JP3625520B2 - Gas diffusion electrode - Google Patents

Gas diffusion electrode Download PDF

Info

Publication number
JP3625520B2
JP3625520B2 JP11231195A JP11231195A JP3625520B2 JP 3625520 B2 JP3625520 B2 JP 3625520B2 JP 11231195 A JP11231195 A JP 11231195A JP 11231195 A JP11231195 A JP 11231195A JP 3625520 B2 JP3625520 B2 JP 3625520B2
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion electrode
silver
layer
reaction layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11231195A
Other languages
Japanese (ja)
Other versions
JPH08283980A (en
Inventor
孝之 島宗
保夫 中島
高弘 芦田
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Kaneka Corp
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Mitsui Chemicals Inc
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Mitsui Chemicals Inc, Kaneka Corp filed Critical Permelec Electrode Ltd
Priority to JP11231195A priority Critical patent/JP3625520B2/en
Publication of JPH08283980A publication Critical patent/JPH08283980A/en
Application granted granted Critical
Publication of JP3625520B2 publication Critical patent/JP3625520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、過酷な条件下でも安定して使用できるガス拡散電極、特に酸素ガスが存在するアルカリ溶液中例えば食塩電解槽中でも長期間安定した運転が可能なガス拡散電極に関する。
【0002】
【従来技術とその問題点】
苛性アルカリ電解を代表とする工業電解は素材産業として重要な役割を果たしているが、電解に掛かるエネルギーが大きく、我が国のようにエネルギーコストが高いと、電解における省エネルギー化が重要問題となる。苛性アルカリ電解では環境問題の改善も含めて初期の水銀法から隔膜法を経てイオン交換膜法へと転換され、この転換により約40%の省エネルギーが達成された。しかしこの省エネルギー化でも依然として不十分であり、電力コストが全製造費の50%を占めているが、現在の電解技術に依存する限り、より以上のエネルギー節約は不可能なところまで来ている。
【0003】
このより以上の省エネルギー化のために、主として燃料電池を代表とする電池分野で研究開発されてきたガス拡散電極の使用が試みられている。このガス拡散電極を、現在のところ最も省エネルギー化の進んだイオン交換膜型食塩電解に適用すると、下記式に示す如く理論的に約50%以上の省エネルギーが可能になる。従ってこのガス拡散電極の実用化に向けて種々の検討がなされている。
2NaCl+2HO → Cl+2NaOH+H=2.21V
2NaCl+1/2 O+HO → Cl+2NaOH E=0.96V
【0004】
苛性アルカリ電解に使用するガス拡散電極の構造は所謂半疎水(撥水)型と称されるもので、親水性の反応層と撥水性のガス拡散層を張り合わせた構造となっている。反応層及びガス拡散層とも炭素を主原料としバインダーとしてPTFE樹脂を使用している。PTFE樹脂は撥水性でありその性質を利用し、ガス拡散層では樹脂の割合を多くし、反応層では少なくすることにより、その特性を出している。更に苛性アルカリ電解では前記ガス拡散電極は高濃度苛性アルカリ水溶液中で使用されるため、撥水材であるPTFE樹脂もこのような雰囲気下では親水性化して撥水性を失うことがあり、これを防止し撥水性を保持するためにガス拡散層のガス室側に薄い多孔性のPTFEシートを設置した電極もある。
反応層の表面には白金等の触媒が担持され、あるいは該反応層を構成する炭素表面に触媒を担持させる。
【0005】
これらの電極はいずれもバインダーとしてフッ素樹脂を用い電極物質を担持した炭素粉末とともに加熱固化し、これをチタン、ニッケル、ステンレス等の基材に担持しているが、所謂PTFE等のように強固なシートになるまで三次元的にしっかりした骨格が形成されない代わりに、その作製が容易であるという特徴を有している。このガス拡散電極は、仮にフッ素樹脂の架橋が不十分であっても、陰極として酸素含有ガスを送り込み酸素の減極を行なうために使用される場合、担持された電極物質が安定に存在し得るため、使用開始時は十分に満足できる性能で安定な運転条件で使用できる。しかしアルカリ中では炭素粉末は勿論フッ素樹脂も必ずしも安定ではない。
【0006】
電解の際には前記ガス拡散電極に酸素含有ガスを供給するが、該酸素含有ガスが過酸化水素を生成しこの過酸化水素が炭素を腐食して炭酸ナトリウムを生成する。この炭酸ナトリウムはアルカリ溶液中ではガス拡散層を閉塞したり、長期間使用により電極の撥水性を損ない、電極物質の活性も失われやすく、更に前記炭素は過酸化水素が発生しなくとも触媒金属の存在のみで徐々に腐食が進行することが観察されている。
これらの問題点を解決するため、従来から使用する炭素の選択やその作製方法及び樹脂と炭素の混合比率の調節等が試みられているが、いずれも根本的な解決法とはならず、炭素の腐食の進行を遅らせることはできても止めることはできなかった。
【0007】
以上の問題点はガス拡散電極の材料として炭素を使用するため生ずるのであり、炭素の代わりに耐食性のある金属を使用するガス拡散電極が提案されている。しかしながらこのガス拡散電極は従来の炭素を有するガス拡散電極とは異なる焼結法により製造され、製造法が極めて複雑になり、更に親水性部分と撥水性部分の制御が行ないにくいという欠点がある。
以上が食塩電解により苛性ソーダ及び塩素を製造し、又は芒硝電解により苛性ソーダ及び硫酸を製造するプロセスにおけるガス拡散電極の使用による省エネルギー化が検討されながら工業的に実現されていない主要な原因であると考えられている。
【0008】
【発明の目的】
本発明は、前述の従来技術の問題点、つまりガス拡散電極を食塩電解や芒硝電解に実用的なレベルで使用できないという欠点を解消し、アルカリ中でも長期間安定で食塩電解等に実質的に使用可能なガス拡散電極、特にガス拡散陰極を提供することを目的とする。
【0009】
【問題点を解決するための手段】
本発明は、金属製基材の一方面にガス拡散層を他面に反応層を形成して成るガス拡散電極において、該反応層を銀とフッ化炭素化合物を含む混練物により形成したことを特徴とするガス拡散電極であり、該反応層表面に薄い触媒層を形成しても良い。
【0010】
以下本発明を詳細に説明する。
本発明では、苛性アルカリ電解に使用するガス拡散電極で炭素の腐食が生じ消耗するのは基本的に反応層のみであることに着目し、該反応層でカーボンブラック等の炭素単体を使用せずにガス拡散電極を構成したことを特徴とし、これにより過酸化水素等が発生してもガス拡散電極を構成する成分が殆ど腐食することなく長期間に渡って安定した条件で苛性アルカリの電解生成を行なうことが可能になる。
【0011】
反応層は親水層とされ液相のみの迅速な供給及び取出しが図られているが、実際は液相だけでなくガス相の迅速な供給及び取出しも必要であり、そのためには適度な撥水性が必要になる。これらの点から、本発明では従来のカーボンブラック等の炭素と撥水性付与のため及びバインダーとして機能するPTFE樹脂から成る反応層に代えて、銀と前記PTFE樹脂等のフッ化炭素化合物の混練物により形成する。なおPTFE樹脂は撥水性であるが、高濃度アルカリ中では親水化しやすいことが知られている。そのためフッ化グラファイトに代表される極めて安定な撥水材をPTFEに加えて使用し、PTFEの撥水化を防止しても良い。一方ガス拡散層は腐食を考慮する必要が殆どなく、従来通り炭素とPTFE樹脂の混練物で構成できるが、当然前記反応層と同様に銀を使用しても良い。又より以上の撥水性を得るためには、撥水材のみを懸濁めっき法や熱分解法又は銀の焼結時に混入する等の方法によりガス拡散電極に付着又は混入しても良い。なお該ガス拡散層の外面に、該ガス拡散層の親水性化を更に有効に抑制するための保護層を設置しても良い。
【0012】
前記反応層及びガス拡散層の作製法は特に限定されないが、金属銀単独で焼結するような煩雑な方法を使用する必要はなく、従来のガス拡散電極における炭素をバインダーで固める方法と同じ方法で作製し、その後ホットプレス等により焼結すれば良い。
例えば給電材を兼ねた金属製基材の一方面にガス拡散層用のグラファイトやカーボンブラック等の炭素粉末及び撥水材とバインダーを兼ねたPTFE樹脂の懸濁物を混練したペーストを塗布し、他面にはPTFE樹脂やフッ化グラファイト等のフッ化炭素化合物と銀粉末の混練物を塗布する。このペーストが塗布された金属基材を通常は200 〜350 ℃程度の温度及び数〜数十kg/cmの圧力で焼結を行なってガス拡散電極を製造する。
【0013】
該ガス拡散電極のガス拡散層では撥水性保持のためPTFE樹脂等のフッ化炭素化合物の量を多くしてつまり60〜70%程度とし、一方反応層では適度の撥水性と親水性の保持のためフッ化炭素化合物含有量は35〜45%程度とすることが望ましい。
前記ガス拡散層及び反応層は貫通孔が形成されるようにしても良く、該貫通孔のサイズは使用する前記炭素粉末及び銀粉末の粒径により調節できる。但し銀はそれ自身で触媒として機能するため、その表面積は大きいほど良く、平均粒径が1μm以下となるような活性の高い黒色銀や所謂サブミクロンの銀をそのまま又はカーボンブラック等の分散剤と共に、あるいはPTFE分散液等のバインダーと共に混練し、150 〜350 ℃で焼結した後、見掛け粒径5〜20μm程度となるように分散して使用することが好ましい。又前記銀はバインダーなしに、例えば小量のデキストリン(焼結により飛散し残留しない)と共に塊状とし、300 〜600 ℃で焼結し所謂ルースシンタリング状態としてから粉砕して粒径が見掛け上5〜20μmとなるようにしても良い。
又前述の通り、反応層に含まれる銀を触媒として使用しても良いが、該反応層表面に別個に薄い触媒層を形成しても良い。該触媒層の形成方法は特に限定されないが、白金族金属やそれらの酸化物を使用する場合にはそれらの塩溶液を塗布して焼き付けたり、直接物理蒸着や化学蒸着により被覆できる。但し触媒層形成後も反応層表面は導電性でかつ撥水性と親水性が適度に混在しなければならないため、触媒量は多くしないことが望ましく、通常は1〜20g/m、好ましくは5〜15g/mである。
【0014】
前記金属製基材は網状体とすることが望ましく、該網状体は細いワイヤをメッシュ状に編んだ所謂ウーブンメッシュを使用して形成でき、メッシュのワイヤ径は0.1 〜0.7 mmが最適である。前記網状体ではガス透過が全面積に渡って均一に行なわれる。
この網状体の他に、エキスパンドメッシュ状、フェルト状等として前記基材を構成することができる。エキスパンドメッシュ状は物理的強度には優るがガス透過性が劣るため、特殊な用途以外には使用しないことが好ましいが、使用する場合には厚さ0.2 〜0.5 mm程度のものを使用する。又フェルト状体は金属ワイヤをフェルト状に編んだ金属フェルトとして構成され、物理的強度は若干弱くなるもののはその全面で均一な電流分布が達成されるが、電気抵抗がやや高く給電体としてフェルトからの通電は期待できない。
【0015】
更に前記以外に近年使用されるようになった微細な貫通孔を有する薄いウレタンフォーム表面に金属を電着した後にウレタンフォームを除去して作製した金属フォームを使用しても良い。
上記選択された金属から成るこれらの金属製基材には、そのままその表面に反応層等を形成しても良い。しかし例えば酸素陰極として使用する場合pH14付近の強アルカリ下でもその電位は過電圧がなければ約0.42V、過電圧を加味しても0VvsNHE又は僅かに負側に行く程度であり、耐食性金属とはいっても銀を除く各金属又は合金には腐食の可能性があるため、予めその表面を銀めっきしておくか、銀により成形することが望ましい。
【0016】
このように本発明によるガス拡散電極は、アルカリによる腐食を生じやすい炭素単体をアルカリ水溶液に曝される反応層中に含有しないため、電解中に過酸化水素が生成しても該過酸化水素による電極の消耗が殆どなく、該ガス拡散電極を長期間苛性アルカリ電解に使用しても性能が劣化することが殆どなく、高い効率で苛性アルカリを製造することができる。
更に該ガス拡散電極を、陽イオン交換膜と密着させて使用するゼロギャップ型電解槽、特に食塩や芒硝電解槽の電極として使用すると、ガス拡散電極の反応サイトは陽イオン交換膜との界面になり、液相は極めて薄く、高さ方向の圧力が全く掛からないこと、液中にガス拡散させる必要がないこと、及びガス拡散層と反応層が一体化し共通に取り扱えるという長所が生ずる。
【0017】
【実施例】
次に本発明に係わるガス拡散電極の製造及び該電極を使用する電解方法の実施例を記載するが、該実施例は本発明を限定するものではない。
【実施例1】
直径0.2 mmの銀ワイヤを編んで作った目開き2mmのメッシュの銀ネットの片面に平均粒径0.05μmのカーボンブラックと0.4 μmのPTFE樹脂を固形分の重量比で30:70とした懸濁液を混練したペーストを厚さが平均100 μmとなるように塗布した。前記銀ネットの他面には、平均粒径20μmの銀粒子と平均粒径0.4 μmのPTFE樹脂を固形分の重量比で90:10とした懸濁液を混練したペーストを塗布し、更にその表面に平均粒径0.2 μmの銀粒子を塗布して板状体とした。
【0018】
このように両面にペーストを塗布した板状体の両面をPTFE板で挟み、ホットプレス材により5kg/cmの圧力下250 ℃で30分間加熱焼結してガス拡散電極を作製した。更に前記カーボンブラックを含む層側に、厚さ0.1 mmのシート(商品名:ゴアテックス)を温度100 ℃で面積が2倍程度となるように二次元的に引延したものを密着状態で設置し、温度200 ℃及び圧力5kg/cmで加熱圧着した。
【0019】
このガス拡散電極を陽イオン交換膜(デュポン社製ナフィオン90209 )により陽極室及び陰極室に区画された食塩電解槽の陰極室に、前記銀を有する反応層側が前記陽イオン交換膜に面するように30%水酸化ナトリウム水溶液が満たされた前記陰極室内に設置し、陽極を酸化ルテニウムが担持された寸法安定性陽極とし、陰極室に理論量の2倍量の酸素を陽極室に300 g/リットルの食塩水を送りながら温度80℃及び電流密度40A/dmで電解を行なった。観察された電位は−0.3 VvsNHEであり約700 mVの過電圧であることが判った。この条件で1000時間電解を継続したが、電位の変化はなくガス拡散電極背面への生成苛性ソーダの漏れはなく安定な電解を行なうことができた。
【0020】
【比較例1】
銀粒子の代わりにアセチレンブラックを使用して実施例1と同様にして反応層を形成し、その表面に塩化白金酸水溶液を塗布し水素ガスを流した雰囲気中、200 ℃で15分間加熱してガス拡散電極を作製した。これを使用して実施例1と同一条件で食塩水の電解を行なった。初期電位は−0.1 VvsNHEであり約500 mVの過電圧であったが、1000時間経過後には過電圧は900 mVまで上昇し、かつガス室側への僅かな苛性ソーダの漏れが見られ、更にガス拡散層表面に炭酸ナトリウムの析出が見られた。又1000時間経過後の白金触媒の残存量は5%であった。
【0021】
【実施例2】
金属製基材として直径0.2 mmの貫通孔を有する気孔率85%の銀フォームを使用し、その片面に平均粒径2μmの銀粒子と平均粒径0.4 μmのPTFE樹脂懸濁液の50:50(重量比)の混練物を厚さ100 〜150 μmとなるように塗布した。又他面には、銀粒子とPTFE樹脂の比率が90:10となるようにした混練物を厚さ100 〜150 μmとなるように塗布した。
前記比率が50:50の面に実施例1と同様にして準備したゴアテックスシートを密着させ、ホットプレス機により5kg/cmの圧力を掛けながら250 ℃で30分間加熱焼結した。更に前記ゴアテックスシートとは反対面に塩化白金酸のブタノール溶液を白金担持量が1mg/cmとなるように塗布し、流通水素中200 ℃で10分間熱分解を行ない白金を担持した。
【0022】
このように作製したガス拡散電極を使用して電解試験を行なった。電極自体の電気抵抗が実施例1の電極より小さいので加速試験条件である60A/dmで評価を行なったが電極の発熱等はなかった。
80℃の30%苛性ソーダ水溶液中で理論量の2倍の酸素を流した。電流密度40A/dmにおける初期電位は−0.1 VvsNHEで過電圧は約500 mVであった。この間の白金の消耗は約3%で極めて小さかった。又ガス室への苛性ソーダの漏れは全く見られなかった。
【0023】
【実施例3】
直径0.2 mmの銀ワイヤを編んで作った目開き80メッシュの銀ネットを金属製基材とし、該基材表面を清浄化後、その表面に平均粒径7μm、粒径分布2〜15μmの銀粒子に重量比5%のデキストリンと水を混合した混練物と、デキストリンの代わりにPTFE樹脂を含む懸濁液を使用した混練物を1:1の割合で混合したペーストを見掛け厚さ0.2 mmとなるように塗布した。これを350 ℃で30分間加熱したところ板状体となった。
【0024】
この板状体の表面に平均粒径0.5 μmの銀粒子とPTFE樹脂を重量比で95:5となるように混練したペーストを薄く塗布し、2kg/cmの圧力を掛けながら280 ℃で15分間ホットプレスして反応層を作製した。
更に前記板状体の反対面に、平均粒径7μm、粒径分布5〜10μmの銀粒子に重量比20%のフッ化グラファイトの微粒子を加え、PTFE樹脂をバインダーとして混練したペーストを見掛け厚さ0.3 mmとなるように塗布した。これを2kg/cmの圧力を掛けながら280 ℃で15分間ホットプレスしてガス拡散電極を作製した。
【0025】
該ガス拡散電極の水に対する接触角は反応層側で100 〜130 °、ガス拡散層側で140 〜170 °であり、32%苛性ソーダ水溶液中に48時間浸漬した後の接触角は反応層側で100 〜120 °と僅かに小さくなったもののガス拡散層側では変化がなかった。
このガス拡散電極をイオン交換膜型食塩電解槽の陰極室側にイオン交換膜に密着させておき、後ろ側に銀ワイヤから成る集電体で固定した。陰極室に理論量の1.1 倍の酸素を流しながら電解を行なった。陽極液は200 g/リットル食塩水であり、温度は90℃、電流密度は30A/dmであった。イオン交換膜はデュポン社製ナフィオン961 であった。その時の電圧は2.2 Vであり、陽極電位は650 mVで、500 時間経過後も640 〜650 mVを維持し殆ど変化しなかった。なお生成苛性ソーダはガス室側から採取した。
【0026】
【実施例4】
厚さ0.2 mmの気孔率85%のニッケルフォームの表面に厚さ50μmとなるように銀の電着を施し、ニッケルが直接液に触れない構造の金属製基材とした。この金属製基材の片面に実施例3と同様にして反応層を作製した。但し表面の平均粒径0.5 μmの銀粉末層の代わりに銀めっき液にPTFE樹脂と白金黒の懸濁液を使用し電着により銀めっきした前記金属製基材表面に触媒層を作製した。
【0027】
該金属製基材の反対面には、平均粒径7μm、粒径分布5〜10μmの銀粉末にPTFE樹脂が重量比で90:10となるように混練したペーストを見掛け厚さ約0.2 mmになるように塗布した。
これをホットプレスにより圧力2kg/cm、温度280 ℃で30分間加熱固着した。更に厚さ0.1 mmの商品名ゴアテックスシートを、バインダーとしてPTFE樹脂液を挟んで同じ条件でホットプレスで付着した。
【0028】
実施例3と同様に接触角を測定したところ、反応層側が100 〜120 °で、ガス室側が130 〜150 °であった。32%苛性ソーダ水溶液に48時間浸漬した後もこの値は変化しなかった。
これをガス拡散電極として使用し、32%苛性ソーダ水溶液で理論値の1.1 倍の純酸素を供給しながら電極物性を測定した。80℃及び30A/dmにおける初期過電圧は480 mVで500 時間後には520 mVとなったが、その以降は変化は認められなかった。又ガス室側への苛性ソーダの漏れは認められなかった。
【0029】
【発明の効果】
本発明は、金属製基材の一方面にガス拡散層を他面に反応層を形成して成るガス拡散電極において、該反応層を銀とフッ化炭素化合物を含む混練物により形成したことを特徴とするガス拡散電極である。
この本発明のガス拡散電極は、アルカリ水溶液中で腐食が生じやすい炭素単体を反応層の構成成分として使用していないため、長期間苛性アルカリ製造用電解槽等のアルカリ水溶液中で酸素陰極として使用しても、炭素が炭酸ナトリウムに変換されてガス拡散電極中のガス流路を閉塞したり、フッ素樹脂例えばPTFEを親水化してガス拡散電極の性能低下を招くようなことが殆どない。
【0030】
このガス拡散電極は反応層に含まれる銀が電極触媒としても機能するため、別個に触媒を担持する必要はないが、反応層表面に別個に銀や他の金属触媒から成る触媒層を形成して更に円滑に電解反応が進行するようにしても良い。
又前記金属製基材を、銀又は銀めっきされた耐食性金属で形成すると、該金属製基材の腐食等が生ずることがなく、更に確実に長期間の安定した運転が可能になる。
既述の通りガス拡散層は、アルカリ水溶液中での電解を行なっても殆ど腐食等は生じないが、反応層と同様に銀とフッ化炭素化合物を含む混練物により形成しても良く、このように構成することにより長期間の安定した運転がより確実に達成できる。
【0031】
PTFE等のフッ素樹脂は、アルカリ水溶液中での長期間の使用により徐々に撥水性を失い親水性化してガス拡散電極の性能の劣化を招くことがある。これを防止するためには、フッ化炭素化合物としてフッ化グラファイトを使用しこれを銀粉末と共に使用することにより共存するバインダーとして使用されるフッ素樹脂の親水性化を抑制できる。
又ガス拡散層の外面に多孔性フッ素樹脂から成る保護層を設置してガス拡散層の親水性化を確実に阻止できる。
[0001]
[Industrial application fields]
The present invention relates to a gas diffusion electrode that can be used stably even under harsh conditions, and more particularly to a gas diffusion electrode that can be stably operated for a long time even in an alkaline solution containing oxygen gas, for example, in a salt electrolytic cell.
[0002]
[Prior art and its problems]
Industrial electrolysis, represented by caustic alkali electrolysis, plays an important role as a raw material industry. However, when the energy required for electrolysis is large and energy costs are high as in Japan, energy saving in electrolysis becomes an important issue. In caustic alkaline electrolysis, including the improvement of environmental problems, the initial mercury method was changed to the ion exchange membrane method via the diaphragm method, and this conversion achieved energy saving of about 40%. However, this energy saving is still inadequate, and the power cost accounts for 50% of the total production cost. However, as long as it depends on the current electrolysis technology, further energy saving is impossible.
[0003]
For further energy saving, attempts have been made to use gas diffusion electrodes that have been researched and developed mainly in the field of batteries typified by fuel cells. When this gas diffusion electrode is applied to ion exchange membrane salt electrolysis with the most energy saving at present, energy saving of about 50% or more is theoretically possible as shown in the following formula. Accordingly, various studies have been made for practical application of the gas diffusion electrode.
2NaCl + 2H 2 O → Cl 2 + 2NaOH + H 2 E 0 = 2.21V
2NaCl + 1/2 O 2 + H 2 O → Cl 2 + 2NaOH E 0 = 0.96V
[0004]
The structure of a gas diffusion electrode used for caustic electrolysis is a so-called semi-hydrophobic (water repellent) type, and has a structure in which a hydrophilic reaction layer and a water repellent gas diffusion layer are bonded together. Both the reaction layer and the gas diffusion layer are mainly made of carbon and PTFE resin is used as a binder. PTFE resin is water repellent and uses its properties, and its characteristics are obtained by increasing the proportion of the resin in the gas diffusion layer and decreasing it in the reaction layer. Further, in the caustic alkaline electrolysis, the gas diffusion electrode is used in a high-concentration caustic aqueous solution. Therefore, the PTFE resin, which is a water repellent material, may become hydrophilic and lose water repellency in such an atmosphere. Some electrodes have a thin porous PTFE sheet on the gas chamber side of the gas diffusion layer to prevent water repellency.
A catalyst such as platinum is supported on the surface of the reaction layer, or a catalyst is supported on the carbon surface constituting the reaction layer.
[0005]
All of these electrodes are solidified by heating together with carbon powder carrying an electrode material using a fluororesin as a binder, and this is carried on a substrate such as titanium, nickel, stainless steel, etc., but it is as strong as so-called PTFE. Instead of forming a three-dimensionally solid skeleton until it becomes a sheet, it has a feature that its production is easy. Even if this fluorocarbon resin is insufficiently cross-linked, this gas diffusion electrode can stably carry the supported electrode material when used as a cathode to send oxygen-containing gas to depolarize oxygen. Therefore, it can be used under stable operating conditions with sufficiently satisfactory performance at the start of use. However, in an alkali, not only carbon powder but also fluororesin is not always stable.
[0006]
In the electrolysis, an oxygen-containing gas is supplied to the gas diffusion electrode. The oxygen-containing gas generates hydrogen peroxide, which corrodes carbon to generate sodium carbonate. This sodium carbonate clogs the gas diffusion layer in an alkaline solution, impairs the water repellency of the electrode due to long-term use, and easily loses the activity of the electrode material, and the carbon is a catalytic metal even if hydrogen peroxide is not generated. It has been observed that the corrosion proceeds gradually only in the presence of slag.
In order to solve these problems, the selection of carbon to be used, the preparation method thereof, and the adjustment of the mixing ratio of resin and carbon have been attempted, but none of these are fundamental solutions, and carbon Although the progress of corrosion could be delayed, it could not be stopped.
[0007]
The above problems occur because carbon is used as a material for the gas diffusion electrode, and a gas diffusion electrode using a metal having corrosion resistance instead of carbon has been proposed. However, this gas diffusion electrode is manufactured by a sintering method different from that of a conventional gas diffusion electrode having carbon, and the manufacturing method becomes extremely complicated. Further, there are disadvantages that it is difficult to control the hydrophilic portion and the water repellent portion.
The above is considered to be the main cause that has not been realized industrially while energy saving by using gas diffusion electrode in the process of producing caustic soda and chlorine by salt electrolysis, or producing caustic soda and sulfuric acid by sodium nitrate electrolysis is considered. It has been.
[0008]
OBJECT OF THE INVENTION
The present invention solves the above-mentioned problems of the prior art, that is, the disadvantage that the gas diffusion electrode cannot be used at a practical level for salt electrolysis or sodium nitrate electrolysis, and is stable for a long period of time in an alkali and substantially used for salt electrolysis. The object is to provide a possible gas diffusion electrode, in particular a gas diffusion cathode.
[0009]
[Means for solving problems]
The present invention relates to a gas diffusion electrode formed by forming a gas diffusion layer on one side of a metal substrate and a reaction layer on the other side, wherein the reaction layer is formed of a kneaded material containing silver and a fluorocarbon compound. The gas diffusion electrode is characterized in that a thin catalyst layer may be formed on the reaction layer surface.
[0010]
The present invention will be described in detail below.
In the present invention, the gas diffusion electrode used for the caustic alkaline electrolysis is noticed that the corrosion and consumption of carbon is basically only the reaction layer, and the reaction layer does not use carbon alone such as carbon black. This is characterized by the fact that the gas diffusion electrode is configured, and even when hydrogen peroxide is generated, the components that make up the gas diffusion electrode are hardly corroded, and the electrolysis of caustic is generated under stable conditions over a long period of time. Can be performed.
[0011]
The reaction layer is a hydrophilic layer, and rapid supply and removal of only the liquid phase is attempted, but in actuality, rapid supply and removal of not only the liquid phase but also the gas phase is necessary. I need it. From these points, in the present invention, instead of the reaction layer comprising conventional carbon black and other carbon and PTFE resin which functions as a binder for imparting water repellency, a mixture of silver and a fluorocarbon compound such as PTFE resin is used. To form. PTFE resin is water repellent, but is known to be easily hydrophilized in a high concentration alkali. Therefore, an extremely stable water repellent material typified by graphite fluoride may be used in addition to PTFE to prevent PTFE from becoming water repellent. On the other hand, the gas diffusion layer hardly needs to take corrosion into consideration, and can be composed of a kneaded material of carbon and PTFE resin as usual, but naturally silver may be used in the same manner as the reaction layer. In order to obtain a higher water repellency, only the water repellent material may be attached to or mixed in the gas diffusion electrode by a suspension plating method, a thermal decomposition method, or a method of mixing at the time of silver sintering. A protective layer for further effectively suppressing the hydrophilicity of the gas diffusion layer may be provided on the outer surface of the gas diffusion layer.
[0012]
The method for producing the reaction layer and the gas diffusion layer is not particularly limited, but it is not necessary to use a complicated method such as sintering with metallic silver alone, and the same method as the method of solidifying carbon in a conventional gas diffusion electrode with a binder. And then sintered by hot pressing or the like.
For example, a paste obtained by kneading a suspension of PTFE resin that also serves as a carbon powder such as graphite or carbon black for a gas diffusion layer and a water repellent material and a binder is applied to one side of a metal base material that also serves as a power supply material. On the other side, a kneaded product of a fluorocarbon compound such as PTFE resin or graphite fluoride and silver powder is applied. The gas diffusion electrode is manufactured by sintering the metal substrate coated with this paste at a temperature of about 200 to 350 ° C. and a pressure of several to several tens kg / cm 2 .
[0013]
In the gas diffusion layer of the gas diffusion electrode, in order to maintain water repellency, the amount of the fluorocarbon compound such as PTFE resin is increased to about 60 to 70%, while the reaction layer has appropriate water repellency and hydrophilicity. Therefore, the fluorocarbon compound content is desirably about 35 to 45%.
The gas diffusion layer and the reaction layer may be formed with through holes, and the size of the through holes can be adjusted by the particle sizes of the carbon powder and silver powder used. However, since silver functions as a catalyst by itself, the larger the surface area, the better. The highly active black silver or so-called submicron silver with an average particle size of 1 μm or less is used as it is or together with a dispersant such as carbon black. Alternatively, it is preferably used after being kneaded with a binder such as PTFE dispersion and sintered at 150 to 350 ° C. and then dispersed so as to have an apparent particle size of about 5 to 20 μm. Further, the silver is formed into a lump without a binder, for example, together with a small amount of dextrin (scattered and not left by sintering), sintered at 300 to 600 ° C., pulverized into a so-called loose sintered state, and apparently a particle size of 5 It may be set to ˜20 μm.
As described above, silver contained in the reaction layer may be used as a catalyst, but a thin catalyst layer may be separately formed on the surface of the reaction layer. The method for forming the catalyst layer is not particularly limited, but when a platinum group metal or an oxide thereof is used, the catalyst layer can be coated and baked, or directly coated by physical vapor deposition or chemical vapor deposition. However, since the surface of the reaction layer must be electrically conductive and have a proper mixture of water repellency and hydrophilicity even after formation of the catalyst layer, it is desirable not to increase the amount of catalyst, usually 1 to 20 g / m 2 , preferably 5 ˜15 g / m 2 .
[0014]
The metallic base material is preferably a net-like body, and the net-like body can be formed using a so-called woven mesh obtained by knitting a thin wire in a mesh shape, and the wire diameter of the mesh is 0.1 to 0.7 mm. Is optimal. In the mesh body, gas permeation is performed uniformly over the entire area.
In addition to the net-like body, the base material can be configured in an expanded mesh shape, a felt shape, or the like. The expanded mesh shape is superior in physical strength but poor in gas permeability. Therefore, it is preferable not to use it except for special purposes. However, when used, the expanded mesh shape should have a thickness of about 0.2 to 0.5 mm. use. The felt-like body is constructed as a metal felt made of a metal wire knitted into a felt shape. Although the physical strength is slightly weak, a uniform current distribution is achieved over the entire surface, but the electric resistance is somewhat high, and the felt is used as a feeder. You can not expect electricity from.
[0015]
In addition to the above, a metal foam prepared by removing the urethane foam after electrodeposition of metal on the surface of a thin urethane foam having fine through-holes that has recently been used may be used.
A reaction layer or the like may be formed on the surface of these metal substrates made of the selected metal as they are. However, for example, when used as an oxygen cathode, even under strong alkalis near pH 14, the potential is about 0.42V if there is no overvoltage, 0VvsNHE or slightly negative even if overvoltage is added. In addition, since each metal or alloy other than silver has the possibility of corrosion, it is desirable that the surface be pre-plated with silver or molded with silver.
[0016]
As described above, the gas diffusion electrode according to the present invention does not contain simple carbon that is easily corroded by alkali in the reaction layer exposed to the aqueous alkali solution. There is almost no consumption of the electrode, and even when the gas diffusion electrode is used for caustic alkaline electrolysis for a long time, the performance is hardly deteriorated and caustic can be produced with high efficiency.
Further, when the gas diffusion electrode is used as an electrode of a zero gap type electrolytic cell used in close contact with a cation exchange membrane, particularly a salt or sodium nitrate electrolytic cell, the reaction site of the gas diffusion electrode is located at the interface with the cation exchange membrane. Thus, the liquid phase is extremely thin, no pressure in the height direction is applied at all, there is no need for gas diffusion in the liquid, and the gas diffusion layer and the reaction layer are integrated and can be handled in common.
[0017]
【Example】
Next, although the Example of manufacture of the gas diffusion electrode concerning this invention and the electrolysis method using this electrode is described, this Example does not limit this invention.
[Example 1]
On a single side of a 2 mm mesh silver net made by braiding silver wire with a diameter of 0.2 mm, carbon black with an average particle diameter of 0.05 μm and 0.4 μm PTFE resin in a weight ratio of solids of 30: A paste prepared by kneading the suspension of 70 was applied so that the average thickness was 100 μm. On the other side of the silver net, a paste obtained by kneading a suspension of silver particles having an average particle diameter of 20 μm and PTFE resin having an average particle diameter of 0.4 μm in a weight ratio of solids of 90:10 was applied. Further, silver particles having an average particle size of 0.2 μm were applied to the surface to obtain a plate-like body.
[0018]
Thus, both surfaces of the plate-like body coated with the paste on both sides were sandwiched between PTFE plates, and heated and sintered at 250 ° C. for 30 minutes under a pressure of 5 kg / cm 2 with a hot press material to prepare a gas diffusion electrode. Furthermore, a 0.1 mm thick sheet (product name: Gore-Tex) is two-dimensionally stretched so that the area is about doubled at a temperature of 100 ° C. on the layer side containing carbon black. And thermocompression-bonded at a temperature of 200 ° C. and a pressure of 5 kg / cm 2 .
[0019]
The gas diffusion electrode is placed in a cathode chamber of a salt electrolytic cell partitioned into an anode chamber and a cathode chamber by a cation exchange membrane (Nafion 90209 manufactured by DuPont) so that the reaction layer side containing silver faces the cation exchange membrane. In the cathode chamber filled with 30% aqueous sodium hydroxide solution, the anode is a dimensionally stable anode carrying ruthenium oxide, and the cathode chamber has oxygen twice the theoretical amount in the anode chamber of 300 g / Electrolysis was performed at a temperature of 80 ° C. and a current density of 40 A / dm 2 while feeding a liter of saline. The observed potential was -0.3 V vs NHE, which was found to be an overvoltage of about 700 mV. Although electrolysis was continued for 1000 hours under these conditions, there was no change in potential and no leakage of the produced caustic soda on the back surface of the gas diffusion electrode, and stable electrolysis could be performed.
[0020]
[Comparative Example 1]
A reaction layer was formed in the same manner as in Example 1 using acetylene black instead of silver particles, and heated at 200 ° C. for 15 minutes in an atmosphere in which an aqueous chloroplatinic acid solution was applied to the surface and hydrogen gas was allowed to flow. A gas diffusion electrode was produced. Using this, electrolysis of saline solution was performed under the same conditions as in Example 1. The initial potential was -0.1 VvsNHE, which was an overvoltage of about 500 mV. However, after 1000 hours, the overvoltage rose to 900 mV, and a slight caustic soda leaked to the gas chamber side was observed. Precipitation of sodium carbonate was observed on the surface of the diffusion layer. Further, the remaining amount of platinum catalyst after 1000 hours was 5%.
[0021]
[Example 2]
A silver foam having a porosity of 85% having through-holes having a diameter of 0.2 mm is used as a metal substrate, and silver particles having an average particle diameter of 2 μm and PTFE resin suspension having an average particle diameter of 0.4 μm on one side A 50:50 (weight ratio) kneaded product was applied to a thickness of 100 to 150 μm. On the other side, a kneaded material having a ratio of silver particles to PTFE resin of 90:10 was applied to a thickness of 100 to 150 μm.
A Gore-Tex sheet prepared in the same manner as in Example 1 was brought into close contact with the surface having the ratio of 50:50, and was heated and sintered at 250 ° C. for 30 minutes while applying a pressure of 5 kg / cm 2 with a hot press machine. Further, a butanol solution of chloroplatinic acid was applied to the opposite surface of the Gore-Tex sheet so that the amount of platinum supported was 1 mg / cm 2, and pyrolysis was performed at 200 ° C. for 10 minutes in flowing hydrogen to support platinum.
[0022]
An electrolysis test was performed using the gas diffusion electrode thus produced. Since the electric resistance of the electrode itself was smaller than that of the electrode of Example 1, the evaluation was performed under the acceleration test condition of 60 A / dm 2 , but there was no heat generation of the electrode.
In a 30% aqueous solution of caustic soda at 80 ° C., oxygen was flowed twice as much as the theoretical amount. The initial potential at a current density of 40 A / dm 2 was −0.1 V vs NHE, and the overvoltage was about 500 mV. During this time, platinum consumption was about 3%, which was very small. Further, no caustic soda leaked into the gas chamber.
[0023]
[Example 3]
An 80-mesh silver net made by braiding a silver wire having a diameter of 0.2 mm is used as a metal substrate, and after cleaning the surface of the substrate, the average particle size is 7 μm and the particle size distribution is 2 to 15 μm. A paste in which a kneaded mixture of 5% by weight of dextrin and water mixed with silver particles and a kneaded mixture using a suspension containing PTFE resin instead of dextrin in a ratio of 1: 1 is apparent thickness 0 It was applied to be 2 mm. When this was heated at 350 ° C. for 30 minutes, a plate-like body was obtained.
[0024]
A thin paste of kneaded silver particles having an average particle size of 0.5 μm and PTFE resin in a weight ratio of 95: 5 is applied to the surface of the plate-like body, and a pressure of 2 kg / cm 2 is applied at 280 ° C. The reaction layer was prepared by hot pressing for 15 minutes.
Further, on the opposite surface of the plate-like body, an apparent thickness is obtained by adding fine particles of graphite fluoride having a weight ratio of 20% to silver particles having an average particle size of 7 μm and a particle size distribution of 5 to 10 μm, and kneading with PTFE resin as a binder. It apply | coated so that it might become 0.3 mm. This was hot pressed at 280 ° C. for 15 minutes while applying a pressure of 2 kg / cm 2 to produce a gas diffusion electrode.
[0025]
The contact angle of the gas diffusion electrode with respect to water is 100 to 130 ° on the reaction layer side and 140 to 170 ° on the gas diffusion layer side, and the contact angle after immersion in a 32% aqueous sodium hydroxide solution for 48 hours is on the reaction layer side. Although slightly reduced to 100 to 120 °, there was no change on the gas diffusion layer side.
This gas diffusion electrode was placed in close contact with the ion exchange membrane on the cathode chamber side of the ion exchange membrane type salt electrolytic cell, and fixed with a current collector made of silver wire on the back side. Electrolysis was carried out while flowing 1.1 times the theoretical amount of oxygen through the cathode chamber. The anolyte was 200 g / liter saline, the temperature was 90 ° C., and the current density was 30 A / dm 2 . The ion exchange membrane was Nafion 961 manufactured by DuPont. The voltage at that time was 2.2 V, the anode potential was 650 mV, and even after 500 hours, 640 to 650 mV was maintained and hardly changed. The produced caustic soda was collected from the gas chamber side.
[0026]
[Example 4]
The surface of a nickel foam having a thickness of 0.2 mm and a porosity of 85% was subjected to electrodeposition of silver so as to have a thickness of 50 μm, thereby obtaining a metal substrate having a structure in which nickel does not directly contact the liquid. A reaction layer was prepared on one side of the metal substrate in the same manner as in Example 3. However, instead of using a silver powder layer with an average particle size of 0.5 μm on the surface, a catalyst layer is prepared on the surface of the metal substrate that is silver-plated by electrodeposition using a suspension of PTFE resin and platinum black in the silver plating solution. did.
[0027]
On the opposite surface of the metal substrate, an apparent thickness of about 0.2 mm is obtained by kneading a silver powder having an average particle size of 7 μm and a particle size distribution of 5 to 10 μm so that PTFE resin is 90:10 by weight. It applied so that it might become mm.
This was fixed by heating with a hot press at a pressure of 2 kg / cm 2 and a temperature of 280 ° C. for 30 minutes. Further, a product name Gore-Tex sheet having a thickness of 0.1 mm was attached by hot pressing under the same conditions with a PTFE resin liquid sandwiched as a binder.
[0028]
When the contact angle was measured in the same manner as in Example 3, the reaction layer side was 100 to 120 °, and the gas chamber side was 130 to 150 °. This value did not change even after being immersed in a 32% aqueous sodium hydroxide solution for 48 hours.
This was used as a gas diffusion electrode, and the electrode physical properties were measured while supplying pure oxygen 1.1 times the theoretical value with a 32% aqueous sodium hydroxide solution. The initial overvoltage at 80 ° C. and 30 A / dm 2 was 480 mV and became 520 mV after 500 hours, but no change was observed thereafter. Moreover, no leakage of caustic soda into the gas chamber was observed.
[0029]
【The invention's effect】
The present invention relates to a gas diffusion electrode formed by forming a gas diffusion layer on one side of a metal substrate and a reaction layer on the other side, wherein the reaction layer is formed of a kneaded material containing silver and a fluorocarbon compound. The gas diffusion electrode is characterized.
Since the gas diffusion electrode of the present invention does not use simple carbon, which is easily corroded in an alkaline aqueous solution, as a component of the reaction layer, it can be used as an oxygen cathode in an alkaline aqueous solution such as an electrolytic cell for caustic alkali production for a long time Even so, there is almost no case where carbon is converted to sodium carbonate and the gas flow path in the gas diffusion electrode is blocked, or the fluororesin such as PTFE is hydrophilized and the performance of the gas diffusion electrode is deteriorated.
[0030]
In this gas diffusion electrode, since silver contained in the reaction layer also functions as an electrode catalyst, it is not necessary to carry a catalyst separately, but a catalyst layer made of silver or other metal catalyst is separately formed on the reaction layer surface. The electrolytic reaction may proceed more smoothly.
Further, when the metal substrate is made of silver or silver-plated corrosion-resistant metal, the metal substrate is not corroded, and can be reliably operated for a long period of time.
As described above, the gas diffusion layer hardly undergoes corrosion or the like even when electrolysis is performed in an alkaline aqueous solution, but may be formed of a kneaded material containing silver and a fluorocarbon compound as in the reaction layer. By configuring as described above, stable operation for a long period of time can be achieved more reliably.
[0031]
A fluororesin such as PTFE may gradually lose water repellency and become hydrophilic due to long-term use in an alkaline aqueous solution, leading to deterioration of the performance of the gas diffusion electrode. In order to prevent this, it is possible to suppress the hydrophilicity of the fluororesin used as a coexisting binder by using graphite fluoride as the fluorocarbon compound and using it together with silver powder.
Further, a protective layer made of a porous fluororesin can be provided on the outer surface of the gas diffusion layer to reliably prevent the gas diffusion layer from becoming hydrophilic.

Claims (6)

金属製基材の一方面にガス拡散層を他面に反応層を形成して成るガス拡散電極において、該反応層を銀とフッ化炭素化合物を含む混練物により形成したことを特徴とするガス拡散電極。A gas diffusion electrode having a gas diffusion layer formed on one surface of a metal substrate and a reaction layer formed on the other surface, wherein the reaction layer is formed of a kneaded material containing silver and a fluorocarbon compound. Diffusion electrode. 反応層の表面に触媒層を形成した請求項1に記載のガス拡散電極。The gas diffusion electrode according to claim 1, wherein a catalyst layer is formed on the surface of the reaction layer. 金属製基材が、銀又は銀めっきされた耐食性金属で形成されている請求項1に記載のガス拡散電極。The gas diffusion electrode according to claim 1, wherein the metal substrate is formed of silver or a silver-plated corrosion-resistant metal. ガス拡散層を銀とフッ化炭素化合物を含む混練物により形成した請求項1に記載のガス拡散電極。The gas diffusion electrode according to claim 1, wherein the gas diffusion layer is formed of a kneaded material containing silver and a fluorocarbon compound. フッ化炭素化合物がフッ化グラファイトであり、銀粉末とフッ化グラファイトをフッ素樹脂をバインダーとして焼結し形成した請求項1に記載のガス拡散電極。The gas diffusion electrode according to claim 1, wherein the fluorocarbon compound is graphite fluoride, and is formed by sintering silver powder and graphite fluoride using a fluororesin as a binder. ガス拡散層の外面に多孔性フッ素樹脂から成る保護層を設置した請求項1に記載のガス拡散電極。The gas diffusion electrode according to claim 1, wherein a protective layer made of a porous fluororesin is provided on the outer surface of the gas diffusion layer.
JP11231195A 1995-04-13 1995-04-13 Gas diffusion electrode Expired - Fee Related JP3625520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231195A JP3625520B2 (en) 1995-04-13 1995-04-13 Gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231195A JP3625520B2 (en) 1995-04-13 1995-04-13 Gas diffusion electrode

Publications (2)

Publication Number Publication Date
JPH08283980A JPH08283980A (en) 1996-10-29
JP3625520B2 true JP3625520B2 (en) 2005-03-02

Family

ID=14583506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231195A Expired - Fee Related JP3625520B2 (en) 1995-04-13 1995-04-13 Gas diffusion electrode

Country Status (1)

Country Link
JP (1) JP3625520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20060726A1 (en) * 2006-04-12 2007-10-13 De Nora Elettrodi S P A ELECTRIC DIFFUSION ELECTRODE FOR CELLS WITH ELECTROLYTE DISCHARGE
DE102010024053A1 (en) * 2010-06-16 2011-12-22 Bayer Materialscience Ag Oxygenating electrode and process for its preparation
JP6128709B2 (en) * 2012-12-24 2017-05-17 ベイジン ユニバーシティ オブ ケミカル テクノロジー Gas diffusion electrode and preparation method thereof

Also Published As

Publication number Publication date
JPH08283980A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
TWI424093B (en) Oxygen gas diffusion cathode for sodium chloride electrolysis
US7858551B2 (en) Electrode catalyst for electrochemical reaction, process for producing the electrode catalyst and electrode for electrochemical reaction having the electrode catalyst
JP5178959B2 (en) Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method
JP3553775B2 (en) Electrolyzer using gas diffusion electrode
JP5000121B2 (en) Oxygen reducing gas diffusion cathode and salt electrolysis method
US5746896A (en) Method of producing gas diffusion electrode
JP2016505716A (en) Gas diffusion electrode and preparation method thereof
JPH08333693A (en) Electrolytic cell
JPH07278864A (en) Gas diffusion electrode
JP3628756B2 (en) Gas diffusion electrode
JPH08283979A (en) Gas diffusing electrode and electrolytic method using the electrode
JP3625520B2 (en) Gas diffusion electrode
JP3625633B2 (en) Gas diffusion electrode structure and manufacturing method thereof
JP4115686B2 (en) Electrode structure and electrolysis method using the structure
JP4029944B2 (en) Liquid-permeable gas diffusion cathode structure
JP3921300B2 (en) Hydrogen generator
US6165333A (en) Cathode assembly and method of reactivation
Bou-Saleh et al. Nickel-based 3D electrocatalyst layers for production of hydrogen by water electrolysis in an acidic medium
JP2022152820A (en) Electrolytic cell of two chamber process for brine electrolysis using gas diffusion electrode, and utilization thereof
JP3289337B2 (en) Method for producing alkali metal hydroxide using gas diffusion electrode
JPH08283981A (en) Gas diffusion electrode
JPH06128779A (en) Production of alkali metal hydroxide using hydrogen diffusion electrode
JPH0931678A (en) Metal collecting method by electrolysis

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees