JP2003109643A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2003109643A
JP2003109643A JP2001301937A JP2001301937A JP2003109643A JP 2003109643 A JP2003109643 A JP 2003109643A JP 2001301937 A JP2001301937 A JP 2001301937A JP 2001301937 A JP2001301937 A JP 2001301937A JP 2003109643 A JP2003109643 A JP 2003109643A
Authority
JP
Japan
Prior art keywords
carbon material
catalyst
catalyst layer
gas diffusion
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001301937A
Other languages
Japanese (ja)
Other versions
JP5119459B2 (en
Inventor
Kenichiro Tadokoro
健一郎 田所
Takashi Iijima
孝 飯島
Tsutomu Sugiura
勉 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001301937A priority Critical patent/JP5119459B2/en
Publication of JP2003109643A publication Critical patent/JP2003109643A/en
Application granted granted Critical
Publication of JP5119459B2 publication Critical patent/JP5119459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell capable of keeping an electrolyte material in a desirable wet environment without cutting an electron conductive passage inside a catalyst layer, and achieving the efficient cell performance. SOLUTION: In this fuel cell including a pair of catalyst layers holding a proton conductive electrolyte film therebetween, at least one of the catalyst layers is composed of a mixture including a catalyst component, the electrolyte material and a carbon material, which has a water vapor adsorption of 100 ml/g or less at 25 deg.C under relative humidity of 90%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に関し、
特に、触媒層中で水が凝集しやすい条件下で作動する、
例えば固体高分子形燃料電池等の燃料電池において、触
媒層を改良した燃料電池に関する。
TECHNICAL FIELD The present invention relates to a fuel cell,
In particular, it operates under conditions where water tends to aggregate in the catalyst layer,
For example, the present invention relates to a fuel cell such as a polymer electrolyte fuel cell having an improved catalyst layer.

【0002】[0002]

【従来の技術】一般的な固体高分子形燃料電池は、高分
子電解質膜を挟んで、一方に正極、もう一方に負極とな
る触媒層が接合されており、さらに、これらを挟んで両
極に撥水処理されたカーボンペーパー等がガス拡散層と
して接しているような基本構造をとっている。
2. Description of the Related Art A general polymer electrolyte fuel cell has a polymer electrolyte membrane sandwiched between one side and a catalyst layer which serves as a positive electrode on the other side and a negative electrode on the other side. It has a basic structure in which water-repellent carbon paper or the like is in contact as a gas diffusion layer.

【0003】このような基本構造の燃料電池から電流を
取り出すためには、正極側に酸素あるいは空気等の酸化
性ガス、負極側には水素等の還元性ガスを、外部からガ
ス拡散層を介してそれぞれ供給する。例えば水素ガスと
酸素ガスを利用する場合、負極の触媒上で起こる
In order to extract an electric current from a fuel cell having such a basic structure, an oxidizing gas such as oxygen or air is supplied to the positive electrode side, a reducing gas such as hydrogen is supplied to the negative electrode side, and a reducing gas such as hydrogen is supplied from the outside through a gas diffusion layer. Supply each. For example, when using hydrogen gas and oxygen gas, it occurs on the negative electrode catalyst.

【0004】[0004]

【化1】 [Chemical 1]

【0005】の化学反応と、正極の触媒上で起こるThe chemical reaction of and takes place on the cathode catalyst

【0006】[0006]

【化2】 [Chemical 2]

【0007】の化学反応のエネルギー差を利用して電流
を取り出すこととなる。このためには、触媒層内部の触
媒まで酸素ガスあるいは水素ガスを供給できるガス拡散
経路や、負極触媒上で発生したプロトンと電子をそれぞ
れ正極の触媒まで伝達できるプロトン伝導経路と電子伝
達経路が、少なくとも触媒層内で分断されることなく連
なっていないと、電流を取り出すことができない。触媒
層内部では、一般に、ガス拡散経路として材料の間隙に
形成される気孔、プロトン伝導経路として電解質材料、
及び電子伝導経路として炭素材料が、それぞれのネット
ワークを機能させて成り立っている。
An electric current is taken out by utilizing the energy difference of the chemical reaction. For this purpose, a gas diffusion path capable of supplying oxygen gas or hydrogen gas to the catalyst inside the catalyst layer, a proton conduction path and an electron transfer path capable of respectively transmitting the protons and electrons generated on the negative electrode catalyst to the positive electrode catalyst, At least the electric current cannot be taken out unless they are connected in the catalyst layer without being divided. Inside the catalyst layer, generally, pores formed in the gap of the material as a gas diffusion path, an electrolyte material as a proton conduction path,
The carbon material functions as an electron conduction path by making each network function.

【0008】特に、プロトン伝導経路には、高分子電解
質材料としてパーフルオロスルホン酸ポリマーやスチレ
ンジビニルベンゼンスルホン酸等のイオン交換樹脂が用
いられている。これら一般に用いられるイオン交換樹脂
は、湿潤環境下で初めて高いプロトン伝導性を発現し、
乾燥環境下ではプロトン導電性が低下してしまう。これ
は、プロトンの移動に水分子の介在や随伴が必須である
ためと考えられている。従って、効率良く燃料電池を作
動させるためには、常に電解質材料が湿潤状態であるこ
とが必須であり、両極に供給するガスとともに、常に水
蒸気を供給する必要がある。
In particular, an ion exchange resin such as a perfluorosulfonic acid polymer or styrenedivinylbenzenesulfonic acid is used as a polymer electrolyte material in the proton conducting path. These commonly used ion exchange resins exhibit high proton conductivity for the first time in a wet environment,
In a dry environment, the proton conductivity will decrease. It is considered that this is because water molecules are essential for the transfer of protons. Therefore, in order to operate the fuel cell efficiently, it is essential that the electrolyte material is always in a wet state, and it is necessary to constantly supply water vapor together with the gas supplied to both electrodes.

【0009】一般には、電解質材料へ水を供給する目的
で、セルに供給するガスを加湿し、露点以下でセルを作
動する方法が採用されている。この方法によると、セル
内に供給された水蒸気は一部凝集し、凝集水の液滴を形
成する。また、上述した正極反応により、正極触媒上で
は水が生成する。セルの運転条件にもよるが、生成した
水は、触媒層内の水蒸気が過飽和になった時点で凝集
し、凝集水の液滴となる。
Generally, for the purpose of supplying water to the electrolyte material, a method of humidifying the gas supplied to the cell and operating the cell below the dew point is adopted. According to this method, the water vapor supplied into the cell partially aggregates to form droplets of aggregated water. In addition, water is produced on the positive electrode catalyst by the positive electrode reaction described above. Depending on the operating conditions of the cell, the generated water aggregates when the water vapor in the catalyst layer becomes supersaturated and becomes aggregated water droplets.

【0010】これら反応によって生成した水が凝集した
り、加湿するために供給された水蒸気が触媒層内で凝集
してできた液滴は、ガス拡散経路を遮断する。この現象
は、フラッディングと呼ばれ、大電流放電時に水が大量
に生成する正極で顕著であり、極度の電圧低下を招く。
The water generated by these reactions coagulates, or the water vapor supplied for humidification coagulates in the catalyst layer to form droplets that block the gas diffusion path. This phenomenon is called flooding, and it is remarkable in the positive electrode in which a large amount of water is generated at the time of discharging a large current, which causes an extreme voltage drop.

【0011】このように、安定して燃料電池を作動させ
るためには、触媒層内を十分に加湿しつつ、凝集水は速
やかに系外に排出するといった相反する要求を満たす必
要がある。このために従来から、触媒層に使われる炭素
材料等をポリテトラフルオロエチレン(以下、PTFE
と称する)やシランカップリング剤等を用いて、触媒層
内部を撥水処理する工夫が提案されてきた。
As described above, in order to stably operate the fuel cell, it is necessary to sufficiently condense the inside of the catalyst layer while satisfying the contradictory requirements of promptly discharging the condensed water out of the system. For this reason, carbon materials conventionally used for catalyst layers have been changed to polytetrafluoroethylene (hereinafter referred to as PTFE).
)) Or a silane coupling agent.

【0012】特開平5−36418号公報ではPTFE
粉末を、特開平4−264367号公報ではPTFEコ
ロイドを、特開平7−183035号公報ではPTFE
により撥水処理した炭素粉末を、特開2000−243
404号公報ではシランカップリング剤で撥水処理した
炭素材を触媒層内に含有させることによって、触媒層内
部の撥水性を高め、凝集水を速やかに系外に排出する工
夫が提案されてきた。
In Japanese Patent Laid-Open No. 5-36418, PTFE is used.
The powder is a PTFE colloid in JP-A-4-264367, and the PTFE colloid in JP-A-7-183035.
The water-repellent carbon powder prepared by
Japanese Patent No. 404 has proposed a device to increase the water repellency inside the catalyst layer and quickly discharge the condensed water out of the system by incorporating a carbon material which has been subjected to a water repellent treatment with a silane coupling agent into the catalyst layer. .

【0013】[0013]

【発明が解決しようとする課題】従来提案された触媒層
では、PTFEやシランカップリング剤といった触媒層
の電子伝導経路を分断する化合物を用いるため、電池性
能低下を招くといった性能上の課題や、工程が複雑化し
たり、比較的高価な化合物を使用するため、製造コスト
が増加するといった課題があった。
In the conventionally proposed catalyst layer, since a compound such as PTFE or a silane coupling agent that divides the electron conduction path of the catalyst layer is used, there is a problem in performance such as deterioration of battery performance, Since the process is complicated and a relatively expensive compound is used, there are problems that the manufacturing cost is increased.

【0014】また、これらシランカップリング剤やPT
FEのような撥水性物質の撥水性が極めて高いため、こ
れらの化合物を使用した触媒層内部では電解質材料に好
適な湿潤環境が保たれなくなり、従来の触媒層は必ずし
も効率的な電池特性を実現できなかった。従って、従来
では、電解質材料に好適な湿潤環境を保つ材料の提案が
無いばかりか、触媒層設計のために有用な好適な湿潤環
境を保つ材料の水和性に関して定量的な指標が明確に示
されていなかった。
Further, these silane coupling agents and PT
Since the water repellency of a water repellent substance such as FE is extremely high, the wet environment suitable for the electrolyte material cannot be maintained inside the catalyst layer using these compounds, and the conventional catalyst layer does not always realize efficient battery characteristics. could not. Therefore, conventionally, there is no proposal of a material that maintains a suitable wet environment for an electrolyte material, and a quantitative index regarding the hydratability of a material that maintains a suitable wet environment useful for catalyst layer design is clearly shown. Was not done.

【0015】そこで、本発明は、燃料電池の触媒層中の
電子伝導経路を分断することなく好適な湿潤環境を保
ち、極めて効率的な電池性能を発現できる燃料電池を提
供することを目的とする。
Therefore, an object of the present invention is to provide a fuel cell which can maintain a suitable wet environment without dividing the electron conduction path in the catalyst layer of the fuel cell and can exhibit extremely efficient cell performance. .

【0016】[0016]

【課題を解決するための手段】以上の課題を解決するた
め、検討を重ねた結果、触媒層の主成分のひとつである
炭素材料の水和性に適正な範囲が存在すること、触媒層
の主成分である炭素材料を、触媒成分を担持した炭素材
料(以下、触媒担持炭素材料)と触媒成分を担持してい
ない炭素材料(以下、ガス拡散炭素材料)とに分けて、
触媒層に含有させると、凝集水によるガス拡散経路の閉
塞を防ぐことができ、特に、大電流放電時の電池特性を
大幅に改善できること、さらに、ガス拡散炭素材料の含
有比率に最適な範囲が存在すること、また、ガス拡散炭
素材料の水和性に好適な範囲が存在すること、等を見出
し、本発明に至った。
[Means for Solving the Problems] As a result of repeated studies to solve the above problems, it is confirmed that the hydratability of the carbon material, which is one of the main components of the catalyst layer, has an appropriate range. The carbon material which is the main component is divided into a carbon material supporting a catalyst component (hereinafter, catalyst supporting carbon material) and a carbon material not supporting a catalyst component (hereinafter, gas diffusion carbon material),
When it is contained in the catalyst layer, it is possible to prevent clogging of the gas diffusion path due to condensed water, in particular, it is possible to significantly improve the battery characteristics during large current discharge, and further, the optimum range for the content ratio of the gas diffusion carbon material is The present invention has been completed, and the inventors have found that the gas diffusion carbon material exists in a range suitable for hydration, and have completed the present invention.

【0017】すなわち、本発明の要旨とするところは、
以下の通りである。
That is, the gist of the present invention is that
It is as follows.

【0018】(1)プロトン伝導性電解質膜を挟んだ一
対の触媒層を含む燃料電池であって、少なくとも片側の
触媒層が、触媒成分と、電解質材料と、炭素材料とから
なり、前記炭素材料の25℃、相対湿度90%における
水蒸気吸着量が100ml/g以下であることを特徴と
する燃料電池。
(1) A fuel cell comprising a pair of catalyst layers sandwiching a proton-conducting electrolyte membrane, wherein at least one catalyst layer comprises a catalyst component, an electrolyte material and a carbon material. A fuel cell having a water vapor adsorption amount of 100 ml / g or less at 25 ° C. and a relative humidity of 90%.

【0019】(2)前記炭素材料は、前記触媒成分を担
持した触媒担持炭素材料および前記触媒成分を担持して
いないガス拡散炭素材料を構成し、前記ガス拡散炭素材
料は触媒層中に5質量%以上50質量%以下含まれるこ
とを特徴とする(1)に記載の燃料電池。
(2) The carbon material constitutes a catalyst-supporting carbon material that supports the catalyst component and a gas-diffusing carbon material that does not support the catalyst component, and the gas-diffusing carbon material is 5 mass% in the catalyst layer. % Or more and 50% by mass or less, The fuel cell according to (1).

【0020】(3)前記ガス拡散炭素材料は、25℃、
相対湿度90%における水蒸気吸着量が1ml/g以上
100ml/g以下である炭素材料の1種類以上からな
ることを特徴とする(2)に記載の燃料電池。
(3) The gas diffusion carbon material is 25 ° C.,
The fuel cell according to (2), which comprises one or more kinds of carbon materials having a water vapor adsorption amount of 1 ml / g or more and 100 ml / g or less at a relative humidity of 90%.

【0021】(4)前記ガス拡散炭素材料は、25℃、
相対湿度90%における水蒸気吸着量が1ml/g以上
50ml/g以下である炭素材料の1種類以上からなる
ことを特徴とする(3)に記載の燃料電池。
(4) The gas diffusion carbon material is 25 ° C.
The fuel cell according to (3), which comprises one or more kinds of carbon materials having a water vapor adsorption amount of 1 ml / g or more and 50 ml / g or less at a relative humidity of 90%.

【0022】[0022]

【発明の実施の形態】本発明の燃料電池は、触媒成分
と、炭素材料と、電解質材料とを含む触媒層を有し、か
つ、触媒層の主成分の一つである炭素材料の25℃、相
対湿度90%における水蒸気吸着量が100ml/g以
下であることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel cell of the present invention has a catalyst layer containing a catalyst component, a carbon material, and an electrolyte material, and the carbon material, which is one of the main components of the catalyst layer, has a temperature of 25 ° C. The water vapor adsorption amount at a relative humidity of 90% is 100 ml / g or less.

【0023】指標となる25℃、相対湿度90%におけ
る水蒸気吸着量の測定は、市販の水蒸気吸着量測定装置
を用いて測定することができる。あるいは、25℃、相
対湿度90%の恒温恒湿槽に乾燥した炭素材料を十分な
時間静置し、質量変化から測定することもできる。な
お、触媒層中に複数の炭素材料を用いる場合は、それら
炭素材料の含有率で混合して得られた混合物の水蒸気吸
着量を測定するものとする。
The amount of water vapor adsorbed at 25 ° C. and 90% relative humidity, which is an index, can be measured by using a commercially available apparatus for measuring the amount of water vapor adsorption. Alternatively, the dried carbon material can be allowed to stand for a sufficient time in a thermo-hygrostat at 25 ° C. and a relative humidity of 90%, and the mass change can be measured. When a plurality of carbon materials are used in the catalyst layer, the amount of water vapor adsorbed in the mixture obtained by mixing the carbon materials at the content rates of the carbon materials should be measured.

【0024】炭素材料の25℃、相対湿度90%におけ
る水蒸気吸着量が100ml/g以下であれば、大電流
放電時のガス拡散経路の閉塞を抑制でき、安定した電流
を取り出すことができる。100ml/g超であると触
媒層中に凝集水が滞り、ガス拡散経路が遮断されやすく
なり、大電流放電時の電圧挙動が不安定になる。
When the amount of water vapor adsorbed at 25 ° C. and 90% relative humidity of the carbon material is 100 ml / g or less, the blockage of the gas diffusion path at the time of large current discharge can be suppressed, and a stable current can be taken out. If it is more than 100 ml / g, condensed water is retained in the catalyst layer, the gas diffusion path is easily blocked, and the voltage behavior during large current discharge becomes unstable.

【0025】25℃、相対湿度90%における水蒸気吸
着量が、100ml/g以下の炭素材料は、一般に存在
する炭素材料中から水蒸気吸着量を指標に選択できる。
あるいは、水蒸気吸着量が多すぎる炭素材料である場合
においても、不活性雰囲気下で焼成する事によって、水
蒸気吸着量を好適な範囲にまで低下させることができ
る。特に条件を限定するものではないが、アルゴン、窒
素、ヘリウム、真空等の雰囲気下で加熱処理することに
よって、水蒸気吸着量を所望の範囲まで低下させること
ができる。
A carbon material having a water vapor adsorption amount of 100 ml / g or less at 25 ° C. and a relative humidity of 90% can be selected from generally existing carbon materials using the water vapor adsorption amount as an index.
Alternatively, even in the case of a carbon material having an excessive amount of water vapor adsorption, the amount of water vapor adsorption can be reduced to a suitable range by firing in an inert atmosphere. Although the conditions are not particularly limited, the amount of water vapor adsorption can be reduced to a desired range by performing heat treatment in an atmosphere such as argon, nitrogen, helium, or vacuum.

【0026】本発明の燃料電池に含まれる触媒層に使用
される炭素材料の種類は、一般的に存在する電子伝導性
を有する炭素材料であれば、特に限定するものではない
が、本来求められる反応以外の化学反応を起こしたり、
凝集水との接触によって炭素材料を構成する物質が溶出
するような材料は好ましくなく、化学的に安定な炭素材
料が好ましい。また、炭素材料の一次粒子径は1μm以
下が好ましく、これより大きな炭素材料は粉砕して用い
ることができる。一次粒子径が1μm超であると、ガス
拡散経路やプロトン伝導経路を分断する恐れが高くなる
ほか、触媒層中の炭素材料の分布が不均一になり易く好
ましくない。好ましい炭素材料としては、カーボンブラ
ックをあげることができる。
The type of carbon material used for the catalyst layer included in the fuel cell of the present invention is not particularly limited as long as it is a carbon material having electron conductivity which is generally present, but is originally required. Cause a chemical reaction other than the reaction,
A material in which a substance constituting a carbon material is eluted by contact with condensed water is not preferable, and a chemically stable carbon material is preferable. The primary particle diameter of the carbon material is preferably 1 μm or less, and a carbon material larger than this can be crushed and used. When the primary particle diameter is more than 1 μm, the gas diffusion path and the proton conduction path are likely to be divided, and the distribution of the carbon material in the catalyst layer tends to be nonuniform, which is not preferable. Carbon black can be mentioned as a preferable carbon material.

【0027】本発明の燃料電池に含まれる触媒層の主成
分の一つである炭素材料は、触媒担持炭素材料およびガ
ス拡散炭素材料を構成することが好ましい。触媒成分が
担持されていない炭素材料、即ち、ガス拡散炭素材料を
触媒層中に含ませることによって、触媒層中にガスが拡
散できる経路を発達でき、負極であれば水素あるいは水
素を主体とした混合ガス、正極であれば酸素あるいは空
気等が、触媒層中に拡散しやすくなり、多くの触媒表面
と接触できる。そのため、効率的に触媒層での反応を進
行させ、高い電池性能が得られるものである。
The carbon material, which is one of the main components of the catalyst layer included in the fuel cell of the present invention, preferably constitutes a catalyst supporting carbon material and a gas diffusion carbon material. By including a carbon material in which no catalyst component is supported, that is, a gas diffusion carbon material in the catalyst layer, it is possible to develop a path through which gas can diffuse in the catalyst layer, and hydrogen or hydrogen is mainly used for the negative electrode. In the case of a mixed gas or a positive electrode, oxygen, air, or the like is likely to diffuse into the catalyst layer, and can come into contact with many catalyst surfaces. Therefore, the reaction in the catalyst layer is efficiently advanced, and high battery performance is obtained.

【0028】さらに、ガス拡散炭素材料の触媒層中にお
ける含有率が、5質量%以上50質量%以下の範囲内に
あると、より好ましい。5質量%未満では、ガス拡散経
路を十分拡大することができず、ガス拡散炭素材料を含
ませる効果が不明確になる。50質量%超では、プロト
ン伝導経路が貧弱になり、IRドロップが大きくなるた
め電池性能が低下する。使用する炭素材料の種類や形態
にもよるが、10質量%〜40質量%がもっとも好まし
い。この範囲にあると、プロトン伝導経路と電子伝導経
路を損なうことなく、ガス拡散経路を発達させることが
できる。
Further, it is more preferable that the content of the gas diffusion carbon material in the catalyst layer is within the range of 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, the gas diffusion path cannot be sufficiently expanded, and the effect of including the gas diffusion carbon material becomes unclear. If it exceeds 50% by mass, the proton conduction path becomes poor and the IR drop becomes large, so that the battery performance deteriorates. Although it depends on the type and form of the carbon material used, 10% by mass to 40% by mass is most preferable. Within this range, the gas diffusion path can be developed without impairing the proton conduction path and the electron conduction path.

【0029】さらに高い効果を得るためには、表面の水
和性、すなわち、水蒸気吸着量が適切な範囲にあるガス
拡散炭素材料を用いる。具体的には、25℃、相対湿度
90%における水蒸気吸着量が1ml/g以上100m
l/g以下である炭素材料を、ガス拡散炭素材料として
選択することである。25℃、相対湿度90%における
水蒸気吸着量が1ml/g未満であると、撥水性が強く
なりすぎて、触媒層中に共存する電解質材料が湿潤状態
を維持しづらくなり、プロトン伝導性が低下する恐れが
あるため、ガス拡散炭素材料を添加する効果が低くなる
ことがある。25℃、相対湿度90%における水蒸気吸
着量が1ml/g以上であれば、触媒層中に共存する電
解質材料に好適な湿潤状態を維持できるため、プロトン
伝導性を損なうこと無く、ガス拡散経路を拡大すること
ができる。また、25℃、相対湿度90%における水蒸
気吸着量が1ml/g以上である炭素材料であれば、2
種類以上の炭素材料を混合してガス拡散炭素材料として
使用することもできる。一方、25℃、相対湿度90%
における水蒸気吸着量が100ml/g超になると、大
電流放電時に触媒層内部で生成する水の排出が追いつか
ず、ガス拡散経路を遮断してしまう恐れがあるため、ガ
ス拡散炭素材料を添加する効果が低くなることがある。
In order to obtain a higher effect, a gas diffusion carbon material having a surface hydration property, that is, a water vapor adsorption amount in an appropriate range is used. Specifically, the water vapor adsorption amount at 25 ° C. and relative humidity 90% is 1 ml / g or more and 100 m.
A carbon material having a ratio of 1 / g or less is selected as the gas diffusion carbon material. If the amount of water vapor adsorbed at 25 ° C. and relative humidity of 90% is less than 1 ml / g, the water repellency becomes too strong, making it difficult for the electrolyte material coexisting in the catalyst layer to maintain a wet state, resulting in a decrease in proton conductivity. Therefore, the effect of adding the gas diffusion carbon material may be reduced. If the amount of water vapor adsorbed at 25 ° C. and relative humidity of 90% is 1 ml / g or more, the wet state suitable for the electrolyte material coexisting in the catalyst layer can be maintained, so that the gas diffusion path can be maintained without impairing the proton conductivity. Can be expanded. If the carbon material has a water vapor adsorption amount of 1 ml / g or more at 25 ° C. and a relative humidity of 90%, it is 2
It is also possible to mix more than one kind of carbon material and use it as a gas diffusion carbon material. On the other hand, 25 ° C, relative humidity 90%
When the amount of water vapor adsorbed in the catalyst exceeds 100 ml / g, discharge of water generated inside the catalyst layer at the time of high-current discharge may not catch up, and the gas diffusion path may be blocked. Therefore, the effect of adding the gas diffusion carbon material May be low.

【0030】また、ガス拡散炭素材料の25℃、相対湿
度90%における水蒸気吸着量が1ml/g以上50m
l/g以下であると、さらに好ましい。この範囲内であ
ると、正極の内部で生成する水が少ない小電流放電時に
おいても、正極中の電解質材料の乾燥を防ぎ、好適な湿
潤状態を維持でき、かつ、大電流放電時にも、触媒層内
部で生成する水を効率よく触媒層外へ拡散することがで
きるため、低負荷から高負荷まで負荷条件によらず、全
域にわたって効率の良い電池を得ることができる。25
℃、相対湿度90%における水蒸気吸着量が50ml/
g超になると、大電流放電時に触媒層内部で生成する水
の排出が追いつかず、ガス拡散経路を遮断してしまう恐
れがあるため、ガス拡散炭素材料を添加する効果が低く
なることがある。
The amount of water vapor adsorbed on the gas diffusion carbon material at 25 ° C. and relative humidity of 90% is 1 ml / g or more and 50 m or more.
It is more preferably 1 / g or less. Within this range, even during a small current discharge in which a small amount of water is generated inside the positive electrode, it is possible to prevent the electrolyte material in the positive electrode from being dried, a suitable wet state can be maintained, and even during a large current discharge, the catalyst Since the water generated inside the layer can be efficiently diffused to the outside of the catalyst layer, an efficient battery can be obtained over the entire range from low load to high load regardless of load conditions. 25
Adsorption amount of water vapor is 50ml / at 90 ℃, relative humidity 90%
If it exceeds g, the discharge of water generated inside the catalyst layer at the time of high-current discharge may not catch up, and the gas diffusion path may be blocked, so the effect of adding the gas diffusion carbon material may be reduced.

【0031】ガス拡散炭素材料表面の水和性の制御は、
一般に存在する炭素材料中から水蒸気吸着量を指標に選
択することによって達成できる。あるいは、好適な範囲
より少ない水蒸気吸着量を持つ炭素材料である場合にお
いても、炭素材料を酸や塩基等で炭素材料表面を処理し
たり、酸化雰囲気環境に曝したりすることによって、水
蒸気吸着量を好適な範囲にまで増加させることができ
る。特に条件を限定するものでは無いが、例えば、加温
した濃硝酸中で処理したり、過酸化水素水溶液中に浸漬
したり、アンモニア気流中で熱処理したり、加温した水
酸化ナトリウム水溶液中に浸漬したり、希薄酸素や希薄
NO、あるいはNO2中で加熱処理したりすることによ
って、水蒸気吸着量を増加させることができる。逆に、
水蒸気吸着量が多すぎる場合、前述のように、不活性雰
囲気下で焼成することによって、水蒸気吸着量を好適な
範囲にまで低下させることもできる。特に限定するもの
ではないが、アルゴン、窒素、ヘリウム、真空等の雰囲
気下で加熱処理することによって、水蒸気吸着量を低下
させることができる。
The control of the hydration property of the gas diffusion carbon material surface is
This can be achieved by selecting the amount of water vapor adsorption as an index from the carbon materials that generally exist. Alternatively, even in the case of a carbon material having a water vapor adsorption amount less than the preferred range, the water vapor adsorption amount can be reduced by treating the carbon material surface with an acid or a base or exposing the carbon material to an oxidizing atmosphere environment. It can be increased to a suitable range. Although the conditions are not particularly limited, for example, treatment in heated concentrated nitric acid, immersion in a hydrogen peroxide aqueous solution, heat treatment in an ammonia stream, or heating in a sodium hydroxide aqueous solution. The amount of water vapor adsorbed can be increased by immersion or by heat treatment in dilute oxygen, dilute NO, or NO 2 . vice versa,
When the amount of adsorbed water vapor is too large, the amount of adsorbed water vapor can be reduced to a suitable range by firing in an inert atmosphere as described above. Although not particularly limited, the amount of adsorbed water vapor can be reduced by performing heat treatment in an atmosphere such as argon, nitrogen, helium, or vacuum.

【0032】本発明の燃料電池に含まれる触媒層は、使
用される電解質膜、電解質材料の種類や形態によらず効
果を発揮するものであって、これらに特に限定されるも
のではない。
The catalyst layer included in the fuel cell of the present invention exerts an effect regardless of the type and form of the electrolyte membrane and the electrolyte material used, and is not particularly limited thereto.

【0033】本発明の燃料電池に含まれる触媒層がもっ
とも効果を発揮する燃料電池は、触媒層中で水が凝集し
やすい条件下で作動する燃料電池であり、電解質膜の種
類や形態などに本発明の触媒層の効果が依存されるもの
ではない。例えば、固体高分子形燃料電池等に使用され
ることが好ましい。
The fuel cell in which the catalyst layer included in the fuel cell of the present invention is most effective is a fuel cell that operates under conditions in which water tends to agglomerate in the catalyst layer. The effect of the catalyst layer of the present invention is not dependent. For example, it is preferably used for a polymer electrolyte fuel cell and the like.

【0034】本発明の燃料電池に使用される電解質膜や
触媒層中に使用される電解質材料は、リン酸基、スルホ
ン酸基等を導入した高分子、例えばパーフルオロスルホ
ン酸ポリマーやベンゼンスルホン酸が導入されたポリマ
ー等をあげることができるが、高分子に限定するもので
はなく、無機系、無機−有機ハイブリッド系等の電解質
膜を使用した燃料電池に使用しても差し支えない。特に
好適な作動温度範囲を例示するならば、室温〜150℃
の範囲内で作動する燃料電池が好ましい。また、触媒担
持炭素材料と電解質材料との触媒層中での質量比は1:
2〜5:1が好ましい。1:2より触媒担持炭素材料が
少ないと、過度に触媒表面が電解質材料に覆われてしま
い、反応ガスが触媒成分と接触できる面積が小さくなる
ため好ましくなく、5:1より過剰に触媒担持炭素材料
が含有すると電解質材料のネットワークが貧弱になり、
プロトン伝導性が低くなるため好ましくない。
The electrolyte material used in the electrolyte membrane or catalyst layer used in the fuel cell of the present invention is a polymer having a phosphoric acid group, a sulfonic acid group or the like introduced therein, such as a perfluorosulfonic acid polymer or benzenesulfonic acid. Examples thereof include polymers having introduced thereinto. However, the present invention is not limited to polymers and may be used for fuel cells using an electrolyte membrane of an inorganic type, an inorganic-organic hybrid type or the like. To exemplify a particularly suitable operating temperature range, room temperature to 150 ° C.
Fuel cells that operate within the range are preferred. The mass ratio of the catalyst-supporting carbon material and the electrolyte material in the catalyst layer is 1:
2-5: 1 is preferred. When the amount of the catalyst-supporting carbon material is less than 1: 2, the surface of the catalyst is excessively covered with the electrolyte material, and the area where the reaction gas can contact the catalyst component becomes small, which is not preferable. When the material contains, the electrolyte network becomes poor,
It is not preferable because the proton conductivity becomes low.

【0035】本発明の触媒層に使用される触媒担持炭素
材料は、供給されるガスの種類に対して効果的な触媒成
分が担持されており電子伝導性が良好な炭素材料であれ
ば、触媒成分や炭素材料の種類を限定するものではな
い。触媒成分の例としては、白金、パラジウム、ルテニ
ウム、金、ロジウム、オスミウム、イリジウム等の貴金
属、これらの貴金属を2種類以上複合化した貴金属の複
合体や合金、貴金属と有機化合物や無機化合物との錯
体、遷移金属、遷移金属と有機化合物や無機化合物との
錯体等をあげることができる。これら触媒成分の触媒担
持炭素材料への担持量は、それぞれ固有の適切な範囲を
有しているため一概には言えないが、例えば、白金の場
合、炭素材料に対し白金換算で5〜60質量%の範囲で
担持されることが好ましい。また、これらの2種類以上
を複合したもの等も用いることもできる。なお、このよ
うな触媒成分の触媒担持炭素材料への担持方法は、当業
界周知の任意の方法を用いることができ特には限定され
ないが、炭素材料や触媒成分に応じて適宜選択されるべ
きである。
The catalyst-supporting carbon material used in the catalyst layer of the present invention is a catalyst if the catalyst material effective for the kind of gas supplied is supported and the electron conductivity is good. It does not limit the types of components and carbon materials. Examples of the catalyst component include noble metals such as platinum, palladium, ruthenium, gold, rhodium, osmium, and iridium, noble metal composites and alloys of two or more of these noble metals, and noble metals with organic compounds and inorganic compounds. Examples thereof include a complex, a transition metal, and a complex of a transition metal with an organic compound or an inorganic compound. The amount of these catalyst components supported on the catalyst-supporting carbon material cannot be generally stated because each of them has its own proper range. For example, in the case of platinum, it is 5 to 60 mass in terms of platinum based on the carbon material. It is preferable to support in the range of%. Further, a composite of two or more of these may also be used. The method for supporting such a catalyst component on the catalyst-supporting carbon material may be any method known in the art and is not particularly limited, but it should be appropriately selected according to the carbon material and the catalyst component. is there.

【0036】触媒を担持する炭素材料の例としては、カ
ーボンブラックがもっとも一般的であるが、そのほかに
も黒鉛、炭素繊維等やこれらの粉砕物、カーボンナノフ
ァイバー、カーボンナノチューブ等の炭素化合物等が使
用できる。また、これらの2種類以上を使用することも
できる。
Carbon black is the most common example of the carbon material supporting the catalyst, but in addition to this, graphite, carbon fiber and the like, pulverized products thereof, carbon compounds such as carbon nanofiber and carbon nanotube, etc. Can be used. Also, two or more of these can be used.

【0037】本発明の燃料電池に含まれる触媒層の作成
方法は、特に限定はしない。例えば、触媒担持炭素材料
とガス拡散炭素材料を混合し、これにパーフルオロスル
ホン酸ポリマーのような電解質を溶解あるいは分散した
溶液を加え、必要に応じて水や有機溶媒を加えてインク
を作成する。このインクを膜状に乾燥し触媒層として用
いることができる。
The method for forming the catalyst layer included in the fuel cell of the present invention is not particularly limited. For example, a catalyst-supporting carbon material and a gas diffusion carbon material are mixed, a solution in which an electrolyte such as a perfluorosulfonic acid polymer is dissolved or dispersed is added to this, and water or an organic solvent is added as necessary to prepare an ink. . This ink can be dried into a film and used as a catalyst layer.

【0038】ただし、本発明の燃料電池に含まれる触媒
層を効果的に機能させるためには、ガス拡散炭素材料表
面にできるだけ電解質材料が接触しないように作成する
方法を選択することが好ましい。特に、好ましい触媒層
作成方法を以下に述べる。
However, in order for the catalyst layer included in the fuel cell of the present invention to function effectively, it is preferable to select a method of making the surface of the gas diffusion carbon material so that the electrolyte material does not come into contact as much as possible. In particular, a preferable catalyst layer forming method will be described below.

【0039】A)触媒担持炭素材料と電解質材料とを電
解質材料の良溶媒中で粉砕混合した後に電解質材料の貧
溶媒を加え電解質材料と触媒担持炭素材料とをヘテロ凝
集させて得られるA液と、触媒成分を担持していないガ
ス拡散炭素材料を電解質材料の貧溶媒中で粉砕して得ら
れるB液を作成し、A液とB液とを混合して得られるC
液を膜状に乾燥して触媒層とする。
A) A solution obtained by pulverizing and mixing a catalyst-supporting carbon material and an electrolyte material in a good solvent for the electrolyte material, and then adding a poor solvent for the electrolyte material, and heterocoagulating the electrolyte material and the catalyst-supporting carbon material. , A liquid B obtained by crushing a gas diffusion carbon material not supporting a catalyst component in a poor solvent of an electrolyte material, and a liquid C obtained by mixing the liquid A and the liquid B
The liquid is dried into a film to form a catalyst layer.

【0040】この方法では、触媒担持炭素材料を電解質
材料とともに電解質材料の良溶媒中で粉砕混合すると、
大きな凝集体であった触媒担持炭素材料が微細な凝集体
に粉砕され、その表面近傍に電解質材料が溶解して存在
している状態になる。これに電解質材料の貧溶媒を加え
電解質材料を凝集させると、触媒担持粒子と電解質材料
粒子がヘテロ凝集を起こし、電解質材料が触媒担持炭素
材料表面に固定される。さらにこの溶液に微細なガス拡
散炭素材料が添加されると、電解質材料は触媒担持炭素
材料表面に固定されているため、ガス拡散炭素材料表面
が電解質材料によって覆われにくく、ガス拡散炭素材料
の表面が本来持ち合わせている表面性状を活かすことが
できる。特に、表面の水和性を制御したガス拡散炭素材
料を使用する場合、この方法は有効である。
In this method, when the catalyst-supporting carbon material is pulverized and mixed with the electrolyte material in a good solvent for the electrolyte material,
The catalyst-supporting carbon material, which was a large agglomerate, is crushed into fine agglomerates, and the electrolyte material is dissolved and present in the vicinity of the surface. When a poor solvent for the electrolyte material is added to this to coagulate the electrolyte material, the catalyst-supporting particles and the electrolyte material particles cause heterocoagulation, and the electrolyte material is fixed to the surface of the catalyst-supporting carbon material. When a fine gas-diffusing carbon material is further added to this solution, the electrolyte material is fixed on the catalyst-supporting carbon material surface, so the surface of the gas-diffusing carbon material is hard to be covered by the electrolyte material, and the surface of the gas-diffusing carbon material is You can take advantage of the surface texture that you have. In particular, this method is effective when a gas diffusion carbon material whose surface hydration is controlled is used.

【0041】B)触媒担持炭素材料と電解質材料とを電
解質材料の良溶媒中で粉砕混合した後に乾燥によって固
化し、これに電解質材料の貧溶媒を加え得られた固形物
を粉砕して得られるA液と、触媒成分を担持していない
ガス拡散炭素材料を電解質材料の貧溶媒中で粉砕して得
られるB液を作成し、A液とB液を混合して得られるC
液を膜状に乾燥して触媒層とする。
B) Obtained by crushing and mixing the catalyst-supporting carbon material and the electrolyte material in a good solvent for the electrolyte material, then solidifying by drying, and adding a poor solvent for the electrolyte material to this, and crushing the resulting solid material. A liquid and a gas diffusion carbon material not supporting a catalyst component are pulverized in a poor solvent of an electrolyte material to prepare a liquid B, and a liquid C is obtained by mixing the liquid A and the liquid B.
The liquid is dried into a film to form a catalyst layer.

【0042】この方法でも、触媒担持炭素材料を電解質
材料とともに電解質材料の良溶媒中で粉砕混合した後に
乾燥すると、電解質材料が触媒担持炭素材料表面に膜状
に固定される。これを電解質材料の貧溶媒中で粉砕する
と、ほとんどの電解質材料が触媒担持炭素材料に固定さ
れたまま微粒化する。さらに、この溶液に微細なガス拡
散炭素材料が添加されると、Aの方法と同様に電解質材
料は触媒担持炭素材料表面に固定されているため、ガス
拡散炭素材料表面が電解質材料によって覆われにくく、
ガス拡散炭素材料の表面が本来持ち合わせている表面性
状を活かすことができる。この方法も特に表面の水和性
を制御したガス拡散炭素材料を使用する場合に有効であ
る。
Also in this method, when the catalyst-supporting carbon material is pulverized and mixed with the electrolyte material in a good solvent for the electrolyte material and then dried, the electrolyte material is fixed in a film form on the surface of the catalyst-supporting carbon material. When this is pulverized in a poor solvent for the electrolyte material, most of the electrolyte material is atomized while being fixed to the catalyst-supporting carbon material. Furthermore, when a fine gas-diffusing carbon material is added to this solution, the electrolyte material is fixed to the catalyst-supporting carbon material surface as in the method A, so that the gas-diffusing carbon material surface is hard to be covered with the electrolyte material. ,
The surface texture originally possessed by the surface of the gas diffusion carbon material can be utilized. This method is also particularly effective when using a gas diffusion carbon material whose surface hydration property is controlled.

【0043】これらの触媒層作成方法で使用する電解質
材料の良溶媒とは、実質的に使用する電解質材料を溶解
する溶媒のことであり、電解質材料の種類や分子量によ
るため限定はできない。具体例を例示すれば、市販され
ているアルドリッチ社製5%ナフィオン溶液に含まれる
パーフルオロスルホン酸ポリマーの良溶媒としては、メ
タノール、エタノール、イソプロピルアルコールなどを
あげることができる。
The good solvent for the electrolyte material used in these catalyst layer forming methods is a solvent that substantially dissolves the electrolyte material used, and cannot be limited because it depends on the type and molecular weight of the electrolyte material. To give a specific example, methanol, ethanol, isopropyl alcohol and the like can be given as good solvents for the perfluorosulfonic acid polymer contained in the commercially available 5% Nafion solution manufactured by Aldrich.

【0044】また、これらの好ましい触媒層作成方法で
使用する電解質材料の貧溶媒とは、実質的に使用する電
解質材料を溶解しない溶媒のことであり、電解質材料の
種類や分子量により、溶媒が異なるため特定することは
できない。例えば、市販されているアルドリッチ社製5
%ナフィオン溶液に含まれるパーフルオロスルホン酸ポ
リマーの貧溶媒を例示するならば、ヘキサン、トルエ
ン、ベンゼン、酢酸エチル、酢酸ブチルなどをあげるこ
とができる。
The poor solvent for the electrolyte material used in these preferable catalyst layer forming methods is a solvent that does not substantially dissolve the electrolyte material used, and the solvent varies depending on the type and molecular weight of the electrolyte material. Therefore, it cannot be specified. For example, 5 commercially available from Aldrich
Examples of the poor solvent for the perfluorosulfonic acid polymer contained in the% Nafion solution include hexane, toluene, benzene, ethyl acetate and butyl acetate.

【0045】上述したA)あるいはB)の好ましい触媒
層作成方法の中で粉砕あるいは粉砕混合する方法として
は、大きな凝集体となっている触媒担持炭素材料やガス
拡散炭素材料を粉砕し、少なくとも1μm以下の凝集体
に粉砕する目的を果たすことができれば、手段は限定し
ない。一般的な手法としては例を挙げるならば、超音波
を利用する方法、ボールミルやガラスビーズ等を用いて
機械的に粉砕する方法などをあげることができる。
As a method of pulverizing or pulverizing and mixing in the above-mentioned preferable method for preparing a catalyst layer of A) or B), a catalyst-supporting carbon material or a gas-diffusing carbon material which is a large aggregate is pulverized and at least 1 μm. The means is not limited as long as it can achieve the purpose of crushing into the following aggregates. As a general method, for example, a method of using ultrasonic waves, a method of mechanically crushing using a ball mill, glass beads or the like can be used.

【0046】インクを膜状に乾燥する場合、一般に提案
されている方法が適用でき、特に限定しないが、例え
ば、ガス拡散層であるカーボンペーパー上に塗布し乾燥
した後、パーフルオロスルホン酸ポリマーのような電解
質膜にホットプレス等で圧着する方法、パーフルオロス
ルホン酸ポリマーのような電解質膜に塗布後、乾燥する
方法、一度テフロン(登録商標)シート等に塗布後、乾
燥し、これをパーフルオロスルホン酸ポリマーのような
電解質膜にホットプレスなどで転写する方法、等があげ
られる。このようにして本発明の燃料電池を作成するこ
とができる。
When the ink is dried in the form of a film, a generally proposed method can be applied and is not particularly limited. For example, it is applied on carbon paper which is a gas diffusion layer and dried, and then the perfluorosulfonic acid polymer Such as hot pressing to the electrolyte membrane, a method of applying to the electrolyte membrane such as perfluorosulfonic acid polymer and then drying, once applied to a Teflon (registered trademark) sheet and the like, then dried, perfluoro Examples thereof include a method of transferring to an electrolyte membrane such as a sulfonic acid polymer by hot pressing or the like. In this way, the fuel cell of the present invention can be prepared.

【0047】[0047]

【実施例】<ガス拡散炭素材料の水蒸気吸着量測定>触
媒層に含有させる炭素材料として、水蒸気吸着量が異な
るカーボンブラックA、B、C、D、E、F、G、Hの
計8種類を用意した。C及びGは市販のカーボンブラッ
クで、AはCをアルゴン中で加熱処理したもの、D及び
Hは、それぞれC及びGを加温した濃硝酸中で処理し、
水洗・乾燥したもの、B、E及びFは、Gをアルゴン中
で加熱処理し、温度や加熱時間を変化させたもの、とし
た。これらカーボンブラックの水蒸気吸着量測定は、水
蒸気量を定容量式水蒸気吸着装置(日本ベル社製、BE
LSORPIS)を用いて測定し、120℃、1Pa以
下で2時間脱気前処理を行った試料を25℃の恒温中に
保持し、徐々に水蒸気分圧を高めたときの試料に吸着し
た水蒸気量を測定した。得られた測定結果から吸着等温
線図を描き、図から相対湿度90%の時の水蒸気吸着量
を読みとった。その結果を表1に示した。
EXAMPLES <Measurement of Water Vapor Adsorption Amount of Gas Diffusion Carbon Material> As carbon materials contained in the catalyst layer, carbon blacks A, B, C, D, E, F, G and H having different water vapor adsorption amounts, eight kinds in total Prepared. C and G are commercially available carbon blacks, A is C heat-treated in argon, D and H are C and G treated in warm concentrated nitric acid,
Those washed with water and dried, and those of B, E, and F were those in which G was heat-treated in argon to change the temperature and the heating time. The amount of water vapor adsorbed on these carbon blacks is measured by measuring the amount of water vapor by a constant volume water vapor adsorber (Bell Japan, BE
LSORPIS), and the amount of water vapor adsorbed on the sample when the sample that had been degassed and pretreated at 120 ° C. and 1 Pa for 2 hours was kept at a constant temperature of 25 ° C. and the water vapor partial pressure was gradually increased. Was measured. An adsorption isotherm diagram was drawn from the obtained measurement results, and the amount of water vapor adsorbed at a relative humidity of 90% was read from the diagram. The results are shown in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】<触媒担持炭素材料の調製>塩化白金酸水
溶液中にカーボンブラックGを分散し、ロータリーエバ
ポレーターを用いて溶媒を減圧乾固して得た触媒前駆体
を10%水素−90%Ar気流中、300℃で3時間、
還元処理を行い、白金換算で白金担持率20質量%の触
媒担持炭素材料α、白金換算で白金担持率30質量%の
触媒担持炭素材料βを得た。カーボンブラックCとHに
ついても同様の手順によって、白金換算で白金担持率2
0質量%の触媒担持炭素材料γ及びδを得た。
<Preparation of catalyst-supporting carbon material> Carbon black G was dispersed in an aqueous solution of chloroplatinic acid, and the solvent was dried under reduced pressure using a rotary evaporator to obtain a catalyst precursor, which was used as a 10% hydrogen-90% Ar stream. Medium, 300 ° C for 3 hours,
A reduction treatment was performed to obtain a catalyst-supporting carbon material α having a platinum loading rate of 20% by mass in terms of platinum and a catalyst-supporting carbon material β having a platinum loading rate of 30% by weight in terms of platinum. For carbon blacks C and H, the platinum loading rate is 2 in terms of platinum by the same procedure.
0% by mass of catalyst-supporting carbon materials γ and δ were obtained.

【0050】また、塩化白金酸水溶液中にカーボンブラ
ックGを分散し、50℃に保温し、撹拌しながら過酸化
水素水を加え、次いで、Na224水溶液を添加して
触媒前駆体を得た。この触媒前駆体を濾過、水洗、乾燥
した後に100%H2気流中、300℃で3時間、還元
処理を行い、白金換算で白金担持率20質量%の触媒担
持炭素材料εを得た。
Further, carbon black G was dispersed in a chloroplatinic acid aqueous solution, kept at 50 ° C., hydrogen peroxide solution was added while stirring, and then Na 2 S 2 O 4 aqueous solution was added to the catalyst precursor. Got This catalyst precursor was filtered, washed with water, dried, and then subjected to a reduction treatment in a 100% H 2 gas stream at 300 ° C. for 3 hours to obtain a catalyst-supporting carbon material ε having a platinum supporting rate of 20 mass% in terms of platinum.

【0051】透過型電子顕微鏡で調製した触媒担持炭素
材料を観察し、担持された白金の粒子径を比較すると、
α、β、γ、δの白金粒子径分布はいずれも2〜50n
m程度と広かったが、εの白金粒子径分布は2〜6nm
程度であり、α、β、γ、δと比較すると、細かく均一
な粒子径分布であった。
When observing the catalyst-supporting carbon materials prepared with a transmission electron microscope and comparing the particle sizes of the supported platinum,
The platinum particle size distributions of α, β, γ, and δ are all 2 to 50 n
Although it was as wide as m, the platinum particle size distribution of ε was 2 to 6 nm.
The particle size distribution was fine and uniform compared to α, β, γ and δ.

【0052】<触媒電解質混合溶液の作成>触媒担持炭
素材料αを容器に取り、これに5%ナフィオン溶液(ア
ルドリッチ社製)を触媒担持炭素材料とナフィオンの質
量比が1/1となるように加え、さらに、炭素材料を粉
砕する目的でガラスビーズを加えて、撹拌により粉砕混
合し、触媒担持炭素材料とナフィオンを合わせた固形分
濃度が6質量%となるようにエタノールを加え、さらに
撹拌し、触媒電解質混合溶液α1を得た。同様の方法
で、触媒担持炭素材料β、γ、δ、εを用いて触媒電解
質混合溶液β1、γ1、δ1、ε1を得た。
<Preparation of Catalyst Electrolyte Mixed Solution> The catalyst-supporting carbon material α was placed in a container, and a 5% Nafion solution (manufactured by Aldrich) was added thereto so that the mass ratio of the catalyst-supporting carbon material and Nafion was 1/1. In addition, glass beads were added for the purpose of crushing the carbon material, and the mixture was crushed and mixed by stirring, and ethanol was added so that the solid content concentration of the catalyst-supporting carbon material and Nafion was 6% by mass, and further stirred. A catalyst electrolyte mixed solution α1 was obtained. In the same manner, catalyst-supported carbon materials β, γ, δ, ε were used to obtain a catalyst electrolyte mixed solution β1, γ1, δ1, ε1.

【0053】<ガス拡散炭素材料溶液の調製>カーボン
ブラックCを容器に取り、これにエタノールを加え、炭
素材料を粉砕する目的でガラスビーズを加えて、撹拌に
より粉砕混合し、触媒成分を担持していないカーボンブ
ラックCを6質量%含んだガス拡散炭素材料溶液C1を
得た。
<Preparation of Gas Diffusion Carbon Material Solution> Carbon black C is placed in a container, ethanol is added thereto, glass beads are added for the purpose of crushing the carbon material, and the mixture is crushed and mixed by stirring to carry a catalyst component. A gas diffusion carbon material solution C1 containing 6% by mass of carbon black C was obtained.

【0054】また、カーボンブラックAを容器に取り、
これに酢酸ブチルを加え、炭素材料を粉砕する目的でガ
ラスビーズを加えて、撹拌により粉砕混合し、触媒成分
を担持していないカーボンブラックAを6質量%含んだ
ガス拡散炭素材料溶液A2を得た。同様の方法でカーボ
ンブラックB、C、D、E、F、G、Hを用いて、ガス
拡散炭素材料溶液B2、C2、D2、E2、F2、G
2、H2を得た。
Also, take carbon black A in a container,
Butyl acetate was added to this, glass beads were added for the purpose of crushing the carbon material, and the mixture was crushed and mixed by stirring to obtain a gas diffusion carbon material solution A2 containing 6% by mass of carbon black A not supporting a catalyst component. It was Gas diffusion carbon material solutions B2, C2, D2, E2, F2, G using carbon blacks B, C, D, E, F, G, H in the same manner.
2, H2 was obtained.

【0055】さらに、カーボンブラックCを容器に取
り、これにヘキサンを加え、炭素材料を粉砕する目的で
ガラスビーズを加えて、撹拌により粉砕混合し、触媒成
分を担持していないカーボンブラックCを6質量%含ん
だガス拡散炭素材料溶液C3を得た。
Further, the carbon black C is placed in a container, hexane is added thereto, glass beads are added for the purpose of crushing the carbon material, and the mixture is crushed and mixed by stirring to obtain 6 carbon black C which does not carry a catalyst component. A gas diffusion carbon material solution C3 containing mass% was obtained.

【0056】<インクの調製>触媒電解質混合溶液とガ
ス拡散炭素材料溶液を下記表2に示した比率で撹拌混合
し、インクを調製した。
<Preparation of Ink> An ink was prepared by stirring and mixing the catalyst electrolyte mixed solution and the gas diffusion carbon material solution in the ratios shown in Table 2 below.

【0057】[0057]

【表2】 [Table 2]

【0058】例えば、インク4は、3.2gの触媒電解
質混合溶液α1を容器に取り、撹拌しながら、溶媒とし
て5gのエタノールを加え、十分に撹拌後、撹拌しなが
ら0.8gのガス拡散炭素材料溶液C1を加えて調製し
た。インク1〜3、14〜16も同様の手順で作成し
た。なお、インク1〜3、14には、ガス拡散炭素材料
溶液を加えなかった。
For example, in the ink 4, 3.2 g of the catalyst electrolyte mixed solution α1 was placed in a container, 5 g of ethanol was added as a solvent while stirring, and after sufficient stirring, 0.8 g of gas diffusion carbon was stirred. It was prepared by adding the material solution C1. Inks 1 to 3 and 14 to 16 were also prepared by the same procedure. In addition, the gas diffusion carbon material solution was not added to the inks 1 to 3.

【0059】また、インク6は、3.8gの触媒電解質
混合溶液α1を容器に取り、撹拌しながら、電解質の貧
溶媒である5gの酢酸ブチルを加えて、24時間以上撹
拌し、触媒炭素材料と電解質材料をヘテロ凝集させた
後、撹拌しながら0.2gのガス拡散炭素材料溶液C2
を加えて調製した。インク5、7〜13、17〜32、
37、38も同様にして作成した。なお、インク18、
25の調製時に加える貧溶媒にはヘキサンを使用した。
また、インク5、17、18、37には、ガス拡散炭素
材料溶液を加えなかった。
For the ink 6, the catalyst-electrolyte mixed solution α1 (3.8 g) was placed in a container, 5 g of butyl acetate, which is a poor solvent for the electrolyte, was added to the container with stirring, and the mixture was stirred for 24 hours or longer. After hetero-aggregating the electrolyte material with the electrolyte material, 0.2 g of the gas diffusion carbon material solution C2 with stirring.
Was added to prepare. Ink 5, 7-13, 17-32,
37 and 38 were similarly prepared. The ink 18,
Hexane was used as the poor solvent added when 25 was prepared.
The gas diffusion carbon material solution was not added to the inks 5, 17, 18, 37.

【0060】さらに、インク35は、2.8gの触媒電
解質混合溶液β1を容器に取り、100℃で一晩乾燥し
た後に、電解質材料の貧溶媒である7.6gの酢酸ブチ
ルとガラスビーズを投入し、撹拌により十分に粉砕混合
し、撹拌しながら1.2gのガス拡散炭素材料溶液C2
を加えて調製した。インク33、34、36も、同様に
作成した。なお、インク34と36の調製時に加える貧
溶媒にはヘキサンを使用した。また、インク33、34
には、ガス拡散炭素材料溶液を加えなかった。
Further, for the ink 35, 2.8 g of the catalyst / electrolyte mixed solution β1 was placed in a container and dried overnight at 100 ° C., and then 7.6 g of butyl acetate and glass beads, which are poor solvents for the electrolyte material, were added. And thoroughly pulverize and mix by stirring, and while stirring, 1.2 g of the gas diffusion carbon material solution C2
Was added to prepare. Inks 33, 34, and 36 were also created in the same manner. Hexane was used as the poor solvent added when the inks 34 and 36 were prepared. In addition, the ink 33, 34
No gas diffusion carbon material solution was added to the.

【0061】<触媒層の調製と性能評価(その1)>ま
ず、水蒸気吸着量が異なるカーボンブラックを用いて調
製した触媒担持炭素材料を含有する触媒層をそれぞれ調
製し、電池性能を比較した。インクは、溶媒として電解
質材料の良溶媒を使用したインク1〜4を用いた。下記
表3に、負極及び正極それぞれに用いたインクの種類
と、出来上がった触媒層中に含有する触媒担持炭素材料
の種類と、ガス拡散炭素材料の種類と含有率を、電池性
能評価結果とともに示した。
<Preparation of Catalyst Layer and Performance Evaluation (Part 1)> First, catalyst layers containing catalyst-supporting carbon materials prepared by using carbon blacks having different water vapor adsorption amounts were prepared, and the battery performances were compared. As the ink, Inks 1 to 4 using a good solvent for the electrolyte material as a solvent were used. Table 3 below shows the types of ink used for the negative electrode and the positive electrode, the type of catalyst-supporting carbon material contained in the finished catalyst layer, and the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was

【0062】電極の作成方法と評価方法を以下に述べ
る。
The method of making electrodes and the method of evaluation will be described below.

【0063】予めPTFEで撥水処理されたカーボンペ
ーパーを2.5cm×2.5cmの正方形に切断し、こ
の上にインクを塗布・乾燥を繰り返して、カーボンペー
パーに接合した触媒層を作成した。このとき、塗布前後
のカーボンペーパーの質量変化測定と使用したインクの
組成により、白金含有量を求め、0.5mg/cm2
なるように条件を調整した。このカーボンペーパーに接
合した触媒層2枚を用いて電解質膜(ナフィオン11
2)をはさみ、140℃、100kg/cm2の条件で
ホットプレスを5分間行い、カーボンペーパー−触媒層
−電解質膜−触媒層−カーボンペーパーの接合体を得
た。
A carbon paper preliminarily treated to be water-repellent with PTFE was cut into a 2.5 cm × 2.5 cm square, and ink was repeatedly applied and dried on the carbon paper to form a catalyst layer bonded to the carbon paper. At this time, the platinum content was determined by measuring the change in mass of the carbon paper before and after coating and the composition of the ink used, and the conditions were adjusted so as to be 0.5 mg / cm 2 . Using two catalyst layers bonded to this carbon paper, an electrolyte membrane (Nafion 11
2) was sandwiched and hot pressed for 5 minutes at 140 ° C. and 100 kg / cm 2 to obtain a bonded body of carbon paper-catalyst layer-electrolyte membrane-catalyst layer-carbon paper.

【0064】さらに、得られた接合体を燃料電池測定装
置に組み込み、電池性能測定を行った。電池性能測定
は、開放電圧(通常0.9〜1.0V程度)から0.2
Vまで段階的に電圧を変化させ、0.5Vの時に流れる
電流密度を測定した。なお、電極面積は6.25cm2
とした。ガスは、正極に純酸素、負極に純水素を、利用
率がそれぞれ50%と80%となるように供給し、それ
ぞれのガスはセル下流に設けられた背圧弁で圧力調整
し、0.1MPaに設定した。セル温度は80℃に設定
し、供給する純酸素と純水素は、それぞれ75℃と85
℃に保温された蒸留水中でバブリングを行い、加湿し
た。
Further, the obtained joined body was incorporated into a fuel cell measuring device and the cell performance was measured. Battery performance is measured from open voltage (usually 0.9 to 1.0V) to 0.2
The voltage was gradually changed to V and the current density flowing at 0.5 V was measured. The electrode area is 6.25 cm 2.
And Gas was supplied with pure oxygen for the positive electrode and pure hydrogen for the negative electrode so that the utilization rates were 50% and 80%, respectively, and the pressure of each gas was adjusted by a back pressure valve provided at the downstream of the cell to obtain 0.1 MPa. Set to. The cell temperature is set to 80 ° C, and the supplied pure oxygen and pure hydrogen are 75 ° C and 85 ° C, respectively.
Bubbling was performed in distilled water kept at ℃ to humidify.

【0065】[0065]

【表3】 [Table 3]

【0066】表3に示すように、25℃、相対湿度90
%における水蒸気吸着量が100ml/g以下である炭
素材料を使用した実施例1〜3の電池性能が、100m
l/g超の炭素材料を使用した比較例1よりも優れてい
た。また、ガス拡散炭素材料Cを触媒層中に20%含有
させた実施例3の電池性能が、特に優れていた。
As shown in Table 3, 25 ° C. and 90% relative humidity
%, The battery performance of Examples 1 to 3 using a carbon material having a water vapor adsorption amount of 100 ml / g or less is 100 m
It was superior to Comparative Example 1 using a carbon material of more than 1 / g. In addition, the battery performance of Example 3 in which 20% of the gas diffusion carbon material C was contained in the catalyst layer was particularly excellent.

【0067】<触媒層の調製と性能評価(その2)>次
に、触媒担持炭素材料をαに固定し、ガス拡散炭素材料
の種類や触媒層中の含有量を変化させた触媒層をそれぞ
れ調製し、電池性能を比較した。すなわちインクは、触
媒担持炭素材料としてαを含み、かつ溶媒として電解質
材料の貧溶媒を使用したインク5〜13を用いた。下記
表4に、負極及び正極それぞれに用いたインクの種類
と、出来上がった触媒層中に含有する触媒担持炭素材料
の種類と、ガス拡散炭素材料の種類と含有率を、電池性
能評価結果とともに示した。
<Preparation of Catalyst Layer and Performance Evaluation (Part 2)> Next, the catalyst-supporting carbon material was fixed to α, and the catalyst layers in which the kind of the gas diffusion carbon material and the content in the catalyst layer were changed were prepared. Prepared and compared the battery performance. That is, the inks used were inks 5 to 13 containing α as the catalyst supporting carbon material and using the poor solvent of the electrolyte material as the solvent. Table 4 below shows the type of ink used for each of the negative electrode and the positive electrode, the type of catalyst-supporting carbon material contained in the finished catalyst layer, and the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was

【0068】電極の作成方法と評価方法は、<触媒層の
調製と性能評価(その1)>と同様の手順で行った。
The electrode was prepared and evaluated in the same procedure as in <Preparation of catalyst layer and performance evaluation (1)>.

【0069】[0069]

【表4】 [Table 4]

【0070】表4に示すように、ガス拡散炭素材料を触
媒層中に5質量%以上50質量%以下含有させた実施例
5〜11の電池性能が、特に優れていた。ガス拡散炭素
材料を50質量%超含有する実施例12では、電池性能
がやや劣る結果となった。電池性能測定中にカレントイ
ンターラプト法によって電池の抵抗を測定したところ、
実施例4〜11の抵抗値より実施例12の抵抗値が大き
かったことから、ガス拡散炭素材料が過剰となって電解
質材料のネットワークが分断され、プロトン伝導性が低
くなったため、電池性能が低下したものと考えられる。
As shown in Table 4, the battery performance of Examples 5 to 11 in which the gas diffusion carbon material was contained in the catalyst layer in an amount of 5% by mass or more and 50% by mass or less was particularly excellent. In Example 12 containing more than 50% by mass of the gas diffusion carbon material, the battery performance was slightly inferior. When measuring the resistance of the battery by the current interrupt method while measuring the battery performance,
Since the resistance value of Example 12 was larger than the resistance values of Examples 4 to 11, the gas diffusion carbon material became excessive, the network of the electrolyte material was divided, and the proton conductivity became low, so that the battery performance deteriorated. It is thought that it was done.

【0071】また、ガス拡散炭素材料の含有率が20質
量%である実施例7〜10の中で比較すると、25℃、
相対湿度90%の時の水蒸気吸着量が1ml/g以上1
00ml/g以下であるガス拡散炭素材料C及びGを含
有した実施例9及び10が特に優れており、25℃、相
対湿度90%の時の水蒸気吸着量が1ml/g以上50
ml/g以下であるガス拡散炭素材料Cを含有した実施
例9が最も優れていた。
Further, comparing Examples 7 to 10 in which the content of the gas diffusion carbon material is 20% by mass, 25 ° C.
The amount of water vapor adsorbed when the relative humidity is 90% is 1 ml / g or more 1
Examples 9 and 10 containing the gas diffusion carbon materials C and G of 00 ml / g or less are particularly excellent, and the water vapor adsorption amount at 25 ° C. and relative humidity of 90% is 1 ml / g or more and 50 or more.
Example 9 containing the gas diffusion carbon material C having an amount of ml / g or less was the most excellent.

【0072】<触媒層の調製と性能評価(その3)>次
に、触媒担持炭素材料をβに固定し、ガス拡散炭素材料
の種類を変化させた触媒層をそれぞれ調製し、少なくと
も片方の極に配した時の電池性能を比較した。すなわち
インクは、触媒担持炭素材料としてβを含み、かつ、溶
媒として電解質材料の良溶媒を使用したインク14〜1
6を用いた。下記表5に、負極及び正極それぞれに用い
たインクの種類と、出来上がった触媒層中に含有する触
媒担持炭素材料の種類と、ガス拡散炭素材料の種類と含
有率を、電池性能評価結果とともに示した。
<Preparation of Catalyst Layer and Performance Evaluation (Part 3)> Next, the catalyst-supporting carbon material was fixed to β, and the catalyst layers were prepared by changing the kind of the gas diffusion carbon material, and at least one electrode was prepared. The battery performances when the batteries were arranged in the above were compared. That is, the ink contains inks β as a catalyst supporting carbon material, and inks 14 to 1 using a good solvent of an electrolyte material as a solvent.
6 was used. Table 5 below shows the types of ink used for the negative electrode and the positive electrode, the type of catalyst-supporting carbon material contained in the finished catalyst layer, and the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was

【0073】また、電極の評価方法は、<触媒層の調製
と性能評価(その1)>と同様の手順で行ったが、電極
の作成方法は、以下の手順に従い行った。
The electrode evaluation method was the same as in <Preparation of catalyst layer and performance evaluation (No. 1)>, but the electrode was prepared according to the following procedure.

【0074】インクを薄いテフロン(登録商標)シート
に塗布・乾燥を繰り返し、これを2.5cm×2.5c
mの正方形に切断し、触媒層−テフロン(登録商標)シ
ート接合体を作成した。作成した触媒層−テフロン(登
録商標)シート接合体2枚を用いて電解質膜(ナフィオ
ン112)をはさみ、140℃、100kg/cm2
条件でホットプレスを3分間行った後に、テフロン(登
録商標)シートのみを剥がし、触媒層−電解質膜−触媒
層の接合体を作成した。このとき、触媒層−テフロン
(登録商標)シート接合体の質量と剥がしたテフロン
(登録商標)シートの質量差により、電解質膜に転写さ
れた触媒層の質量を決定し、これとインクの組成により
白金含有量を求め、白金含有量が、白金換算で0.05
mg/cm2となるように塗布量と塗布回数を調整し
た。さらに、予めPTFEで撥水処理されたカーボンペ
ーパーを2.5cm×2.5cmの正方形に切断し、2
枚を用いて触媒層−電解質膜−触媒層接合体を挟み、1
40℃、100kg/cm2の条件でさらにホットプレ
スを3分間行い、カーボンペーパー−触媒層−電解質膜
−触媒層−カーボンペーパーの接合体を得た。
The ink is applied to a thin Teflon (registered trademark) sheet and dried repeatedly, and this is 2.5 cm × 2.5 c.
It cut | disconnected to the square of m, and created the catalyst layer-Teflon (trademark) sheet joined body. After sandwiching the electrolyte membrane (Nafion 112) using the two catalyst layer-Teflon (registered trademark) sheet joined bodies prepared, hot pressing was performed for 3 minutes at 140 ° C. and 100 kg / cm 2 , and then Teflon (registered trademark) ) Only the sheet was peeled off to prepare a catalyst layer-electrolyte membrane-catalyst layer assembly. At this time, the mass of the catalyst layer transferred to the electrolyte membrane was determined by the mass difference between the catalyst layer-Teflon (registered trademark) sheet joined body and the peeled Teflon (registered trademark) sheet, and this and the composition of the ink Obtain the platinum content, and the platinum content is 0.05 in terms of platinum.
The amount of coating and the number of coatings were adjusted so as to be mg / cm 2 . Furthermore, the carbon paper that has been made water repellent with PTFE is cut into 2.5 cm × 2.5 cm squares, and 2
The catalyst layer-electrolyte membrane-catalyst layer assembly is sandwiched by using one sheet, and 1
Hot pressing was further performed for 3 minutes under the conditions of 40 ° C. and 100 kg / cm 2 to obtain a bonded body of carbon paper-catalyst layer-electrolyte membrane-catalyst layer-carbon paper.

【0075】[0075]

【表5】 [Table 5]

【0076】表5に示すように、少なくとも片側の触媒
層にガス拡散炭素材料を触媒層中に含有させた実施例1
4〜16の電池性能が特に優れていた。
As shown in Table 5, Example 1 in which a gas diffusion carbon material was contained in at least one catalyst layer in the catalyst layer
The battery performance of Nos. 4 to 16 was particularly excellent.

【0077】<触媒層の調製と性能評価(その4)>次
に、触媒担持炭素材料をβに固定し、ガス拡散炭素材料
の種類や触媒層中の含有量を変化させた触媒層をそれぞ
れ調製し、電池性能を比較した。すなわちインクは、触
媒担持炭素材料としてβを含み、かつ、基本的に溶媒と
して電解質材料の貧溶媒を使用したインク17〜32を
用い、一部良溶媒を使用したインク14を使用した。下
記表6に、負極及び正極それぞれに用いたインクの種類
と、出来上がった触媒層中に含有する触媒担持炭素材料
の種類と、ガス拡散炭素材料の種類と含有率を、電池性
能評価結果とともに示した。電極の作成方法と評価方法
は、<触媒層の調製と性能評価(その3)>と同様の手
順で行った。
<Preparation of Catalyst Layer and Performance Evaluation (Part 4)> Next, the catalyst-supporting carbon material was fixed to β, and the catalyst layers in which the kind of the gas diffusion carbon material and the content in the catalyst layer were changed were prepared. Prepared and compared the battery performance. That is, the inks used were inks 17 to 32 containing β as the catalyst-carrying carbon material and basically the poor solvent of the electrolyte material as the solvent, and the ink 14 partially using the good solvent. Table 6 below shows the types of ink used for the negative electrode and the positive electrode, the type of the catalyst-supporting carbon material contained in the finished catalyst layer, the type and the content rate of the gas diffusion carbon material, together with the battery performance evaluation results. It was The electrode was prepared and evaluated in the same procedure as in <Preparation of catalyst layer and performance evaluation (No. 3)>.

【0078】[0078]

【表6】 [Table 6]

【0079】表6に示すように、25℃、相対湿度90
%における水蒸気吸着量が100ml/g以下である炭
素材料を使用した実施例17〜34の電池性能が、10
0ml/g超の炭素材料を使用した実施例30よりも優
れていた。また、少なくとも片側の触媒層にガス拡散炭
素材料を5質量%以上50質量%以下含有させた実施例
19〜33の電池性能が優れていることが分かった。
As shown in Table 6, 25 ° C., relative humidity 90
%, The battery performance of Examples 17 to 34 using a carbon material having a water vapor adsorption amount of 100 ml / g or less is 10
It was superior to Example 30 using more than 0 ml / g of carbon material. It was also found that the battery performance of Examples 19 to 33 in which the gas diffusion carbon material was contained in the catalyst layer on at least one side in an amount of 5% by mass or more and 50% by mass or less was excellent.

【0080】また、ガス拡散炭素材料の含有率が30質
量%である実施例22〜29の中で比較すると、25
℃、相対湿度90%の時の水蒸気吸着量が1ml/g以
上100ml/g以下であるガス拡散炭素材料C、D、
E、F、Gを含有した実施例24〜29が優れており、
その中でも25℃、相対湿度90%の時の水蒸気吸着量
が1ml/g以上50ml/g以下であるガス拡散炭素
材料C、D、E、Fを含有した実施例24〜28が特に
優れていることが分かった。
In comparison with Examples 22 to 29 in which the content ratio of the gas diffusion carbon material is 30% by mass, 25
Gas diffusion carbon materials C and D having a water vapor adsorption amount of 1 ml / g or more and 100 ml / g or less at a temperature of 90 ° C. and a relative humidity of 90%.
Examples 24 to 29 containing E, F and G are excellent,
Among them, Examples 24 to 28 containing the gas diffusion carbon materials C, D, E and F having a water vapor adsorption amount of 1 ml / g or more and 50 ml / g or less at 25 ° C. and a relative humidity of 90% are particularly excellent. I found out.

【0081】<触媒層の調製と性能評価(その5)>次
に、触媒担持炭素材料上に薄い電解質材料の膜を形成さ
せるように調製したインク34〜37を用いて電極を作
成し、電池性能を比較した。下記表7に、負極及び正極
それぞれに用いたインクの種類と、出来上がった触媒層
中に含有する触媒担持炭素材料の種類と、ガス拡散炭素
材料の種類と含有率を、電池性能評価結果とともに示し
た。
<Preparation of Catalyst Layer and Performance Evaluation (Part 5)> Next, electrodes were prepared using inks 34 to 37 prepared so as to form a thin film of an electrolyte material on a catalyst-supporting carbon material, and batteries were prepared. The performance was compared. Table 7 below shows the types of ink used for the negative electrode and the positive electrode, the type of catalyst-supporting carbon material contained in the finished catalyst layer, and the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was

【0082】また、電極の作成方法及び評価方法は、<
触媒層の調製と性能評価(その3)>と同様の手順で行
った。
Further, the method of forming the electrode and the evaluation method are as follows.
Preparation of Catalyst Layer and Performance Evaluation (Part 3)>

【0083】[0083]

【表7】 [Table 7]

【0084】表7に示すように、触媒担持炭素材料上に
薄い電解質材料の膜を形成させるように調製したインク
を用いて触媒層を作成した場合においても、触媒層にガ
ス拡散炭素材料を含有させた実施例37及び38の電池
性能が特に優れていることが分かった。
As shown in Table 7, even when the catalyst layer was prepared by using the ink prepared so as to form a thin electrolyte material film on the catalyst-supporting carbon material, the catalyst layer contained the gas diffusion carbon material. It was found that the battery performance of Examples 37 and 38 thus prepared was particularly excellent.

【0085】<触媒層の調製と性能評価(その6)>こ
こでは、微細な白金が担持された触媒担持炭素材料εを
含有したインク37及び38を用いて電極を作成し、電
池性能を比較した。下記表8に、負極及び正極それぞれ
に用いたインクの種類と、出来上がった触媒層中に含有
する触媒担持炭素材料の種類と、ガス拡散炭素材料の種
類と含有率を、電池性能評価結果とともに示した。
<Preparation of Catalyst Layer and Performance Evaluation (Part 6)> Here, electrodes were prepared using inks 37 and 38 containing the catalyst-supporting carbon material ε on which fine platinum was supported, and battery performances were compared. did. Table 8 below shows the type of ink used for each of the negative electrode and the positive electrode, the type of catalyst-supporting carbon material contained in the finished catalyst layer, and the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was

【0086】また、電極の作成方法および評価方法は、
<触媒層の調製と性能評価(その3)>と同様の手順で
行った。
The method of making and evaluating the electrodes is as follows.
The procedure was the same as in <Preparation of Catalyst Layer and Performance Evaluation (3)>.

【0087】[0087]

【表8】 [Table 8]

【0088】表8に示すように、微細な白金が担持され
た触媒担持炭素材料を用いた場合においても、触媒層に
ガス拡散炭素材料を含有させた実施例40の電池性能
が、特に優れていることが分かった。
As shown in Table 8, even when the catalyst-supporting carbon material supporting fine platinum was used, the battery performance of Example 40 in which the catalyst layer contained the gas diffusion carbon material was particularly excellent. I found out that

【0089】[0089]

【発明の効果】以上述べたように、本発明の燃料電池
は、触媒層中にPTFEやシランカップリング剤といっ
た化合物を用いないため、電子伝導経路を分断すること
なく、電解質材料に好適な湿潤環境を保つことが可能で
あり、極めて効率的な電池性能を発現できる。また、P
TFEやシランカップリング剤といった化合物を用いな
いため、触媒層製造コストを低減し、安価で高性能な触
媒層を安定して供給できる。
As described above, since the fuel cell of the present invention does not use a compound such as PTFE or a silane coupling agent in the catalyst layer, it does not divide the electron conduction path and is suitable for the electrolyte material. The environment can be maintained, and extremely efficient battery performance can be exhibited. Also, P
Since no compound such as TFE or a silane coupling agent is used, the cost for producing the catalyst layer can be reduced, and an inexpensive and high-performance catalyst layer can be stably supplied.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉浦 勉 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 5H018 AA06 AS01 BB01 BB03 BB06 BB11 BB12 BB13 BB17 EE03 EE05 EE06 EE08 EE18 HH05 HH08 5H026 AA06 CX05 EE05 HH05 HH08 5H027 AA06 KK31 KK41    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsutomu Sugiura             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division F-term (reference) 5H018 AA06 AS01 BB01 BB03 BB06                       BB11 BB12 BB13 BB17 EE03                       EE05 EE06 EE08 EE18 HH05                       HH08                 5H026 AA06 CX05 EE05 HH05 HH08                 5H027 AA06 KK31 KK41

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 プロトン伝導性電解質膜を挟んだ一対の
触媒層を含む燃料電池であって、少なくとも片側の触媒
層が、触媒成分と、電解質材料と、炭素材料とからな
り、前記炭素材料の25℃、相対湿度90%における水
蒸気吸着量が100ml/g以下であることを特徴とす
る燃料電池。
1. A fuel cell comprising a pair of catalyst layers sandwiching a proton-conducting electrolyte membrane, wherein at least one catalyst layer comprises a catalyst component, an electrolyte material, and a carbon material. A fuel cell having a water vapor adsorption amount of 100 ml / g or less at 25 ° C. and a relative humidity of 90%.
【請求項2】 前記炭素材料は、前記触媒成分を担持し
た触媒担持炭素材料および前記触媒成分を担持していな
いガス拡散炭素材料を構成し、前記ガス拡散炭素材料は
触媒層中に5質量%以上50質量%以下含まれることを
特徴とする請求項1に記載の燃料電池。
2. The carbon material constitutes a catalyst-supporting carbon material supporting the catalyst component and a gas-diffusing carbon material not supporting the catalyst component, and the gas-diffusing carbon material is 5% by mass in a catalyst layer. The fuel cell according to claim 1, wherein the fuel cell is contained in an amount of 50% by mass or more and 50% by mass or less.
【請求項3】 前記ガス拡散炭素材料は、25℃、相対
湿度90%における水蒸気吸着量が1ml/g以上10
0ml/g以下である炭素材料の1種類以上からなるこ
とを特徴とする請求項2に記載の燃料電池。
3. The gas-diffusing carbon material has a water vapor adsorption amount of 1 ml / g or more at 25 ° C. and a relative humidity of 90%.
The fuel cell according to claim 2, wherein the fuel cell is made of one or more kinds of carbon materials of 0 ml / g or less.
【請求項4】 前記ガス拡散炭素材料は、25℃、相対
湿度90%における水蒸気吸着量が1ml/g以上50
ml/g以下である炭素材料の1種類以上からなること
を特徴とする請求項3に記載の燃料電池。
4. The gas-diffusing carbon material has a water vapor adsorption amount of 1 ml / g or more at 25 ° C. and a relative humidity of 90%.
The fuel cell according to claim 3, wherein the fuel cell is made of one or more kinds of carbon materials having an amount of ml / g or less.
JP2001301937A 2001-09-28 2001-09-28 Fuel cell Expired - Fee Related JP5119459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301937A JP5119459B2 (en) 2001-09-28 2001-09-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301937A JP5119459B2 (en) 2001-09-28 2001-09-28 Fuel cell

Publications (2)

Publication Number Publication Date
JP2003109643A true JP2003109643A (en) 2003-04-11
JP5119459B2 JP5119459B2 (en) 2013-01-16

Family

ID=19122271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301937A Expired - Fee Related JP5119459B2 (en) 2001-09-28 2001-09-28 Fuel cell

Country Status (1)

Country Link
JP (1) JP5119459B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104275A1 (en) * 2004-04-22 2005-11-03 Nippon Steel Corporation Fuel cell and gas diffusion electrode for fuel cell
JP2005332807A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Fuel cell
JP2006031951A (en) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd Method of manufacturing gas diffusion electrode for solid polymer fuel cell
JP2006120335A (en) * 2004-10-19 2006-05-11 Nippon Steel Corp Gas diffusion layer for fuel cell, gas diffusion electrode for the fuel cell and the fuel cell
JP2007179852A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Highly durable fuel cell
JP2008041514A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Catalyst ink for fuel cell, membrane-electrode assembly and manufacturing method of them
WO2008032802A1 (en) * 2006-09-13 2008-03-20 Hitachi Maxell, Ltd. Membrane electrode assembly and solid polymer fuel cell
JP2008077956A (en) * 2006-09-21 2008-04-03 Toppan Printing Co Ltd Varnish for forming catalyst electrode for fuel cell, catalytic electrode using it, membrane electrode assembly using it, fuel cell using it
JP2008159519A (en) * 2006-12-26 2008-07-10 Nippon Steel Corp Fuel cell
JP2008243688A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Electrode for fuel cell, manufacturing method of electrode for fuel cell, and fuel cell
WO2009011464A1 (en) * 2007-07-19 2009-01-22 Toyota Jidosha Kabushiki Kaisha Fuel cell and electrode powder for constituting catalyst layer of the fuel cell
CN100466345C (en) * 2004-04-22 2009-03-04 新日本制铁株式会社 Fuel cell and gas diffusion electrode for fuel cell
JP2012059402A (en) * 2010-09-06 2012-03-22 Toyota Motor Corp Anode-side and cathode-side electrode catalysts, film electrode assembly, and fuel battery cell
US9593562B2 (en) 2013-06-18 2017-03-14 Baker Hughes Incorporated Downhole fuel cell with steam adsorption and pressure compensation
US10731440B2 (en) 2013-06-18 2020-08-04 Baker Hughes, A Ge Company, Llc Downhole fuel cell with steam adsorption and pressure compensation and methods of using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162365A (en) * 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk Method for preparing electrode of fuel cell
JPH07134995A (en) * 1993-11-09 1995-05-23 Toyota Central Res & Dev Lab Inc Fuel cell
JPH1125992A (en) * 1997-07-01 1999-01-29 Tanaka Kikinzoku Kogyo Kk Electrode for high polymer solid electrolyte fuel cell and manufacture of the same
JP2002100370A (en) * 2000-09-22 2002-04-05 Honda Motor Co Ltd Solid high polymer molecule type fuel cell
JP2002100369A (en) * 2000-09-22 2002-04-05 Honda Motor Co Ltd Solid high polymer molecule type fuel cell
JP2002100368A (en) * 2000-09-22 2002-04-05 Honda Motor Co Ltd Solid high polymer molecule type fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162365A (en) * 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk Method for preparing electrode of fuel cell
JPH07134995A (en) * 1993-11-09 1995-05-23 Toyota Central Res & Dev Lab Inc Fuel cell
JPH1125992A (en) * 1997-07-01 1999-01-29 Tanaka Kikinzoku Kogyo Kk Electrode for high polymer solid electrolyte fuel cell and manufacture of the same
JP2002100370A (en) * 2000-09-22 2002-04-05 Honda Motor Co Ltd Solid high polymer molecule type fuel cell
JP2002100369A (en) * 2000-09-22 2002-04-05 Honda Motor Co Ltd Solid high polymer molecule type fuel cell
JP2002100368A (en) * 2000-09-22 2002-04-05 Honda Motor Co Ltd Solid high polymer molecule type fuel cell

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100466345C (en) * 2004-04-22 2009-03-04 新日本制铁株式会社 Fuel cell and gas diffusion electrode for fuel cell
JP2005332807A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Fuel cell
WO2005104275A1 (en) * 2004-04-22 2005-11-03 Nippon Steel Corporation Fuel cell and gas diffusion electrode for fuel cell
US9786925B2 (en) 2004-04-22 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Fuel cell and fuel cell use gas diffusion electrode
KR100919326B1 (en) * 2004-04-22 2009-09-25 신닛뽄세이테쯔 카부시키카이샤 Fuel cell and gas diffusion electrode for fuel cell
KR100897637B1 (en) * 2004-04-22 2009-05-14 신닛뽄세이테쯔 카부시키카이샤 Fuel cell and gas diffusion electrode for fuel cell
JP2006031951A (en) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd Method of manufacturing gas diffusion electrode for solid polymer fuel cell
JP2006120335A (en) * 2004-10-19 2006-05-11 Nippon Steel Corp Gas diffusion layer for fuel cell, gas diffusion electrode for the fuel cell and the fuel cell
JP4520815B2 (en) * 2004-10-19 2010-08-11 新日本製鐵株式会社 Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell
JP2007179852A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Highly durable fuel cell
JP2008041514A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Catalyst ink for fuel cell, membrane-electrode assembly and manufacturing method of them
US8546042B2 (en) 2006-09-13 2013-10-01 Hitachi Maxell, Ltd. Membrane electrode assembly and polymer electrolyte fuel cell
WO2008032802A1 (en) * 2006-09-13 2008-03-20 Hitachi Maxell, Ltd. Membrane electrode assembly and solid polymer fuel cell
JP2008077956A (en) * 2006-09-21 2008-04-03 Toppan Printing Co Ltd Varnish for forming catalyst electrode for fuel cell, catalytic electrode using it, membrane electrode assembly using it, fuel cell using it
JP2008159519A (en) * 2006-12-26 2008-07-10 Nippon Steel Corp Fuel cell
JP2008243688A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Electrode for fuel cell, manufacturing method of electrode for fuel cell, and fuel cell
JP2009026602A (en) * 2007-07-19 2009-02-05 Toyota Motor Corp Fuel cell, and electrode powder constituting catalyst layer for fuel cell
WO2009011464A1 (en) * 2007-07-19 2009-01-22 Toyota Jidosha Kabushiki Kaisha Fuel cell and electrode powder for constituting catalyst layer of the fuel cell
US8415073B2 (en) 2007-07-19 2013-04-09 Toyota Jidosha Kabushiki Kaisha Fuel cell and electrode powder constituting the catalytic layer thereof
JP2012059402A (en) * 2010-09-06 2012-03-22 Toyota Motor Corp Anode-side and cathode-side electrode catalysts, film electrode assembly, and fuel battery cell
US9593562B2 (en) 2013-06-18 2017-03-14 Baker Hughes Incorporated Downhole fuel cell with steam adsorption and pressure compensation
US10731440B2 (en) 2013-06-18 2020-08-04 Baker Hughes, A Ge Company, Llc Downhole fuel cell with steam adsorption and pressure compensation and methods of using same
US11280163B2 (en) 2013-06-18 2022-03-22 Baker Hughes Holdings Llc Downhole fuel cell with steam adsorption and pressure compensation

Also Published As

Publication number Publication date
JP5119459B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
US7981826B2 (en) Supported catalyst and method of preparing the same
JP4185064B2 (en) Cathode electrode for liquid fuel type polymer electrolyte fuel cell and liquid fuel type polymer electrolyte fuel cell
JP5021292B2 (en) Fuel cell
JP5213499B2 (en) Fuel cell
TWI404258B (en) Electrode catalyst with improved longevity properties and fuel cell using the same
WO2010047415A1 (en) Catalyst for solid polymer furl cell, electrode for solid polymer furl cell, and fuel cell
JP2006142293A (en) Metal catalyst, manufacturing method of metal catalyst, electrode, manufacturing method of electrode and fuel cell
KR19990078111A (en) Membrane-electrode unit for polymer electrolyte fuel cells and processes for their preparation
JP2009532830A (en) Compositions of nanoparticles and platinum particles containing metals or alloys for use in fuel cells.
JP4204272B2 (en) Fuel cell electrode catalyst and fuel cell
US20100240527A1 (en) Process for producing catalyst electrode
JP5119459B2 (en) Fuel cell
CN111146482A (en) Self-humidifying proton exchange membrane and preparation method and application thereof
JP2006253147A (en) Manufacturing method of electrocatalyst for cation exchange membrane fuel cell
JP4960000B2 (en) Gas diffusion electrode for fuel cell and fuel cell
JP2016100262A (en) Catalyst for solid polymer fuel cell
CN108808027B (en) Electrode catalyst for fuel cell and method for producing same
JP2002015745A (en) Solid polymer fuel cell
JP2004152489A (en) Catalyst electrode for fuel cell, fuel cell, catalyst carrier particle for fuel cell, and manufacturing method of catalyst electrode
JP6554954B2 (en) Catalyst mixture, production method thereof, and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst mixture
JP2005317238A (en) Solid polymer fuel cell, hybrid membrane, and membrane-electrode junction
TW202131544A (en) Fuel cell electrode having high durability, method for manufacturing the same, and membrane-electrode assembly comprising the same
JP2002015746A (en) Fuel cell and fuel cell electrode member
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
KR20150047343A (en) Electrode catalyst, method for preparing the same, and membrane electrode assembly and fuel cell including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5119459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees