JP2002015745A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell

Info

Publication number
JP2002015745A
JP2002015745A JP2000195109A JP2000195109A JP2002015745A JP 2002015745 A JP2002015745 A JP 2002015745A JP 2000195109 A JP2000195109 A JP 2000195109A JP 2000195109 A JP2000195109 A JP 2000195109A JP 2002015745 A JP2002015745 A JP 2002015745A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
supported catalyst
cathode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000195109A
Other languages
Japanese (ja)
Inventor
Shinji Terasono
真二 寺園
Eiji Yanagisawa
栄治 柳沢
Masaru Yoshitake
優 吉武
Toshihiro Tanuma
敏弘 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000195109A priority Critical patent/JP2002015745A/en
Priority to EP01112885A priority patent/EP1164651A1/en
Priority to CA002349746A priority patent/CA2349746A1/en
Priority to US09/877,057 priority patent/US20020009626A1/en
Priority to KR1020010032993A priority patent/KR20010112639A/en
Priority to CN01121009A priority patent/CN1329372A/en
Publication of JP2002015745A publication Critical patent/JP2002015745A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell that has an excellent output property and a high driving stability. SOLUTION: The solid polymer fuel cell is equipped with a cathode which contains a catalyst in which platinum or platinum alloy is carried in the carbon carrier having a specific surface area of 300-1,200 m2/g, and a perfluorocarbon polymer having sulfonic acid group. The metal content of the catalyst of the total mass of the catalyst is 52-80% and the catalyst content of the total quantity of the catalyst and the above polymer is 50-80 mass %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた出力特性な
らびに高い駆動安定性を有する固体高分子型燃料電池に
関する。
The present invention relates to a polymer electrolyte fuel cell having excellent output characteristics and high driving stability.

【0002】[0002]

【従来の技術】燃料電池は、原料となるガスの反応エネ
ルギを直接電気エネルギに変換する電池であり、水素・
酸素燃料電池は、その反応生成物が原理的に水のみであ
り地球環境への影響がほとんどない。なかでも電解質と
して固体高分子電解質を使用する固体高分子型燃料電池
は、常温でも作動でき高出力密度が得られるため、近年
のエネルギ、地球環境問題への社会的要請の高まりとと
もに、電気自動車用電源、定置型電源等として大きな期
待が寄せられている。
2. Description of the Related Art A fuel cell is a cell that directly converts the reaction energy of a gas as a raw material into electric energy.
The oxygen fuel cell has a reaction product of only water in principle, and has almost no effect on the global environment. Among them, polymer electrolyte fuel cells, which use solid polymer electrolytes as electrolytes, can operate at room temperature and have high power density. High expectations are placed on power supplies and stationary power supplies.

【0003】固体高分子型燃料電池では、通常、固体高
分子電解質としてプロトン伝導性のイオン交換膜が使用
され、特にスルホン酸基を有するパーフルオロカーボン
重合体(以下、スルホン酸型パーフルオロカーボン重合
体という。)からなるイオン交換膜が基本特性に優れて
いる。固体高分子型燃料電池では、イオン交換膜の両面
にガス拡散性の電極層からなるアノード及びカソードを
配置し、燃料である水素及び酸化剤となる酸素又は空気
をそれぞれアノード及びカソードに供給することにより
発電を行う。
In a polymer electrolyte fuel cell, a proton conductive ion exchange membrane is usually used as a polymer electrolyte, and in particular, a perfluorocarbon polymer having a sulfonic acid group (hereinafter referred to as a sulfonic acid type perfluorocarbon polymer). ) Is excellent in basic characteristics. In a polymer electrolyte fuel cell, an anode and a cathode composed of gas-diffusing electrode layers are arranged on both sides of an ion exchange membrane, and hydrogen as a fuel and oxygen or air as an oxidant are supplied to the anode and the cathode, respectively. To generate electricity.

【0004】固体高分子型燃料電池の電極層には、通
常、白金又は白金合金が比表面積の大きい導電性のカー
ボンブラック等に担持された担持触媒が含まれており、
ガス拡散性の電極層における反応は、電解質、触媒及び
ガス(水素又は酸素)が同時に存在する三相界面でのみ
進行する。特に、電極層において、電解質となるイオン
交換樹脂で触媒を被覆し、三相界面を拡大させる方法に
より性能を向上させることができる。
The electrode layer of a polymer electrolyte fuel cell usually contains a supported catalyst in which platinum or a platinum alloy is supported on conductive carbon black or the like having a large specific surface area.
The reaction in the gas-diffusing electrode layer proceeds only at the three-phase interface where the electrolyte, catalyst and gas (hydrogen or oxygen) are simultaneously present. In particular, in the electrode layer, the performance can be improved by coating the catalyst with an ion exchange resin serving as an electrolyte and expanding the three-phase interface.

【0005】[0005]

【発明が解決しようとする課題】固体高分子型燃料電池
のカソードでは、酸化剤となる酸素の還元反応により水
が生成する。触媒金属としては、スルホン酸型パーフル
オロカーボン重合体からなるイオン交換樹脂との共存下
で、安定かつ活性が高い点で主に白金が使用されてい
る。しかし、アノードにおける水素の酸化反応に比較す
ると、カソードにおける酸素還元反応過電圧が非常に大
きいので、優れた出力特性を得るためには、さらに高い
酸素還元活性を有するカソード用の電極触媒の開発が必
要とされている。
At the cathode of a polymer electrolyte fuel cell, water is generated by a reduction reaction of oxygen serving as an oxidizing agent. Platinum is mainly used as the catalyst metal because it is stable and has high activity in the presence of an ion exchange resin composed of a sulfonic acid type perfluorocarbon polymer. However, compared to the oxidation reaction of hydrogen at the anode, the oxygen reduction reaction overpotential at the cathode is much larger, so in order to obtain excellent output characteristics, it is necessary to develop a cathode electrode catalyst with even higher oxygen reduction activity. It has been.

【0006】そこで本発明は、カソードにおける酸素還
元反応過電圧を低減するため、特にカソード用の電極触
媒に着目し、優れた出力特性と高い駆動安定性を有する
固体高分子型燃料電池を提供することを目的とする。
Accordingly, the present invention provides a polymer electrolyte fuel cell having excellent output characteristics and high driving stability, with a particular focus on an electrode catalyst for the cathode, in order to reduce the oxygen reduction reaction overvoltage at the cathode. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明は、固体高分子電
解質膜と該電解質膜を介して対向するカソード及びアノ
ードを備えた固体高分子型燃料電池において、前記カソ
ードには、スルホン酸基を有するパーフルオロカーボン
重合体と、白金又は白金合金が比表面積300〜120
0m2/gのカーボン担体に担持された担持触媒とが含
まれ、前記担持触媒は前記パーフルオロカーボン重合体
と前記担持触媒の合量の50〜80質量%含まれ、かつ
前記担持触媒には白金又は白金合金が前記担持触媒の全
質量中に52〜80%含まれることを特徴とする固体高
分子型燃料電池を提供する。
According to the present invention, there is provided a polymer electrolyte fuel cell comprising a solid polymer electrolyte membrane, and a cathode and an anode opposed to each other with the electrolyte membrane interposed therebetween, wherein the cathode has a sulfonic acid group. Having a perfluorocarbon polymer and platinum or a platinum alloy having a specific surface area of 300 to 120
A supported catalyst supported on a carbon carrier of 0 m 2 / g; the supported catalyst comprises 50 to 80% by mass of the total amount of the perfluorocarbon polymer and the supported catalyst; Alternatively, the present invention provides a polymer electrolyte fuel cell, wherein a platinum alloy is contained in an amount of 52 to 80% in the total mass of the supported catalyst.

【0008】[0008]

【発明の実施の形態】従来の燃料電池用触媒に使用され
ている白金担持触媒又は白金合金担持触媒中の白金又は
白金合金(以下、触媒金属という)の含有率(担持率)
は、担持触媒全質量の20〜40%程度である。本発明
ではカソードにおいて担持触媒中の触媒金属の含有率を
52〜80%と高くしているため、より高濃度に触媒金
属粒子を反応サイト(触媒と樹脂と燃料ガスとの三相界
面)に存在させることができ、高出力が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The content (support rate) of platinum or a platinum alloy (hereinafter referred to as catalyst metal) in a platinum-supported catalyst or a platinum alloy-supported catalyst used in a conventional fuel cell catalyst.
Is about 20 to 40% of the total mass of the supported catalyst. In the present invention, since the content of the catalyst metal in the supported catalyst at the cathode is as high as 52 to 80%, the catalyst metal particles are more concentrated on the reaction site (the three-phase interface between the catalyst, the resin, and the fuel gas). Can be present and high output is obtained.

【0009】反応サイトの拡大という観点からは、担体
に担持されていない白金等の金属粒子のみを触媒として
使用することも考えられる。しかし、本発明では電極中
で触媒と強酸性のスルホン酸型パーフルオロカーボン重
合体(以下、電極樹脂という)を共存させており、触媒
が電極樹脂により被覆されるため、担体に担持されてい
ない触媒金属の場合は電子の流れが阻害され電極の抵抗
が増大しやすく高出力を得にくい。一方、触媒金属がカ
ーボンに担持されていると、カーボンどうしの接触で電
子伝導性を確保できる。また、カーボン担体に担持して
いない触媒金属粒子を使用した場合、カソードで生成す
る水の排出に適切な細孔径0.1μm以上の細孔の容積
が充分に得られないため水を排出しにくい。
From the viewpoint of expanding the reaction site, it is conceivable to use only metal particles such as platinum not supported on a carrier as a catalyst. However, in the present invention, a catalyst and a strongly acidic sulfonic acid-type perfluorocarbon polymer (hereinafter, referred to as an electrode resin) coexist in the electrode, and the catalyst is not supported on a carrier because the catalyst is coated with the electrode resin. In the case of a metal, the flow of electrons is obstructed, and the resistance of the electrode tends to increase, making it difficult to obtain high output. On the other hand, when the catalyst metal is supported on carbon, electron conductivity can be ensured by contact between carbons. When catalyst metal particles not supported on a carbon carrier are used, it is difficult to discharge water because a sufficient volume of pores having a pore diameter of 0.1 μm or more suitable for discharging water generated at the cathode cannot be obtained. .

【0010】本発明では、優れた出力特性を得ることを
目的としているため、触媒金属の担持率が52%未満で
あると、上記目的を達成するために充分な反応サイトを
確保できない。また、80%を超えると、触媒金属粒子
をカーボン担体に分散性よく担持させることが困難とな
り、触媒金属粒子が強酸性の電極樹脂で直接被覆されて
使用されることになり、触媒金属である白金粒子又は白
金合金粒子の成長を引き起こす。また、カーボン担体に
担持していない触媒金属を使用する場合と同様に、水の
排出に適切な細孔径0.1μm以上の細孔の容積が充分
に得られない。担持率は、より好ましくは55〜75%
であり、さらに好ましくは58〜70%である。
In the present invention, an object is to obtain excellent output characteristics. If the catalyst metal loading is less than 52%, a reaction site sufficient to achieve the above object cannot be secured. On the other hand, when the content exceeds 80%, it becomes difficult to support the catalyst metal particles on the carbon carrier with good dispersibility, and the catalyst metal particles are used by being directly covered with a strongly acidic electrode resin and used. Causes the growth of platinum particles or platinum alloy particles. Further, similarly to the case where a catalyst metal not supported on a carbon carrier is used, a sufficient volume of pores having a pore diameter of 0.1 μm or more suitable for discharging water cannot be obtained. The loading ratio is more preferably 55 to 75%.
And more preferably 58 to 70%.

【0011】また、担持率の高い状態での触媒金属粒子
の安定性を確保するため、カーボン担体は、本発明では
比表面積が大きく300〜1200m2/gであるカー
ボン担体を使用する。カーボン担体の比表面積が300
2/g未満であると、白金を主成分とする触媒金属粒
子を分散性よく担持させることが困難となる。また、触
媒を調製する段階で触媒金属の粒子径が大きくなりやす
く、触媒金属の表面積が減少し、優れた出力特性を得る
ことが困難となる。
In order to ensure the stability of the catalytic metal particles in a state where the loading rate is high, the carbon carrier used in the present invention has a large specific surface area and is 300 to 1200 m 2 / g. Specific surface area of carbon carrier is 300
When it is less than m 2 / g, it becomes difficult to carry the catalyst metal particles mainly composed of platinum with good dispersibility. In addition, at the stage of preparing the catalyst, the particle diameter of the catalyst metal tends to increase, the surface area of the catalyst metal decreases, and it becomes difficult to obtain excellent output characteristics.

【0012】また、比表面積が1200m2/gより大
きい場合、細孔径が0.1μm未満、主には0.01μ
m未満の細孔が発達し、細孔径が小さい細孔の容積が大
きくなる。通常、カーボン担体に白金を主体とする触媒
金属を担持する場合、粒子径1〜10nm程度の金属コ
ロイドを湿式で調製し該コロイドを用いてカーボン担体
に金属を担持する。そのため上記のように細孔径の小さ
い細孔が発達したカーボン担体を使用した場合、触媒金
属は細孔径の小さい細孔にも容易に侵入して担持され
る。一方、細孔径の小さい細孔中にはイオン交換樹脂を
浸透させにくいので、反応サイトとなる三相界面を拡大
できない。より触媒金属粒子を安定に分散性よく担持
し、有効に三相界面が形成するには、カーボン担体の比
表面積は500〜1000m2/gであると好ましい。
When the specific surface area is larger than 1200 m 2 / g, the pore diameter is less than 0.1 μm, mainly 0.01 μm.
m, and the volume of the pores having a small pore diameter increases. In general, when a catalytic metal mainly composed of platinum is supported on a carbon carrier, a metal colloid having a particle diameter of about 1 to 10 nm is prepared by a wet method, and the metal is supported on the carbon carrier using the colloid. Therefore, when a carbon support having small pores developed as described above is used, the catalyst metal easily penetrates into the small pores and is supported. On the other hand, since the ion exchange resin hardly penetrates into the small pores, the three-phase interface serving as a reaction site cannot be expanded. In order to more stably support the catalyst metal particles with good dispersibility and effectively form a three-phase interface, the specific surface area of the carbon support is preferably 500 to 1000 m 2 / g.

【0013】また、本発明では、カソード中に担持触媒
は電極樹脂と担持触媒の合量の50〜80質量%含まれ
る。50質量%未満であると、固体高分子電解質膜(以
下、単に電解質膜という)近傍におけるカソードの反応
サイトを充分に確保できないため、高出力を得られな
い。アノードから電解質膜を通過しカソードに到達する
プロトンは、電解質膜に近い領域ほど移動抵抗が小さい
ためカソードにおける反応に対し有利に作用する。その
ため、電解質膜近傍におけるカソードの反応サイトを充
分に確保することが重要となる。
In the present invention, the supported catalyst is contained in the cathode in an amount of 50 to 80% by mass of the total amount of the electrode resin and the supported catalyst. When the content is less than 50% by mass, a sufficient reaction site of the cathode in the vicinity of the solid polymer electrolyte membrane (hereinafter simply referred to as an electrolyte membrane) cannot be secured, so that a high output cannot be obtained. Protons that pass from the anode through the electrolyte membrane and reach the cathode have a lower migration resistance in a region closer to the electrolyte membrane, and thus have an advantageous effect on the reaction at the cathode. Therefore, it is important to secure a sufficient reaction site of the cathode in the vicinity of the electrolyte membrane.

【0014】特に、カソードの厚さ方向において、電解
質膜表面からカソードの厚さ方向に向けて10μm以内
の領域において充分な反応サイトを確保することが好ま
しい。すなわち、カソードと電解質膜は接していること
が好ましく、カソードの電解質膜表面からカソードの厚
さ方向に向けて10μm以内の領域において、上記担持
触媒が電極樹脂と担持触媒の合量の50〜80質量%含
まれるようにすることが好ましい。このようにすること
により、電解質膜を透過するプロトンに対して特に有利
に作用し、カソードに供給される酸素及び集電体からの
電子と効率よく反応して、高い出力特性を得られる。
In particular, it is preferable to secure a sufficient reaction site in a region within 10 μm from the surface of the electrolyte membrane in the thickness direction of the cathode in the thickness direction of the cathode. That is, it is preferable that the cathode and the electrolyte membrane are in contact with each other, and in the region within 10 μm from the surface of the electrolyte membrane of the cathode in the thickness direction of the cathode, the supported catalyst is 50 to 80 times the total amount of the electrode resin and the supported catalyst. It is preferable that the content be contained by mass%. By doing so, it acts particularly advantageously on protons permeating the electrolyte membrane, reacts efficiently with oxygen supplied to the cathode and electrons from the current collector, and obtains high output characteristics.

【0015】一方、担持触媒の割合が80質量%を超え
ると、触媒を被覆する電極樹脂の量が相対的に減少し、
プロトンが移動しにくくなる。また、電極樹脂による触
媒の被覆が充分にできず、反応サイトが減少して高い出
力特性を得られない。より好ましくは、担持触媒の割合
は55〜75質量%であり、電解質膜へのガスの供給、
集電体からの電子の流れやすさの点から60〜70質量
%であるとさらに好ましい。
On the other hand, when the ratio of the supported catalyst exceeds 80% by mass, the amount of the electrode resin covering the catalyst decreases relatively,
Protons are less likely to move. Further, the catalyst cannot be sufficiently coated with the electrode resin, and the number of reaction sites is reduced, so that high output characteristics cannot be obtained. More preferably, the proportion of the supported catalyst is 55 to 75% by mass, and the supply of gas to the electrolyte membrane,
It is more preferable that the content be 60 to 70% by mass from the viewpoint of the ease with which electrons flow from the current collector.

【0016】また、本発明における電極樹脂は、イオン
交換容量が1.0〜1.5ミリ当量/g乾燥樹脂、特に
1.1〜1.4ミリ当量/g乾燥樹脂であることが好ま
しい。1.0ミリ当量/g乾燥樹脂未満の場合、電極樹
脂の含水率が低いため、電極の抵抗が高くなり電池の出
力を高めにくい。また、1.5ミリ当量/g乾燥樹脂を
超えると、電極樹脂が水に溶解しやすくなり、燃料電池
の作動中に電極樹脂が溶出し、出力電圧が低下するおそ
れがある。
The electrode resin in the present invention preferably has an ion exchange capacity of 1.0 to 1.5 meq / g dry resin, particularly preferably 1.1 to 1.4 meq / g dry resin. If the amount is less than 1.0 meq / g dry resin, the electrode resin has a low water content, so that the resistance of the electrode increases and it is difficult to increase the output of the battery. If the amount exceeds 1.5 meq / g dry resin, the electrode resin is easily dissolved in water, and the electrode resin is eluted during the operation of the fuel cell, and the output voltage may decrease.

【0017】本発明におけるカーボン担体としては、X
線回折により測定される[002]面の平均格子面間隔
002が0.340〜0.362nmであることが好ま
しい。d002はカーボンの黒鉛化度の目安となる物性で
ある。黒鉛化度が進行しているカーボンは表面官能基濃
度が低下して撥水性が高くなっており、カソードにおい
て生成される反応生成水等を排出しやすい。そのため、
電極細孔におけるフラッディングが抑制され、長期にわ
たって安定した出力を得られる。
As the carbon carrier in the present invention, X
The average lattice spacing d 002 of the [002] plane measured by line diffraction is preferably from 0.340 to 0.362 nm. d 002 is a physical property that is a measure of the degree of graphitization of carbon. Carbon having a high degree of graphitization has a reduced surface functional group concentration and high water repellency, and easily discharges reaction-produced water generated at the cathode. for that reason,
Flooding in the electrode pores is suppressed, and a stable output can be obtained over a long period.

【0018】d002が0.340nm未満であるとカー
ボン担体の黒鉛化度が高すぎ、比表面積が減少するた
め、担持する触媒金属の分散性が低下したり触媒金属の
表面積が減少したりして、電極活性が低下するおそれが
ある。また、0.362nmを超えると、黒鉛化度が低
すぎて電極活性は向上せず、また充分な撥水性や強酸で
ある電極樹脂に対する耐食性も得られないおそれがあ
る。
If d 002 is less than 0.340 nm, the degree of graphitization of the carbon carrier is too high and the specific surface area is reduced, so that the dispersibility of the supported catalyst metal is reduced or the surface area of the catalyst metal is reduced. Thus, the electrode activity may be reduced. On the other hand, if it exceeds 0.362 nm, the degree of graphitization is too low to improve the electrode activity, and sufficient water repellency and corrosion resistance to an electrode resin which is a strong acid may not be obtained.

【0019】通常のカーボンブラック又は活性炭で比表
面積が300m2/g以上のものは、d002が0.355
〜0.385nm程度でありグラファイト化はあまり進
行していない。したがって、本発明におけるカーボン担
体は、カーボンブラック又は活性炭を1000〜220
0℃、特に1200〜1800℃にて加熱処理してグラ
ファイト化を進行させて得ることが好ましい。加熱処理
の温度が1000℃未満では、充分にグラファイト化が
進行しないため撥水性や耐食性があまり高まらない。ま
た、加熱処理の温度が2200℃を超えると、著しくグ
ラファイト化が進行し、比表面積が大きく低下するた
め、触媒金属粒子を分散性よく担持することが困難とな
りやすい。
For ordinary carbon black or activated carbon having a specific surface area of 300 m 2 / g or more, d 002 is 0.355.
Approximately 0.385 nm, and the graphitization has not progressed much. Therefore, the carbon carrier in the present invention is carbon black or activated carbon of 1000 to 220
It is preferable to obtain by heating at 0 ° C., particularly 1200 to 1800 ° C. to progress the graphitization. If the temperature of the heat treatment is less than 1000 ° C., the graphitization does not proceed sufficiently, so that the water repellency and corrosion resistance do not increase so much. On the other hand, when the temperature of the heat treatment exceeds 2200 ° C., the graphitization proceeds remarkably, and the specific surface area is greatly reduced. Therefore, it becomes difficult to carry the catalyst metal particles with good dispersibility.

【0020】本発明におけるカーボン担体としては、通
常の既知のカーボン材料が使用でき、なかでもチャンネ
ルブラック、ファーネスブラック、サーマルブラック、
アセチレンブラック等のカーボンブラックや活性炭等が
好ましい。
As the carbon carrier in the present invention, any of the known carbon materials can be used. Among them, channel black, furnace black, thermal black,
Carbon black such as acetylene black and activated carbon are preferred.

【0021】本発明における触媒金属としては、カソー
ドでの酸素還元反応に対して高活性な白金主体の触媒で
あることが好ましい。さらに、電極触媒としての高活性
や安定性を付与する目的で、白金合金を使用することも
でき、この場合の触媒金属としては白金以外の白金族の
金属、金、コバルト、クロム、ニッケル、鉄、モリブデ
ン、タングステン、アルミニウム、ケイ素、レニウム、
亜鉛、及びスズからなる群から選ばれる1種以上の金属
と白金との合金が使用できる。なお、白金合金は、白金
と上記金属との金属間化合物、例えば二元系金属間化合
物であってもよい。
The catalyst metal in the present invention is preferably a platinum-based catalyst which is highly active in the oxygen reduction reaction at the cathode. Further, for the purpose of imparting high activity and stability as an electrode catalyst, a platinum alloy can be used, and in this case, a platinum group metal other than platinum, gold, cobalt, chromium, nickel, iron , Molybdenum, tungsten, aluminum, silicon, rhenium,
An alloy of platinum and one or more metals selected from the group consisting of zinc and tin can be used. The platinum alloy may be an intermetallic compound of platinum and the above metal, for example, a binary intermetallic compound.

【0022】白金合金を使用する場合、その組成は、白
金と合金化する金属の種類にもよるが、白金が30〜9
0原子%となるようにすることが好ましい。また、合金
化処理の方法としては、不活性ガス雰囲気下において6
00〜900℃の温度で熱処理して合金化することが好
ましい。
When a platinum alloy is used, its composition depends on the type of metal to be alloyed with platinum.
It is preferable that the content be 0 atomic%. The alloying method may be performed under an inert gas atmosphere.
It is preferable to heat-treat at a temperature of 00 to 900 ° C. to form an alloy.

【0023】本発明における担持触媒の製造方法として
は、例えば、白金の塩として塩化白金酸の水溶液(アル
コール等の溶媒を含んでもよい)中に、カーボン粉末を
分散させる。ここで触媒金属として白金合金を使用する
場合は、上記液中に白金と合金化させる金属を含む化合
物を溶解又は分散させておく。次に、加熱撹拌を行い、
白金を含む化合物又は白金と上記金属を含む化合物をカ
ーボン粉末に吸着させる。必要に応じて、溶液中のpH
をアルカリ側に調整し、カーボン粉末に吸着させる化合
物を水酸化物としてもよい。さらにろ過、洗浄、乾燥を
適宜行った後、水素ガス等により還元処理を施し、次い
でヘリウム、アルゴン、窒素等の不活性ガス雰囲気下で
熱処理を行うことにより担持触媒が得られる。
As a method for producing the supported catalyst in the present invention, for example, a carbon powder is dispersed in an aqueous solution of chloroplatinic acid (which may contain a solvent such as alcohol) as a salt of platinum. When a platinum alloy is used as the catalyst metal, a compound containing a metal to be alloyed with platinum is dissolved or dispersed in the liquid. Next, heat and stir,
A compound containing platinum or a compound containing platinum and the above metal is adsorbed on carbon powder. PH in solution, if necessary
May be adjusted to the alkali side, and the compound adsorbed on the carbon powder may be a hydroxide. Further, after appropriately performing filtration, washing, and drying, a reduction treatment is performed with hydrogen gas or the like, and then a heat treatment is performed in an atmosphere of an inert gas such as helium, argon, or nitrogen to obtain a supported catalyst.

【0024】本発明における担持触媒を構成する白金又
は白金合金(金属間化合物を含む)の粒子径は、高活性
を得るために1〜20nmであることが好ましく、特に
1.2〜5nmであることが好ましい。粒子径が1.2
nm未満であると、触媒金属粒子が凝集しやすく、また
電極樹脂中に溶解しやすく溶解した後再度安定して再析
出するため、結果的に粒子径が大きくなりやすい。ま
た、5nmを超えると、触媒金属の表面積が相対的に小
さくなるので、充分な活性を引き出せない。
The particle diameter of platinum or a platinum alloy (including an intermetallic compound) constituting the supported catalyst in the present invention is preferably 1 to 20 nm in order to obtain high activity, and particularly preferably 1.2 to 5 nm. Is preferred. Particle size is 1.2
When it is less than nm, the catalytic metal particles are likely to aggregate, and are easily dissolved in the electrode resin, and then stably re-precipitated again. As a result, the particle diameter tends to increase. On the other hand, if the thickness exceeds 5 nm, the surface area of the catalyst metal becomes relatively small, so that sufficient activity cannot be obtained.

【0025】本発明において電解質膜を構成する樹脂と
しては、カソードの電極樹脂同様にスルホン酸型パーフ
ルオロカーボン重合体が好ましい。また、アノードにも
カソード同様に樹脂が含まれることが好ましく、スルホ
ン酸型パーフルオロカーボン重合体が好ましい。カソー
ドに含まれる樹脂、アノードに含まれる樹脂、及び電解
質膜を構成する樹脂は同じであっても異なっていてもよ
いが、いずれも特に、CF2=CF2に基づく重合単位と
CF2=CF−(OCF2CFX)m−Op−(CF2n
SO3Hに基づく重合単位(式中、Xはフッ素原子又は
トリフルオロメチル基であり、mは0〜3の整数であ
り、nは1〜12の整数であり、pは0又は1であ
る。)とからなる共重合体が好ましい。
In the present invention, the resin constituting the electrolyte membrane is preferably a sulfonic acid type perfluorocarbon polymer as in the case of the cathode electrode resin. Further, it is preferable that the anode contains a resin similarly to the cathode, and a sulfonic acid type perfluorocarbon polymer is preferable. The resin contained in the cathode, the resin contained in the anode, and the resin constituting the electrolyte membrane may be the same or different, but all of them are, particularly, polymerized units based on CF 2 = CF 2 and CF 2 = CF - (OCF 2 CFX) m -O p - (CF 2) n -
SO 3 H-based polymerization unit (wherein, X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1. Is preferred.

【0026】本発明の固体高分子型燃料電池において、
電極(カソード及びアノード)と電解質膜は接合されて
いることが好ましい。電極・膜接合体を製造する場合、
電解質膜となるイオン交換膜上に電極を直接形成する方
法、カーボンペーパー、カーボンクロス等の基材上に一
旦電極を層状に形成した後にこれをイオン交換膜と接合
する方法、又は別の平板上に電極を形成してこれをイオ
ン交換膜に転写する方法等、各種の方法を採用できる。
In the polymer electrolyte fuel cell of the present invention,
The electrodes (cathode and anode) and the electrolyte membrane are preferably joined. When manufacturing an electrode / membrane assembly,
A method of forming electrodes directly on an ion exchange membrane serving as an electrolyte membrane, a method of forming an electrode once on a base material such as carbon paper or carbon cloth, and then bonding this to an ion exchange membrane, or on another flat plate. Various methods can be adopted, such as a method of forming an electrode on the substrate and transferring the electrode to an ion exchange membrane.

【0027】具体的には、担持触媒と電極樹脂を媒体に
溶解又は分散させた液を調製し、必要に応じてこの液に
撥水剤、造孔剤、増粘剤、希釈溶媒等を混合して塗工液
とし、該塗工液をイオン交換膜又はカーボンペーパー等
の基材上に噴霧、塗布、濾過等により塗工し、電極を形
成する。電極をイオン交換膜上に形成しない場合は、電
極とイオン交換膜との接合法として、ホットプレス法、
接着法(特開平7−220741参照)等を適用でき
る。
Specifically, a liquid in which a supported catalyst and an electrode resin are dissolved or dispersed in a medium is prepared, and a water repellent, a pore former, a thickener, a diluting solvent and the like are mixed with the liquid as required. Then, the coating liquid is applied to a base material such as an ion exchange membrane or carbon paper by spraying, coating, or filtering to form an electrode. When the electrode is not formed on the ion exchange membrane, a hot press method,
A bonding method (see Japanese Patent Application Laid-Open No. 7-220743) and the like can be applied.

【0028】[0028]

【実施例】以下、本発明の具体的な態様を実施例及び比
較例により説明するが、本発明はこれらに限定されな
い。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0029】[例1(実施例)]5gの比表面積800
2/g、X線回折により得られる[002]面の平均
格子面間隔(以下、単にd002という。)が0.370
nmのカーボンブラックをイオン交換水中に分散し、こ
れに27gの塩化白金酸水溶液と50gの35%ホルマ
リンを加え、−10℃に冷却し撹拌を行った。これに2
0gの40%水酸化ナトリウム水溶液を滴下し1時間還
流を行った後、ろ過洗浄し、カーボン担体に白金を担持
触媒全質量の60%担持した(以下、白金の担持触媒全
質量に対する割合を担持率という。)白金担持触媒を得
た。得られた白金担持触媒の粉末X線回折によると、白
金粒子径は約2.3nmであった。
[Example 1 (Example)] Specific surface area of 5 g: 800
m 2 / g, the average lattice spacing (hereinafter simply referred to as d 002 ) of the [002] plane obtained by X-ray diffraction is 0.370.
nm carbon black was dispersed in ion-exchanged water, 27 g of chloroplatinic acid aqueous solution and 50 g of 35% formalin were added thereto, and the mixture was cooled to -10 ° C and stirred. This is 2
After 0 g of a 40% aqueous sodium hydroxide solution was added dropwise and refluxed for 1 hour, the mixture was filtered and washed, and platinum was loaded on a carbon carrier at 60% of the total weight of the loaded catalyst (hereinafter, the ratio of platinum to the total weight of the loaded catalyst was loaded). %). A platinum-supported catalyst was obtained. According to powder X-ray diffraction of the obtained platinum-supported catalyst, the platinum particle diameter was about 2.3 nm.

【0030】上記白金担持触媒3.5gと、電極樹脂と
してCF2=CF2に基づく重合単位とCF2=CF−O
CF2CF(CF3)O(CF22−SO3Hに基づく重
合単位とからなる共重合体(イオン交換容量1.1ミリ
当量/g乾燥樹脂)1.5gとをエタノール/水混合溶
媒に混合し、これを触媒インクとした。この触媒インク
を、白金量が0.5mg/cm2となるようにカーボン
クロス上に塗工し、ガス拡散電極とした。厚さ50μm
のスルホン酸型パーフルオロカーボン重合体からなるイ
オン交換膜(商品名:フレミオン、旭硝子社製)を電解
質膜として用い、上記のガス拡散電極をカソードとし、
アノードには、E−TEK社製のガス拡散電極(商品
名:ELAT)を使用して、カソードとアノードの間に
電解質膜を挟んでホットプレスして膜・電極接合体を製
造した。
3.5 g of the above-mentioned platinum-supported catalyst, polymerized units based on CF 2 = CF 2 as the electrode resin, and CF 2 = CF-O
Mixing ethanol / water with 1.5 g of a copolymer (ion exchange capacity: 1.1 meq / g dry resin) composed of polymerized units based on CF 2 CF (CF 3 ) O (CF 2 ) 2 —SO 3 H This was mixed with a solvent to obtain a catalyst ink. This catalyst ink was applied on a carbon cloth so that the platinum amount was 0.5 mg / cm 2 , to obtain a gas diffusion electrode. Thickness 50μm
An ion-exchange membrane (trade name: Flemion, manufactured by Asahi Glass Co., Ltd.) comprising a sulfonic acid-type perfluorocarbon polymer as an electrolyte membrane, the above-mentioned gas diffusion electrode as a cathode,
A gas-diffusion electrode (trade name: ELAT) manufactured by E-TEK was used as the anode, and an electrolyte membrane was sandwiched between the cathode and the anode and hot-pressed to produce a membrane-electrode assembly.

【0031】得られた上記膜・電極接合体を測定用セル
に組み込み、燃料ガスとして水素、酸化剤ガスとして空
気を用い、0.15MPa(絶対圧力)、セル温度80
℃において1A/cm2の定電流密度駆動における初期
の電圧を測定した後、1A/cm2の定電流密度駆動で
連続運転試験を実施し、200時間後及び1000時間
後のセル電圧を測定した。表1に(カーボン)担体の比
表面積、白金の担持率、触媒の含有率(触媒と電極樹脂
との合量に対する触媒の質量割合)、及び上記測定の結
果を示す。
The obtained membrane / electrode assembly was assembled in a measuring cell, and hydrogen was used as a fuel gas, air was used as an oxidizing gas, and the cell temperature was 0.15 MPa (absolute pressure).
After measuring the initial voltage at a constant current density drive of 1 A / cm 2 at ° C., a continuous operation test was performed at a constant current density drive of 1 A / cm 2 , and the cell voltage after 200 hours and 1000 hours was measured. . Table 1 shows the specific surface area of the (carbon) carrier, the platinum loading, the content of the catalyst (mass ratio of the catalyst to the total amount of the catalyst and the electrode resin), and the results of the above measurements.

【0032】また、上記膜・電極接合体の断面を走査型
電子顕微鏡(SEM)で観察したところ、カソードは膜
と密接して接合されており、カソードの厚さは10μm
であった。さらにエネルギ分散型蛍光X線分析装置(E
DAX)にて元素分析を行ったところ、カソードにおけ
る担持触媒の白金担持率が60%であることを確認でき
た。また、EDAXによる硫黄分析結果と上記白金分析
結果から担持触媒の含有量が電極樹脂と担持触媒の合量
の70質量%であることを確認できた。
When the cross section of the membrane-electrode assembly was observed with a scanning electron microscope (SEM), the cathode was closely bonded to the membrane, and the thickness of the cathode was 10 μm.
Met. Furthermore, an energy dispersive X-ray fluorescence analyzer (E
DAX), it was confirmed that the supported catalyst at the cathode had a platinum loading of 60%. Further, from the results of sulfur analysis by EDAX and the results of platinum analysis, it was confirmed that the content of the supported catalyst was 70% by mass of the total amount of the electrode resin and the supported catalyst.

【0033】[例2(実施例)]比表面積1500m2
/gのカーボンブラックをアルゴンガス雰囲気下、20
00℃で3時間加熱処理を行って黒鉛化処理を施した。
このカーボンブラックの窒素吸着法による比表面積は、
650m2/g、d002は0.347nmであった。この
カーボンブラックをカーボン担体として用いた以外は例
1と同様にして白金担持触媒を得た。この白金担持触媒
の粉末X線回折によると、白金粒子径は約1.8nmで
あった。この担持触媒を用いた以外は例1と同様にして
カソードを作製し、例1と同様に膜・電極接合体を作製
して例1と同様に評価した。結果を表1に示す。
[Example 2 (Example)] Specific surface area 1500 m 2
/ G of carbon black in an argon gas atmosphere for 20
A heat treatment was performed at 00 ° C. for 3 hours to perform a graphitization treatment.
The specific surface area of this carbon black by the nitrogen adsorption method is
650 m 2 / g, d 002 was 0.347 nm. A platinum-supported catalyst was obtained in the same manner as in Example 1 except that this carbon black was used as a carbon carrier. According to powder X-ray diffraction of the platinum-supported catalyst, the platinum particle size was about 1.8 nm. A cathode was prepared in the same manner as in Example 1 except that this supported catalyst was used, and a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated as in Example 1. Table 1 shows the results.

【0034】[例3(実施例)]カーボン担体として、
比表面積400m2/g、d002が0.358nmのカー
ボンブラックを使用し、白金の担持率を55%とした以
外は例1と同様にして白金担持触媒を調製し、この白金
担持触媒と例1と同じスルホン酸型パーフルオロカーボ
ン重合体とを用い、前記触媒と前記重合体との質量比が
60:40になるように混合比を変更した以外は例1と
同様にしてカソードを作製し、例1と同様に膜・電極接
合体を作製して例1と同様に評価した。結果を表1に示
す。
Example 3 (Example) As a carbon carrier,
A platinum-supported catalyst was prepared in the same manner as in Example 1 except that carbon black having a specific surface area of 400 m 2 / g and d 002 of 0.358 nm was used, and the loading ratio of platinum was 55%. A cathode was prepared in the same manner as in Example 1 except that the same sulfonic acid type perfluorocarbon polymer as in Example 1 was used, and the mixing ratio was changed so that the mass ratio of the catalyst and the polymer was 60:40. A membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0035】[例4(実施例)]白金の担持率を75%
とした以外は例1と同様にして白金担持触媒を調製し、
この白金担持触媒と例1と同じスルホン酸型パーフルオ
ロカーボン重合体を用い、前記触媒と前記重合体との質
量比が75:25になるように混合比を変更した以外は
例1と同様にしてカソードを作製し、例1と同様に膜・
電極接合体を作製して例1と同様に評価した。結果を表
1に示す。
Example 4 (Example) The loading ratio of platinum was 75%.
A platinum-supported catalyst was prepared in the same manner as in Example 1 except that
The same procedure as in Example 1 was carried out except that the platinum-supported catalyst and the same sulfonic acid type perfluorocarbon polymer as in Example 1 were used, and the mixing ratio was changed so that the mass ratio between the catalyst and the polymer became 75:25. A cathode was prepared, and a membrane was prepared in the same manner as in Example 1.
An electrode assembly was prepared and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0036】[例5(実施例)]例1と同じ白金担持触
媒とスルホン酸型パーフルオロカーボン重合体を用い、
前記触媒と前記重合体との質量比が75:25になるよ
うに混合比を変更した以外は例1と同様にしてカソード
を作製し、例1と同様に膜・電極接合体を作製して例1
と同様に評価した。結果を表1に示す。
Example 5 (Example) Using the same platinum-supported catalyst and sulfonic acid type perfluorocarbon polymer as in Example 1,
A cathode was produced in the same manner as in Example 1 except that the mixing ratio was changed so that the mass ratio of the catalyst and the polymer became 75:25, and a membrane / electrode assembly was produced in the same manner as in Example 1. Example 1
Was evaluated in the same way as Table 1 shows the results.

【0037】[例6(比較例)]例1と同じ白金担持触
媒とスルホン酸型パーフルオロカーボン重合体を用い、
前記触媒と前記重合体との質量比が35:65になるよ
うに混合比を変更した以外は例1と同様にしてカソード
を作製し、例1と同様に膜・電極接合体を作製して例1
と同様に評価した。結果を表1に示す。
Example 6 (Comparative Example) Using the same platinum-supported catalyst and sulfonic acid type perfluorocarbon polymer as in Example 1,
A cathode was prepared in the same manner as in Example 1 except that the mixing ratio was changed so that the mass ratio of the catalyst to the polymer was 35:65, and a membrane / electrode assembly was prepared in the same manner as in Example 1. Example 1
Was evaluated in the same way as Table 1 shows the results.

【0038】[例7(比較例)]例1と同じ白金担持触
媒とスルホン酸型パーフルオロカーボン重合体を用い、
前記触媒と前記重合体との質量比が85:15になるよ
うに混合比を変更した以外は例1と同様にしてカソード
を作製し、例1と同様に膜・電極接合体を作製して例1
と同様に評価した。結果を表1に示す。
Example 7 (Comparative Example) Using the same platinum-supported catalyst and sulfonic acid type perfluorocarbon polymer as in Example 1,
A cathode was prepared in the same manner as in Example 1 except that the mixing ratio was changed so that the mass ratio of the catalyst to the polymer was 85:15, and a membrane / electrode assembly was prepared in the same manner as in Example 1. Example 1
Was evaluated in the same way as Table 1 shows the results.

【0039】[例8(比較例)]白金の担持率を30%
に変更した以外は例1と同様にして白金担持触媒を得
た。この白金担持触媒の粉末X線回折によると、白金粒
子径は約2.1nmであった。この担持触媒を用いた以
外は例1と同様にしてカソードを作製し、例1と同様に
膜・電極接合体を作製して例1と同様に評価した。結果
を表1に示す。
Example 8 (Comparative Example) The loading ratio of platinum was 30%.
A platinum-supported catalyst was obtained in the same manner as in Example 1, except that the catalyst was changed to. According to powder X-ray diffraction of the platinum-supported catalyst, the platinum particle diameter was about 2.1 nm. A cathode was prepared in the same manner as in Example 1 except that this supported catalyst was used, and a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated as in Example 1. Table 1 shows the results.

【0040】また、上記膜・電極接合体の断面をSEM
で観察したところ、カソードの厚さは25μmであっ
た。さらにEDAXにて元素分析を行ったところ、カソ
ードの担持触媒における白金担持率が30%であること
が確認できた。また、EDAXによる硫黄分析結果と上
記白金分析結果から担持触媒の含有量が電極樹脂と担持
触媒の合量の70質量%であることを確認できた。
Further, the cross section of the above-mentioned membrane / electrode assembly was SEM
As a result, the thickness of the cathode was 25 μm. Further, elemental analysis was carried out by EDAX, and it was confirmed that the supported platinum ratio of the supported catalyst of the cathode was 30%. Further, from the results of sulfur analysis by EDAX and the results of platinum analysis, it was confirmed that the content of the supported catalyst was 70% by mass of the total amount of the electrode resin and the supported catalyst.

【0041】[例9(比較例)]カーボン担体として、
比表面積250m2/g、d002が0.357nmのカー
ボンブラックを用いた以外は例1と同様にして白金担持
触媒を得た。この白金担持触媒の粉末X線回折による
と、白金粒子径は約5.5nmであった。この担持触媒
を用いた以外は例1と同様にしてカソードを作製し、例
1と同様に膜・電極接合体を作製して例1と同様に評価
した。結果を表1に示す。
Example 9 (Comparative Example) As a carbon carrier,
A platinum-supported catalyst was obtained in the same manner as in Example 1, except that carbon black having a specific surface area of 250 m 2 / g and a d 002 of 0.357 nm was used. According to powder X-ray diffraction of the platinum-supported catalyst, the platinum particle size was about 5.5 nm. A cathode was prepared in the same manner as in Example 1 except that this supported catalyst was used, and a membrane / electrode assembly was prepared in the same manner as in Example 1 and evaluated as in Example 1. Table 1 shows the results.

【0042】[例10(比較例)]白金担持触媒のかわ
りに粒子径4nmの白金微粒子(エヌ・イーケムキャッ
ト社製)を用いた以外は例1と同様にしてカソードを作
製し、例1と同様に膜・電極接合体を作製して例1と同
様に評価した。結果を表1に示す。
Example 10 (Comparative Example) A cathode was prepared in the same manner as in Example 1 except that platinum fine particles having a particle diameter of 4 nm (manufactured by NE Chemcat) were used instead of the platinum-supported catalyst. Similarly, a membrane / electrode assembly was prepared and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0043】[例11(比較例)]白金の担持率を50
%とした以外は例3と同様にして白金担持触媒を調製
し、例3と同様にしてカソードを作製し、例1と同様に
膜・電極接合体を作製して例1と同様に評価した。結果
を表1に示す。
Example 11 (Comparative Example) The loading rate of platinum was 50
%, A platinum-supported catalyst was prepared in the same manner as in Example 3, a cathode was prepared in the same manner as in Example 3, a membrane / electrode assembly was prepared in the same manner as in Example 1, and the evaluation was performed in the same manner as in Example 1. . Table 1 shows the results.

【0044】[例12(比較例)]白金の担持率を82
%とした以外は例5と同様にしてカソードを作製し、例
1と同様に膜・電極接合体を作製して例1と同様に評価
した。結果を表1に示す。
Example 12 (Comparative Example) The loading rate of platinum was 82
%, A cathode was prepared in the same manner as in Example 5, a membrane / electrode assembly was prepared in the same manner as in Example 1, and the evaluation was performed in the same manner as in Example 1. Table 1 shows the results.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】本発明によれば、担持触媒全質量中の触
媒金属成分の割合が高い触媒を、カソード中に高質量比
率で含有させていることにより、当該カソードを有する
固体高分子型燃料電池は、高い出力特性と駆動安定性を
有している。
According to the present invention, a solid polymer type fuel having a cathode is provided by including a high mass ratio of a catalyst having a high proportion of a catalytic metal component in the total mass of a supported catalyst in the cathode. The battery has high output characteristics and driving stability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田沼 敏弘 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 5H018 AA06 AS03 EE03 EE10 EE18 HH00 HH02 HH03 HH05 5H026 AA06 CX05 EE02 EE08 EE19 HH00 HH02 HH03 HH05  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshihiro Tanuma 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term in Asahi Glass Co., Ltd. HH02 HH03 HH05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜と該電解質膜を介して
対向するカソード及びアノードを備えた固体高分子型燃
料電池において、前記カソードには、スルホン酸基を有
するパーフルオロカーボン重合体と、白金又は白金合金
が比表面積300〜1200m2/gのカーボン担体に
担持された担持触媒とが含まれ、前記担持触媒は前記パ
ーフルオロカーボン重合体と前記担持触媒の合量の50
〜80質量%含まれ、かつ前記担持触媒には白金又は白
金合金が前記担持触媒の全質量中に52〜80%含まれ
ることを特徴とする固体高分子型燃料電池。
1. A solid polymer electrolyte fuel cell comprising a solid polymer electrolyte membrane and a cathode and an anode opposed to each other with the electrolyte membrane interposed therebetween, wherein the cathode comprises a perfluorocarbon polymer having a sulfonic acid group; Or a supported catalyst in which a platinum alloy is supported on a carbon support having a specific surface area of 300 to 1200 m 2 / g, wherein the supported catalyst has a total amount of 50% of the perfluorocarbon polymer and the supported catalyst.
Wherein the supported catalyst contains 52 to 80% of platinum or a platinum alloy in the total mass of the supported catalyst.
【請求項2】前記パーフルオロカーボン重合体は、イオ
ン交換容量が1.0〜1.5ミリ当量/g乾燥樹脂であ
る請求項1に記載の固体高分子型燃料電池。
2. The polymer electrolyte fuel cell according to claim 1, wherein the perfluorocarbon polymer is an ion exchange capacity of 1.0 to 1.5 meq / g dry resin.
【請求項3】前記カーボン担体は、X線回折により測定
される[002]面の平均格子面間隔d002が0.34
0〜0.362nmである請求項1又は2に記載の固体
高分子型燃料電池。
3. An average lattice spacing d 002 of the [002] plane measured by X-ray diffraction is 0.34.
The polymer electrolyte fuel cell according to claim 1, wherein the thickness is from 0 to 0.362 nm.
【請求項4】前記電解質膜の表面からカソードの厚さ方
向に向けて10μm以内までの領域において、前記担持
触媒は、パーフルオロカーボン重合体と前記担持触媒の
合量の50〜80質量%存在する請求項1、2又は3に
記載の固体高分子型燃料電池。
4. The supported catalyst is present in an amount of 50 to 80% by mass of the total amount of the perfluorocarbon polymer and the supported catalyst in a region from the surface of the electrolyte membrane to a thickness of the cathode within 10 μm. The polymer electrolyte fuel cell according to claim 1, 2 or 3.
JP2000195109A 2000-06-12 2000-06-28 Solid polymer fuel cell Withdrawn JP2002015745A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000195109A JP2002015745A (en) 2000-06-28 2000-06-28 Solid polymer fuel cell
EP01112885A EP1164651A1 (en) 2000-06-12 2001-06-01 Electrode catalyst for polymer electrolyte fuel cell and method for its production
CA002349746A CA2349746A1 (en) 2000-06-12 2001-06-06 Polymer electrolyte fuel cell and method for its production
US09/877,057 US20020009626A1 (en) 2000-06-12 2001-06-11 Polymer electrolyte fuel cell and method for its production
KR1020010032993A KR20010112639A (en) 2000-06-12 2001-06-12 Polymer electrolyte fuel cell and method for its production
CN01121009A CN1329372A (en) 2000-06-12 2001-06-12 Polymer electrolytic fuel battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195109A JP2002015745A (en) 2000-06-28 2000-06-28 Solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2002015745A true JP2002015745A (en) 2002-01-18

Family

ID=18693826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195109A Withdrawn JP2002015745A (en) 2000-06-12 2000-06-28 Solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2002015745A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311225A (en) * 2003-04-08 2004-11-04 Sony Corp Catalytic powder, catalytic electrode, and electrochemical device
JP2004335252A (en) * 2003-05-07 2004-11-25 Cataler Corp Electrode catalyst for fuel cell, and its manufacturing method
JP2005026174A (en) * 2003-07-01 2005-01-27 Honda Motor Co Ltd Solid polymer type fuel cell
WO2005083818A1 (en) * 2004-02-26 2005-09-09 Sharp Kabushiki Kaisha Electrode catalyst for fuel cell and fuel cell using same
WO2006057139A1 (en) * 2004-11-25 2006-06-01 Nissan Motor Co., Ltd. Solid polymer type fuel cell
JP2006526880A (en) * 2003-05-30 2006-11-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Components using fuel cells and their high metal-to-support ratio catalysts
CN100341181C (en) * 2004-05-11 2007-10-03 三星Sdi株式会社 Catalyst for fuel cell and fuel cell comprising the same
JP2008517426A (en) * 2004-12-17 2008-05-22 エルジー・ケム・リミテッド Fuel cell electrode catalyst
WO2009051111A1 (en) 2007-10-15 2009-04-23 Cataler Corporation Supported catalyst for fuel cell and fuel cells
US7687187B2 (en) 2004-04-07 2010-03-30 Honda Motor Co., Ltd. Polymer electrolyte fuel cell
US7745037B2 (en) 2004-11-04 2010-06-29 Honda Motor Co., Ltd. Membrane electrode assembly for solid polymer electrolyte fuel cell
WO2012039071A1 (en) 2010-09-24 2012-03-29 株式会社 キャタラー Supported catalyst for fuel cell and process for production thereof, and fuel cell
JP2015042614A (en) * 2008-02-19 2015-03-05 キャボット コーポレイションCabot Corporation High surface area graphitized carbon and processes for making the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311225A (en) * 2003-04-08 2004-11-04 Sony Corp Catalytic powder, catalytic electrode, and electrochemical device
JP2004335252A (en) * 2003-05-07 2004-11-25 Cataler Corp Electrode catalyst for fuel cell, and its manufacturing method
JP2006526880A (en) * 2003-05-30 2006-11-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Components using fuel cells and their high metal-to-support ratio catalysts
JP2005026174A (en) * 2003-07-01 2005-01-27 Honda Motor Co Ltd Solid polymer type fuel cell
WO2005083818A1 (en) * 2004-02-26 2005-09-09 Sharp Kabushiki Kaisha Electrode catalyst for fuel cell and fuel cell using same
JP4759507B2 (en) * 2004-02-26 2011-08-31 シャープ株式会社 Fuel cell electrode catalyst and fuel cell using the same
US7687187B2 (en) 2004-04-07 2010-03-30 Honda Motor Co., Ltd. Polymer electrolyte fuel cell
CN100341181C (en) * 2004-05-11 2007-10-03 三星Sdi株式会社 Catalyst for fuel cell and fuel cell comprising the same
US7931998B2 (en) 2004-05-11 2011-04-26 Samsung Sdi Co., Ltd. Catalyst for fuel cell and fuel cell comprising the same
US7745037B2 (en) 2004-11-04 2010-06-29 Honda Motor Co., Ltd. Membrane electrode assembly for solid polymer electrolyte fuel cell
WO2006057139A1 (en) * 2004-11-25 2006-06-01 Nissan Motor Co., Ltd. Solid polymer type fuel cell
US7901836B2 (en) 2004-11-25 2011-03-08 Nissan Motor Co., Ltd. Polymer electrolyte fuel cell
US8329359B2 (en) 2004-11-25 2012-12-11 Nissan Motor Co., Ltd. Polymer electrolyte fuel cell
JP2008517426A (en) * 2004-12-17 2008-05-22 エルジー・ケム・リミテッド Fuel cell electrode catalyst
WO2009051111A1 (en) 2007-10-15 2009-04-23 Cataler Corporation Supported catalyst for fuel cell and fuel cells
JP2015042614A (en) * 2008-02-19 2015-03-05 キャボット コーポレイションCabot Corporation High surface area graphitized carbon and processes for making the same
US9975775B2 (en) 2008-02-19 2018-05-22 Cabot Corporation High surface area graphitized carbon and processes for making same
WO2012039071A1 (en) 2010-09-24 2012-03-29 株式会社 キャタラー Supported catalyst for fuel cell and process for production thereof, and fuel cell

Similar Documents

Publication Publication Date Title
US9054384B2 (en) Electrode catalyst with improved longevity properties and fuel cell using the same
EP1164651A1 (en) Electrode catalyst for polymer electrolyte fuel cell and method for its production
JP2009532830A (en) Compositions of nanoparticles and platinum particles containing metals or alloys for use in fuel cells.
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP2001357857A (en) Solid high polymer type fuel cell and its manufacturing method
JP2000268828A (en) Solid highpolymer type fuel cell
JP2003036859A (en) Solid polymer type fuel cell and its fabrication method
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP5297786B2 (en) Anode catalyst layer of polymer electrolyte fuel cell
JP2003157857A (en) Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity
JP2002015745A (en) Solid polymer fuel cell
JP2002100374A (en) Electrode for fuel cell and its manufacturing method
JP2001093531A (en) Solid polymer fuel cell and method for manufacturing electrode catalyst
JP4472943B2 (en) Membrane electrode assembly
JP5669432B2 (en) Membrane electrode assembly, fuel cell, and fuel cell activation method
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2003109643A (en) Fuel cell
JP2001118582A (en) Electrode of fuel cell and method for manufacturing the same
JP7116665B2 (en) catalyst layer
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP2006269368A (en) Electrode for fuel cell and its manufacturing method
JP5092381B2 (en) Catalyst powder for fuel cell, method for producing catalyst powder for fuel cell, and fuel cell
JP2006179427A (en) Electrode catalyst for fuel cell, and the fuel cell
JP2002015744A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090422