JPH01208489A - Catalytic electrode and production thereof - Google Patents

Catalytic electrode and production thereof

Info

Publication number
JPH01208489A
JPH01208489A JP63033719A JP3371988A JPH01208489A JP H01208489 A JPH01208489 A JP H01208489A JP 63033719 A JP63033719 A JP 63033719A JP 3371988 A JP3371988 A JP 3371988A JP H01208489 A JPH01208489 A JP H01208489A
Authority
JP
Japan
Prior art keywords
electrode
electroless plating
porous
platinum
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63033719A
Other languages
Japanese (ja)
Other versions
JP2660284B2 (en
Inventor
Junji Mizutani
淳二 水谷
Kuniaki Tanaka
國昭 田中
Yoshio Saito
斉藤 義雄
Hideaki Arai
秀晃 新居
Eiichi Torikai
鳥養 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP63033719A priority Critical patent/JP2660284B2/en
Publication of JPH01208489A publication Critical patent/JPH01208489A/en
Application granted granted Critical
Publication of JP2660284B2 publication Critical patent/JP2660284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To suppress the contamination of an electrode and a plating soln. and to obtain an electrode having a catalytic metal layer only on the selected face by successively subjecting the desired face of a porous base material to electrolysis and electroless plating with the plating soln. to form a prescribed metal layer. CONSTITUTION:An electroless plating soln. for forming a plating layer of one or more kinds of catalytic metals for an electrode selected among Pt, Pd, Rh, Ru and Ir is prepd. The selected face of a porous base material is successively subjected to electrolysis and electroless plating with the plating soln. to form a layer of such catalytic metals.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、触媒電極及びその製造法に関し、より詳しく
は、固体高分子電解質(例えば、イオン交換膜)を用い
る水電解法による水素、酸素若しくはオゾンの製造、ハ
ロゲン化物水溶液の電解によるハロゲンの製造等のゼロ
ギャップ電解法に適した触媒電極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a catalytic electrode and a method for manufacturing the same, and more specifically, the present invention relates to a catalytic electrode and a method for manufacturing the same, and more particularly, to the production of hydrogen, oxygen, or ozone by a water electrolysis method using a solid polymer electrolyte (for example, an ion exchange membrane). The present invention relates to a catalytic electrode suitable for zero-gap electrolysis, such as production of halogen by electrolysis of an aqueous halide solution.

従来の技術 従来、水電解、ハロゲン化物電解等の電解合成を行なう
に当っては、イオン交換膜と触媒電極とを密接させて電
解する、所謂ゼロギャップ電解が行なわれている。
2. Description of the Related Art Conventionally, in performing electrolytic synthesis such as water electrolysis and halide electrolysis, so-called zero-gap electrolysis has been carried out, in which an ion exchange membrane and a catalyst electrode are brought into close contact with each other.

その際用いられる陽極としては、通常、チタン、タンタ
ル等のバルブメタルのパンチング板、エキスバンド板、
メツシュ、ホトエツチング板、球状金属微粉末や繊維状
金属の焼結板等のポーラス板を基体材料とし、これに電
極触媒能を有する金属又は金属酸化物を電気めっき、化
学めっき、熱分解めっき、イオンブレーティング等の方
法で全面に被覆したポーラス触媒電極が、また陰極には
、炭素粉末の表面に電極触媒をスパッタリング等の方法
で被覆したものを、PTFE樹脂でモールドしたポーラ
ス触媒電極等が夫々使用されている。
The anodes used in this case are usually punched plates, expanded plates, etc. made of valve metal such as titanium or tantalum.
A porous plate such as a mesh, a photo-etched plate, a sintered plate of spherical metal fine powder or a fibrous metal is used as the base material, and a metal or metal oxide having an electrode catalytic ability is applied to this by electroplating, chemical plating, pyrolysis plating, or ion plating. A porous catalytic electrode is used, which is entirely coated by a method such as brating, and a porous catalytic electrode, which is a carbon powder whose surface is coated with an electrode catalyst by a method such as sputtering, and molded with PTFE resin, is used for the cathode. has been done.

発明が解決しようとする問題点 ゼロギャップ電解で作動する反応界面は、イオン交換膜
と電極との接触点である。しかして、従来のポーラス触
媒電極は、その空孔内或は背面側にも電極反応に関与し
ない電極触媒が接合されている。このような空孔内或は
背面側に存在する電極触媒は、反応生成物を分解して電
流効率を低下させるといった副反応を惹起することがあ
る。従って、ゼロギャップ電解に用いるポーラス触媒電
極には、触媒金属がイオン交換膜との接触面に必要最小
量だけ存在することが理想とされる。しかしながら、従
来から知られている湿式或は乾式のめっき法によれば、
触媒金属の空孔内や背面側へのまわりこみを防ぎきれず
、電極の選択された面に電極触媒を接合することが困難
であるので、上記のような理想構造を持つポーラス電極
を製造することができない。
Problems to be Solved by the Invention The reaction interface that operates in zero-gap electrolysis is the point of contact between the ion exchange membrane and the electrode. Therefore, in the conventional porous catalyst electrode, an electrode catalyst that does not participate in the electrode reaction is bonded inside the pores or on the back side of the electrode. Electrode catalysts present in such pores or on the back side may cause side reactions such as decomposing reaction products and reducing current efficiency. Therefore, in the porous catalyst electrode used for zero-gap electrolysis, it is ideal that the catalyst metal exists in the minimum necessary amount on the contact surface with the ion exchange membrane. However, according to conventionally known wet or dry plating methods,
Since it is difficult to prevent the catalyst metal from flowing into the pores or to the back side, and it is difficult to bond the electrode catalyst to the selected surface of the electrode, it is necessary to manufacture a porous electrode with the ideal structure as described above. I can't.

問題点を解決するための手段 本発明者は、上記従来技術の問題点に鑑みて鋭意研究を
重ね、予め白金被覆処理を施したチタン材と無処理のチ
タン材とを積層して焼結し、白金被覆層のみに二酸化鉛
を電析して製造される二酸化鉛電極をゼロギャップ電解
に用いた場合には、オゾン等を高濃度で製造できること
を見い出し、先に特許出願した(特願昭62−7276
2号)。
Means for Solving the Problems In view of the above-mentioned problems of the prior art, the inventor of the present invention has conducted extensive research, and has developed a method of stacking and sintering titanium materials that have been previously coated with platinum and untreated titanium materials. discovered that ozone, etc., could be produced at high concentrations when a lead dioxide electrode produced by electrodepositing lead dioxide only on the platinum coating layer was used for zero-gap electrolysis, and filed a patent application earlier. 62-7276
No. 2).

更に本発明者は、−層優れた触媒電極を得るべく研究を
行なった結果、ポーラス基体材料に電極触媒能を有する
金属(以下触媒金属という)を無電解めっきするに先立
って、該基体を陰極とし且つ該触媒金属の無電解めっき
浴を用いて該基体の選択された面に電解処理を行ない、
次いで無電解めっきを行なう場合には、該基体の選択さ
れた面にのみ触媒金属が接合しそれ以外の部分、例えば
、空孔内、背面側等にめっきが施されていない触媒電極
が得られることを見い出し、本発明を完成した。
Furthermore, as a result of conducting research to obtain a catalyst electrode with excellent catalytic properties, the present inventor discovered that prior to electroless plating of a metal having electrocatalytic ability (hereinafter referred to as catalytic metal) on a porous substrate material, the substrate was coated with a cathode. and electrolytically treating a selected surface of the substrate using an electroless plating bath of the catalytic metal,
When electroless plating is then performed, a catalytic electrode is obtained in which the catalytic metal is bonded only to the selected surface of the substrate, and other parts, such as the inside of the pores and the back side, are not plated. They discovered this and completed the present invention.

即ち本発明は、下記■〜■の触媒電極及びその製造法に
係る。
That is, the present invention relates to the following catalytic electrodes and their manufacturing methods.

■ポーラス基体材料の選択された面に、白金、パラジウ
ム、ロジウム、ルテニウム及びイリジウムから選ばれた
1種又は2種以上の電極触媒能を有する金属層を備えた
触媒電極。
(2) A catalyst electrode comprising a metal layer having an electrocatalytic ability of one or more selected from platinum, palladium, rhodium, ruthenium and iridium on a selected surface of a porous base material.

■ポーラス基体材料の選択された面に、白金、パラジウ
ム、ロジウム、ルテニウム及びイリジウムから選ばれた
1種又は2種以上の電極触媒能を有する金属層をめっき
により形成するに当り、該基体の選択された面を無電解
めっき液を用いて電解処理した後、同一組成の無電解め
っき浴を用いて無電解めっきを行なって該金属層を形成
することを特徴とする触媒電極の製造法。
■ Selection of the substrate when forming a metal layer having an electrocatalytic ability of one or more selected from platinum, palladium, rhodium, ruthenium, and iridium on a selected surface of the porous substrate material by plating. 1. A method for producing a catalytic electrode, which comprises electrolytically treating the treated surface using an electroless plating solution, and then performing electroless plating using an electroless plating bath having the same composition to form the metal layer.

■ポーラス基体材料の選択された面に、白金、パラジウ
ム、ロジウム、ルテニウム及びイリジウムから選ばれた
1種又は2種以上の電極触媒能を有する金属層、及び該
金属層の上に、二酸化鉛又は二酸化マンガンである電極
触媒能を有する金属酸化物層を備えた触媒電極。
■A metal layer having an electrocatalytic ability of one or more types selected from platinum, palladium, rhodium, ruthenium, and iridium on a selected surface of the porous substrate material, and a layer of lead dioxide or A catalytic electrode comprising a metal oxide layer having electrocatalytic ability, which is manganese dioxide.

■ポーラス基体材料の選択された面に、白金、パラジウ
ム、ロジウム、ルテニウム及びイリジウムから選ばれた
1種又は2種以上の電極触媒能を有する金属層及び該金
属層の上に二酸化鉛又は二酸化マンガンである電極触媒
能を有する金属酸化物層を、めっきにより形成するに当
り、該基体の選択された面を無電解めっき液を用いて電
解処理した後、同一組成の無電解めっき浴を用いて無電
解めっきを行なって該金属層を形成し、更に該金属酸化
物を電析することを特徴とする触媒電極の製造法。
■A metal layer having one or more types of electrode catalytic ability selected from platinum, palladium, rhodium, ruthenium, and iridium on a selected surface of the porous base material, and lead dioxide or manganese dioxide on the metal layer. In forming a metal oxide layer having an electrocatalytic ability by plating, a selected surface of the substrate is electrolytically treated using an electroless plating solution, and then an electroless plating bath of the same composition is used. A method for producing a catalyst electrode, comprising forming the metal layer by electroless plating, and further electrodepositing the metal oxide.

本発明では、ポーラス基体材料としては公知のものをい
ずれも使用できるが、得られる触媒電極を陽極として使
用する場合には、例えば、チタン、タンタル等の耐食性
金属のエキスバンド板、ホトエツチング板等の有孔板の
積層材、ゼロキャップ電解に適した多孔質焼結体等を特
に好ましく使用できる。上記多孔質焼結体の原料として
は特に制限されず公知のものを使用できるが、例えば、
溶融噴霧法、回転電極法、ひびり振動切削法等の公知の
方法で製造される球状金属粉末、繊維状金属等を挙げる
ことができる。焼結は通常真空中又はアルゴン、ヘリウ
ム等の不活性ガス中で行なわれる。また焼結条件は、使
用する金属の種類に応じて適宜選択すればよい。焼結体
の中でも、空孔率が通常40〜80%程度、好ましくは
50〜70%程度であり、且つ開孔径が通常10〜10
00μm程度、好ましくは50〜500μm程度である
ものを特に好ましく使用できる。空孔率40%未満又は
開孔径が10μm未満の場合には、電解に際してのイオ
ン交換膜への電解液の補給、ガスの脱離等が困難になる
傾向がある。また、空孔率が80%を越えるか又は開孔
径が1000μmを越える場合には、膜と電極との接触
点が少なくなり、電流密度が大きくなって膜の破損を引
き起こす恐れがある。
In the present invention, any known material can be used as the porous substrate material, but when using the obtained catalyst electrode as an anode, for example, an expanded plate of a corrosion-resistant metal such as titanium or tantalum, a photoetched plate, etc. A laminated material of perforated plates, a porous sintered body suitable for zero-cap electrolysis, etc. can be particularly preferably used. The raw material for the porous sintered body is not particularly limited and known materials can be used, but for example,
Spherical metal powders, fibrous metals, etc. manufactured by known methods such as a melt spray method, a rotating electrode method, and a crack vibration cutting method can be mentioned. Sintering is usually carried out in vacuum or in an inert gas such as argon or helium. Further, the sintering conditions may be appropriately selected depending on the type of metal used. Among the sintered bodies, the porosity is usually about 40 to 80%, preferably about 50 to 70%, and the opening diameter is usually 10 to 10%.
Particularly preferably used is one having a diameter of about 00 μm, preferably about 50 to 500 μm. When the porosity is less than 40% or the opening diameter is less than 10 μm, it tends to be difficult to replenish the electrolyte to the ion exchange membrane and desorb gas during electrolysis. Furthermore, if the porosity exceeds 80% or the pore diameter exceeds 1000 μm, there will be fewer contact points between the membrane and the electrode, and the current density will increase, potentially causing damage to the membrane.

得られる触媒電極を陰極として使用する場合には、ポー
ラス基体材料としては、公知の炭素系材料を好ましく使
用できる。その具体例としては、例えば、粉粒状炭素、
炭素繊維チョップ等の焼結体、カーボンペーパー、フェ
ルト、クロス、その他ゼロギャップ電解に適した炭素粉
末等をPTFE樹脂でモールドしたもの(特開昭61−
276987号)、膨張化黒鉛を含む焼結体(特開昭6
2−227098号)等を挙げることができる。
When the resulting catalyst electrode is used as a cathode, known carbon-based materials can be preferably used as the porous substrate material. Specific examples include powdery carbon,
Sintered bodies such as carbon fiber chops, carbon paper, felt, cloth, and other carbon powder suitable for zero-gap electrolysis molded with PTFE resin
No. 276987), a sintered body containing expanded graphite (Unexamined Japanese Patent Publication No. 6
2-227098).

上記ポーラス炭素基体の開孔径及び空孔率は特に制限さ
れないが、通常夫々1〜10μm程度及び40〜60%
程度とすればよい。
The opening diameter and porosity of the porous carbon substrate are not particularly limited, but are usually about 1 to 10 μm and 40 to 60%, respectively.
It is sufficient to set the degree.

また、電極触媒能を有する金属としては、白金、−パラ
ジウム、ロジウム、ルテニウム及びイリジウムから選ば
れた1種又は2種以上の金属を使用する。合金の場合、
配合比率は特に制限されず適宜選択すればよい。上記金
属の無電解めっき浴としては公知のものがいずれも使用
でき、例えば、上記金属の塩、還元剤等を含む浴液をア
ンモニア水、アルカリ性pH緩衝液等でpH10〜13
程度に調整した無電解めっき浴等を挙げることができる
Further, as the metal having an electrode catalytic ability, one or more metals selected from platinum, -palladium, rhodium, ruthenium, and iridium are used. For alloys,
The blending ratio is not particularly limited and may be selected as appropriate. Any known electroless plating bath for the above metals can be used. For example, a bath solution containing salts of the above metals, reducing agents, etc. may be mixed with ammonia water, alkaline pH buffer, etc. to pH 10 to 13.
Examples include electroless plating baths that have been adjusted to a certain degree.

白金塩としては、白金ニトロ錯塩、白金ニトロアンミン
錯塩等を、パラジウム塩としては、パラジウムニトロ錯
塩、パラジウムアンミン錯塩等を、ロジウム塩としては
、ロジウムのアンミン錯塩等を、ルテニウム塩としては
、ルテニウムのニトロシルアンミン錯塩等を、またイリ
ジウム塩としては、イリジウムのハロゲン化物等を夫々
例示できるが、これらに限定されるものではない。還元
剤としては公知のものを使用でき、例えば、ヒドラジン
、アルキルアミンボラン等を挙げることができる。ヒド
ラジンとしては、その水和物、塩酸塩、硫酸塩等を好適
に使用できる。上記無電解めっき浴には、その他の添加
剤として、例えば、ヒドロキシルアミン塩等の反応促進
剤を使用してもよい。
Platinum salts include platinum nitro complex salts, platinum nitroammine complex salts, etc.; palladium salts include palladium nitro complex salts, palladium ammine complex salts, etc.; rhodium salts include rhodium ammine complex salts, etc., and ruthenium salts include ruthenium complex salts, etc. Examples of the iridium salt include nitrosylammine complex salts and iridium halides, but the present invention is not limited to these. Known reducing agents can be used, such as hydrazine, alkylamine borane, and the like. As hydrazine, its hydrate, hydrochloride, sulfate, etc. can be suitably used. For example, a reaction accelerator such as a hydroxylamine salt may be used as other additives in the electroless plating bath.

ヒドロキシルアミン塩としては、塩酸塩、硫酸塩、硝酸
塩等を好適に使用できる。上記浴成分の添加量は特に制
限されず、適宜選択すればよい。上記無電解めっき浴は
、特公昭59−33667号、特公昭59−39504
号、特公昭59−34784号、特開昭60−1627
80号等に記載されている。
As the hydroxylamine salt, hydrochloride, sulfate, nitrate, etc. can be suitably used. The amount of the bath components added is not particularly limited and may be selected as appropriate. The above electroless plating bath is disclosed in Japanese Patent Publication No. 59-33667 and Japanese Patent Publication No. 59-39504.
No., JP 59-34784, JP 60-1627
It is described in No. 80, etc.

上記■の本発明触媒電極は、以下のようにして製造され
る。
The catalytic electrode of the present invention described in (1) above is manufactured as follows.

まず、ポーラス基体材料の選択された面を、触媒金属の
無電解めっき液を用いて電解処理する。
First, a selected surface of the porous substrate material is electrolytically treated using an electroless plating solution for a catalytic metal.

電解処理条件は特に制限されず適宜選択できる。Electrolytic treatment conditions are not particularly limited and can be selected as appropriate.

通常、室温下、電圧3.5〜15.5V程度及び電流密
度0.05〜1.OA/dm2程度で電解が行なわれる
。尚、ポーラス基体材料を上記電解処理に供する前に、
常法に従って、洗浄処理、エツチング処理、酸洗等に供
してもよい。
Usually, at room temperature, voltage is about 3.5 to 15.5V, and current density is about 0.05 to 1. Electrolysis is performed at approximately OA/dm2. In addition, before subjecting the porous substrate material to the above electrolytic treatment,
It may be subjected to cleaning treatment, etching treatment, pickling, etc. according to conventional methods.

電解処理方法も特に制限されないが、通常は隔膜法が使
用される。隔膜法を行なうための装置の一例を第1図に
示す。第1図において、(1)はポーラス基体(陰極と
なる)、(3)は陽極である。陽極(3)としては、通
常白金メツシュ又は白金めっきしたポーラスチタン板が
用いられる。
Although the electrolytic treatment method is not particularly limited, a diaphragm method is usually used. An example of an apparatus for performing the diaphragm method is shown in FIG. In FIG. 1, (1) is a porous substrate (which becomes a cathode), and (3) is an anode. As the anode (3), a platinum mesh or a platinum-plated porous titanium plate is usually used.

隔膜(5)は陰陽極を分離すると共に適当な速度で触媒
金属イオンを陰極表面に補給できるような保水性が要求
される。保水量が多いと、ポーラス電極の細管内に電解
液が入って内部までめっきされ、少ないと、電解電圧が
高くなって発熱するので好ましくない。隔膜(5)の材
料としては上記条件を満たすものがいずれも使用でき、
その具体例としては、例えば、濾紙、枦布等に用いられ
るセルロース系繊維、合成繊維等の吸水性材料、吸水性
樹脂、カチオン交換膜等を挙げることができる。カチオ
ン交換膜を使用する場合には、電解液中のカチオニック
な金属イオンが膜中を移動して陰極表面に補給されるた
め、より効果的にポーラス基体(1)が電解処理される
。(7)はチタン製の容器で、電解液溜めと給電材とを
兼ねている。
The diaphragm (5) is required to have water retention properties that allow it to separate the cathode and anode and to supply catalytic metal ions to the surface of the cathode at an appropriate rate. If the amount of water retained is large, the electrolytic solution will enter the thin tube of the porous electrode and the inside will be plated, and if the amount of water retained is small, the electrolytic voltage will become high and heat will be generated, which is not preferable. Any material that satisfies the above conditions can be used as the material for the diaphragm (5),
Specific examples thereof include water-absorbing materials such as cellulose fibers and synthetic fibers used in filter paper, cloth, etc., water-absorbing resins, and cation exchange membranes. When a cation exchange membrane is used, the cationic metal ions in the electrolyte move through the membrane and are replenished to the cathode surface, so that the porous substrate (1) can be electrolytically treated more effectively. (7) is a titanium container that serves both as an electrolyte reservoir and a power supply material.

(9)はポーラス基体(1)を隔膜(5)に圧接するた
めの重り及び給電体を兼ねる金属板であり、例えば、ス
テンレススチール等を使用できる。
(9) is a metal plate that serves as both a weight and a power supply for press-contacting the porous substrate (1) to the diaphragm (5), and may be made of, for example, stainless steel.

電解は、ポーラス基体(1)の選択された面に隔膜(5
)を接触させ、(7)に無電解めっき液を入れ、隔膜(
5)を吸水状態に保ちつつ行なわれる。陰極(1)に析
出させる触媒金属皮膜の厚さは特に制限されないが、0
.05〜1.0μm程度とすればよく、通常は0.1μ
m前後で充分である。
The electrolysis is carried out by applying a diaphragm (5) on selected faces of the porous substrate (1).
), put the electroless plating solution in (7), and remove the diaphragm (
5) is carried out while maintaining the water absorption state. The thickness of the catalytic metal film deposited on the cathode (1) is not particularly limited;
.. It may be about 0.05 to 1.0 μm, usually 0.1 μm.
Around m is sufficient.

上記隔膜法による電解処理は、大型の触媒電極を製造す
る場合に特に好ましく採用できる。小型の電極である場
合には、筆めっき法又はそれに類似の方法に従って行う
こともできる。
The electrolytic treatment using the diaphragm method described above can be particularly preferably employed when producing a large-sized catalyst electrode. In the case of small-sized electrodes, brush plating or similar methods can also be used.

上記電解処理により、ポーラス基体の片面に選択的に活
性点が形成される。
By the above electrolytic treatment, active sites are selectively formed on one side of the porous substrate.

かくして電解処理されたポーラス基体は、次に無電解め
っきに供される。無電解めっきは、通常の条件下に行な
われる。無電解めっきは、前段の電解処理で析出させた
触媒金属面が活性点となって開始し、自触媒作用によっ
て成長する。このため、触媒金属が析出していないポー
ラス基体の空孔内又は背面側にはめっきが起らず、必要
な面のみが選択的にめっきされることになる。この無電
解めっきによって、触媒金属層を通常0.5〜5.0μ
m程度、好ましくは1.0〜3.0μm程度まで成長さ
せる。めっきされる金属量は、浴液中の金属量を予め調
節しておけばよい。バッチ処理で行なわれるめっきの金
属利用率は、90〜95%程度である。
The porous substrate thus electrolytically treated is then subjected to electroless plating. Electroless plating is performed under normal conditions. Electroless plating starts when the catalytic metal surface deposited in the previous electrolytic treatment becomes an active site and grows by autocatalytic action. Therefore, plating does not occur inside the pores or on the back side of the porous substrate where the catalyst metal is not deposited, and only the necessary surfaces are selectively plated. By this electroless plating, the catalyst metal layer is usually 0.5 to 5.0μ
It is grown to about m, preferably about 1.0 to 3.0 μm. The amount of metal to be plated may be adjusted in advance by adjusting the amount of metal in the bath liquid. The metal utilization rate of plating performed in batch processing is about 90 to 95%.

かくして本発明触媒電極を得ることができる。In this way, the catalyst electrode of the present invention can be obtained.

尚、必要に応じ、めっき後の電極を、常法に従って洗浄
してもよい。洗浄方法としては、例えば、温水で吸引す
る方法等を挙げることができる。
Note that, if necessary, the electrode after plating may be cleaned according to a conventional method. Examples of the cleaning method include a method of suctioning with warm water.

本発明では、上記方法によって施された触媒金属のめっ
き皮膜上に、電極触媒能を有する金属酸化物を電析させ
てもよい。前記金属酸化物としては、二酸化鉛又は二酸
化マンガンを使用できる。
In the present invention, a metal oxide having electrocatalytic ability may be electrodeposited on the catalytic metal plating film applied by the above method. As the metal oxide, lead dioxide or manganese dioxide can be used.

電析は公知の方法に従って行なうことができる。Electrodeposition can be performed according to known methods.

例えば、ポーラス基体に前段の無電解処理で例えば白金
を析出させた後、該ポーラス基体を陽極とし、且つ例え
ばステンレス鋼を陰極とし、鉛又はマンガン電解めっき
浴を用い、電解を行なうことにより白金析出層上に選択
的に二酸化鉛又は二酸化マンガンが析出した触媒電極を
得ることができる。電解条件は特に制限されないが、通
常60〜70℃程度の温度下に3〜5A/dm2程度で
行なえばよい。鉛又はマンガン電解めっき浴としては公
知のものがいずれも使用でき、その具体例としては、例
えば、硝酸鉛銅浴、硝酸鉛浴、硝酸マンガン浴等を挙げ
ることができる。
For example, after depositing platinum on a porous substrate in the previous electroless treatment, platinum can be deposited by electrolyzing using a lead or manganese electrolytic plating bath, using the porous substrate as an anode and stainless steel as a cathode. A catalytic electrode in which lead dioxide or manganese dioxide is selectively deposited on the layer can be obtained. Although the electrolysis conditions are not particularly limited, it is generally sufficient to carry out the electrolysis at a temperature of about 60 to 70°C and a power of about 3 to 5 A/dm2. Any known lead or manganese electrolytic plating bath can be used, and specific examples include a lead copper nitrate bath, a lead nitrate bath, a manganese nitrate bath, and the like.

かくして、ポーラス基体の選択された面に、触媒金属層
及び触媒金属酸化物層を有する触媒電極を得ることがで
きる。
In this way, it is possible to obtain a catalytic electrode having a catalytic metal layer and a catalytic metal oxide layer on selected surfaces of the porous substrate.

上記方法で製造される本発明触媒電極を用いてゼロキャ
ップ電解を行なうに当っては、公知の方法に従ってイオ
ン交換膜−触媒電極接合体を作製してもよく、或いはイ
オン交換膜と触媒電極とを単に圧接してゼロキャップ電
解を行なってもよい。
When performing zero-cap electrolysis using the catalyst electrode of the present invention manufactured by the above method, an ion exchange membrane-catalyst electrode assembly may be prepared according to a known method, or an ion exchange membrane and catalyst electrode may be combined. Zero-cap electrolysis may be performed by simply press-welding the two.

その際の電圧等の各条件は適宜選択すればよい。Conditions such as voltage at that time may be selected as appropriate.

発明の効果 本発明によれば、以下のような顕著な効果が達成される
Effects of the Invention According to the present invention, the following remarkable effects are achieved.

(1)ポーラス基体の選択された面にのみ触媒金属層を
備えた触媒電極を極めて容易に製造できる。該電極をゼ
ロキャップ電解に使用する場合には、反応生成物を分解
して電流効率を低下させるといった不利な副反応が殆ん
ど起こらず、非常に有用な電極として使用できる。
(1) A catalytic electrode having a catalytic metal layer only on selected surfaces of a porous substrate can be manufactured very easily. When this electrode is used for zero-cap electrolysis, there are almost no disadvantageous side reactions such as decomposition of reaction products and reduction in current efficiency, and it can be used as a very useful electrode.

(2大型から小型まで、所望形状の触媒電極を容易に製
造できる。
(2) Catalytic electrodes of desired shapes, from large to small, can be easily produced.

(3)触媒電極の製造に当り、常に同一組成の無電解め
っき浴を使用するので、電極の汚染又は損傷がなく、め
っき浴の汚染もなくなる。
(3) Since an electroless plating bath with the same composition is always used in the production of the catalyst electrode, there is no contamination or damage to the electrode, and there is no contamination of the plating bath.

(4)ポーラス基体の選択された面にのみ触媒金属を析
出させることができるので、高価な触媒金属の使用量を
効率よく低減できる。
(4) Since the catalyst metal can be deposited only on selected surfaces of the porous substrate, the amount of expensive catalyst metal used can be efficiently reduced.

(5)炭素質材料に対しても、金属のポーラス基体と同
様に部分めっきできる。
(5) Carbonaceous materials can also be partially plated in the same way as metal porous substrates.

(6)本発明触媒電極は、本発明者が先に特許出願した
二酸化鉛電極に比し、1/3〜115程度のコストで製
造できる。
(6) The catalyst electrode of the present invention can be manufactured at a cost of about 1/3 to 115 that of the lead dioxide electrode for which the present inventor previously applied for a patent.

実施例 以下に実施例及び比較例を挙げ、本発明をより一層明瞭
なものとする。
EXAMPLES Examples and comparative examples are given below to make the present invention even clearer.

参考例1(ポーラス基体の製造) びびり切削繊維(ファイバー長2〜3mm、径約60μ
m)を真空焼結した径85mm5厚さ3mmのポーラス
チタン板〔空孔率約60%、東京製鋼■製〕を使用した
。このチタン板を、シュウ酸50gを含む500回の水
に入れ、60℃に加温して5分間表面をエツチングした
後、吸引しながら充分水洗した。
Reference example 1 (manufacture of porous substrate) Chattering cut fiber (fiber length 2 to 3 mm, diameter approximately 60μ
A porous titanium plate having a diameter of 85 mm and a thickness of 3 mm (porosity: about 60%, manufactured by Tokyo Steel Corporation) was used, which was vacuum sintered from the above material. This titanium plate was placed in water containing 50 g of oxalic acid 500 times, heated to 60°C to etch the surface for 5 minutes, and then thoroughly washed with water while being suctioned.

実施例1(白金めっき) 参考例1で得られたポーラスチタン板(陰極)、白金の
電気めっきを全面に施したポーラスチタン板(径85m
m、厚さ3a1ms陽極)及び#4の濾紙〔隔膜、東洋
濾紙■製〕を第1図に示すように配置し、下記組成の無
電解めっき浴を濾紙が濡れる程度ニ加工、4〜5V、0
.3〜0.5Aで約10分電解した。電解後、陰極のポ
ーラスチタン板を取出し、下記組成の無電解めっき浴に
浸漬して65〜70℃で2時間無電解めっきを行なった
Example 1 (Platinum plating) Porous titanium plate (cathode) obtained in Reference Example 1, porous titanium plate fully electroplated with platinum (diameter 85 m)
3 m, thickness 3 a 1 ms anode) and #4 filter paper (diaphragm, manufactured by Toyo Roshi ■) were arranged as shown in Fig. 1, and electroless plating bath with the following composition was applied to the extent that the filter paper was wetted, at 4 to 5 V. 0
.. Electrolysis was carried out at 3 to 0.5 A for about 10 minutes. After electrolysis, the porous titanium plate serving as the cathode was taken out and immersed in an electroless plating bath having the composition shown below to perform electroless plating at 65 to 70°C for 2 hours.

めっき終了後、ポーラスチタン板を浴液から取出し、吸
引しながら水洗し、100°Cで乾燥した。
After plating, the porous titanium plate was taken out of the bath solution, washed with water under suction, and dried at 100°C.

該ポーラスチタン板の片面の0.5mm厚の層に約3μ
mの白金めっきが施された本発明触媒電極を得た。
Approximately 3μ is applied to a 0.5mm thick layer on one side of the porous titanium plate.
A catalyst electrode of the present invention was obtained which was plated with m platinum.

(無電解めっき浴) テトラアンミン白金(II)塩化物溶液300mg(P
tとして) 28%アンモニア水        2m05%ヒドロ
キシルアミン塩酸塩溶液 0m12 20%ヒドラジン水和物溶液    8m(2水   
             残部針         
      300 mQ実施例2(ロジウムめっき) 参考例1で得られたポーラスチタン板を、無電解めっき
浴として下記組成のものを使用する以外は、実施例1と
同様に処理し、該ポーラスチタン板の片面の約0.5m
m厚の層に約3μmのロジウムめっきが施された本発明
触媒電極を得た。
(Electroless plating bath) Tetraammineplatinum(II) chloride solution 300mg (P
28% ammonia water 2m05% hydroxylamine hydrochloride solution 0m12 20% hydrazine hydrate solution 8m (2 water
remaining needle
300 mQ Example 2 (Rhodium plating) The porous titanium plate obtained in Reference Example 1 was treated in the same manner as in Example 1, except that the following composition was used as an electroless plating bath, and the porous titanium plate was Approximately 0.5m on one side
A catalyst electrode of the present invention was obtained, in which a m-thick layer was plated with about 3 μm of rhodium.

(無電解めっき浴) ヘキサアンミンロジウム塩化物水溶液 300mg(Phとして) 28%アンモニア水       10−5%ヒドロキ
シルアミン塩酸塩溶液 01TIQ 20%ヒドラジン水和物溶液   10戒水     
           残部針           
   300 mQ実施例3 回転電極法(REP)で得られた球形チタン(径300
μm)を真空焼結して得られた径5InIfi、厚さ5
[QIllのポーラスチタン板〔空孔率40%、東京型
w4■製〕を参考例1と同様にエツチング及び水洗した
後、実施例1と同様にして処理し、該ポーラスチタン板
の片面の0.5mm厚の層に約3μmの白金めっきが施
された本発明触媒電極を得た。尚、基本操作は実施例1
と同様である。
(Electroless plating bath) Hexaammine rhodium chloride aqueous solution 300 mg (as Ph) 28% ammonia water 10-5% hydroxylamine hydrochloride solution 01TIQ 20% hydrazine hydrate solution 10 precepts
remaining needle
300 mQ Example 3 Spherical titanium (diameter 300 mQ) obtained by rotating electrode method (REP)
μm) obtained by vacuum sintering with a diameter of 5 InIfi and a thickness of 5
[QIll's porous titanium plate [porosity 40%, manufactured by Tokyo Type W4■] was etched and washed with water in the same manner as in Reference Example 1, and then treated in the same manner as in Example 1. A catalytic electrode of the present invention was obtained in which a .5 mm thick layer was plated with platinum to a thickness of about 3 μm. The basic operation is the same as in Example 1.
It is similar to

実施例4 実施例3と同様にして得られたポーラスチタン板(径8
0mm、厚さ5mm)を、下記組成の無電解めっき浴を
用いて電解しく室温、5V、0.5A、約5分)、続い
て無電解めっきしく60℃、2時間)、チタンポーラス
チタン板の片面の0.5mm厚の層に約2μmのパラジ
ウムめっきが施された本発明触媒電極を得た。尚、基本
操作は実施例1と同様である。
Example 4 Porous titanium plate obtained in the same manner as Example 3 (diameter 8
0mm, thickness 5mm) using an electroless plating bath with the following composition at room temperature, 5V, 0.5A, about 5 minutes), followed by electroless plating at 60°C for 2 hours) to form a porous titanium plate. A catalytic electrode of the present invention was obtained in which a 0.5 mm thick layer on one side was plated with palladium to a thickness of about 2 μm. Note that the basic operation is the same as in the first embodiment.

(無電解めっき浴) テトラニトロパラジウム酸カリウム 200mg(Pdとして) 28%アンモニア水        2mQ5%ヒドロ
キシルアミン塩酸塩溶液 0mQ 20%ヒドラジン水和物溶液   1〇−水     
           残部針           
   300一実施例5(イリジウムめっき) 参考例1と同様にして得られたポーラスチタン板に、下
記組成の無電解めっき浴を用いて電解しく室温、5.5
V、0.5A、約5分)、続イテ無電解めっきしく85
℃、2時間)、該ポーラスチタン板の片面の0.5mm
厚の層に約1.5μmのイリジウムめっきが施された本
発明触媒電極を得た。尚、基本操作は実施例1と同様で
ある。
(Electroless plating bath) Potassium tetranitropalladate 200 mg (as Pd) 28% ammonia water 2 mQ 5% hydroxylamine hydrochloride solution 0 mQ 20% hydrazine hydrate solution 10-Water
remaining needle
300-Example 5 (iridium plating) A porous titanium plate obtained in the same manner as Reference Example 1 was electrolytically plated at room temperature using an electroless plating bath having the following composition.
V, 0.5 A, about 5 minutes), continued electroless plating 85
℃, 2 hours), 0.5 mm on one side of the porous titanium plate.
A catalytic electrode of the present invention was obtained in which a thick layer of iridium plating was applied to about 1.5 μm. Note that the basic operation is the same as in the first embodiment.

(無電解めっき浴) ヘキサクロロイリジウム(IV)酸カリウム250mg
(Irとして) 5%ヒドロキシルアミン塩酸塩溶液 0m1 20%ヒドラジン水和物溶液    8mQ水    
            残部計          
     200戒実施例6(ルテニウムめっき) 実施例3と同様にして得られたポーラスチタン板〔径8
0mm、厚さ5 m m s空孔率40%、東京製14
(11製〕に、下記組成の無電解めっき浴を用いて電解
しく室温、5V、0.2〜0.5A、約10分)、続い
て無電解めっきしく60℃、2時間)、該ポーラスチタ
ン板の片面の0.5mm厚の層に約1.5μmのルテニ
ウムめっきが施された本発明触媒電極を得た。尚、基本
操作は実施例1と同様である。
(Electroless plating bath) Potassium hexachloroiridate (IV) 250mg
(as Ir) 5% hydroxylamine hydrochloride solution 0ml 20% hydrazine hydrate solution 8mQ water
Remaining total
200 Commandments Example 6 (Ruthenium plating) Porous titanium plate obtained in the same manner as Example 3 [diameter 8
0mm, thickness 5mm, porosity 40%, made in Tokyo 14
(manufactured by No. 11) was electrolytically plated using an electroless plating bath with the following composition at room temperature, 5 V, 0.2 to 0.5 A, about 10 minutes), then electroless plated at 60°C for 2 hours), and the porous A catalyst electrode of the present invention was obtained in which a 0.5 mm thick layer on one side of a titanium plate was plated with about 1.5 μm of ruthenium. Note that the basic operation is the same as in the first embodiment.

(無電解めっき浴) ペンタクロルニトロシルルテニウムカリウム200mg
(Ruとして) アンモニア水(1:1)       10m22N 
水酸化ナトリウム     10−5%ヒドロキシルア
ミン塩酸塩溶液  mQ 20%ヒドラジン水和物溶液    1戒水     
           残部針           
   200戒実施例7(二酸化鉛めっき) 実施例1の方法で得られた本発明の白金めっきポーラス
チタン電極を陽極とし、全面に白金めっきを施したポー
ラスチタン板を陰極とし、下記組成の浴液中で電解しく
70℃、3A/dm2、約1時間)、白金層の上に厚さ
0. 5mmの二酸化鉛層を備えた本発明触媒電極を得
た。予め白金めっきが施された部分以外には二酸化鉛は
析出しなかった。
(Electroless plating bath) Pentachlornitrosylruthenium potassium 200mg
(as Ru) Ammonia water (1:1) 10m22N
Sodium hydroxide 10-5% hydroxylamine hydrochloride solution mQ 20% hydrazine hydrate solution 1.
remaining needle
200 Commandments Example 7 (Lead dioxide plating) The platinum-plated porous titanium electrode of the present invention obtained by the method of Example 1 was used as an anode, the porous titanium plate whose entire surface was plated with platinum was used as a cathode, and a bath solution having the following composition was used. electrolytically (70°C, 3A/dm2, about 1 hour) on a platinum layer with a thickness of 0. A catalytic electrode of the present invention having a lead dioxide layer of 5 mm was obtained. No lead dioxide was deposited on areas other than those that had been previously plated with platinum.

(電気めっき浴) 硝酸鉛(Pb (NO3) 23  1モル/Q硝酸銅
(Cu (NOs ) 2 ” 3H20)0.1モル
/Q 水               残部針      
          IQ実施例8(炭素電極) 膨張化黒鉛を焼結して製造したポーラス炭素板〔径85
mm、厚さ0. 5mm5神戸製鋼■製〕をアセトン及
び水で吸引しながら洗浄した。これを、隔膜として径9
0mmのカチオン交換膜(ナフィオン117膜、デュポ
ン社製)を使用し、電解条件を室温、4V、0.5A、
2時間とする以外は実施例1と同様に操作して、基体炭
素板の片面の約0.2mmの層に約3μmの白金めっき
が施された本発明触媒電極を得た。
(Electroplating bath) Lead nitrate (Pb (NO3) 23 1 mol/Q Copper nitrate (Cu (NOs) 2 ” 3H20) 0.1 mol/Q Water Balance needle
IQ Example 8 (Carbon electrode) Porous carbon plate manufactured by sintering expanded graphite [diameter 85
mm, thickness 0. 5 mm (manufactured by Kobe Steel, Ltd.)] was washed with acetone and water while suctioning. Use this as a diaphragm with a diameter of 9
A 0 mm cation exchange membrane (Nafion 117 membrane, manufactured by DuPont) was used, and the electrolysis conditions were room temperature, 4 V, 0.5 A,
The same procedure as in Example 1 was carried out except that the time was 2 hours, to obtain a catalyst electrode of the present invention in which a layer of about 0.2 mm on one side of a base carbon plate was plated with platinum to a thickness of about 3 μm.

実施例1(水電解による水素及び酸素の製造)第2図に
示す電解装置を用い、水電解による水素及び酸素の製造
を行なった。第2図において、(11)はイオン交換膜
、(13)はポーラス触媒電極(陽極)、(15)はポ
ーラス触媒電極(陰極)、(17)は陽極側端板、(1
9)は陰極側端板、(21)は気体分離器、(23)は
陽極発生ガス及び(25)は陰極発生ガスを夫々示して
いる。
Example 1 (Production of hydrogen and oxygen by water electrolysis) Hydrogen and oxygen were produced by water electrolysis using the electrolysis apparatus shown in FIG. In Figure 2, (11) is an ion exchange membrane, (13) is a porous catalyst electrode (anode), (15) is a porous catalyst electrode (cathode), (17) is an anode end plate, (1
9) is a cathode side end plate, (21) is a gas separator, (23) is an anode generated gas, and (25) is a cathode generated gas.

電解条件及び結果は下記の通りである。従来のSPE法
(固体高分子電解質法)で使用される膜−触媒電極接合
体を作製せず、直接膜と電極とを圧接してゼロキャップ
電解を行なった。電圧は、下記に示す通り、SPE法よ
り約0.3〜0.5V高いが、イニシャルコストを20
〜30%低減でき、良好な電流効率で水素及び酸素を得
た。
The electrolysis conditions and results are as follows. Zero-cap electrolysis was performed by directly pressing the membrane and electrode into contact without producing a membrane-catalyst electrode assembly used in the conventional SPE method (solid polymer electrolyte method). As shown below, the voltage is about 0.3 to 0.5 V higher than the SPE method, but the initial cost is 20 V.
Hydrogen and oxygen were obtained with good current efficiency and a reduction of ~30%.

陽極−白金めっきポーラスチタン電極(実施例1、径8
5mm、厚さ3.0mm) 陰極:白金めっきポーラス炭素電極(実施例8、径85
mm、厚さ0.5mm)  ′隔膜:カチオン交換膜(
ナフィオン117膜、デュポン社製) 陽極側端板:チタン材 陰極側端板ニステンレススチール材 温度:50〜60°C 電極液:水 電流:50A 電流密度: 100 A/di2 電圧=2電圧−2,2v 水素発生の電流効率:99.5% 実験例2(塩酸電解による塩素の製造)第2図に示す電
解装置を用い、塩素電解による塩素の製造を行なった。
Anode - platinum-plated porous titanium electrode (Example 1, diameter 8
5 mm, thickness 3.0 mm) Cathode: Platinum-plated porous carbon electrode (Example 8, diameter 85
mm, thickness 0.5 mm) 'Diaphragm: Cation exchange membrane (
(Nafion 117 membrane, manufactured by DuPont) Anode side end plate: Titanium material Cathode side end plate: Stainless steel material Temperature: 50 to 60°C Electrode liquid: Water current: 50A Current density: 100 A/di2 Voltage = 2 Voltage-2 , 2v Current efficiency of hydrogen generation: 99.5% Experimental Example 2 (Production of chlorine by hydrochloric acid electrolysis) Chlorine was produced by chlorine electrolysis using the electrolysis apparatus shown in FIG.

電解条件及び結果は下記の通りである。この場合、SP
E法に比し、イニシャルコストを約30〜50%低減で
きた。
The electrolysis conditions and results are as follows. In this case, SP
Compared to method E, the initial cost was reduced by about 30 to 50%.

陽極:イリジウムめっきポーラスチタン電極(実施例5
、径80 wms厚さ3.0wm)陰極:白金めっきポ
ーラス炭素電極(実施例8、径80flI111厚さ0
.5non)隔膜:ナフィオン117膜 陽極側端板兼給電体:チタン材 陰極側端板兼給電体:不浸透性炭素材 温度=30〜40℃ 電極液=7N 塩酸 電流二30A 電流密度:60A/dm2 電圧1.7V 塩素発生曾:37.6g/時 塩素発生の電流効率:95% 実験例3(水電解によるオゾンの製造)第2図に示す電
解装置を用い、水電解によるオゾンの製造を行なった。
Anode: Iridium-plated porous titanium electrode (Example 5
, diameter 80 wms thickness 3.0 wm) Cathode: Platinum-plated porous carbon electrode (Example 8, diameter 80 flI111 thickness 0
.. 5non) Diaphragm: Nafion 117 membrane Anode side end plate and power supply body: Titanium material Cathode side end plate and power supply body: Impermeable carbon material Temperature = 30 to 40°C Electrode liquid = 7N Hydrochloric acid current 2 30A Current density: 60A/dm2 Voltage 1.7V Chlorine generation rate: 37.6 g/hour Chlorine generation current efficiency: 95% Experimental example 3 (Production of ozone by water electrolysis) Ozone was produced by water electrolysis using the electrolyzer shown in Figure 2. Ta.

電解条件及び結果は下記の通りである。SPE法では、
陰極として使用するためにナフィオン膜に白金を接合し
なければならず、また二酸化鉛陽極の焼結工程が3回必
要であるのに対し、本発明法では、電極作成は1回で終
了し、陽極と陰極との間に無接合のナフィオン膜をその
まま使用できるので、イニシャルコストを約30〜50
%低減できた。
The electrolysis conditions and results are as follows. In the SPE method,
In order to use it as a cathode, platinum must be bonded to the Nafion membrane, and the sintering process for the lead dioxide anode is required three times, whereas with the method of the present invention, electrode creation is completed in one time. Since the unbonded Nafion membrane can be used as is between the anode and cathode, the initial cost can be reduced to approximately 30 to 50 yen.
% reduction.

陽極:二酸化鉛被覆ポーラスチタン電極(実施例7、径
80111111%厚さ3.0mm)陰極:白金めっき
ポーラス炭素電極(実施例8、径80mm、厚さ0.5
mm) 隔膜:ナフィオン117膜 陽極側端板兼給電体;チタン材 陰極側端板兼給電体ニステンレススチール材温度:28
〜30℃ 電極液:水 電流: 50A 電流密度: 100 A/dm2 電圧=3電圧−3,5V オゾン発生量:2.50g/時 オゾン濃度:18.0重量% オゾン発生の電流効率:18%
Anode: Lead dioxide coated porous titanium electrode (Example 7, diameter 80111111% thickness 3.0 mm) Cathode: Platinum plated porous carbon electrode (Example 8, diameter 80 mm, thickness 0.5
mm) Diaphragm: Nafion 117 membrane Anode side end plate and power supply body; Titanium material Cathode side end plate and power supply body Stainless steel material Temperature: 28
~30℃ Electrode solution: Water current: 50A Current density: 100 A/dm2 Voltage = 3 voltage - 3,5V Ozone generation amount: 2.50g/hour Ozone concentration: 18.0% by weight Ozone generation current efficiency: 18%

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明触媒電極を製造する際に使用する装置
の一例を示す該略図である。第2図は、本発明電極を用
いてゼロキャップ電解を行なう際に使用する装置の一例
を示す該略図である。 (1)・・・ポーラス基体 (3)・・・陽極 (5)・・・隔膜 (7)・・・チタン製容器 (9)・・・金属板 (11)・・・イオン交換膜 (13)・・・ポーラス触媒電極(陽極)(15)・・
・ポーラス触媒電極(陰極)(17)・・・陽極側端板 (19)・・・陰極側端板 (21)・・・気体分離器 (23)・・・陽極発生ガス (25)・・・陰極発生ガス (以 上) 図面の浄、I:(内容に変更・なし) 第1図 第2図 手続補正言動式) 1 事件の表示 昭和63年特許願第33719号 2 発明の名称 触媒電極及びその製造法 3 補正をする者 事件との関係  特許出願人 株式会社笹倉機械製作所 (ほか1名) 4代理人 大阪市東区平野町2の10 沢の鶴ビル昭和63年5月
31日 6 補正の対象 図   面 7 補正の内容
FIG. 1 is a schematic diagram showing an example of an apparatus used in manufacturing the catalyst electrode of the present invention. FIG. 2 is a schematic diagram showing an example of an apparatus used when performing zero-cap electrolysis using the electrode of the present invention. (1) Porous substrate (3) Anode (5) Diaphragm (7) Titanium container (9) Metal plate (11) Ion exchange membrane (13 )... Porous catalyst electrode (anode) (15)...
・Porous catalyst electrode (cathode) (17)... Anode side end plate (19)... Cathode side end plate (21)... Gas separator (23)... Anode generated gas (25)...・Cathode generated gas (above) Purification of the drawing, I: (No changes/no changes to the content) Figure 1 Figure 2 Procedural amendment words and actions) 1 Indication of the incident Patent Application No. 33719 of 1988 2 Name of the invention Catalyst electrode and its manufacturing method 3 Relationship with the case of the person making the amendment Patent applicant Sasakura Kikai Seisakusho Co., Ltd. (and 1 other person) 4 Agent Sawanotsuru Building, 2-10 Hirano-cho, Higashi-ku, Osaka City May 31, 1988 6 Amendment Target drawing Surface 7 Contents of correction

Claims (4)

【特許請求の範囲】[Claims] (1)ポーラス基体材料の選択された面に、白金、パラ
ジウム、ロジウム、ルテニウム及びイリジウムから選ば
れた1種又は2種以上の電極触媒能を有する金属層を備
えた触媒電極。
(1) A catalytic electrode comprising a metal layer having an electrocatalytic ability of one or more selected from platinum, palladium, rhodium, ruthenium, and iridium on a selected surface of a porous base material.
(2)ポーラス基体材料の選択された面に、白金、パラ
ジウム、ロジウム、ルテニウム及びイリジウムから選ば
れた1種又は2種以上の電極触媒能を有する金属層を、
めっきにより形成するに当り、該基体の選択された面を
無電解めっき液を用いて電解処理した後、同一組成の無
電解めっき浴を用いて無電解めっきを行なって該金属層
を形成することを特徴とする触媒電極の製造法。
(2) A metal layer having one or more types of electrode catalytic ability selected from platinum, palladium, rhodium, ruthenium, and iridium on a selected surface of the porous base material,
When forming the metal layer by plating, electrolytically treat the selected surface of the substrate using an electroless plating solution, and then perform electroless plating using an electroless plating bath of the same composition to form the metal layer. A method for producing a catalytic electrode characterized by:
(3)ポーラス基体材料の選択された面に、白金、パラ
ジウム、ロジウム、ルテニウム及びイリジウムから選ば
れた1種又は2種以上の電極触媒能を有する金属層、及
び該金属層の上に、二酸化鉛又は二酸化マンガンである
電極触媒能を有する金属酸化物層を備えた触媒電極。
(3) A metal layer having an electrocatalytic ability of one or more types selected from platinum, palladium, rhodium, ruthenium, and iridium on a selected surface of the porous substrate material, and a layer of carbon dioxide on the metal layer. A catalytic electrode comprising a metal oxide layer having electrocatalytic ability, which is lead or manganese dioxide.
(4)ポーラス基体材料の選択された面に、白金、パラ
ジウム、ロジウム、ルテニウム及びイリジウムから選ば
れた1種又は2種以上の電極触媒能を有する金属層及び
該金属層の上に二酸化鉛又は二酸化マンガンである電極
触媒能を有する金属酸化物層を、めっきにより形成する
に当り、該基体の選択された面を無電解めっき液を用い
て電解処理した後、同一組成の無電解めっき浴を用いて
無電解めっきを行なって該金属層を形成し、更に該金属
酸化物を電析することを特徴とする触媒電極の製造法。
(4) A metal layer having an electrocatalytic ability of one or more types selected from platinum, palladium, rhodium, ruthenium, and iridium on a selected surface of the porous substrate material, and a layer of lead dioxide or When forming a metal oxide layer having electrocatalytic ability, which is manganese dioxide, by plating, a selected surface of the substrate is electrolytically treated using an electroless plating solution, and then an electroless plating bath of the same composition is applied. 1. A method for producing a catalytic electrode, comprising forming the metal layer by electroless plating using the metal oxide, and further electrodepositing the metal oxide.
JP63033719A 1988-02-16 1988-02-16 Catalytic electrode and method for producing the same Expired - Lifetime JP2660284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63033719A JP2660284B2 (en) 1988-02-16 1988-02-16 Catalytic electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63033719A JP2660284B2 (en) 1988-02-16 1988-02-16 Catalytic electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01208489A true JPH01208489A (en) 1989-08-22
JP2660284B2 JP2660284B2 (en) 1997-10-08

Family

ID=12394208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63033719A Expired - Lifetime JP2660284B2 (en) 1988-02-16 1988-02-16 Catalytic electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP2660284B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257418A (en) * 1994-12-06 1996-10-08 Rp Fiber & Resin Intermediates Electrochemical preparation of catalyst in which transition metal and phosphine are main component
JP2009520880A (en) * 2005-12-23 2009-05-28 ターレスナノ ズィーアールティー. Electrode for an electrochemical cell having a high pressure difference, a method for producing such an electrode, and an electrochemical cell using such an electrode
JPWO2019117199A1 (en) * 2017-12-14 2020-12-17 国立研究開発法人理化学研究所 Manganese oxide for water splitting catalyst, manganese oxide-carbon mixture, manganese oxide composite electrode material and method for producing them

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158390A (en) * 1981-03-26 1982-09-30 Tokuyama Soda Co Ltd Manufacture of ion exchange membrane-catalytic electrode joined body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158390A (en) * 1981-03-26 1982-09-30 Tokuyama Soda Co Ltd Manufacture of ion exchange membrane-catalytic electrode joined body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257418A (en) * 1994-12-06 1996-10-08 Rp Fiber & Resin Intermediates Electrochemical preparation of catalyst in which transition metal and phosphine are main component
JP2009520880A (en) * 2005-12-23 2009-05-28 ターレスナノ ズィーアールティー. Electrode for an electrochemical cell having a high pressure difference, a method for producing such an electrode, and an electrochemical cell using such an electrode
JPWO2019117199A1 (en) * 2017-12-14 2020-12-17 国立研究開発法人理化学研究所 Manganese oxide for water splitting catalyst, manganese oxide-carbon mixture, manganese oxide composite electrode material and method for producing them

Also Published As

Publication number Publication date
JP2660284B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US4778578A (en) Deposition of catalytic electrodes of ion-exchange membranes
KR910001140B1 (en) Electrode and method for preparing thereof
JPH036232B2 (en)
US5407550A (en) Electrode structure for ozone production and process for producing the same
JPH07278864A (en) Gas diffusion electrode
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
EP0318442A2 (en) Electrode structure
JPH01208489A (en) Catalytic electrode and production thereof
JP3676554B2 (en) Activated cathode
JPH08302493A (en) Gas diffusion electrode
JP2692736B2 (en) Method for producing gold-ion exchange membrane assembly
JPS6125790B2 (en)
JP2863831B2 (en) Method for producing gold-ion exchange membrane assembly
JPH0625879A (en) Production of alkali hydroxide
JP3855121B2 (en) Method for producing electrode assembly for polymer electrolyte water electrolysis
KR200276721Y1 (en) Solid Polymer Electrolyte film
JP2000038681A (en) Substitution plating
JPS58133387A (en) Cathode having low hydrogen overvoltage and preparation thereof
JP6926782B2 (en) Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode
JPH08158059A (en) Electroless plating bath of iridium and production of jointed body for electrolysis
JPH0941180A (en) Gas diffusion electrode for electrolysis and its production
JP3344801B2 (en) Gas electrode structure
JPH0832962B2 (en) Method for manufacturing electrolysis bonded body
JPS5942078B2 (en) Method for manufacturing an assembly of an ion exchange membrane and a catalyst electrode
JPS5925987A (en) Cathode with low overvoltage and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 11