrode catalyst in which a three-phase interface is not formed. A catalyst containing catalytic metal fine particles that do not contribute to the formation of the three-phase interface has a low catalyst utilization rate. Therefore, by using an electrode catalyst with a high catalyst utilization rate and an electrode catalyst with a low catalyst utilization rate, the sacrificial corrosion effect of the electrode catalyst with a low catalyst utilization rate is avoided, and the corrosion of the electrode catalyst with a high catalyst utilization rate is avoided. As a whole, the present inventors have found that the catalyst utilization rate can be improved and the durability can be improved.

本発明によれば、触媒利用率の異なる触媒を混合して使用することで、触媒利用率および触媒の耐久性を向上させることができ、長期に亘り安定して電力を供給しうる。また、触媒利用率の向上に伴い、装置をコンパクトに設計することができる。   According to the present invention, by using a mixture of catalysts having different catalyst utilization rates, the catalyst utilization rate and the durability of the catalyst can be improved, and power can be supplied stably over a long period of time. Further, the apparatus can be designed compactly with the improvement of the catalyst utilization rate.

本発明の第一は、導電性担体に白金または白金合金からなる触媒金属微粒子を担持した電極触媒と、電解質ポリマーとを含む触媒担持電極において、前記電極触媒が、触媒利用率が異なる少なくとも二つ以上の電極触媒の混合物であることを特徴とする、触媒担持電極である。このような触媒利用率の異なる触媒としては、例えば触媒利用率が70%以上の電極触媒Aと、触媒利用率が30%以下の電極触媒Bとの混合物がある。   The first of the present invention is a catalyst-carrying electrode comprising an electrocatalyst carrying a catalyst metal fine particle comprising platinum or a platinum alloy on an electroconductive carrier, and an electrolyte polymer, wherein the electrode catalyst has at least two different catalyst utilization rates. A catalyst-supporting electrode, which is a mixture of the above electrode catalysts. Examples of such catalysts having different catalyst utilization rates include a mixture of an electrode catalyst A having a catalyst utilization rate of 70% or more and an electrode catalyst B having a catalyst utilization rate of 30% or less.

従来から、電極触媒は、カーボンブラックなどの導電性担体を白金水溶液に含浸させ、これに還元剤などを添加してカーボンブラックに白金微粒子を担持させていた。図1に示すように、水溶液はカーボンブラック細孔に入り込めるため1次粒子の表面および1次粒子の凝集体の隙間の細孔内にも白金微粒子が担持されるが、このような白金担持担体を電極触媒として使用したMEAでは、電解質ポリマーは電極触媒の表面を被覆するが1次粒子の表面および1次粒子の凝集体の隙間などのような細孔内には入り込めないため、このような細孔内の白金微粒子は三相界面を形成することができない。本発明では、従来の触媒を電極触媒として長期に亘って発電を行なわせると、三相界面が形成されない細孔内の白金微粒子の周りから白金担持カーボンの腐食が進行することを見出した。このことは、三相界面が形成されず触媒利用率が低いものは腐食しやすく犠牲的腐食効果を発揮できることを示している。このため、触媒利用率の異なるものを併用すると、耐久性に優れる電極触媒となる。なお、本発明における触媒利用率とは、下記方法で算出した値とする。なお、ECAは後記する実施例に記載する方法で測定し、触媒の幾何学的な面積はTEMで測定したものである。   Conventionally, an electrocatalyst has impregnated a platinum aqueous solution with a conductive carrier such as carbon black and added a reducing agent or the like to the platinum to carry platinum fine particles. As shown in FIG. 1, since the aqueous solution can enter the carbon black pores, platinum fine particles are supported on the surface of the primary particles and the pores in the gaps between the aggregates of the primary particles. In the MEA using as the electrode catalyst, the electrolyte polymer coats the surface of the electrode catalyst, but cannot enter into the pores such as the gap between the surface of the primary particles and the aggregates of the primary particles. Fine platinum particles in the pores cannot form a three-phase interface. In the present invention, it was found that when power is generated over a long period using a conventional catalyst as an electrode catalyst, corrosion of platinum-supported carbon proceeds from around the platinum fine particles in the pores where a three-phase interface is not formed. This indicates that a three-phase interface is not formed and the catalyst utilization rate is low, and the sacrificial corrosion effect can be exerted easily. For this reason, when the catalysts having different utilization rates are used in combination, an electrode catalyst having excellent durability is obtained. The catalyst utilization in the present invention is a value calculated by the following method. ECA was measured by the method described in the examples described later, and the geometric area of the catalyst was measured by TEM.

電極触媒A
本発明で使用する電極触媒Aは、導電性担体に白金または白金合金からなる触媒金属微粒子を担持した電極触媒であって、触媒利用率が70%以上の電極触媒である。このような電極触媒は、例えば、導電性担体に触媒金属微粒子を担持させた後に、得られた触媒金属担持導電性担体を粉砕することによって得ることができる。
Electrocatalyst A
The electrode catalyst A used in the present invention is an electrode catalyst in which catalytic metal fine particles made of platinum or a platinum alloy are supported on a conductive support, and is an electrode catalyst having a catalyst utilization rate of 70% or more. Such an electrode catalyst can be obtained, for example, by pulverizing the obtained catalyst metal-supported conductive support after supporting the catalyst metal fine particles on the conductive support.

触媒微粒子を担持させる導電性担体としては、触媒を高分散担持させるために十分な比表面積を有し、集電体として十分な電子導電性を有しているものであれば、特に制限されるべきものではないが、主成分がカーボンであるのが好ましい。十分に高い電子導電率を得ることができ、電気抵抗を低くすることができるからである。導電性担体の電気抵抗が高いと、触媒担持電極の内部抵抗が高くなり、結果として電池性能の低下を招く。具体的には、アセチレンブラック、ファーネスブラック、カーボンブラック、活性炭、メゾフェースカーボン、黒鉛、チャンネルブラック、ファーネスブラック、サーマルブラック等のカーボンブラック;種々の炭素原子を含む材料を炭化、賦活処理した活性炭;グラファイト化カーボン等のカーボンを主成分とするもの、カーボン繊維、多孔質カーボン微粒子、カーボンナノチューブ、カーボン多孔質体などが挙げられる。BET比表面積は、100〜2,000m/gであることが好ましく、より好ましくは200〜1,600m/gである。この範囲であれば、触媒微粒子を高分散担持することができる。特に本発明では、アセチレンブラック、ファーネスブラック、カーボンブラック、活性炭、メゾフェースカーボン、黒鉛等のカーボンブラックが好ましく、高分散に触媒担持金属酸化物微粒子を担持することができるため、高い活性を有する電極触媒が得られる。 The conductive carrier for supporting the catalyst fine particles is particularly limited as long as it has a specific surface area sufficient to support the catalyst in a highly dispersed manner and sufficient electronic conductivity as a current collector. Although it should not be, it is preferable that the main component is carbon. This is because a sufficiently high electronic conductivity can be obtained and the electric resistance can be lowered. When the electrical resistance of the conductive carrier is high, the internal resistance of the catalyst-carrying electrode is increased, resulting in a decrease in battery performance. Specifically, carbon black such as acetylene black, furnace black, carbon black, activated carbon, meso-face carbon, graphite, channel black, furnace black, thermal black; activated carbon obtained by carbonizing and activating various carbon atom-containing materials; Examples thereof include carbon-based materials such as graphitized carbon, carbon fibers, porous carbon fine particles, carbon nanotubes, and carbon porous bodies. BET specific surface area is preferably 100~2,000m 2 / g, more preferably 200~1,600m 2 / g. Within this range, the catalyst fine particles can be supported in a highly dispersed manner. Particularly, in the present invention, carbon black such as acetylene black, furnace black, carbon black, activated carbon, mesophase carbon, and graphite is preferable, and the catalyst-supporting metal oxide fine particles can be supported in a highly dispersed state. A catalyst is obtained.

導電性担体に担持する触媒微粒子は、白金であることが好ましい。白金は、高い酸素還元活性および水素還元活性を示すためである。また前記触媒微粒子は、白金単独で用いてもよいが、前記触媒微粒子の安定性や活性を高めるために、白金を主成分とする合金であってもよい。このような合金としては、貴金属と卑金属との合金があり、前記卑金属は、特に限定されないが、クロム、マンガン、鉄、コバルト、およびニッケルよりなる群から選ばれる少なくとも1種の卑金属が挙げられる。なお、合金における白金含有率は45〜90質量%である。   The catalyst fine particles supported on the conductive carrier are preferably platinum. This is because platinum exhibits high oxygen reduction activity and hydrogen reduction activity. The catalyst fine particles may be used alone, but may be an alloy containing platinum as a main component in order to increase the stability and activity of the catalyst fine particles. Examples of such an alloy include an alloy of a noble metal and a base metal, and the base metal is not particularly limited, and includes at least one base metal selected from the group consisting of chromium, manganese, iron, cobalt, and nickel. In addition, the platinum content rate in an alloy is 45-90 mass%.

白金や白金合金を担持させるために使用する白金化合物としては特に制限されず、広くこれらの化合物を使用することができる。このような化合物としては、白金の硝酸塩、硫酸塩、アンモニウム塩、アミン、炭酸塩、重炭酸塩、ハロゲン塩、亜硝酸塩、蓚酸などの無機塩類、ギ酸塩などのカルボン酸塩および水酸化物、アルコキサイド、酸化物などが例示でき、これらを溶解する溶媒の種類やpHなどによって適宜選択することができる。これらの中でも、工業的に使用するにあたっては硝酸塩、炭酸塩、酸化物、水酸化物が好ましく、特に塩化白金やジニトロジアミン白金などが好ましい。これらの白金濃度は、金属換算で0.1〜5.0質量%であることが好ましく、より好ましくは0.1〜1.0質量%である。   It does not restrict | limit especially as a platinum compound used in order to carry | support platinum or a platinum alloy, These compounds can be used widely. Such compounds include platinum nitrates, sulfates, ammonium salts, amines, carbonates, bicarbonates, halogen salts, nitrites, inorganic salts such as oxalic acid, carboxylates and hydroxides such as formate, Examples include alkoxides and oxides, which can be appropriately selected depending on the type and pH of the solvent in which these are dissolved. Among these, nitrates, carbonates, oxides, and hydroxides are preferable for industrial use, and platinum chloride, dinitrodiamine platinum, and the like are particularly preferable. These platinum concentrations are preferably 0.1 to 5.0% by mass, more preferably 0.1 to 1.0% by mass in terms of metal.

また、白金イオンの還元剤としては、水素、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L−アスコルビン酸、酢酸などの有機酸またはその塩、水素化ホウ素ナトリウム、蟻酸、アセトアルデヒド、ホルムアルデヒドなどのアルデヒド類、メタノール、エタノール、プロパノールなどのアルコール類、エチレン、一酸化炭素等が挙げられる。還元剤の添加量は、一般には白金1gあたり、0.001〜10モルであることが好ましく、より好ましくは0.01〜1.0モルである。   Platinum ion reducing agents include hydrogen, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, acetic acid and other organic acids or salts thereof, sodium borohydride, formic acid, acetaldehyde. Aldehydes such as formaldehyde, alcohols such as methanol, ethanol and propanol, ethylene, carbon monoxide and the like. In general, the addition amount of the reducing agent is preferably 0.001 to 10 mol, more preferably 0.01 to 1.0 mol, per 1 g of platinum.

例えば、塩化第一白金酸などの白金化合物を水または水とアルコールとの混合溶媒に溶解し、これにカーボンなどの導電性担体を分散させる。白金合金を電極触媒とする場合には、この液にさらに白金と合金化させる金属化合物を溶解又は分散させればよい。この液を過熱攪拌すると、白金塩またはその反応生成物などをカーボン担体上に析出させることができる。なお、必要に応じて溶液中のpHをアルカリ側に調節し、白金および必要に応じて添加された金属を、例えば水酸化物としてカーボン担体上に析出させてもよい。導電性担体に触媒金属微粒子を担持した後は、溶液から単離した後に、乾燥し、水素ガス等による還元処理を施した後に、ヘリウム、アルゴン、窒素等の不活性ガス雰囲気下で、250〜800℃で焼成すると触媒担持導電性担体が得られる。   For example, a platinum compound such as chloroplatinic acid is dissolved in water or a mixed solvent of water and alcohol, and a conductive carrier such as carbon is dispersed therein. When a platinum alloy is used as an electrode catalyst, a metal compound to be alloyed with platinum may be further dissolved or dispersed in this solution. When this liquid is heated and stirred, a platinum salt or a reaction product thereof can be deposited on the carbon support. If necessary, the pH in the solution may be adjusted to the alkali side, and platinum and a metal added as necessary may be deposited on the carbon support as, for example, a hydroxide. After supporting the catalyst metal fine particles on the conductive support, after being isolated from the solution, dried, subjected to reduction treatment with hydrogen gas or the like, and then in an inert gas atmosphere such as helium, argon, nitrogen, etc. When calcined at 800 ° C., a catalyst-supporting conductive carrier is obtained.

また、白金または白金からなる触媒金属微粒子の平均粒子径は、1〜10nmであることが好ましく、より好ましくは1〜6nmである。白金微粒子等は、平均粒子径が小さいほど比表面積が大きくなるため触媒活性も向上すると推測されるが、実際は、触媒微粒子径を極めて小さくしても、比表面積の増加分に見合った触媒活性は得られない。本発明では、白金微粒子径と電極特性との関係を見出し、1nmを下回ると白金微粒子の表面エネルギーが高くなり安定性が低下し、触媒寿命が短命となること、および10nmを超えると微粒子の安定性は高いが、微粒子表面積が小さくなるため電池性能が低下する場合がある。   Moreover, it is preferable that the average particle diameter of platinum or the catalyst metal fine particle which consists of platinum is 1-10 nm, More preferably, it is 1-6 nm. It is speculated that platinum particles and the like have a higher specific surface area as the average particle size is smaller, so the catalytic activity is also improved. However, even if the catalyst particle size is extremely small, the catalytic activity commensurate with the increase in specific surface area is actually I can't get it. In the present invention, the relationship between the platinum fine particle diameter and the electrode characteristics is found, and if it is less than 1 nm, the surface energy of the platinum fine particle is increased and the stability is lowered, and the catalyst life is shortened. However, since the surface area of the fine particles is small, battery performance may be reduced.

また、本発明で使用する電極触媒Aの含有量は、全触媒(電極触媒Aと電極触媒Bの和)に対し、70〜90質量%、より好ましくは70〜85質量%である。70質量%未満では充分な活性が得られない場合がある。また、90質量%を超えても自己犠牲触媒の量が少なくなるため耐久性が低下する場合がある。   Moreover, content of the electrode catalyst A used by this invention is 70-90 mass% with respect to all the catalysts (the sum of the electrode catalyst A and the electrode catalyst B), More preferably, it is 70-85 mass%. If it is less than 70% by mass, sufficient activity may not be obtained. Moreover, even if it exceeds 90 mass%, since the quantity of a self-sacrificial catalyst will decrease, durability may fall.

次いで、上記触媒担持導電性担体を粉砕する。これにより、単位重量当たりの表面積が拡大し、導電性担体の細孔の一部が導電性担体の表面となるため触媒金属微粒子が三相界面を形成できるようになり、触媒利用率が向上する。   Next, the catalyst-carrying conductive carrier is pulverized. As a result, the surface area per unit weight is increased, and part of the pores of the conductive support becomes the surface of the conductive support, so that the catalyst metal fine particles can form a three-phase interface, and the catalyst utilization rate is improved. .

粉砕方法としては、例えば、溶媒中でホモジナイザーにより1〜5時間攪拌して粉砕する方法や、粉砕機による機械的粉砕、振動ミル、遊星ボールミル、ボールミル、ジェットミルなどがある。溶媒中での攪拌による粉砕に使用できる溶媒としては、水などの水性溶媒、アルコール類、エーテル類、グリコール、などの有機溶媒のほか、触媒担持電極調製時に使用する電解質ポリマーおよびこれらの混合液であってもよい。例えば、粉砕時に使用できる電解質ポリマーとしては、少なくとも高いプロトン導電性を有する部材であり、デュポン社製の各種のナフィオン(デュポン社登録商標:Nafion)やフレミオンに代表されるパーフルオロスルホン酸膜、ダウケミカル社製のイオン交換樹脂、その他イオン性共重合体(アイオノマー)がある。これにより、電極触媒層の構造を安定に維持できるとともに、電極反応が進行する反応サイト(三相界面)を十分に確保して、高い触媒活性を得ることができる。これらの中で、粉砕用溶液としては、電解質ポリマーを水および/または有機溶媒で電解質ポリマー濃度が1〜20質量%となるように希釈した電解質ポリマー溶液を使用することが好ましい。この際の電極触媒Aの配合量は、50〜90質量%であることが好ましく、より好ましくは65〜80質量%である。粉砕に使用する溶媒の粘度としては、1〜10,000cpsであることが好ましく、より好ましくは、100〜6,500cpsである。電解質ポリマーと共に粉砕した場合には、これに電極触媒Bを添加および混合することで、容易に本願発明の触媒担持電極を製造することができ、後の操作を簡便にすることができる。   Examples of the pulverization method include a method of pulverizing with a homogenizer for 1 to 5 hours in a solvent, a mechanical pulverization by a pulverizer, a vibration mill, a planetary ball mill, a ball mill, and a jet mill. Solvents that can be used for pulverization by stirring in a solvent include aqueous solvents such as water, organic solvents such as alcohols, ethers, and glycols, as well as electrolyte polymers used in preparing catalyst-supporting electrodes and mixtures thereof. There may be. For example, the electrolyte polymer that can be used at the time of pulverization is a member having at least high proton conductivity, such as various Nafion manufactured by DuPont (registered trademark: Nafion) and perfluorosulfonic acid membranes represented by Flemion, Dow There are ion exchange resins manufactured by Chemical Co., Ltd. and other ionic copolymers (ionomers). Thereby, while being able to maintain the structure of an electrode catalyst layer stably, the sufficient reaction site (three-phase interface) where an electrode reaction advances can be ensured, and high catalyst activity can be acquired. Among these, as the pulverizing solution, it is preferable to use an electrolyte polymer solution obtained by diluting the electrolyte polymer with water and / or an organic solvent so that the electrolyte polymer concentration becomes 1 to 20% by mass. In this case, the blending amount of the electrode catalyst A is preferably 50 to 90% by mass, and more preferably 65 to 80% by mass. The viscosity of the solvent used for pulverization is preferably 1 to 10,000 cps, and more preferably 100 to 6,500 cps. When pulverized together with the electrolyte polymer, the catalyst catalyst electrode of the present invention can be easily produced by adding and mixing the electrode catalyst B thereto, and the subsequent operation can be simplified.

本発明において、粉砕の目安は、電極触媒の平均粒子径を0.1〜1.0μmとすることであり、より好ましくは0.25〜0.6μmである。1.0μmを超えると、粉砕が十分でないため、導電性担体の細孔に担持された触媒金属が三相界面を形成できない割合が高くなる。一方、100μmを下回ると触媒金属が導電性担体から剥離したり、または微細なために電解質の触媒粒子表面への被覆が不十分になり、三相界面を形成できない割合が高くなる場合がある。   In this invention, the standard of a grinding | pulverization is making the average particle diameter of an electrode catalyst into 0.1-1.0 micrometer, More preferably, it is 0.25-0.6 micrometer. When the thickness exceeds 1.0 μm, pulverization is not sufficient, and the ratio of the catalyst metal supported on the pores of the conductive carrier to form a three-phase interface increases. On the other hand, if the thickness is less than 100 μm, the catalyst metal may be peeled off from the conductive support or may be fine, so that the coating of the electrolyte on the catalyst particle surface becomes insufficient, and the ratio at which a three-phase interface cannot be formed may increase.

電極触媒B
電極触媒Bは、導電性担体に白金または白金合金からなる触媒金属微粒子を担持した電極触媒であって、触媒利用率が30%以下の電極触媒である。例えば上記電極触媒Aで記載した導電性担体に触媒金属微粒子を担持したものは、そのまま電極触媒Bとして使用することができる。
Electrocatalyst B
The electrode catalyst B is an electrode catalyst in which catalytic metal fine particles made of platinum or a platinum alloy are supported on a conductive carrier, and is an electrode catalyst having a catalyst utilization rate of 30% or less. For example, what supported the catalyst metal fine particle on the electroconductive support | carrier described by the said electrode catalyst A can be used as the electrode catalyst B as it is.

電極触媒Bは、前記全電極触媒(電極触媒Aと電極触媒Bの和)に対し、10〜30質量%、より好ましくは15〜30質量%である。10質量%を下回ると十分な自己犠牲効果が得られなくなるため耐久性が低下する場合があり、30質量%をこえると自己犠牲触媒の量が多くなり、耐久性が低下する場合がある。   The electrode catalyst B is 10 to 30% by mass, more preferably 15 to 30% by mass, based on the total electrode catalyst (the sum of the electrode catalyst A and the electrode catalyst B). If the amount is less than 10% by mass, a sufficient self-sacrificing effect cannot be obtained, so that the durability may decrease. If the amount exceeds 30% by mass, the amount of the self-sacrificial catalyst increases, and the durability may decrease.

また、電極触媒Bにおいて、白金または白金からなる触媒金属微粒子の平均粒子径は、1〜6nmであることが好ましく、より好ましくは1〜3nmである。1nmを下回ると白金微粒子の表面エネルギーが高くなり安定性が低下し、触媒寿命が短命となること、および6nmを超えると活性が低下しとなり不利である。   Moreover, in the electrode catalyst B, the average particle diameter of the catalyst metal fine particles made of platinum or platinum is preferably 1 to 6 nm, and more preferably 1 to 3 nm. If the thickness is less than 1 nm, the surface energy of the platinum fine particles is increased, the stability is lowered, the catalyst life is shortened, and if it exceeds 6 nm, the activity is lowered, which is disadvantageous.

なお、本発明における「微粒子の平均粒子径」は、X線回折における触媒金属の回折ピークの半値幅より求められる結晶子径あるいは透過型電子顕微鏡像より調べられる触媒金属の微粒子径の平均値により測定することができる。   The “average particle diameter of the fine particles” in the present invention is based on the average value of the fine particle diameters of the catalyst metal obtained from the crystallite diameter obtained from the half-value width of the diffraction peak of the catalytic metal in X-ray diffraction or a transmission electron microscope image. Can be measured.

本発明では、上記触媒担持導電性担体を粉砕してもよい。粉砕によって触媒利用率を向上させることができる。粉砕方法としては、電極触媒Aと同様の方法を採用することができるが、粉砕後の平均粒子径は0.7〜2.0μmであることが好ましい。0.7μmを下回ると犠牲的腐食効果が低減し、一方、2.0μmを越えると通常10μm程度の電極層の表面性が悪化して凹凸が多くなり、MEA化した際に膜にダメージを与えやすくなるため、ガスのクロスリーク量が多くなリ易く、不利である。すなわち、電極触媒Aは金属微粒子担持後の粉砕などによって、細孔内部に担持した触媒金属微粒子が三相界面を形成することができるため触媒利用率が向上するが、経時的な腐食は防止することはできない。しかしながら、細孔内部に触媒金属微粒子を担持するが三相界面を形成し得ないため触媒利用率が低い電極触媒Bを併用すると、発電時には導電性担体のいずれにも電子が流通するため、電解質ポリマーが接触できずに三相界面が形成されない触媒のほうが腐食がより進行するため電極触媒Aに先立ち電極触媒Bの腐食が進行する。したがって、電極触媒Aと共に電極触媒Bを併用すると、電極触媒Bの犠牲的腐食によって電極触媒Aの腐食を抑制することができるのである。   In the present invention, the catalyst-supporting conductive carrier may be pulverized. The catalyst utilization rate can be improved by grinding. As a pulverization method, a method similar to that for the electrode catalyst A can be employed, but the average particle size after pulverization is preferably 0.7 to 2.0 μm. When the thickness is less than 0.7 μm, the sacrificial corrosion effect is reduced. On the other hand, when the thickness is more than 2.0 μm, the surface property of the electrode layer of about 10 μm is usually deteriorated and unevenness is increased, and the film is damaged when MEA is formed. Since it becomes easy, the amount of cross leak of gas is easy and disadvantageous. That is, the catalyst utilization rate of the electrode catalyst A is improved because the catalyst metal fine particles supported inside the pores can form a three-phase interface by pulverization after the metal fine particles are supported, but corrosion with time is prevented. It is not possible. However, since the catalyst metal fine particles are supported inside the pores but a three-phase interface cannot be formed, the use of the electrode catalyst B having a low catalyst utilization rate causes electrons to flow through any of the conductive carriers during power generation. The corrosion of the electrode catalyst B proceeds prior to the electrode catalyst A because the corrosion proceeds more in the catalyst in which the polymer cannot contact and the three-phase interface is not formed. Therefore, when the electrode catalyst B is used together with the electrode catalyst A, the corrosion of the electrode catalyst A can be suppressed by sacrificial corrosion of the electrode catalyst B.

なお、触媒利用率は、触媒を粉砕するときに生じる電解質との混合と電解質の触媒表面への被覆の状況に依存すると考えられる。粉砕時間が短いと粒径も大きくなるが、電解質の被覆が不十分になり、つまり触媒表面をきれいに電解質が被覆しない状態となる。表面の一部が電解質の被覆から露出した状態になり、白金利用率が低下する。本発明は、このような表面の一部から触媒表面が露出したものと、表面をきれいに電解質で覆われたものを混ぜることで耐久性を向上させることができる。   The catalyst utilization rate is considered to depend on the condition of mixing with the electrolyte generated when the catalyst is pulverized and covering the catalyst surface with the electrolyte. When the pulverization time is short, the particle size also increases, but the electrolyte coating is insufficient, that is, the catalyst surface is not covered with the electrolyte cleanly. A part of the surface is exposed from the coating of the electrolyte, and the platinum utilization rate decreases. In the present invention, durability can be improved by mixing the catalyst surface exposed from a part of such a surface with the one whose surface is cleanly covered with an electrolyte.

本発明の触媒担持電極は、導電性担体に触媒金属微粒子を担持した電極触媒として、上記電極触媒AとBとの混合物を使用する以外は従前の方法によって、上記電極触媒と電解質ポリマーなどとを配合して、触媒担持電極とすることができる。例えば、前記電極触媒Aを高分子電解質ポリマーと共に平均粒子径0.25〜0.6μmに粉砕した場合には、これに前記電極触媒Bを添加した後に10〜30分間攪拌して両触媒を均一に混合し、これを常法に従って成形して触媒担持電極とすればよい。これを図2に示す。まず、電極触媒A用の触媒担持導電性担体と、上記した電解質ポリマー溶液とを混合および攪拌し、電極触媒Aの平均粒子径を0.25〜0.6μmに粉砕する。次いで、これに電極触媒B用の触媒担持導電性担体を添加し、必要に応じて電解質ポリマーや溶媒などを添加し、両者を均一に混合していわゆる触媒インクを調製し、これを常法に従って成形して触媒担持電極とすればよい。   The catalyst-carrying electrode of the present invention comprises the above-mentioned electrode catalyst, electrolyte polymer, and the like by an existing method except that a mixture of the above-mentioned electrode catalysts A and B is used as an electrode catalyst having catalytic metal particles supported on a conductive carrier. It can mix | blend and it can be set as a catalyst carrying electrode. For example, when the electrode catalyst A is pulverized to a mean particle size of 0.25 to 0.6 μm together with the polymer electrolyte polymer, the electrode catalyst B is added thereto, followed by stirring for 10 to 30 minutes to make both catalysts uniform. And then molded according to a conventional method to form a catalyst-carrying electrode. This is shown in FIG. First, the catalyst-supporting conductive carrier for the electrode catalyst A and the above electrolyte polymer solution are mixed and stirred, and the average particle diameter of the electrode catalyst A is pulverized to 0.25 to 0.6 μm. Next, a catalyst-carrying conductive carrier for the electrode catalyst B is added thereto, an electrolyte polymer or a solvent is added as necessary, and both are uniformly mixed to prepare a so-called catalyst ink. What is necessary is just to shape | mold and make a catalyst carrying electrode.

また、電極触媒Aと電極触媒Bとを共に電解質ポリマーで粉砕した場合には、両粉砕液を混合し、これを常法に従って成形して触媒担持電極とすればよい。これを図3に示す。電極触媒Aと電極触媒B用の触媒担持導電性担体をそれぞれ別個に電解質ポリマー溶液に仕込み混合し、それぞれ平均粒子径0.25〜0.6μmおよび平均粒子径0.7〜2.0μmμmに粉砕する。次いで両溶液を混合していわゆる触媒インクを調製し、これを常法に従って成形して触媒担持電極とすればよい。   Further, when both the electrode catalyst A and the electrode catalyst B are pulverized with the electrolyte polymer, both pulverized liquids are mixed and formed according to a conventional method to form a catalyst-supporting electrode. This is shown in FIG. The catalyst-supporting conductive carriers for electrode catalyst A and electrode catalyst B are separately charged and mixed in the electrolyte polymer solution, and pulverized to an average particle size of 0.25 to 0.6 μm and an average particle size of 0.7 to 2.0 μm, respectively. To do. Then, the two solutions are mixed to prepare a so-called catalyst ink, which is molded according to a conventional method to form a catalyst-supporting electrode.

また、前記電極触媒Bの導電性担体の含有量は、電極触媒全体の導電性担体の10〜40質量%、より好ましくは25〜35質量%であることが好ましい。10質量%を下回ると犠牲的腐食効果が低下し、一方40質量%を超えると電極触媒全体の触媒利用率が低下する場合がある。また、電極触媒層中に含まれる前記電解質ポリマーの含有量は、特に限定されないが、電極触媒の全量に対して10〜50質量%とするのがよい。   In addition, the content of the conductive carrier of the electrode catalyst B is preferably 10 to 40% by mass, more preferably 25 to 35% by mass of the conductive carrier of the entire electrode catalyst. If the amount is less than 10% by mass, the sacrificial corrosion effect is reduced, while if it exceeds 40% by mass, the catalyst utilization rate of the entire electrode catalyst may be reduced. The content of the electrolyte polymer contained in the electrode catalyst layer is not particularly limited, but is preferably 10 to 50% by mass with respect to the total amount of the electrode catalyst.

本発明の第二は、電解質膜とカソードおよびアノードとを含み、上記記載の触媒担持電極がカソードであることを特徴とする、燃料電池用MEAである。特に、固体高分子型燃料電池用のMEAに好適である。   A second aspect of the present invention is an MEA for a fuel cell comprising an electrolyte membrane, a cathode and an anode, wherein the catalyst-supporting electrode described above is a cathode. In particular, it is suitable for MEA for a polymer electrolyte fuel cell.

電解質膜としては、燃料電池の種類によって異なるが、固体高分子型燃料電池の電解質膜として、デュポン社製の各種のナフィオン(デュポン社登録商標:Nafion)やフレミオンに代表されるパーフルオロスルホン酸膜、ダウケミカル社製のイオン交換樹脂、エチレン-四フッ化エチレン共重合体樹脂膜、トリフルオロスチレンをベースポリマーとする樹脂膜などのフッ素系高分子電解質や、スルホン酸基を有する炭化水素系樹脂系膜などの固体高分子型電解質膜に限らず、高分子微多孔膜に液体電解質を含浸させた膜、多孔質体に高分子電解質を充填させた膜にも適用できる。なお、アノードとしては従来公知のものを使用することができる。   The electrolyte membrane varies depending on the type of fuel cell, but as an electrolyte membrane of a polymer electrolyte fuel cell, perfluorosulfonic acid membranes represented by various Nafion (registered trademark: Nafion) manufactured by DuPont and Flemion Fluorine polymer electrolytes such as ion exchange resins manufactured by Dow Chemical Company, ethylene-tetrafluoroethylene copolymer resin membranes, resin membranes based on trifluorostyrene, and hydrocarbon resins having sulfonic acid groups The present invention is not limited to solid polymer electrolyte membranes such as system membranes, but can also be applied to membranes in which a polymer microporous membrane is impregnated with a liquid electrolyte, and membranes in which a porous body is filled with a polymer electrolyte. In addition, a conventionally well-known thing can be used as an anode.

なお、本発明のMEAは、上記電極触媒AとBとの混合物を電極触媒として使用した触媒担持電極を使用する以外は、従前の条件によってMEAを製造することができる。電解質膜に、GDLを設けた触媒担持電極を積層した態様を図4に示す。本発明の触媒担持電極では、電極触媒Aと電極触媒Bとを混合して使用するため、触媒利用率の高い電極触媒Aと犠牲的腐食効果に優れる電極触媒Bとが混在し、触媒利用率および耐久性の向上という効果を発揮する。   In addition, MEA of this invention can manufacture MEA by the conventional conditions except using the catalyst carrying | support electrode which used the mixture of the said electrode catalyst A and B as an electrode catalyst. FIG. 4 shows an aspect in which a catalyst-carrying electrode provided with GDL is laminated on an electrolyte membrane. In the catalyst-carrying electrode of the present invention, the electrode catalyst A and the electrode catalyst B are mixed and used, so that the electrode catalyst A having a high catalyst utilization rate and the electrode catalyst B having an excellent sacrificial corrosion effect coexist. And the effect of improving the durability is exhibited.

さらに上記触媒担持電極やMEAを用いて燃料電池とすることもできる。本発明のMEAは高い質量活性を有するため、これを燃料電池用電極として用いれば、長期に亘って電池特性の低下の少ない燃料電池を提供できる。燃料電池の種類としては、所望する電池特性がえられるのであれば特に限定されないが、実用性・安全性などの観点から固体高分子型燃料電池(以下、「PEFC」とも記載する。)として用いるのが好ましい。なお、本発明の燃料電池は、本発明の触媒担持電極またはMEAを使用するものであれば、その他の要件は、燃料電池で使用し得るいずれのものを適用してもよい。   Further, a fuel cell can be formed using the catalyst-carrying electrode or MEA. Since the MEA of the present invention has a high mass activity, if it is used as an electrode for a fuel cell, it is possible to provide a fuel cell with little deterioration in cell characteristics over a long period of time. The type of fuel cell is not particularly limited as long as desired cell characteristics can be obtained, but it is used as a polymer electrolyte fuel cell (hereinafter also referred to as “PEFC”) from the viewpoints of practicality and safety. Is preferred. In addition, as long as the fuel cell of this invention uses the catalyst carrying | support electrode or MEA of this invention, the other requirements may apply what can be used with a fuel cell.

本発明の触媒担持電極またはMEAを用いた燃料電池は、従来のものと比較して小型で優れた発電量を供給することができる。従って、車両などの移動体用電源、定置用電源などとして小スペースで効率的な燃料電池を提供することができる。なお、上述した固体高分子型燃料電池に関しては、本発明の一実施形態を示したに過ぎず、本発明がこれに限定されるものではない。   The fuel cell using the catalyst-carrying electrode or MEA of the present invention is small and can supply an excellent power generation amount as compared with the conventional one. Therefore, it is possible to provide an efficient fuel cell in a small space as a power source for a moving body such as a vehicle or a stationary power source. In addition, regarding the polymer electrolyte fuel cell described above, only one embodiment of the present invention is shown, and the present invention is not limited to this.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これらの実施例のみに限定されることはない。また、当該実施例において、「%」は特記しない限り質量百分率を表わすものとする。   Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not limited only to these Examples. In the examples, “%” represents a mass percentage unless otherwise specified.

(実施例1)
(1) 電極触媒A用の触媒担持導電性担体の調製
金属換算で0.5質量%の白金を含む塩化白金酸水溶液1000gにカーボンブラック(ケッチェン・ブラック・インターナショナル社製ケッチェンブラックEC600JD:BET比表面積1,270m/g)5gを加え、ホモジナイザーを用いて十分に分散させた。これにクエン酸ナトリウム15gを加え、還流反応装置を用いて80℃に加熱し、白金の還元担持を行なった。室温まで放冷した後、白金が担持されたカーボンを濾別し、白金担持量が50質量%の白金担持カーボンを得た。これを、電極触媒A用の触媒担持導電性担体とする。
(Example 1)
(1) Preparation of catalyst-supported conductive support for electrode catalyst A Carbon black (Ketjen Black EC600JD: BET ratio manufactured by Ketjen Black International Co., Ltd.) was added to 1000 g of a chloroplatinic acid aqueous solution containing 0.5% by mass of platinum in terms of metal. 5 g of a surface area of 1,270 m 2 / g) was added, and the mixture was sufficiently dispersed using a homogenizer. To this was added 15 g of sodium citrate, and the mixture was heated to 80 ° C. using a reflux reactor, and platinum was supported for reduction. After allowing to cool to room temperature, the carbon on which platinum was supported was filtered off to obtain platinum-supported carbon having a platinum loading of 50% by mass. This is a catalyst-supporting conductive carrier for the electrode catalyst A.

(2) 電極触媒B用の触媒担持導電性担体の調製
金属換算で0.5質量%の白金を含む塩化白金酸水溶液400gにカーボンブラック(ケッチェン・ブラック・インターナショナル社製ケッチェンブラックEC600JD:BET比表面積1,270m/g)2gを加え、ホモジナイザーを用いて十分に分散させた。これにクエン酸ナトリウム6gを加え、還流反応装置を用いて80℃に加熱し、白金の還元担持を行なった。室温まで放冷した後、白金が担持されたカーボンを濾別し、白金担持量が50質量%の白金担持カーボンを得た。これを、電極触媒B用の触媒担持導電性担体とする。
(2) Preparation of catalyst-supported conductive support for electrode catalyst B Carbon black (Ketjen Black EC600JD: BET ratio manufactured by Ketjen Black International Co., Ltd.) was added to 400 g of chloroplatinic acid aqueous solution containing 0.5% by mass of platinum in terms of metal. 2 g of a surface area of 1,270 m 2 / g) was added, and the mixture was sufficiently dispersed using a homogenizer. To this was added 6 g of sodium citrate, and the mixture was heated to 80 ° C. using a reflux reactor to carry out reduction loading of platinum. After allowing to cool to room temperature, the carbon on which platinum was supported was filtered off to obtain platinum-supported carbon having a platinum loading of 50% by mass. This is a catalyst-supporting conductive carrier for the electrode catalyst B.

(3)触媒インクの調整
電極触媒A用の触媒担持導電性担体(白金担持量:50質量%)を3gビーカーに秤りとり、高分子電解質パーフルオロスルホン酸アイオノマー溶液(デュポン社製、商品名「ナフィオン」、5質量%、IPA:水=1:1)を加え、ホモジナイザーを用いて4時間混合して触媒インクを調製した。なお、高分子電解質と電極触媒A用の触媒担持導電性担体を構成するカーボン担体との質量比は1:1とした。電極触媒A用の触媒担持導電性担体の平均粒子径は、0.4〜0.6μmとなった。
(3) Preparation of catalyst ink A catalyst-supported conductive carrier for electrode catalyst A (platinum supported amount: 50% by mass) was weighed in a 3 g beaker, and a polymer electrolyte perfluorosulfonic acid ionomer solution (trade name, manufactured by DuPont). “Nafion”, 5 mass%, IPA: water = 1: 1) was added and mixed for 4 hours using a homogenizer to prepare a catalyst ink. The mass ratio of the polymer electrolyte to the carbon support constituting the catalyst-supporting conductive support for the electrode catalyst A was 1: 1. The average particle diameter of the catalyst-supporting conductive carrier for the electrode catalyst A was 0.4 to 0.6 μm.

次いで、この触媒インクに電極触媒B用の触媒担持導電性担体(白金担持量:50質量%)を1g加え、さらに高分子電解質と触媒担持導電性担体を構成するカーボン担体との質量比が1:1となるように高分子電解質パーフルオロスルホン酸アイオノマー溶液(デュポン社製、商品名「ナフィオン」、5質量%、IPA:水=1:1)を加え、ホモジナイザーを用いて30分混合して触媒インクを調整した。   Next, 1 g of a catalyst-carrying conductive carrier (platinum carrying amount: 50% by mass) for the electrode catalyst B is added to this catalyst ink, and the mass ratio of the polymer electrolyte to the carbon carrier constituting the catalyst-carrying conductive carrier is 1. : Add polyelectrolyte perfluorosulfonic acid ionomer solution (made by DuPont, trade name “Nafion”, 5% by mass, IPA: water = 1: 1) so as to be 1, and mix for 30 minutes using a homogenizer. A catalyst ink was prepared.

(4)MEAの作製
アノード、カソードとも、白金0.4mg/cmとなるように、上記触媒インクをスクリーン印刷法でテフロン(登録商標)シートに印刷し、60℃で24時間乾燥後、所定の大きさに打ち抜いた。次いで、前記アノード触媒層およびカソード触媒層を高分子電解質膜(デュポン社製ナフィオン112膜)の一面および他面にそれぞれ配置し、ホットプレスにより電極触媒層を電解質膜に転写し、これをカーポンペーパーで挟みMEAを作成した。
(4) Fabrication of MEA The catalyst ink was printed on a Teflon (registered trademark) sheet by a screen printing method so that both the anode and the cathode had a platinum content of 0.4 mg / cm 2 , dried at 60 ° C. for 24 hours, and then predetermined. Punched to the size of Next, the anode catalyst layer and the cathode catalyst layer are respectively disposed on one side and the other side of a polymer electrolyte membrane (Nafion 112 membrane manufactured by DuPont), and the electrode catalyst layer is transferred to the electrolyte membrane by hot pressing. A MEA was created by sandwiching between the two.

(5)初期特性および耐久後特性
MEAに、セル温度80℃においてカソードでは露点65℃となるように加熱・加湿した空気を、アノードでは露点50℃となるように加熱・加湿した水素をそれぞれ供給し、酸素利用率40%、水素利用率70%で、初期特性および耐久後特性を評価した。なお、耐久後特性は、評価セルを開回路電圧に保持した状態で100時間経過した後の電流密度0.5A/cmでの発電セル電圧の初期に対する保持率で評価した。
(5) Initial characteristics and post-endurance characteristics The MEA is supplied with air heated and humidified to a dew point of 65 ° C at the cathode at a cell temperature of 80 ° C and hydrogen heated and humidified to a dew point of 50 ° C at the anode. The initial characteristics and post-durability characteristics were evaluated at an oxygen utilization rate of 40% and a hydrogen utilization rate of 70%. The post-endurance characteristics were evaluated based on the retention ratio of the power generation cell voltage with respect to the initial value at a current density of 0.5 A / cm 2 after 100 hours had passed while the evaluation cell was held at an open circuit voltage.

(6)腐食試験
金メッシュ電極に上記で調製した触媒インクを0.50mg/cm塗布し乾燥させ、電極を作製した。この電極を作用極として、60℃の0.5M硫酸水溶液中に入れ、更に、Ptコイルを対極とし、参照極として可逆水素電極(RHE)を組み込んだ電気化学セルを構成した。この態様を図5に示す。窒素をバブリングしながら、サイクリックボルタンメトリ測定を行い、燃料電池等の電極触媒の活性評価に用いられる電気化学的活性表面積(ECA:m/g、単位質量当たりの表面積であり、大きいほど触媒の比表面積が大きく活性が高い)を求めた。初期のECAと、作用極に電圧を1V印加して酸化電流を1時間流した後のECAを測定し、その初期値に対する1時間後値(%)を求め、腐食性を評価した。結果を表1に示す。
(6) Corrosion test 0.50 mg / cm 2 of the catalyst ink prepared above was applied to a gold mesh electrode and dried to prepare an electrode. This electrode was used as a working electrode in a 0.5 M sulfuric acid aqueous solution at 60 ° C., and an electrochemical cell was constructed in which a Pt coil was used as a counter electrode and a reversible hydrogen electrode (RHE) was incorporated as a reference electrode. This embodiment is shown in FIG. Cyclic voltammetry is measured while bubbling nitrogen, and is the electrochemically active surface area (ECA: m 2 / g, surface area per unit mass) used for the evaluation of the activity of electrode catalysts such as fuel cells. The specific surface area of the catalyst is large and the activity is high). The initial ECA and ECA after applying a voltage of 1 V to the working electrode and flowing the oxidation current for 1 hour were measured, and the value (%) after 1 hour with respect to the initial value was determined to evaluate the corrosivity. The results are shown in Table 1.

(7) 電極触媒の触媒利用率
腐食試験を行う時に求めた初期のECA(A)の値と、あらかじめTEM観察から求めた白金粒子径と白金担持量とから求められる幾何学的な表面積の値から、下記式に従って電極触媒Aの白金利用率を算出した。
(7) Electrocatalyst catalyst utilization ratio Geometrical surface area value obtained from the initial ECA (A) value obtained when performing the corrosion test, and the platinum particle diameter and platinum loading obtained from TEM observation in advance. From the following formula, the platinum utilization rate of the electrode catalyst A was calculated according to the following formula.

(実施例2)
(1) 電極触媒B用の触媒担持導電性担体の調製
実施例1の電極触媒Bの製造方法において、0.5質量%の白金を含む塩化白金酸水溶液400gに加えるカーボンブラック(ケッチェン・ブラック・インターナショナル社製ケッチェンブラックEC600JD:BET比表面積1,270m/g)2gを4.6gに変更して、白金を30質量%になるように担持した以外は、実施例1と同様に操作して、電極触媒Bを製造した。
(Example 2)
(1) Preparation of catalyst-carrying conductive support for electrode catalyst B In the method for producing electrode catalyst B of Example 1, carbon black (Ketjen Black) added to 400 g of an aqueous chloroplatinic acid solution containing 0.5% by mass of platinum Ketjen Black EC600JD (International Co., Ltd .: BET specific surface area 1,270 m 2 / g) The same operation as in Example 1 was carried out except that 2 g was changed to 4.6 g and platinum was supported at 30% by mass. Electrocatalyst B was manufactured.

(2) 電極インクおよびMEAの調製
実施例1で調製した電極触媒A用の触媒担持導電性担体と、上記電極触媒B用の触媒担持導電性担体とを用いて、電極触媒Aの割合が表1に示す質量になるように電極触媒A用と電極触媒B用の触媒担持導電性担体を秤りとり、実施例1と同様の手法により触媒インクの調製を行なった。
(2) Preparation of electrode ink and MEA Using the catalyst-carrying conductive carrier for electrode catalyst A prepared in Example 1 and the catalyst-carrying conductive carrier for electrode catalyst B, the ratio of electrode catalyst A is expressed. The catalyst-supporting conductive carriers for the electrode catalyst A and the electrode catalyst B were weighed so as to have the mass shown in Fig. 1, and a catalyst ink was prepared by the same method as in Example 1.

(3) 白金利用率、初期特性、耐久後特性および腐食試験
実施例1と同じ方法で白金利用率を算出し、および発電セル性能の初期特性、耐久後特性および腐食試験を行なった。結果を表1に示す。
(3) Platinum utilization rate, initial characteristics, post-endurance characteristics and corrosion test Platinum utilization ratios were calculated in the same manner as in Example 1, and initial characteristics, post-endurance characteristics and corrosion tests for power generation cell performance were performed. The results are shown in Table 1.

(比較例1)
(1) 電極インクおよびMEAの調製
実施例1で調製した電極触媒A用の触媒担持導電性担体と電極触媒B用の触媒担持導電性担体とを使用し、電極触媒Aの配合割合が表1に示す質量%になるように電極触媒A用と電極触媒B用の触媒担持導電性担体とを秤りとり、実施例1と同様の手法により触媒インクの調製を行なった。
(Comparative Example 1)
(1) Preparation of electrode ink and MEA The catalyst-carrying conductive carrier for electrode catalyst A and the catalyst-carrying conductive carrier for electrode catalyst B prepared in Example 1 were used. The catalyst-supporting conductive carriers for the electrode catalyst A and the electrode catalyst B were weighed so as to have the mass% shown in FIG. 1, and a catalyst ink was prepared by the same method as in Example 1.

(2) 白金利用率、初期特性、耐久後特性および腐食試験
上記触媒インクを使用する以外は実施例1と同じ方法で白金利用率を算出し、および発電セル性能の初期特性、耐久後特性および腐食試験を行なった。結果を表1に示す。
(2) Platinum utilization rate, initial characteristics, post-endurance characteristics and corrosion test Except for using the above catalyst ink, the platinum utilization ratio was calculated in the same manner as in Example 1, and the initial characteristics of power generation cell performance, post-endurance characteristics and A corrosion test was performed. The results are shown in Table 1.

(比較例2)
(1) 電極インクおよびMEAの調製
実施例2で調製した電極触媒A用の触媒担持導電性担体と電極触媒B用の触媒担持導電性担体とを使用し、電極触媒Aの配合割合が表1に示す質量%になるように電極触媒A用と電極触媒B用の触媒担持導電性担体とを秤りとり、実施例2と同様の手法により触媒インクの調製を行なった。
(Comparative Example 2)
(1) Preparation of electrode ink and MEA The catalyst-carrying conductive carrier for electrode catalyst A and the catalyst-carrying conductive carrier for electrode catalyst B prepared in Example 2 were used. The catalyst-supporting conductive carriers for the electrode catalyst A and the electrode catalyst B were weighed so as to have the mass% shown in FIG. 2, and a catalyst ink was prepared by the same method as in Example 2.

(2) 白金利用率、初期特性、耐久後特性および腐食試験
上記触媒インクを使用する以外は実施例2と同じ方法で白金利用率を算出し、および発電セル性能の初期特性、耐久後特性および腐食試験を行なった。結果を表1に示す。
(2) Platinum utilization rate, initial characteristics, post-endurance characteristics and corrosion test Except for using the above catalyst ink, the platinum utilization ratio was calculated in the same manner as in Example 2, and the initial characteristics of power generation cell performance, post-endurance characteristics and A corrosion test was performed. The results are shown in Table 1.

(実施例3)
(1) 電極インクおよびMEAの調製
実施例1で調製した電極触媒A用の触媒担持導電性担体と実施例2で調製した電極触媒B用の触媒担持導電性担体とを用いて、以下の方法で触媒インクを調製した。
Example 3
(1) Preparation of electrode ink and MEA Using the catalyst-carrying conductive carrier for electrode catalyst A prepared in Example 1 and the catalyst-carrying conductive carrier for electrode catalyst B prepared in Example 2, the following method A catalyst ink was prepared.

電極触媒A用の触媒担持導電性担体(白金担持量:50質量%)を2.8gビーカーに秤りとり、高分子電解質パーフルオロスルホン酸アイオノマー溶液(デュポン社製、商品名「ナフィオン」、5質量%、IPA:水=1:1)を加え、ホモジナイザーを用いて4時間混合して触媒インクを調整した。なお、高分子電解質と電極触媒A用の触媒担持導電性担体を構成するカーボン担体との質量比は1:1とした。   A catalyst-supporting conductive support (platinum supported amount: 50% by mass) for electrode catalyst A was weighed in a 2.8 g beaker, and a polymer electrolyte perfluorosulfonic acid ionomer solution (trade name “Nafion”, 5 manufactured by DuPont) Mass%, IPA: water = 1: 1) was added and mixed for 4 hours using a homogenizer to prepare a catalyst ink. The mass ratio of the polymer electrolyte to the carbon support constituting the catalyst-supporting conductive support for the electrode catalyst A was 1: 1.

電極触媒B用の触媒担持導電性担体(白金担持量:30質量%)を1.2gビーカーに秤りとり、高分子電解質パーフルオロスルホン酸アイオノマー溶液(デュポン社製、商品名「ナフィオン」、5質量%、IPA:水=1:1)を加え、ホモジナイザーを用いて30分混合して触媒インクを調整した。なお、高分子電解質と電極触媒B用の触媒担持導電性担体を構成するカーボン担体との質量比は1:1とした。次いで、電極触媒Aの触媒インクと電極触媒Bの触媒インクとを混合し、ホモジナイザーを用いて10分混合して触媒インクを調整した。   A catalyst-supporting conductive support (platinum supported amount: 30% by mass) for the electrode catalyst B was weighed in a 1.2 g beaker, and a polymer electrolyte perfluorosulfonic acid ionomer solution (trade name “Nafion”, manufactured by DuPont, 5 Mass%, IPA: water = 1: 1) was added and mixed for 30 minutes using a homogenizer to prepare a catalyst ink. The mass ratio of the polymer electrolyte and the carbon support constituting the catalyst-supporting conductive support for the electrode catalyst B was 1: 1. Next, the catalyst ink of the electrode catalyst A and the catalyst ink of the electrode catalyst B were mixed and mixed for 10 minutes using a homogenizer to prepare a catalyst ink.

(2) 白金利用率、初期特性、耐久後特性および腐食試験
上記触媒インクを用いて、実施例1と同様の方法で、白金利用率、初期特性、耐久後特性および腐食試験を測定した。結果を表1に示す。
(2) Platinum utilization rate, initial characteristics, post-endurance characteristics and corrosion test Using the catalyst ink, platinum utilization ratio, initial characteristics, post-endurance characteristics and corrosion test were measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
実施例3と同じ電極触媒A用の触媒担持導電性担体と電極触媒B用の触媒担持導電性担体とを使用し、電極触媒Aと電極触媒Bの質量%が表1に示す割合となるように秤りとり、実施例3と同様の手法により触媒インクの調製を行なった。実施例3と同じ方法で白金利用率を算出し、および発電セル性能の初期特性、耐久後特性および腐食試験を行なった。結果を表1に示す。
(Comparative Example 3)
The same catalyst-carrying conductive carrier for electrode catalyst A and catalyst-carrying conductive carrier for electrode catalyst B as in Example 3 were used, so that the mass% of electrode catalyst A and electrode catalyst B was in the ratio shown in Table 1. The catalyst ink was prepared by the same method as in Example 3. The platinum utilization was calculated in the same manner as in Example 3, and the initial characteristics, post-endurance characteristics and corrosion test of the power generation cell performance were performed. The results are shown in Table 1.

(従来例)
実施例1で調製した電極触媒A用の触媒担持導電性担体を3gビーカーに秤りとり、高分子電解質パーフルオロスルホン酸アイオノマー溶液(デュポン社製、商品名「ナフィオン」、5質量%、IPA:水=1:1)を加え、ホモジナイザーを用いて4時間混合して触媒インクを調製した。なお、高分子電解質と電極触媒A用の触媒担持導電性担体を構成するカーボン担体との質量比は1:1とした。電極触媒A用の触媒担持導電性担体の平均粒子径は、0.4〜0.6μmとなった。これを触媒インクとして、実施例1と同じ方法で白金利用率を算出し、および発電セル性能の初期特性、耐久後特性および腐食試験を行なった。結果を従来例として表1に示す。
(Conventional example)
The catalyst-supporting conductive carrier for electrode catalyst A prepared in Example 1 was weighed in a 3 g beaker, and a polymer electrolyte perfluorosulfonic acid ionomer solution (trade name “Nafion”, 5% by mass, IPA: manufactured by DuPont). Water = 1: 1) was added and mixed for 4 hours using a homogenizer to prepare a catalyst ink. The mass ratio of the polymer electrolyte and the carbon support constituting the catalyst-supporting conductive support for the electrode catalyst A was 1: 1. The average particle diameter of the catalyst-supporting conductive carrier for the electrode catalyst A was 0.4 to 0.6 μm. Using this as the catalyst ink, the platinum utilization was calculated in the same manner as in Example 1, and the initial characteristics, post-endurance characteristics, and corrosion test of the power generation cell performance were performed. The results are shown in Table 1 as a conventional example.

本発明の触媒担持電極は、触媒利用率および耐久性に優れ、長寿命の燃料電池用電極触媒などとして有用である。   The catalyst-carrying electrode of the present invention is excellent in catalyst utilization and durability, and is useful as a long-life electrode catalyst for fuel cells.

触媒担持電極内における、従来の電極触媒の本発明の概念図であり、導電性担体の細孔内部に白金微粒子が担持されるが、電解質ポリマーと接触できない状態を示す図である。It is a conceptual diagram of the present invention of a conventional electrode catalyst in a catalyst-carrying electrode, and shows a state in which platinum fine particles are carried inside the pores of a conductive carrier but cannot come into contact with an electrolyte polymer. 本発明の触媒担持電極の調製方法の一例を示す工程図である。It is process drawing which shows an example of the preparation method of the catalyst carrying | support electrode of this invention. 本発明の触媒担持電極の調製方法の一例を示す工程図である。It is process drawing which shows an example of the preparation method of the catalyst carrying | support electrode of this invention. 本発明の電極触媒を用いたMEAを模式的に示す図である。It is a figure which shows typically MEA using the electrode catalyst of this invention. 実施例の腐食試験で使用した電気化学セルの構成を示す図である。It is a figure which shows the structure of the electrochemical cell used by the corrosion test of the Example.

Claims (8)

導電性担体に白金または白金合金からなる触媒金属微粒子を担持した電極触媒と、電解質ポリマーとを含む触媒担持電極において、
前記電極触媒が、触媒利用率が異なる少なくとも二つ以上の電極触媒の混合物であることを特徴とする、触媒担持電極。
In a catalyst-carrying electrode comprising an electrocatalyst carrying a catalyst metal fine particle comprising platinum or a platinum alloy on a conductive support, and an electrolyte polymer,
A catalyst-carrying electrode, wherein the electrode catalyst is a mixture of at least two electrode catalysts having different catalyst utilization rates.
前記電極触媒が、電極触媒Aと電極触媒Bとを含み、前記電極触媒Aの触媒利用率が70%以上であり、前記電極触媒Bの触媒利用率が30%以下である、請求項1記載の触媒担持電極。   The said electrode catalyst contains the electrode catalyst A and the electrode catalyst B, The catalyst utilization factor of the said electrode catalyst A is 70% or more, The catalyst utilization factor of the said electrode catalyst B is 30% or less. Catalyst-supporting electrode. 前記電極触媒における電極触媒Aの含有量が、全触媒(電極触媒Aと電極触媒Bの和)に対し、70〜90質量%、である、請求項1または2記載の触媒担持電極。   The catalyst-carrying electrode according to claim 1 or 2, wherein the content of the electrode catalyst A in the electrode catalyst is 70 to 90 mass% with respect to the total catalyst (the sum of the electrode catalyst A and the electrode catalyst B). 前記電極触媒Bの導電性担体の含有量が、電極触媒全体の導電性担体の10〜40質量%であることを特徴とする、請求項1〜3のいずれかに記載の触媒担持電極。   The catalyst-carrying electrode according to any one of claims 1 to 3, wherein the content of the conductive carrier of the electrode catalyst B is 10 to 40% by mass of the conductive carrier of the whole electrode catalyst. 電解質膜とカソードおよびアノードとを含み、請求項1〜4のいずれかに記載の触媒担持電極がカソードであることを特徴とする、燃料電池用MEA。   A fuel cell MEA comprising an electrolyte membrane, a cathode, and an anode, wherein the catalyst-supporting electrode according to any one of claims 1 to 4 is a cathode. 請求項1〜4のいずれかに記載の触媒担持電極、または請求項5記載の燃料電池用MEAを用いた燃料電池。   A fuel cell using the catalyst-carrying electrode according to claim 1 or the MEA for fuel cell according to claim 5. 請求項2記載の触媒担持電極の製造方法において、前記電極触媒Aを高分子電解質ポリマーと共に粉砕し、次いで前記電極触媒Bを添加した後に攪拌する工程を含むことを特徴とする、触媒担持電極の製造方法。   3. The method for producing a catalyst-carrying electrode according to claim 2, comprising a step of pulverizing the electrode catalyst A together with a polymer electrolyte polymer, and then stirring after adding the electrode catalyst B. Production method. 請求項2記載の触媒担持電極の製造方法において、前記電極触媒Aを電解質ポリマーと共に粉砕したものと、前記電極触媒Bを電解質ポリマーと共に粉砕したものとを混合する工程を含む、触媒担持電極の製造方法。   3. The method for producing a catalyst-carrying electrode according to claim 2, comprising the step of mixing the electrode catalyst A pulverized with an electrolyte polymer and the electrode catalyst B pulverized with an electrolyte polymer. Method.
JP2003427489A 2003-12-24 2003-12-24 Catalyst carrying electrode, mea for fuel cell, and fuel cell Withdrawn JP2005190712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427489A JP2005190712A (en) 2003-12-24 2003-12-24 Catalyst carrying electrode, mea for fuel cell, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427489A JP2005190712A (en) 2003-12-24 2003-12-24 Catalyst carrying electrode, mea for fuel cell, and fuel cell

Publications (1)

Publication Number Publication Date
JP2005190712A true JP2005190712A (en) 2005-07-14

Family

ID=34786749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427489A Withdrawn JP2005190712A (en) 2003-12-24 2003-12-24 Catalyst carrying electrode, mea for fuel cell, and fuel cell

Country Status (1)

Country Link
JP (1) JP2005190712A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109456A (en) * 2005-10-12 2007-04-26 Nippon Shokubai Co Ltd Electrode catalyst for solid polymer fuel cell and fuel cell
JP2007250366A (en) * 2006-03-16 2007-09-27 Toyota Motor Corp Catalyst layer of fuel cell electrode
JP2008091101A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell and fuel cell power generating system
JP2010045003A (en) * 2008-08-18 2010-02-25 Toyota Motor Corp Method for manufacturing catalyst layer for fuel cell
CN103608954A (en) * 2011-04-25 2014-02-26 联合工艺公司 Catalyst material for fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109456A (en) * 2005-10-12 2007-04-26 Nippon Shokubai Co Ltd Electrode catalyst for solid polymer fuel cell and fuel cell
JP2007250366A (en) * 2006-03-16 2007-09-27 Toyota Motor Corp Catalyst layer of fuel cell electrode
JP2008091101A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Fuel cell and fuel cell power generating system
JP2010045003A (en) * 2008-08-18 2010-02-25 Toyota Motor Corp Method for manufacturing catalyst layer for fuel cell
CN103608954A (en) * 2011-04-25 2014-02-26 联合工艺公司 Catalyst material for fuel cell
JP2014517985A (en) * 2011-04-25 2014-07-24 ユナイテッド テクノロジーズ コーポレイション Catalyst materials for fuel cells
US9755245B2 (en) 2011-04-25 2017-09-05 Audi Ag Catalyst material for fuel cell

Similar Documents

Publication Publication Date Title
JP4083721B2 (en) High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same
US7022642B2 (en) Electrocatalyst and method of manufacturing the same
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
CN111900420A (en) Anode catalyst slurry, anode catalyst layer, membrane electrode and fuel cell
JP2007273340A (en) High-durability electrode catalyst for fuel cell, and fuel cell using the same
KR102422340B1 (en) Catalyst for fuel cell and manufacturing method thereof
JP2011159517A (en) Method for manufacturing fuel cell catalyst layer
JP6635976B2 (en) Electrode catalyst for fuel cell and method for producing the same
JP2020047432A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JPWO2006114942A1 (en) Carbon particle, particle comprising platinum and ruthenium oxide and method for producing the same
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP6478677B2 (en) Fuel cell electrode
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP4539086B2 (en) ELECTRODE CATALYST, CATALYST CARRIER ELECTRODE, MEA FOR FUEL CELL AND FUEL CELL
JP2005216772A (en) Electrode catalyst, electrode and mea carrying the same
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
JP2005190712A (en) Catalyst carrying electrode, mea for fuel cell, and fuel cell
JP6759651B2 (en) Method for producing catalyst particles and method for producing electrode catalyst
KR20100068028A (en) Catalyst layer for fuel cell and method for preparing the same
JP2006179427A (en) Electrode catalyst for fuel cell, and the fuel cell
JP6191326B2 (en) ELECTRODE CATALYST PARTICLE FOR FUEL CELL, ELECTRODE CATALYST FOR FUEL CELL USING THE SAME, ELECTROLYTE-ELECTRODE ASSEMBLY, FUEL CELL, AND METHOD FOR PRODUCING CATALYTIC PARTICLE AND CATALYST
JP2005141966A (en) Catalyst-carrying electrode, mea for fuel cell, and the fuel cell
JP4087651B2 (en) Electrocatalyst for solid polymer electrolyte fuel cell
JP2005190726A (en) Catalyst carrying electrode, mea for fuel cell, and fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306