JPS6125791B2 - - Google Patents

Info

Publication number
JPS6125791B2
JPS6125791B2 JP55096222A JP9622280A JPS6125791B2 JP S6125791 B2 JPS6125791 B2 JP S6125791B2 JP 55096222 A JP55096222 A JP 55096222A JP 9622280 A JP9622280 A JP 9622280A JP S6125791 B2 JPS6125791 B2 JP S6125791B2
Authority
JP
Japan
Prior art keywords
exchange membrane
ion exchange
catalyst layer
electrode catalyst
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55096222A
Other languages
Japanese (ja)
Other versions
JPS5723080A (en
Inventor
Shunji Matsura
Atsuyuki Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP9622280A priority Critical patent/JPS5723080A/en
Publication of JPS5723080A publication Critical patent/JPS5723080A/en
Publication of JPS6125791B2 publication Critical patent/JPS6125791B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はイオン交換膜―電極触媒層接合体の製
法に関し、詳しくは特にアルカリ金属ハロゲン化
物の電解性能に優れたイオン交換膜―電極触媒層
の接合体を簡便に得る製法に関する。 従来、我国においてアルカリ金属ハロゲン化
物、なかでも塩化ナトリウム水溶液の電解方法と
しては水銀法が主流を占めていたが、環境規制に
より隔膜法への転換が余儀なくされた。しかし
て、アスベスト膜を主体とする隔膜法では生成苛
性ソーダ中に多量の塩化ナトリウムの混入が避け
られず、精製しても製品の純度が低く、高純度の
要求に応じられない欠点を有している。 したがつて、上記の欠点を克服するために隔膜
としてイオン交換膜を用いる電解法すなわちイオ
ン交換膜法が開発され、実用化されつつある。こ
のイオン交換膜法の開発、改良の重要点は電槽電
圧の低減にあり、理論電解電圧以外の損失分とし
て、溶液抵抗、気泡による溶液抵抗の増大、水素
過電圧、膜低抗などが挙げられる。特に気泡によ
る溶液抵抗の増大が大きく影響するため、溶液抵
抗を減じる目的でイオン交換膜と電極を密着して
も、逆に電槽電圧は上昇する。そのためイオン交
換膜と電極とは適当な間隔を設け、気泡の影響を
できるだけ小さくする必要がある。 近年、さらにイオン交換膜法の欠点を改良する
ため、固体高分子電解質(Solid Polymer
Electrolyte:SPE)による電解法が提案されて
いる。即ち、SPE電解法ではイオン交換膜に電極
触媒層が接合されているために、電極反応による
ガス発生は該電極触媒層の表面から起こり、イオ
ン交換膜―電極間の溶液抵抗と気泡による溶液抵
抗の増加分を除くことができ、さらに水素過電圧
をも下げうる。 一方、かかるイオン交換膜―電極触媒層の接合
体を製造する方法としては、貴金属塩の触媒粒子
とテフロン粒子との混合物をシート状に焼結、成
形してイオン交換膜上に接合する方法、直接イオ
ン交換膜に触媒を熱プレスにより埋め込む方法、
また無電解メツキによりイオン交換膜上に金属を
析出させる方法が提案されている。しかしなが
ら、前者の方法では触媒粒子のバインダーとなる
テフロン粒子が疎水性であるため、生成した気泡
が電極触媒層の表面または内部に吸着し、これが
電極反応を疎外し電解電圧を高める欠点がある。
また後者の無電解メツキによる方法は、工業的に
イオン交換膜をエツチングする大型の設備および
シビアな操作管理を要する。エツチングには一般
にグロー放電あるいは低温プラズマが利用される
ため、イオン交換膜の表面を損ない、電解性能の
低下をきたす。したがつて、イオン交換膜―電極
触媒層の密着性を保ち、かつ電解性能を低下させ
ない穏やかなエツチングが必要である。 本発明者らはイオン交換膜―電極触媒層接合体
開発について鋭意研究の結果、何らバインダーも
用いることなくイオン交換膜に電極触媒層を密着
性よく接合し得る簡便な方法を見出し、本発明を
提案するに至つた。即ち、本発明はイオン交換膜
の少くとも片面に貴金属塩を溶解した溶液で存在
させ、次いで該溶媒を除去したのち、該貴金属塩
の熱分解を行うことを特徴とするイオン交換膜―
電極触媒層の製造方法である。本発明においてイ
オン交換膜の少くとも片面、一般には該膜の陰極
側に形成される陰極触媒層は、貴金属塩が熱分解
によつて還元された金属層である。本発明におい
て用いられるイオン交換膜は、耐久性に優れた陽
イオン交換膜であれば特に制限されないが、一般
にはスルホン酸基、カルボン酸基、アミン基など
を交換基とするフロロカーボンを基体とする、特
にパーフロロカーボン系の陽イオン交換膜が好適
に使用される。 また本発明において用いられる貴金属塩は有機
溶媒、または水―有機溶媒の混合系に溶解し、そ
の還元分解温度が60〜300℃、好ましくは200℃以
下である白金、イリジウム、パラジウム、ルテニ
ウム、ロジウムおよびオスミウムの無機塩または
有機錯体である。例示すれば、塩化白金酸、四沃
化白金、四臭化白金、四塩化イリジウム、四臭化
イリジウム、四沃化イリジウム、ソジウムヘキサ
クロロイリデート;沃化パラジウム、硝酸パラジ
ウム、パラジウムジカルボニルクロライド;5フ
ツ化ルテニウム、ルテニウムペンタニトリル、ル
テニウムモノカルボニルブロマイド;3フツ化ロ
ジウム、ロジウムカルボニルなどが挙げられる。 本発明の方法ではイオン交換膜の少なくとも片
面、使用時における陰極側に先ず貴金属塩を溶解
した溶液で存在させることによつてイオン交換膜
が膨潤され、貴金属塩の膜表面への浸入を容易に
し、ひいては密着性の良好な接合体を得ることが
できる。溶媒としては貴金属塩を溶解し、かつ減
圧乾燥が容易なものであれば特に制限されない
が、一般には有機溶媒が用いられ、例えばメタノ
ール、エタノール、プロパノール、ブタノールな
どのアルコール類が好ましく用いられる。イオン
交換膜の片面に貴金属塩溶液で存在させる方法と
しては、直接ハケで塗布する方法、スプレーする
方法、あるいは他面をマスシングしたイオン交換
膜を貴金属塩の溶液中に浸漬する方法などが採用
される。 次いで、本発明の方法によれば、イオン交換膜
の陰極面に存在させた貴金属塩は、熱分解によつ
て該貴金属塩の還元生成物である電極触媒層が形
成される。しかして、本発明においてはイオン交
換膜から溶媒を十分に除去したのちに貴金属塩の
熱分解を行うことが、該イオン交換膜の片面に貴
金属の陰極触媒層を良好に密着させるために至つ
て重要である。即ち、特に有機溶媒の除去が不十
分でイオン交換膜中に存在する状態で熱分解を実
施した場合には、イオン交換膜の劣化現象を生じ
易く、また該有機溶媒が炭化された状態で膜中に
残存するために、電極触媒層の密着性が低下し、
その導電性も低下する。 溶媒の除去手段としては、一般に減圧乾燥する
方法が採用される。また熱分解は貴金属塩が熱分
解還元する開始温度以上かつイオン交換膜の劣化
温度以下であればよく、一般には水素などの還元
雰囲気下で60〜300℃、好ましくは200℃以下の温
度で行われる。熱分解時間は貴金属塩の熱分解が
十分に完了し得る時間が必要であり、熱分解温度
によつて変るが、一般に5分〜5時間を要する。 しかして、本発明の方法においては、上記した
イオン交換膜の片面に貴金属塩の溶媒に溶解した
溶液で存在させること、該溶媒を除去すること、
および該貴金属塩を熱分解することの各操作をそ
れぞれ順次に複数回にわたり繰り返し行うこと
が、該イオン交換膜に電極触媒層を密着性よく形
成させるために極めて好ましい。即ち、上記の各
操作を1回だけでイオン交換膜に電極触媒層を形
成させることは、作業も簡単で、使用可能な電解
性能を有するイオン交換膜―電極触媒層接合体を
得ることができる。しかしながら、かかるイオン
交換膜―電極触媒層はその密着性が不十分で長期
間の耐久性に乏しい。したがつて、使用する貴金
属塩溶液の濃度を調整して、一般に5〜30回の繰
り返し操作を行い、イオン交換膜に電極触媒層を
所望の厚さに形成することが好ましい。なお、本
発明のイオン交換膜―電極触媒層接合体を使用す
るに際しては、該触媒層と集電体との接触が不可
避であるため、集電体と触媒層の接触抵抗を下
げ、かつ電極触媒層のどの点へもオーム降下
(ohmicdrop)を小さくして均一に電流が流れる
に必要な該触媒層の厚みは0.5μ以上である。し
かし、上記の触媒層は厚すぎると電解電圧の上
昇、電流効率の低下の傾向があり、また高価な貴
金属を処理するために、経済上にも薄いほど好ま
しく最高でも約5μである。 本発明によつて得られるイオン交換膜―電極触
媒層の接合体は、バインダーとしてテフロン粒子
などを用いることなく密着性が良好であるため、
従来法による接合体に比べ電解性能に優れかつ電
解電圧の上昇がない利点がある。また、本発明の
方法は極めて簡便で、熱処理温度を低くできるた
め、特に熱的に不安定なカルボン酸系の陽イオン
交換膜にも有利に適用できる利点がある。 以下、本発明を具体的に説明するために実施例
を示すが、これによつて本発明が何ら制限される
ものではない。 なお、実施例で得た陽イオン交換膜―電極触媒
層の接合体は、下記する電解槽にセツトして食塩
の電解に供した。即ち、陽極室と陰極室との間に
陽イオン交換膜―電極触媒層の接合体を位置し、
それぞれ該陽イオン交換膜には陽極を圧着し、ま
た該電極触媒層には陰極集電体を圧着した通電面
積0.5dm2(5×10cm)の電解槽を構成した。陽
極液として4Nの精製食塩水を供給し、電流密度
30A/dm2の条件で、陰極室から所定濃度の苛性
ソーダ水溶液を得た。 実施例1〜5、比較例1 通電面積0.5dm2(5cm×10cm)を有するネオ
セプタFC―2000(商品名、徳山曹達社製)のパ
ーフルオロカーボン系陽イオン交換膜の片面に、
ブタノールを溶媒として用い、第1表に示す所定
濃度に調製したH2PtCの溶液をハケで均一に
塗布した。次いで、陽イオン交換膜を風乾し、さ
らに温度50℃で2時間の減圧乾燥を行つた。しか
る後、イオン交換膜を温度100℃でH2気流中で1.5
時間の処理を行つた。 第1表に示すように、所定濃度のH2PtC
液を用いて、それぞれ上記の各操作を順次に所定
の処理回数繰り返し行つた。得られた陽イオン交
換膜に接合された電極触媒層は、いずれも約1μ
であつた。 上記の各陽イオン交換膜―電極触媒層の接合体
を6N―NaOH(80℃)に浸漬して十分に伸ばした
後、電極触媒層を陰極側にしてセツトした電解槽
を用いて、NaC水溶液の電解を行い、9N―
NaOHを得た。それらの電解結果を第1表に併記
した。
The present invention relates to a method for producing an ion exchange membrane-electrode catalyst layer assembly, and more particularly to a method for easily producing an ion exchange membrane-electrode catalyst layer assembly that has excellent electrolysis performance for alkali metal halides. Previously, the mercury method was the mainstream method for electrolyzing alkali metal halides, especially aqueous sodium chloride solutions in Japan, but environmental regulations forced a switch to the diaphragm method. However, with the diaphragm method, which uses asbestos membranes as its main component, it is inevitable that a large amount of sodium chloride is mixed into the produced caustic soda, and even after purification, the product has a low purity, which has the disadvantage that it cannot meet the demand for high purity. There is. Therefore, in order to overcome the above-mentioned drawbacks, an electrolytic method using an ion exchange membrane as a diaphragm, that is, an ion exchange membrane method, has been developed and is being put into practical use. The important point in the development and improvement of this ion exchange membrane method is to reduce the cell voltage, and losses other than the theoretical electrolysis voltage include solution resistance, increased solution resistance due to bubbles, hydrogen overvoltage, and low membrane resistance. . In particular, the increase in solution resistance due to air bubbles has a large effect, so even if the ion exchange membrane and electrode are brought into close contact for the purpose of reducing solution resistance, the cell voltage will increase. Therefore, it is necessary to provide an appropriate distance between the ion exchange membrane and the electrode to minimize the influence of bubbles. In recent years, solid polymer electrolytes have been developed to further improve the shortcomings of the ion exchange membrane method.
An electrolysis method using electrolyte (SPE) has been proposed. That is, in the SPE electrolysis method, since the electrode catalyst layer is bonded to the ion exchange membrane, gas generation due to the electrode reaction occurs from the surface of the electrode catalyst layer, and the solution resistance between the ion exchange membrane and the electrode and the solution resistance due to bubbles are generated. The increase in hydrogen can be eliminated, and the hydrogen overvoltage can also be lowered. On the other hand, methods for manufacturing such an ion exchange membrane-electrode catalyst layer assembly include a method of sintering and forming a mixture of precious metal salt catalyst particles and Teflon particles into a sheet shape and bonding it onto the ion exchange membrane; A method of directly embedding a catalyst into an ion exchange membrane by heat pressing,
Furthermore, a method has been proposed in which metal is deposited on an ion exchange membrane by electroless plating. However, in the former method, since the Teflon particles that act as a binder for the catalyst particles are hydrophobic, the generated air bubbles are adsorbed on the surface or inside of the electrode catalyst layer, which has the disadvantage of hindering the electrode reaction and increasing the electrolytic voltage.
Furthermore, the latter method using electroless plating requires large equipment for industrially etching the ion exchange membrane and severe operational management. Glow discharge or low-temperature plasma is generally used for etching, which damages the surface of the ion exchange membrane and reduces electrolytic performance. Therefore, gentle etching is required that maintains the adhesion between the ion exchange membrane and the electrode catalyst layer and does not reduce the electrolytic performance. As a result of intensive research into the development of ion exchange membrane-electrode catalyst layer assemblies, the present inventors discovered a simple method for bonding an electrode catalyst layer to an ion exchange membrane with good adhesion without using any binder, and developed the present invention. I came up with a proposal. That is, the present invention provides an ion exchange membrane characterized in that a solution containing a noble metal salt is present on at least one side of the ion exchange membrane, and then, after the solvent is removed, the noble metal salt is thermally decomposed.
This is a method for manufacturing an electrode catalyst layer. In the present invention, the cathode catalyst layer formed on at least one side of the ion exchange membrane, generally on the cathode side of the membrane, is a metal layer in which a noble metal salt is reduced by thermal decomposition. The ion exchange membrane used in the present invention is not particularly limited as long as it is a cation exchange membrane with excellent durability, but generally it is based on fluorocarbon having an exchange group such as a sulfonic acid group, a carboxylic acid group, or an amine group. In particular, perfluorocarbon-based cation exchange membranes are preferably used. In addition, the noble metal salts used in the present invention are platinum, iridium, palladium, ruthenium, rhodium, etc., which are dissolved in an organic solvent or a mixed system of water and an organic solvent, and have a reductive decomposition temperature of 60 to 300°C, preferably 200°C or less. and inorganic salts or organic complexes of osmium. Examples include chloroplatinic acid, platinum tetraiodide, platinum tetrabromide, iridium tetrachloride, iridium tetrabromide, iridium tetraiodide, sodium hexachloroiridate; palladium iodide, palladium nitrate, palladium dicarbonyl chloride; Examples include ruthenium pentafluoride, ruthenium pentanitrile, ruthenium monocarbonyl bromide; rhodium trifluoride, rhodium carbonyl, and the like. In the method of the present invention, the ion exchange membrane is swollen by first providing a solution containing a noble metal salt on at least one side of the ion exchange membrane, on the cathode side during use, to make it easier for the noble metal salt to penetrate into the membrane surface. As a result, it is possible to obtain a bonded body with good adhesion. The solvent is not particularly limited as long as it dissolves the noble metal salt and can be easily dried under reduced pressure, but organic solvents are generally used, and alcohols such as methanol, ethanol, propanol, and butanol are preferably used. Methods of applying a noble metal salt solution to one side of an ion exchange membrane include applying directly with a brush, spraying, or immersing an ion exchange membrane with massing on the other side in a noble metal salt solution. Ru. Next, according to the method of the present invention, the noble metal salt present on the cathode surface of the ion exchange membrane is thermally decomposed to form an electrode catalyst layer which is a reduction product of the noble metal salt. Therefore, in the present invention, thermal decomposition of the noble metal salt is carried out after sufficiently removing the solvent from the ion exchange membrane in order to ensure good adhesion of the noble metal cathode catalyst layer to one side of the ion exchange membrane. is important. In other words, especially when thermal decomposition is carried out with the organic solvent still present in the ion-exchange membrane due to insufficient removal, the ion-exchange membrane is likely to deteriorate, and the organic solvent is carbonized and the membrane is removed. Because it remains inside, the adhesion of the electrode catalyst layer decreases,
Its conductivity also decreases. As a means for removing the solvent, a method of drying under reduced pressure is generally employed. Thermal decomposition may be carried out at temperatures above the temperature at which the noble metal salt begins to undergo thermal decomposition reduction and below the deterioration temperature of the ion exchange membrane, and is generally carried out at a temperature of 60 to 300°C, preferably below 200°C, in a reducing atmosphere such as hydrogen. be exposed. The thermal decomposition time requires time for sufficient thermal decomposition of the noble metal salt to be completed, and generally takes 5 minutes to 5 hours, although it varies depending on the thermal decomposition temperature. Therefore, in the method of the present invention, a solution of a noble metal salt dissolved in a solvent is present on one side of the ion exchange membrane, and the solvent is removed.
It is extremely preferable to repeat the steps of pyrolyzing the noble metal salt several times in order to form the electrode catalyst layer on the ion exchange membrane with good adhesion. That is, forming an electrode catalyst layer on an ion exchange membrane by performing each of the above operations only once is a simple operation, and it is possible to obtain an ion exchange membrane-electrode catalyst layer assembly having usable electrolytic performance. . However, such an ion exchange membrane-electrode catalyst layer has insufficient adhesion and lacks long-term durability. Therefore, it is preferable to adjust the concentration of the noble metal salt solution used and repeat the operation generally 5 to 30 times to form an electrode catalyst layer on the ion exchange membrane to a desired thickness. In addition, when using the ion exchange membrane-electrode catalyst layer assembly of the present invention, since contact between the catalyst layer and the current collector is unavoidable, contact resistance between the current collector and the catalyst layer is reduced and the electrode The thickness of the catalyst layer required for uniform current flow with small ohmic drop to any point on the catalyst layer is 0.5 μm or more. However, if the above-mentioned catalyst layer is too thick, there is a tendency for the electrolytic voltage to increase and the current efficiency to decrease.Furthermore, in order to process expensive noble metals, from an economical point of view, the thinner the layer is, the more preferable it is, and the maximum thickness is about 5μ. The ion exchange membrane-electrode catalyst layer assembly obtained by the present invention has good adhesion without using Teflon particles as a binder.
This method has the advantage of superior electrolytic performance and no increase in electrolytic voltage compared to conventional bonded bodies. Further, the method of the present invention is extremely simple and allows the heat treatment temperature to be lowered, so it has the advantage that it can be particularly advantageously applied to thermally unstable carboxylic acid-based cation exchange membranes. Examples are shown below to specifically explain the present invention, but the present invention is not limited thereto. The cation exchange membrane-electrode catalyst layer assembly obtained in the example was set in the electrolytic cell described below and subjected to salt electrolysis. That is, a cation exchange membrane-electrode catalyst layer assembly is placed between the anode chamber and the cathode chamber,
An electrolytic cell with a current-carrying area of 0.5 dm 2 (5×10 cm) was constructed in which an anode was crimped to each of the cation exchange membranes and a cathode current collector was crimped to the electrode catalyst layer. Supply 4N purified saline as the anolyte and increase the current density
A caustic soda aqueous solution of a predetermined concentration was obtained from the cathode chamber under the condition of 30 A/dm 2 . Examples 1 to 5, Comparative Example 1 On one side of a perfluorocarbon cation exchange membrane of Neocepta FC-2000 (trade name, manufactured by Tokuyama Soda Co., Ltd.) having a current carrying area of 0.5 dm 2 (5 cm x 10 cm),
Using butanol as a solvent, a solution of H 2 PtC 6 prepared to a predetermined concentration shown in Table 1 was uniformly applied with a brush. Next, the cation exchange membrane was air-dried and further dried under reduced pressure at a temperature of 50°C for 2 hours. After that, the ion exchange membrane was heated at a temperature of 100 °C in a H2 stream for 1.5
I processed time. As shown in Table 1, each of the above operations was sequentially repeated a predetermined number of times using H 2 PtC 6 solutions of predetermined concentrations. The electrode catalyst layer bonded to the obtained cation exchange membrane has a thickness of approximately 1μ.
It was hot. After immersing each of the above cation exchange membrane-electrode catalyst layer assemblies in 6N-NaOH (80°C) and stretching them sufficiently, an aqueous NaC solution was prepared using an electrolytic bath set with the electrode catalyst layer on the cathode side. Electrolysis of 9N-
Obtained NaOH. The electrolytic results are also listed in Table 1.

【表】 なお、通電100日後の触媒層の密着性を調べた
結果、実施例1と2の場合には一部の脱落が認め
られたが、実施例3〜5の場合には密着性が良好
であつた。 実施例6、比較例2 ネオセプタFC―2000のパーフルオロ系陽イオ
ン交換膜(H+型)の片面にメタノールを用いて
調製したH2PtCの2重量%溶液をハケで均一
に塗布した。次いで、イオン交換膜を風乾し、さ
らに温度50℃で2時間の減圧乾燥を行つた。しか
る後、温度100℃、H2気流中で1.5時間の熱分解を
行つた。上記のイオン交換膜に対する処理操作を
順次に15回繰り返し行つた。かくして得られたイ
オン交換膜―電極触媒層の接合体を6N―NaOH
(80℃)に浸漬して十分に伸ばした後実施例1と
同様に電解槽にセツトして、食塩水溶液の電解を
行つた。 また比較のために、上記の処理を何ら施さない
イオン交換膜を用いてセツトした電解槽でNaC
水溶液の電解を行つた。 それらの結果を第2表に示した。なお、実施例
では、通電100日後においても陰極触媒層の脱落
がなく安定した電解性能を示した。
[Table] In addition, as a result of examining the adhesion of the catalyst layer after 100 days of energization, some falling off was observed in the cases of Examples 1 and 2, but the adhesion was poor in the cases of Examples 3 to 5. It was good and warm. Example 6, Comparative Example 2 A 2% by weight solution of H 2 PtC 6 prepared using methanol was uniformly applied with a brush to one side of a perfluorinated cation exchange membrane (H + type) of Neocepta FC-2000. Next, the ion exchange membrane was air-dried and further dried under reduced pressure at a temperature of 50°C for 2 hours. Thereafter, thermal decomposition was carried out for 1.5 hours at a temperature of 100° C. in a H 2 stream. The above treatment operations for the ion exchange membrane were sequentially repeated 15 times. The thus obtained ion exchange membrane-electrode catalyst layer assembly was mixed with 6N-NaOH
After being immersed at 80° C. and sufficiently stretched, it was set in an electrolytic bath in the same manner as in Example 1, and the saline solution was electrolyzed. For comparison, NaC
Electrolysis of aqueous solution was carried out. The results are shown in Table 2. In addition, in the example, even after 100 days of energization, the cathode catalyst layer did not fall off and stable electrolytic performance was exhibited.

【表】 実施例7、比較例3 使用したイオン交換膜は通電面積0.5dm2(5
cm×10cm)を有するネオセプタFC―1000(徳山
曹達社製)のパーフロロ系陽イオン交換膜(Na+
型)の片面にブタノールを用いて調製したIrC
の2重量%の溶液をハケで均一に塗布した。次
いで、そのイオン交換膜を風乾し、さらに温度50
℃で5時間の減圧乾燥を行つた。しかる後、温度
150℃、H2気流中で1.5時間の熱分解を行つた。 上記のイオン交換膜に対する処理操作を順次に
30回繰り返し行つた。かくして得られたイオン交
換膜―電極触媒層の接合体を6N―NaOH中(80
℃)に伸びが定常になるまで4時間浸漬した。そ
の後、イオン交換膜の陰極触媒層を陰極側にして
電解槽にセツトし、NaCの電解を行つた。 また比較のために、上記の処理を何ら施さない
イオン交換膜を用いてセツトした電解槽におい
て、同様にNaCの電解を行つた。 それらの結果を第3表に示した。なお、実施例
では、通電100日後においても陰極触媒層の脱落
がなく安定した電解性能を示した。
[Table] Example 7, Comparative Example 3 The ion exchange membrane used has an energized area of 0.5 dm 2 (5
perfluorinated cation exchange membrane (Na +
IrC prepared using butanol on one side of the mold
A 2% by weight solution of No. 4 was applied uniformly with a brush. The ion exchange membrane was then air-dried and further heated to a temperature of 50°C.
Drying was carried out under reduced pressure at ℃ for 5 hours. After that, the temperature
Thermal decomposition was carried out at 150° C. in a stream of H 2 for 1.5 hours. The above treatment operations for ion exchange membranes are performed sequentially.
I did it 30 times. The thus obtained ion exchange membrane-electrode catalyst layer assembly was dissolved in 6N-NaOH (80%
℃) for 4 hours until the elongation became steady. Thereafter, the ion exchange membrane was set in an electrolytic cell with the cathode catalyst layer facing the cathode, and NaC was electrolyzed. For comparison, NaC was similarly electrolyzed in an electrolytic cell set using an ion exchange membrane that was not subjected to any of the above treatments. The results are shown in Table 3. In addition, in the example, even after 100 days of energization, the cathode catalyst layer did not fall off and stable electrolytic performance was exhibited.

【表】【table】

Claims (1)

【特許請求の範囲】 1 イオン交換膜の少くとも片面に、貴金属塩の
溶液を存在させ、次いで乾燥したのち、該貴金属
塩を熱分解することを特徴とするイオン交換膜―
電極触媒層接合体の製造方法。 2 特許請求の範囲第1項に記載の処理操作を複
数回繰り返し行うイオン交換膜―電極触媒層接合
体の製造方法。
[Scope of Claims] 1. An ion exchange membrane characterized in that a solution of a noble metal salt is present on at least one side of the ion exchange membrane, and then, after drying, the noble metal salt is thermally decomposed.
Method for manufacturing an electrode catalyst layer assembly. 2. A method for producing an ion exchange membrane-electrode catalyst layer assembly, which comprises repeating the treatment operation described in claim 1 a plurality of times.
JP9622280A 1980-07-16 1980-07-16 Preparation of ion exchange membrane-electrode catalyst layer bonded body Granted JPS5723080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9622280A JPS5723080A (en) 1980-07-16 1980-07-16 Preparation of ion exchange membrane-electrode catalyst layer bonded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9622280A JPS5723080A (en) 1980-07-16 1980-07-16 Preparation of ion exchange membrane-electrode catalyst layer bonded body

Publications (2)

Publication Number Publication Date
JPS5723080A JPS5723080A (en) 1982-02-06
JPS6125791B2 true JPS6125791B2 (en) 1986-06-17

Family

ID=14159201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9622280A Granted JPS5723080A (en) 1980-07-16 1980-07-16 Preparation of ion exchange membrane-electrode catalyst layer bonded body

Country Status (1)

Country Link
JP (1) JPS5723080A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605960Y2 (en) * 1990-04-09 2000-09-04 アロン化成株式会社 Bell block fire hydrant
ATE191101T1 (en) * 1996-06-26 2000-04-15 Siemens Ag METHOD FOR PRODUCING MEMBRANE ELECTRODE UNITS (ME) FOR POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS

Also Published As

Publication number Publication date
JPS5723080A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
EP2098616B1 (en) Cathode for hydrogen generation
JPS6356316B2 (en)
FI70601B (en) electrode structure
CN112647086A (en) Titanium fiber felt anode diffusion layer for PEM water electrolysis cell and preparation method and application thereof
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
US20030047459A1 (en) Electrochemical reacting electrode, method of making, and application device
US4586998A (en) Electrolytic cell with low hydrogen overvoltage cathode
JP2024010240A (en) Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode
JPS6125791B2 (en)
CN109234760A (en) A kind of activated cathode and its preparation method and application
JP3010496B2 (en) Electrode for water electrolysis and method for producing the same
CN108677209B (en) Ordered membrane electrode for solid polymer water electrolyzer and preparation method thereof
JP3127991B2 (en) Method for producing electrode assembly of laminated ion exchange membrane having porous membrane on surface
KR200276721Y1 (en) Solid Polymer Electrolyte film
JPS6261673B2 (en)
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide
KR102492777B1 (en) Electrode for electrolysis and preparation method thereof
KR20020072192A (en) Solid polymer electrolyte film and preparing method thereof
JPS631391B2 (en)
JPH0631452B2 (en) How to attach the ion exchange membrane
JPH0978279A (en) Hydrochloric acid electrolysis device
JP6753195B2 (en) Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode
JP3264534B2 (en) Gas electrode structure and electrolysis method using the structure
US20150017554A1 (en) Process for producing transport and storage-stable oxygen-consuming electrode
CN115125549A (en) Preparation method of low-iridium membrane electrode for hydrogen production by PEM (proton exchange membrane) electrolysis of water